1 // Ceres Solver - A fast non-linear least squares minimizer
2 // Copyright 2014 Google Inc. All rights reserved.
3 // http://code.google.com/p/ceres-solver/
4 //
5 // Redistribution and use in source and binary forms, with or without
6 // modification, are permitted provided that the following conditions are met:
7 //
8 // * Redistributions of source code must retain the above copyright notice,
9 // this list of conditions and the following disclaimer.
10 // * Redistributions in binary form must reproduce the above copyright notice,
11 // this list of conditions and the following disclaimer in the documentation
12 // and/or other materials provided with the distribution.
13 // * Neither the name of Google Inc. nor the names of its contributors may be
14 // used to endorse or promote products derived from this software without
15 // specific prior written permission.
16 //
17 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
18 // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20 // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
21 // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
22 // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
23 // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
24 // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
25 // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
26 // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
27 // POSSIBILITY OF SUCH DAMAGE.
28 //
29 // Author: sameeragarwal@google.com (Sameer Agarwal)
30
31 #include "ceres/solver.h"
32
33 #include <limits>
34 #include <cmath>
35 #include <vector>
36 #include "gtest/gtest.h"
37 #include "ceres/internal/scoped_ptr.h"
38 #include "ceres/autodiff_cost_function.h"
39 #include "ceres/sized_cost_function.h"
40 #include "ceres/problem.h"
41 #include "ceres/problem_impl.h"
42
43 namespace ceres {
44 namespace internal {
45
TEST(SolverOptions,DefaultTrustRegionOptionsAreValid)46 TEST(SolverOptions, DefaultTrustRegionOptionsAreValid) {
47 Solver::Options options;
48 options.minimizer_type = TRUST_REGION;
49 string error;
50 EXPECT_TRUE(options.IsValid(&error)) << error;
51 }
52
TEST(SolverOptions,DefaultLineSearchOptionsAreValid)53 TEST(SolverOptions, DefaultLineSearchOptionsAreValid) {
54 Solver::Options options;
55 options.minimizer_type = LINE_SEARCH;
56 string error;
57 EXPECT_TRUE(options.IsValid(&error)) << error;
58 }
59
60 struct QuadraticCostFunctor {
operator ()ceres::internal::QuadraticCostFunctor61 template <typename T> bool operator()(const T* const x,
62 T* residual) const {
63 residual[0] = T(5.0) - *x;
64 return true;
65 }
66
Createceres::internal::QuadraticCostFunctor67 static CostFunction* Create() {
68 return new AutoDiffCostFunction<QuadraticCostFunctor, 1, 1>(
69 new QuadraticCostFunctor);
70 }
71 };
72
73 struct RememberingCallback : public IterationCallback {
RememberingCallbackceres::internal::RememberingCallback74 explicit RememberingCallback(double *x) : calls(0), x(x) {}
~RememberingCallbackceres::internal::RememberingCallback75 virtual ~RememberingCallback() {}
operator ()ceres::internal::RememberingCallback76 virtual CallbackReturnType operator()(const IterationSummary& summary) {
77 x_values.push_back(*x);
78 return SOLVER_CONTINUE;
79 }
80 int calls;
81 double *x;
82 vector<double> x_values;
83 };
84
TEST(Solver,UpdateStateEveryIterationOption)85 TEST(Solver, UpdateStateEveryIterationOption) {
86 double x = 50.0;
87 const double original_x = x;
88
89 scoped_ptr<CostFunction> cost_function(QuadraticCostFunctor::Create());
90 Problem::Options problem_options;
91 problem_options.cost_function_ownership = DO_NOT_TAKE_OWNERSHIP;
92 Problem problem(problem_options);
93 problem.AddResidualBlock(cost_function.get(), NULL, &x);
94
95 Solver::Options options;
96 options.linear_solver_type = DENSE_QR;
97
98 RememberingCallback callback(&x);
99 options.callbacks.push_back(&callback);
100
101 Solver::Summary summary;
102
103 int num_iterations;
104
105 // First try: no updating.
