1 // Ceres Solver - A fast non-linear least squares minimizer
2 // Copyright 2012 Google Inc. All rights reserved.
3 // http://code.google.com/p/ceres-solver/
4 //
5 // Redistribution and use in source and binary forms, with or without
6 // modification, are permitted provided that the following conditions are met:
7 //
8 // * Redistributions of source code must retain the above copyright notice,
9 //   this list of conditions and the following disclaimer.
10 // * Redistributions in binary form must reproduce the above copyright notice,
11 //   this list of conditions and the following disclaimer in the documentation
12 //   and/or other materials provided with the distribution.
13 // * Neither the name of Google Inc. nor the names of its contributors may be
14 //   used to endorse or promote products derived from this software without
15 //   specific prior written permission.
16 //
17 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
18 // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20 // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
21 // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
22 // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
23 // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
24 // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
25 // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
26 // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
27 // POSSIBILITY OF SUCH DAMAGE.
28 //
29 // Author: sameeragarwal@google.com (Sameer Agarwal)
30 
31 #include <iomanip>
32 #include <iostream>  // NOLINT
33 
34 #include "ceres/line_search.h"
35 
36 #include "ceres/fpclassify.h"
37 #include "ceres/evaluator.h"
38 #include "ceres/internal/eigen.h"
39 #include "ceres/polynomial.h"
40 #include "ceres/stringprintf.h"
41 #include "glog/logging.h"
42 
43 namespace ceres {
44 namespace internal {
45 namespace {
46 // Precision used for floating point values in error message output.
47 const int kErrorMessageNumericPrecision = 8;
48 
ValueSample(const double x,const double value)49 FunctionSample ValueSample(const double x, const double value) {
50   FunctionSample sample;
51   sample.x = x;
52   sample.value = value;
53   sample.value_is_valid = true;
54   return sample;
55 };
56 
ValueAndGradientSample(const double x,const double value,const double gradient)57 FunctionSample ValueAndGradientSample(const double x,
58                                       const double value,
59                                       const double gradient) {
60   FunctionSample sample;
61   sample.x = x;
62   sample.value = value;
63   sample.gradient = gradient;
64   sample.value_is_valid = true;
65   sample.gradient_is_valid = true;
66   return sample;
67 };
68 
69 }  // namespace
70 
71 
72 std::ostream& operator<<(std::ostream &os, const FunctionSample& sample);
73 
74 // Convenience stream operator for pushing FunctionSamples into log messages.
operator <<(std::ostream & os,const FunctionSample & sample)75 std::ostream& operator<<(std::ostream &os, const FunctionSample& sample) {
76   os << sample.ToDebugString();
77   return os;
78 }
79 
LineSearch(const LineSearch::Options & options)80 LineSearch::LineSearch(const LineSearch::Options& options)
81     : options_(options) {}
82 
Create(const LineSearchType line_search_type,const LineSearch::Options & options,string * error)83 LineSearch* LineSearch::Create(const LineSearchType line_search_type,
84                                const LineSearch::Options& options,
85                                string* error) {
86   LineSearch* line_search = NULL;
87   switch (line_search_type) {
88   case ceres::ARMIJO:
89     line_search = new ArmijoLineSearch(options);
90     break;
91   case ceres::WOLFE:
92     line_search = new WolfeLineSearch(options);
93     break;
94   default:
95     *error = string("Invalid line search algorithm type: ") +
96         LineSearchTypeToString(line_search_type) +
97         string(", unable to create line search.");
98     return NULL;
99   }
100   return line_search;
101 }
102 
LineSearchFunction(Evaluator * evaluator)103 LineSearchFunction::LineSearchFunction(Evaluator* evaluator)
104     : evaluator_(evaluator),
105       position_(evaluator->NumParameters()),
106       direction_(evaluator->NumEffectiveParameters()),
107       evaluation_point_(evaluator->NumParameters()),
108       scaled_direction_(evaluator->NumEffectiveParameters()),
109       gradient_(evaluator->NumEffectiveParameters()) {
110 }
111 
Init(const Vector & position,const Vector & direction)112 void LineSearchFunction::Init(const Vector& position,
113                               const Vector& direction) {
114   position_ = position;
115   direction_ = direction;
116 }
117 
Evaluate(double x,double * f,double * g)118 bool LineSearchFunction::Evaluate(double x, double* f, double* g) {
119   scaled_direction_ = x * direction_;
120   if (!evaluator_->Plus(position_.data(),
121                         scaled_direction_.data(),
122                         evaluation_point_.data())) {
123     return false;
124   }
125 
126   if (g == NULL) {
127     return (evaluator_->Evaluate(evaluation_point_.data(),
128                                   f, NULL, NULL, NULL) &&
129             IsFinite(*f));
130   }
131 
132   if (!evaluator_->Evaluate(evaluation_point_.data(),
133                             f,
134                             NULL,
135                             gradient_.data(), NULL)) {
136     return false;
137   }
138 
139   *g = direction_.dot(gradient_);
140   return IsFinite(*f) && IsFinite(*g);
141 }
142 
DirectionInfinityNorm() const143 double LineSearchFunction::DirectionInfinityNorm() const {
144   return direction_.lpNorm<Eigen::Infinity>();
145 }
146 
147 // Returns step_size \in [min_step_size, max_step_size] which minimizes the
148 // polynomial of degree defined by interpolation_type which interpolates all
149 // of the provided samples with valid values.
