1NIST/ITL StRD
2Dataset Name:  DanWood           (DanWood.dat)
3
4File Format:   ASCII
5               Starting Values   (lines 41 to 42)
6               Certified Values  (lines 41 to 47)
7               Data              (lines 61 to 66)
8
9Procedure:     Nonlinear Least Squares Regression
10
11Description:   These data and model are described in Daniel and Wood
12               (1980), and originally published in E.S.Keeping,
13               "Introduction to Statistical Inference," Van Nostrand
14               Company, Princeton, NJ, 1962, p. 354.  The response
15               variable is energy radieted from a carbon filament
16               lamp per cm**2 per second, and the predictor variable
17               is the absolute temperature of the filament in 1000
18               degrees Kelvin.
19
20Reference:     Daniel, C. and F. S. Wood (1980).
21               Fitting Equations to Data, Second Edition.
22               New York, NY:  John Wiley and Sons, pp. 428-431.
23
24
25Data:          1 Response Variable  (y = energy)
26               1 Predictor Variable (x = temperature)
27               6 Observations
28               Lower Level of Difficulty
29               Observed Data
30
31Model:         Miscellaneous Class
32               2 Parameters (b1 and b2)
33
34               y  = b1*x**b2  +  e
35
36
37
38          Starting values                  Certified Values
39
40        Start 1     Start 2           Parameter     Standard Deviation
41  b1 =   1           0.7           7.6886226176E-01  1.8281973860E-02
42  b2 =   5           4             3.8604055871E+00  5.1726610913E-02
43
44Residual Sum of Squares:                    4.3173084083E-03
45Residual Standard Deviation:                3.2853114039E-02
46Degrees of Freedom:                                4
47Number of Observations:                            6
48
49
50
51
52
53
54
55
56
57
58
59
60Data:  y              x
61      2.138E0        1.309E0
62      3.421E0        1.471E0
63      3.597E0        1.490E0
64      4.340E0        1.565E0
65      4.882E0        1.611E0
66      5.660E0        1.680E0
67