106 Solve(options, &problem, &summary);
107 num_iterations = summary.num_successful_steps +
108 summary.num_unsuccessful_steps;
109 EXPECT_GT(num_iterations, 1);
110 for (int i = 0; i < callback.x_values.size(); ++i) {
111 EXPECT_EQ(50.0, callback.x_values[i]);
112 }
113
114 // Second try: with updating
115 x = 50.0;
116 options.update_state_every_iteration = true;
117 callback.x_values.clear();
118 Solve(options, &problem, &summary);
119 num_iterations = summary.num_successful_steps +
120 summary.num_unsuccessful_steps;
121 EXPECT_GT(num_iterations, 1);
122 EXPECT_EQ(original_x, callback.x_values[0]);
123 EXPECT_NE(original_x, callback.x_values[1]);
124 }
125
126 // The parameters must be in separate blocks so that they can be individually
127 // set constant or not.
128 struct Quadratic4DCostFunction {
operator ()ceres::internal::Quadratic4DCostFunction129 template <typename T> bool operator()(const T* const x,
130 const T* const y,
131 const T* const z,
132 const T* const w,
133 T* residual) const {
134 // A 4-dimension axis-aligned quadratic.
135 residual[0] = T(10.0) - *x +
136 T(20.0) - *y +
137 T(30.0) - *z +
138 T(40.0) - *w;
139 return true;
140 }
141
Createceres::internal::Quadratic4DCostFunction142 static CostFunction* Create() {
143 return new AutoDiffCostFunction<Quadratic4DCostFunction, 1, 1, 1, 1, 1>(
144 new Quadratic4DCostFunction);
145 }
146 };
147
148 // A cost function that simply returns its argument.
149 class UnaryIdentityCostFunction : public SizedCostFunction<1, 1> {
150 public:
Evaluate(double const * const * parameters,double * residuals,double ** jacobians) const151 virtual bool Evaluate(double const* const* parameters,
152 double* residuals,
153 double** jacobians) const {
154 residuals[0] = parameters[0][0];
155 if (jacobians != NULL && jacobians[0] != NULL) {
156 jacobians[0][0] = 1.0;
157 }
158 return true;
159 }
160 };
161
TEST(Solver,TrustRegionProblemHasNoParameterBlocks)162 TEST(Solver, TrustRegionProblemHasNoParameterBlocks) {
163 Problem problem;
164 Solver::Options options;
165 options.minimizer_type = TRUST_REGION;
166 Solver::Summary summary;
167 Solve(options, &problem, &summary);
168 EXPECT_EQ(summary.termination_type, CONVERGENCE);
169 EXPECT_EQ(summary.message,
170 "Function tolerance reached. "
171 "No non-constant parameter blocks found.");
172 }
173
TEST(Solver,LineSearchProblemHasNoParameterBlocks)174 TEST(Solver, LineSearchProblemHasNoParameterBlocks) {
175 Problem problem;
176 Solver::Options options;
177 options.minimizer_type = LINE_SEARCH;
178 Solver::Summary summary;
179 Solve(options, &problem, &summary);
180 EXPECT_EQ(summary.termination_type, CONVERGENCE);
181 EXPECT_EQ(summary.message,
182 "Function tolerance reached. "
183 "No non-constant parameter blocks found.");
184 }
185
TEST(Solver,TrustRegionProblemHasZeroResiduals)186 TEST(Solver, TrustRegionProblemHasZeroResiduals) {
187 Problem problem;
188 double x = 1;
189 problem.AddParameterBlock(&x, 1);
190 Solver::Options options;
191 options.minimizer_type = TRUST_REGION;
192 Solver::Summary summary;
193 Solve(options, &problem, &summary);
194 EXPECT_EQ(summary.termination_type, CONVERGENCE);
195 EXPECT_EQ(summary.message,
196 "Function tolerance reached. "
197 "No non-constant parameter blocks found.");
198 }
199
TEST(Solver,LineSearchProblemHasZeroResiduals)200 TEST(Solver, LineSearchProblemHasZeroResiduals) {
201 Problem problem;