InterpolatingPolynomialMinimizingStepSize(const LineSearchInterpolationType & interpolation_type,const FunctionSample & lowerbound,const FunctionSample & previous,const FunctionSample & current,const double min_step_size,const double max_step_size) const150 double LineSearch::InterpolatingPolynomialMinimizingStepSize(
151     const LineSearchInterpolationType& interpolation_type,
152     const FunctionSample& lowerbound,
153     const FunctionSample& previous,
154     const FunctionSample& current,
155     const double min_step_size,
156     const double max_step_size) const {
157   if (!current.value_is_valid ||
158       (interpolation_type == BISECTION &&
159        max_step_size <= current.x)) {
160     // Either: sample is invalid; or we are using BISECTION and contracting
161     // the step size.
162     return min(max(current.x * 0.5, min_step_size), max_step_size);
163   } else if (interpolation_type == BISECTION) {
164     CHECK_GT(max_step_size, current.x);
165     // We are expanding the search (during a Wolfe bracketing phase) using
166     // BISECTION interpolation.  Using BISECTION when trying to expand is
167     // strictly speaking an oxymoron, but we define this to mean always taking
168     // the maximum step size so that the Armijo & Wolfe implementations are
169     // agnostic to the interpolation type.
170     return max_step_size;
171   }
172   // Only check if lower-bound is valid here, where it is required
173   // to avoid replicating current.value_is_valid == false
174   // behaviour in WolfeLineSearch.
175   CHECK(lowerbound.value_is_valid)
176       << std::scientific << std::setprecision(kErrorMessageNumericPrecision)
177       << "Ceres bug: lower-bound sample for interpolation is invalid, "
178       << "please contact the developers!, interpolation_type: "
179       << LineSearchInterpolationTypeToString(interpolation_type)
180       << ", lowerbound: " << lowerbound << ", previous: " << previous
181       << ", current: " << current;
182 
183   // Select step size by interpolating the function and gradient values
184   // and minimizing the corresponding polynomial.
185   vector<FunctionSample> samples;
186   samples.push_back(lowerbound);
187 
188   if (interpolation_type == QUADRATIC) {
189     // Two point interpolation using function values and the
190     // gradient at the lower bound.
191     samples.push_back(ValueSample(current.x, current.value));
192 
193     if (previous.value_is_valid) {
194       // Three point interpolation, using function values and the
195       // gradient at the lower bound.
196       samples.push_back(ValueSample(previous.x, previous.value));
197     }
198   } else if (interpolation_type == CUBIC) {
199     // Two point interpolation using the function values and the gradients.
200     samples.push_back(current);
201 
202     if (previous.value_is_valid) {
203       // Three point interpolation using the function values and
204       // the gradients.
205       samples.push_back(previous);
206     }
207   } else {
208     LOG(FATAL) << "Ceres bug: No handler for interpolation_type: "
209                << LineSearchInterpolationTypeToString(interpolation_type)
210                << ", please contact the developers!";
211   }
212 
213   double step_size = 0.0, unused_min_value = 0.0;
214   MinimizeInterpolatingPolynomial(samples, min_step_size, max_step_size,
215                                   &step_size, &unused_min_value);
216   return step_size;
217 }
218 
ArmijoLineSearch(const LineSearch::Options & options)219 ArmijoLineSearch::ArmijoLineSearch(const LineSearch::Options& options)
220     : LineSearch(options) {}
221 
Search(const double step_size_estimate,const double initial_cost,const double initial_gradient,Summary * summary)222 void ArmijoLineSearch::Search(const double step_size_estimate,
223                               const double initial_cost,
224                               const double initial_gradient,
225                               Summary* summary) {
226   *CHECK_NOTNULL(summary) = LineSearch::Summary();
227   CHECK_GE(step_size_estimate, 0.0);
228   CHECK_GT(options().sufficient_decrease, 0.0);
229   CHECK_LT(options().sufficient_decrease, 1.0);
230   CHECK_GT(options().max_num_iterations, 0);
231   Function* function = options().function;
232 
233   // Note initial_cost & initial_gradient are evaluated at step_size = 0,
234   // not step_size_estimate, which is our starting guess.
235   const FunctionSample initial_position =
236       ValueAndGradientSample(0.0, initial_cost, initial_gradient);
237 
238   FunctionSample previous = ValueAndGradientSample(0.0, 0.0, 0.0);
239   previous.value_is_valid = false;
240 
241   FunctionSample current = ValueAndGradientSample(step_size_estimate, 0.0, 0.0);
242   current.value_is_valid = false;
243 
244   // As the Armijo line search algorithm always uses the initial point, for
245   // which both the function value and derivative are known, when fitting a
246   // minimizing polynomial, we can fit up to a quadratic without requiring the
247   // gradient at the current query point.
248   const bool interpolation_uses_gradient_at_current_sample =
249       options().interpolation_type == CUBIC;
250   const double descent_direction_max_norm =
251       static_cast<const LineSearchFunction*>(function)->DirectionInfinityNorm();
252 
253   ++summary->num_function_evaluations;
254   if (interpolation_uses_gradient_at_current_sample) {
255     ++summary->num_gradient_evaluations;
256   }
257   current.value_is_valid =
258       function->Evaluate(current.x,
259                          &current.value,
260                          interpolation_uses_gradient_at_current_sample
261                          ? &current.gradient : NULL);
262   current.gradient_is_valid =
263       interpolation_uses_gradient_at_current_sample && current.value_is_valid;
264   while (!current.value_is_valid ||
265          current.value > (initial_cost
266                           + options().sufficient_decrease
267                           * initial_gradient
268                           * current.x)) {
269     // If current.value_is_valid is false, we treat it as if the cost at that
270     // point is not large enough to satisfy the sufficient decrease condition.
271     ++summary->num_iterations;
272     if (summary->num_iterations >= options().max_num_iterations) {
273       summary->error =
274           StringPrintf("Line search failed: Armijo failed to find a point "
275                        "satisfying the sufficient decrease condition within "
276                        "specified max_num_iterations: %d.",
277                        options().max_num_iterations);
278       LOG_IF(WARNING, !options().is_silent) << summary->error;
279       return;
280     }
281 
282     const double step_size =
283         this->InterpolatingPolynomialMinimizingStepSize(
284             options().interpolation_type,
285             initial_position,
286             previous,
287             current,
288             (options().max_step_contraction * current.x),
289             (options().min_step_contraction * current.x));
290 
291     if (step_size * descent_direction_max_norm < options().min_step_size) {
292       summary->error =
293           StringPrintf("Line search failed: step_size too small: %.5e "
294                        "with descent_direction_max_norm: %.5e.", step_size,
295                        descent_direction_max_norm);
296       LOG_IF(WARNING, !options().is_silent) << summary->error;
297       return;
298     }
299 
300     previous = current;
301     current.x = step_size;
302 
303     ++summary->num_function_evaluations;
304     if (interpolation_uses_gradient_at_current_sample) {
305       ++summary->num_gradient_evaluations;
306     }
307     current.value_is_valid =
308       function->Evaluate(current.x,
309                          &current.value,
310                          interpolation_uses_gradient_at_current_sample
311                          ? &current.gradient : NULL);
312     current.gradient_is_valid =
313         interpolation_uses_gradient_at_current_sample && current.value_is_valid;
314   }
315 
316   summary->optimal_step_size = current.x;
317   summary->success = true;
318 }
319 
WolfeLineSearch(const LineSearch::Options & options)320 WolfeLineSearch::WolfeLineSearch(const LineSearch::Options& options)
321     : LineSearch(options) {}
322 
Search(const double step_size_estimate,const double initial_cost,const double initial_gradient,Summary * summary)323 void WolfeLineSearch::Search(const double step_size_estimate,
324                              const double initial_cost,
325                              const double initial_gradient,
326                              Summary* summary) {
327   *CHECK_NOTNULL(summary) = LineSearch::Summary();
328   // All parameters should have been validated by the Solver, but as
329   // invalid values would produce crazy nonsense, hard check them here.