202 double x = 1;
203 problem.AddParameterBlock(&x, 1);
204 Solver::Options options;
205 options.minimizer_type = LINE_SEARCH;
206 Solver::Summary summary;
207 Solve(options, &problem, &summary);
208 EXPECT_EQ(summary.termination_type, CONVERGENCE);
209 EXPECT_EQ(summary.message,
210 "Function tolerance reached. "
211 "No non-constant parameter blocks found.");
212 }
213
TEST(Solver,TrustRegionProblemIsConstant)214 TEST(Solver, TrustRegionProblemIsConstant) {
215 Problem problem;
216 double x = 1;
217 problem.AddResidualBlock(new UnaryIdentityCostFunction, NULL, &x);
218 problem.SetParameterBlockConstant(&x);
219 Solver::Options options;
220 options.minimizer_type = TRUST_REGION;
221 Solver::Summary summary;
222 Solve(options, &problem, &summary);
223 EXPECT_EQ(summary.termination_type, CONVERGENCE);
224 EXPECT_EQ(summary.initial_cost, 1.0 / 2.0);
225 EXPECT_EQ(summary.final_cost, 1.0 / 2.0);
226 }
227
TEST(Solver,LineSearchProblemIsConstant)228 TEST(Solver, LineSearchProblemIsConstant) {
229 Problem problem;
230 double x = 1;
231 problem.AddResidualBlock(new UnaryIdentityCostFunction, NULL, &x);
232 problem.SetParameterBlockConstant(&x);
233 Solver::Options options;
234 options.minimizer_type = LINE_SEARCH;
235 Solver::Summary summary;
236 Solve(options, &problem, &summary);
237 EXPECT_EQ(summary.termination_type, CONVERGENCE);
238 EXPECT_EQ(summary.initial_cost, 1.0 / 2.0);
239 EXPECT_EQ(summary.final_cost, 1.0 / 2.0);
240 }
241
242 #if defined(CERES_NO_SUITESPARSE)
TEST(Solver,SparseNormalCholeskyNoSuiteSparse)243 TEST(Solver, SparseNormalCholeskyNoSuiteSparse) {
244 Solver::Options options;
245 options.sparse_linear_algebra_library_type = SUITE_SPARSE;
246 options.linear_solver_type = SPARSE_NORMAL_CHOLESKY;
247 string message;
248 EXPECT_FALSE(options.IsValid(&message));
249 }
250 #endif
251
252 #if defined(CERES_NO_CXSPARSE)
TEST(Solver,SparseNormalCholeskyNoCXSparse)253 TEST(Solver, SparseNormalCholeskyNoCXSparse) {
254 Solver::Options options;
255 options.sparse_linear_algebra_library_type = CX_SPARSE;
256 options.linear_solver_type = SPARSE_NORMAL_CHOLESKY;
257 string message;
258 EXPECT_FALSE(options.IsValid(&message));
259 }
260 #endif
261
TEST(Solver,IterativeLinearSolverForDogleg)262 TEST(Solver, IterativeLinearSolverForDogleg) {
263 Solver::Options options;
264 options.trust_region_strategy_type = DOGLEG;
265 string message;
266 options.linear_solver_type = ITERATIVE_SCHUR;
267 EXPECT_FALSE(options.IsValid(&message));
268
269 options.linear_solver_type = CGNR;
270 EXPECT_FALSE(options.IsValid(&message));
271 }
272
TEST(Solver,LinearSolverTypeNormalOperation)273 TEST(Solver, LinearSolverTypeNormalOperation) {
274 Solver::Options options;
275 options.linear_solver_type = DENSE_QR;
276
277 string message;
278 EXPECT_TRUE(options.IsValid(&message));
279
280 options.linear_solver_type = DENSE_NORMAL_CHOLESKY;
281 EXPECT_TRUE(options.IsValid(&message));
282
283 options.linear_solver_type = DENSE_SCHUR;
284 EXPECT_TRUE(options.IsValid(&message));
285
286 options.linear_solver_type = SPARSE_SCHUR;
287 #if defined(CERES_NO_SUITESPARSE) && defined(CERES_NO_CXSPARSE)
288 EXPECT_FALSE(options.IsValid(&message));
289 #else
290 EXPECT_TRUE(options.IsValid(&message));
291 #endif
292
293 options.linear_solver_type = ITERATIVE_SCHUR;
294 EXPECT_TRUE(options.IsValid(&message));
295 }
296
297 } // namespace internal
298 } // namespace ceres
299