330   CHECK_GE(step_size_estimate, 0.0);
331   CHECK_GT(options().sufficient_decrease, 0.0);
332   CHECK_GT(options().sufficient_curvature_decrease,
333            options().sufficient_decrease);
334   CHECK_LT(options().sufficient_curvature_decrease, 1.0);
335   CHECK_GT(options().max_step_expansion, 1.0);
336 
337   // Note initial_cost & initial_gradient are evaluated at step_size = 0,
338   // not step_size_estimate, which is our starting guess.
339   const FunctionSample initial_position =
340       ValueAndGradientSample(0.0, initial_cost, initial_gradient);
341 
342   bool do_zoom_search = false;
343   // Important: The high/low in bracket_high & bracket_low refer to their
344   // _function_ values, not their step sizes i.e. it is _not_ required that
345   // bracket_low.x < bracket_high.x.
346   FunctionSample solution, bracket_low, bracket_high;
347 
348   // Wolfe bracketing phase: Increases step_size until either it finds a point
349   // that satisfies the (strong) Wolfe conditions, or an interval that brackets
350   // step sizes which satisfy the conditions.  From Nocedal & Wright [1] p61 the
351   // interval: (step_size_{k-1}, step_size_{k}) contains step lengths satisfying
352   // the strong Wolfe conditions if one of the following conditions are met:
353   //
354   //   1. step_size_{k} violates the sufficient decrease (Armijo) condition.
355   //   2. f(step_size_{k}) >= f(step_size_{k-1}).
356   //   3. f'(step_size_{k}) >= 0.
357   //
358   // Caveat: If f(step_size_{k}) is invalid, then step_size is reduced, ignoring
359   // this special case, step_size monotonically increases during bracketing.
360   if (!this->BracketingPhase(initial_position,
361                              step_size_estimate,
362                              &bracket_low,
363                              &bracket_high,
364                              &do_zoom_search,
365                              summary)) {
366     // Failed to find either a valid point, a valid bracket satisfying the Wolfe
367     // conditions, or even a step size > minimum tolerance satisfying the Armijo
368     // condition.
369     return;
370   }
371 
372   if (!do_zoom_search) {
373     // Either: Bracketing phase already found a point satisfying the strong
374     // Wolfe conditions, thus no Zoom required.
375     //
376     // Or: Bracketing failed to find a valid bracket or a point satisfying the
377     // strong Wolfe conditions within max_num_iterations, or whilst searching
378     // shrank the bracket width until it was below our minimum tolerance.
379     // As these are 'artificial' constraints, and we would otherwise fail to
380     // produce a valid point when ArmijoLineSearch would succeed, we return the
381     // point with the lowest cost found thus far which satsifies the Armijo
382     // condition (but not the Wolfe conditions).
383     summary->optimal_step_size = bracket_low.x;
384     summary->success = true;
385     return;
386   }
387 
388   VLOG(3) << std::scientific << std::setprecision(kErrorMessageNumericPrecision)
389           << "Starting line search zoom phase with bracket_low: "
390           << bracket_low << ", bracket_high: " << bracket_high
391           << ", bracket width: " << fabs(bracket_low.x - bracket_high.x)
392           << ", bracket abs delta cost: "
393           << fabs(bracket_low.value - bracket_high.value);
394 
395   // Wolfe Zoom phase: Called when the Bracketing phase finds an interval of
396   // non-zero, finite width that should bracket step sizes which satisfy the
397   // (strong) Wolfe conditions (before finding a step size that satisfies the
398   // conditions).  Zoom successively decreases the size of the interval until a
399   // step size which satisfies the Wolfe conditions is found.  The interval is
400   // defined by bracket_low & bracket_high, which satisfy:
401   //
402   //   1. The interval bounded by step sizes: bracket_low.x & bracket_high.x
403   //      contains step sizes that satsify the strong Wolfe conditions.
404   //   2. bracket_low.x is of all the step sizes evaluated *which satisifed the
405   //      Armijo sufficient decrease condition*, the one which generated the
406   //      smallest function value, i.e. bracket_low.value <
407   //      f(all other steps satisfying Armijo).
408   //        - Note that this does _not_ (necessarily) mean that initially
409   //          bracket_low.value < bracket_high.value (although this is typical)
410   //          e.g. when bracket_low = initial_position, and bracket_high is the
411   //          first sample, and which does not satisfy the Armijo condition,
412   //          but still has bracket_high.value < initial_position.value.
413   //   3. bracket_high is chosen after bracket_low, s.t.
414   //      bracket_low.gradient * (bracket_high.x - bracket_low.x) < 0.
415   if (!this->ZoomPhase(initial_position,
416                        bracket_low,
417                        bracket_high,
418                        &solution,
419                        summary) && !solution.value_is_valid) {
420     // Failed to find a valid point (given the specified decrease parameters)
421     // within the specified bracket.
422     return;
423   }
424   // Ensure that if we ran out of iterations whilst zooming the bracket, or
425   // shrank the bracket width to < tolerance and failed to find a point which
426   // satisfies the strong Wolfe curvature condition, that we return the point
427   // amongst those found thus far, which minimizes f() and satisfies the Armijo
428   // condition.
429   solution =
430       solution.value_is_valid && solution.value <= bracket_low.value
431       ? solution : bracket_low;
432 
433   summary->optimal_step_size = solution.x;
434   summary->success = true;
435 }
436 
437 // Returns true if either:
438 //
439 // A termination condition satisfying the (strong) Wolfe bracketing conditions
440 // is found:
441 //
442 // - A valid point, defined as a bracket of zero width [zoom not required].
443 // - A valid bracket (of width > tolerance), [zoom required].
444 //
445 // Or, searching was stopped due to an 'artificial' constraint, i.e. not
446 // a condition imposed / required by the underlying algorithm, but instead an
447 // engineering / implementation consideration. But a step which exceeds the
448 // minimum step size, and satsifies the Armijo condition was still found,
449 // and should thus be used [zoom not required].
450 //
451 // Returns false if no step size > minimum step size was found which
452 // satisfies at least the Armijo condition.
BracketingPhase(const FunctionSample & initial_position,const double step_size_estimate,FunctionSample * bracket_low,FunctionSample * bracket_high,bool * do_zoom_search,Summary * summary)453 bool WolfeLineSearch::BracketingPhase(
454     const FunctionSample& initial_position,
455     const double step_size_estimate,
456     FunctionSample* bracket_low,
457     FunctionSample* bracket_high,
458     bool* do_zoom_search,
459     Summary* summary) {
460   Function* function = options().function;
461 
462   FunctionSample previous = initial_position;
463   FunctionSample current = ValueAndGradientSample(step_size_estimate, 0.0, 0.0);
464   current.value_is_valid = false;
465 
466   const double descent_direction_max_norm =
467       static_cast<const LineSearchFunction*>(function)->DirectionInfinityNorm();
468 
469   *do_zoom_search = false;
470   *bracket_low = initial_position;
471 
472   // As we require the gradient to evaluate the Wolfe condition, we always
473   // calculate it together with the value, irrespective of the interpolation
474   // type.  As opposed to only calculating the gradient after the Armijo
475   // condition is satisifed, as the computational saving from this approach
476   // would be slight (perhaps even negative due to the extra call).  Also,
477   // always calculating the value & gradient together protects against us
478   // reporting invalid solutions if the cost function returns slightly different
479   // function values when evaluated with / without gradients (due to numerical
480   // issues).
481   ++summary->num_function_evaluations;
482   ++summary->num_gradient_evaluations;
483   current.value_is_valid =
484       function->Evaluate(current.x,
485                          &current.value,
486                          &current.gradient);
487   current.gradient_is_valid = current.value_is_valid;
488 
489   while (true) {
490     ++summary->num_iterations;
491 
492     if (current.value_is_valid &&
493         (current.value > (initial_position.value
494                           + options().sufficient_decrease
495                           * initial_position.gradient
496                           * current.x) ||
497          (previous.value_is_valid && current.value > previous.value))) {
498       // Bracket found: current step size violates Armijo sufficient decrease
499       // condition, or has stepped past an inflection point of f() relative to
500       // previous step size.
501       *do_zoom_search = true;
502       *bracket_low = previous;
503       *bracket_high = current;
504       VLOG(3) << std::scientific
505               << std::setprecision(kErrorMessageNumericPrecision)
506               << "Bracket found: current step (" << current.x
507               << ") violates Armijo sufficient condition, or has passed an "
508               << "inflection point of f() based on value.";
509       break;
510     }
511 
512     if (current.value_is_valid &&
513         fabs(current.gradient) <=
514         -options().sufficient_curvature_decrease * initial_position.gradient) {
515       // Current step size satisfies the strong Wolfe conditions, and is thus a
516       // valid termination point, therefore a Zoom not required.
517       *bracket_low = current;
518       *bracket_high = current;
519       VLOG(3) << std::scientific
520               << std::setprecision(kErrorMessageNumericPrecision)
521               << "Bracketing phase found step size: " << current.x
522               << ", satisfying strong Wolfe conditions, initial_position: "
523               << initial_position << ", current: " << current;
524       break;
525 
526     } else if (current.value_is_valid && current.gradient >= 0) {
527       // Bracket found: current step size has stepped past an inflection point
528       // of f(), but Armijo sufficient decrease is still satisfied and
529       // f(current) is our best minimum thus far.  Remember step size
530       // monotonically increases, thus previous_step_size < current_step_size
531       // even though f(previous) > f(current).
532       *do_zoom_search = true;
533       // Note inverse ordering from first bracket case.
534       *bracket_low = current;
535       *bracket_high = previous;
536       VLOG(3) << "Bracket found: current step (" << current.x
537               << ") satisfies Armijo, but has gradient >= 0, thus have passed "
538               << "an inflection point of f().";
539       break;
540 
541     } else if (current.value_is_valid &&
542                fabs(current.x - previous.x) * descent_direction_max_norm
543                < options().min_step_size) {
544       // We have shrunk the search bracket to a width less than our tolerance,
545       // and still not found either a point satisfying the strong Wolfe
546       // conditions, or a valid bracket containing such a point. Stop searching
547       // and set bracket_low to the size size amongst all those tested which
548       // minimizes f() and satisfies the Armijo condition.
549       LOG_IF(WARNING, !options().is_silent)
550           << "Line search failed: Wolfe bracketing phase shrank "
551           << "bracket width: " << fabs(current.x - previous.x)
552           <<  ", to < tolerance: " << options().min_step_size
553           << ", with descent_direction_max_norm: "
554           << descent_direction_max_norm << ", and failed to find "
555           << "a point satisfying the strong Wolfe conditions or a "
556           << "bracketing containing such a point. Accepting "
557           << "point found satisfying Armijo condition only, to "
558           << "allow continuation.";
559       *bracket_low = current;
560       break;
561 
562     } else if (summary->num_iterations >= options().max_num_iterations) {
563       // Check num iterations bound here so that we always evaluate the
564       // max_num_iterations-th iteration against all conditions, and
565       // then perform no additional (unused) evaluations.
566       summary->error =
567           StringPrintf("Line search failed: Wolfe bracketing phase failed to "
568                        "find a point satisfying strong Wolfe conditions, or a "
569                        "bracket containing such a point within specified "
570                        "max_num_iterations: %d", options().max_num_iterations);
571       LOG_IF(WARNING, !options().is_silent) << summary->error;
572       // Ensure that bracket_low is always set to the step size amongst all
573       // those tested which minimizes f() and satisfies the Armijo condition
574       // when we terminate due to the 'artificial' max_num_iterations condition.
575       *bracket_low =
576           current.value_is_valid && current.value < bracket_low->value
577           ? current : *bracket_low;
578       break;
579     }
580     // Either: f(current) is invalid; or, f(current) is valid, but does not
581     // satisfy the strong Wolfe conditions itself, or the conditions for
582     // being a boundary of a bracket.
583 
584     // If f(current) is valid, (but meets no criteria) expand the search by
585     // increasing the step size.
586     const double max_step_size =
587         current.value_is_valid
588         ? (current.x * options().max_step_expansion) : current.x;
589 
590     // We are performing 2-point interpolation only here, but the API of
591     // InterpolatingPolynomialMinimizingStepSize() allows for up to
592     // 3-point interpolation, so pad call with a sample with an invalid
593     // value that will therefore be ignored.
594     const FunctionSample unused_previous;
595     DCHECK(!unused_previous.value_is_valid);
596     // Contracts step size if f(current) is not valid.
597     const double step_size =
598         this->InterpolatingPolynomialMinimizingStepSize(
599             options().interpolation_type,
600             previous,
601             unused_previous,
602             current,
603             previous.x,
604             max_step_size);
605     if (step_size * descent_direction_max_norm < options().min_step_size) {
606       summary->error =
607           StringPrintf("Line search failed: step_size too small: %.5e "
608                        "with descent_direction_max_norm: %.5e", step_size,
609                        descent_direction_max_norm);
610       LOG_IF(WARNING, !options().is_silent) << summary->error;
611       return false;
612     }
613 
614     previous = current.value_is_valid ? current : previous;
615     current.x = step_size;
616 
617     ++summary->num_function_evaluations;
618     ++summary->num_gradient_evaluations;
619     current.value_is_valid =
620         function->Evaluate(current.x,
621                            &current.value,
622                            &current.gradient);
623     current.gradient_is_valid = current.value_is_valid;
624   }
625 
626   // Ensure that even if a valid bracket was found, we will only mark a zoom
627   // as required if the bracket's width is greater than our minimum tolerance.
628   if (*do_zoom_search &&
629       fabs(bracket_high->x - bracket_low->x) * descent_direction_max_norm
630       < options().min_step_size) {
631     *do_zoom_search = false;
632   }
633 
634   return true;
635 }
636 
637 // Returns true iff solution satisfies the strong Wolfe conditions. Otherwise,
638 // on return false, if we stopped searching due to the 'artificial' condition of
639 // reaching max_num_iterations, solution is the step size amongst all those
640 // tested, which satisfied the Armijo decrease condition and minimized f().
ZoomPhase(const FunctionSample & initial_position,FunctionSample bracket_low,FunctionSample bracket_high,FunctionSample * solution,Summary * summary)641 bool WolfeLineSearch::ZoomPhase(const FunctionSample& initial_position,
642                                 FunctionSample bracket_low,
643                                 FunctionSample bracket_high,
644                                 FunctionSample* solution,
645                                 Summary* summary) {
646   Function* function = options().function;
647 
648   CHECK(bracket_low.value_is_valid && bracket_low.gradient_is_valid)
649       << std::scientific << std::setprecision(kErrorMessageNumericPrecision)
650       << "Ceres bug: f_low input to Wolfe Zoom invalid, please contact "
651       << "the developers!, initial_position: " << initial_position
652       << ", bracket_low: " << bracket_low
653       << ", bracket_high: "<< bracket_high;
654   // We do not require bracket_high.gradient_is_valid as the gradient condition
655   // for a valid bracket is only dependent upon bracket_low.gradient, and
656   // in order to minimize jacobian evaluations, bracket_high.gradient may
657   // not have been calculated (if bracket_high.value does not satisfy the
658   // Armijo sufficient decrease condition and interpolation method does not
659   // require it).
660   //
661   // We also do not require that: bracket_low.value < bracket_high.value,
662   // although this is typical. This is to deal with the case when
663   // bracket_low = initial_position, bracket_high is the first sample,
664   // and bracket_high does not satisfy the Armijo condition, but still has
665   // bracket_high.value < initial_position.value.
666   CHECK(bracket_high.value_is_valid)
667       << std::scientific << std::setprecision(kErrorMessageNumericPrecision)
668       << "Ceres bug: f_high input to Wolfe Zoom invalid, please "
669       << "contact the developers!, initial_position: " << initial_position
670       << ", bracket_low: " << bracket_low
671       << ", bracket_high: "<< bracket_high;
672 
673   if (bracket_low.gradient * (bracket_high.x - bracket_low.x) >= 0) {
674     // The third condition for a valid initial bracket:
675     //
676     //   3. bracket_high is chosen after bracket_low, s.t.
677     //      bracket_low.gradient * (bracket_high.x - bracket_low.x) < 0.
678     //
679     // is not satisfied.  As this can happen when the users' cost function
680     // returns inconsistent gradient values relative to the function values,
681     // we do not CHECK_LT(), but we do stop processing and return an invalid
682     // value.
683     summary->error =
684         StringPrintf("Line search failed: Wolfe zoom phase passed a bracket "
685                      "which does not satisfy: bracket_low.gradient * "
686                      "(bracket_high.x - bracket_low.x) < 0 [%.8e !< 0] "
687                      "with initial_position: %s, bracket_low: %s, bracket_high:"
688                      " %s, the most likely cause of which is the cost function "
689                      "returning inconsistent gradient & function values.",
690                      bracket_low.gradient * (bracket_high.x - bracket_low.x),
691                      initial_position.ToDebugString().c_str(),
692                      bracket_low.ToDebugString().c_str(),
693                      bracket_high.ToDebugString().c_str());
694     LOG_IF(WARNING, !options().is_silent) << summary->error;
695     solution->value_is_valid = false;
696     return false;
697   }
698 
699   const int num_bracketing_iterations = summary->num_iterations;
700   const double descent_direction_max_norm =
701       static_cast<const LineSearchFunction*>(function)->DirectionInfinityNorm();
702 
703   while (true) {
704     // Set solution to bracket_low, as it is our best step size (smallest f())
705     // found thus far and satisfies the Armijo condition, even though it does
706     // not satisfy the Wolfe condition.
707     *solution = bracket_low;
708     if (summary->num_iterations >= options().max_num_iterations) {
709       summary->error =
710           StringPrintf("Line search failed: Wolfe zoom phase failed to "
711                        "find a point satisfying strong Wolfe conditions "
712                        "within specified max_num_iterations: %d, "
713                        "(num iterations taken for bracketing: %d).",
714                        options().max_num_iterations, num_bracketing_iterations);
715       LOG_IF(WARNING, !options().is_silent) << summary->error;
716       return false;
717     }
718     if (fabs(bracket_high.x - bracket_low.x) * descent_direction_max_norm
719         < options().min_step_size) {
720       // Bracket width has been reduced below tolerance, and no point satisfying
721       // the strong Wolfe conditions has been found.
722       summary->error =
723           StringPrintf("Line search failed: Wolfe zoom bracket width: %.5e "
724                        "too small with descent_direction_max_norm: %.5e.",
725                        fabs(bracket_high.x - bracket_low.x),
726                        descent_direction_max_norm);
727       LOG_IF(WARNING, !options().is_silent) << summary->error;
728       return false;
729     }
730 
731     ++summary->num_iterations;
732     // Polynomial interpolation requires inputs ordered according to step size,
733     // not f(step size).
734     const FunctionSample& lower_bound_step =
735         bracket_low.x < bracket_high.x ? bracket_low : bracket_high;
736     const FunctionSample& upper_bound_step =
737         bracket_low.x < bracket_high.x ? bracket_high : bracket_low;
738     // We are performing 2-point interpolation only here, but the API of
739     // InterpolatingPolynomialMinimizingStepSize() allows for up to
740     // 3-point interpolation, so pad call with a sample with an invalid
741     // value that will therefore be ignored.
742     const FunctionSample unused_previous;
743     DCHECK(!unused_previous.value_is_valid);
744     solution->x =
745         this->InterpolatingPolynomialMinimizingStepSize(
746             options().interpolation_type,
747             lower_bound_step,
748             unused_previous,
749             upper_bound_step,
750             lower_bound_step.x,
751             upper_bound_step.x);
752     // No check on magnitude of step size being too small here as it is
753     // lower-bounded by the initial bracket start point, which was valid.
754     //
755     // As we require the gradient to evaluate the Wolfe condition, we always
756     // calculate it together with the value, irrespective of the interpolation
757     // type.  As opposed to only calculating the gradient after the Armijo
758     // condition is satisifed, as the computational saving from this approach
759     // would be slight (perhaps even negative due to the extra call).  Also,
760     // always calculating the value & gradient together protects against us
761     // reporting invalid solutions if the cost function returns slightly
762     // different function values when evaluated with / without gradients (due
763     // to numerical issues).
764     ++summary->num_function_evaluations;
765     ++summary->num_gradient_evaluations;
766     solution->value_is_valid =
767         function->Evaluate(solution->x,
768                            &solution->value,
769                            &solution->gradient);
770     solution->gradient_is_valid = solution->value_is_valid;
771     if (!solution->value_is_valid) {
772       summary->error =
773           StringPrintf("Line search failed: Wolfe Zoom phase found "
774                        "step_size: %.5e, for which function is invalid, "
775                        "between low_step: %.5e and high_step: %.5e "
776                        "at which function is valid.",
777                        solution->x, bracket_low.x, bracket_high.x);
778       LOG_IF(WARNING, !options().is_silent) << summary->error;
779       return false;
780     }
781 
782     VLOG(3) << "Zoom iteration: "
783             << summary->num_iterations - num_bracketing_iterations
784             << ", bracket_low: " << bracket_low
785             << ", bracket_high: " << bracket_high
786             << ", minimizing solution: " << *solution;
787 
788     if ((solution->value > (initial_position.value
789                             + options().sufficient_decrease
790                             * initial_position.gradient
791                             * solution->x)) ||
792         (solution->value >= bracket_low.value)) {
793       // Armijo sufficient decrease not satisfied, or not better
794       // than current lowest sample, use as new upper bound.
795       bracket_high = *solution;
796       continue;
797     }
798 
799     // Armijo sufficient decrease satisfied, check strong Wolfe condition.
800     if (fabs(solution->gradient) <=
801         -options().sufficient_curvature_decrease * initial_position.gradient) {
802       // Found a valid termination point satisfying strong Wolfe conditions.
803       VLOG(3) << std::scientific
804               << std::setprecision(kErrorMessageNumericPrecision)
805               << "Zoom phase found step size: " << solution->x
806               << ", satisfying strong Wolfe conditions.";
807       break;
808 
809     } else if (solution->gradient * (bracket_high.x - bracket_low.x) >= 0) {
810       bracket_high = bracket_low;
811     }
812 
813     bracket_low = *solution;
814   }
815   // Solution contains a valid point which satisfies the strong Wolfe
816   // conditions.
817   return true;
818 }
819 
820 }  // namespace internal
821 }  // namespace ceres
822