1 //=== MallocChecker.cpp - A malloc/free checker -------------------*- C++ -*--//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines malloc/free checker, which checks for potential memory
11 // leaks, double free, and use-after-free problems.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "ClangSACheckers.h"
16 #include "InterCheckerAPI.h"
17 #include "clang/AST/Attr.h"
18 #include "clang/AST/ParentMap.h"
19 #include "clang/Basic/SourceManager.h"
20 #include "clang/Basic/TargetInfo.h"
21 #include "clang/StaticAnalyzer/Core/BugReporter/BugType.h"
22 #include "clang/StaticAnalyzer/Core/Checker.h"
23 #include "clang/StaticAnalyzer/Core/CheckerManager.h"
24 #include "clang/StaticAnalyzer/Core/PathSensitive/CallEvent.h"
25 #include "clang/StaticAnalyzer/Core/PathSensitive/CheckerContext.h"
26 #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState.h"
27 #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramStateTrait.h"
28 #include "clang/StaticAnalyzer/Core/PathSensitive/SymbolManager.h"
29 #include "llvm/ADT/ImmutableMap.h"
30 #include "llvm/ADT/STLExtras.h"
31 #include "llvm/ADT/SmallString.h"
32 #include "llvm/ADT/StringExtras.h"
33 #include <climits>
34 
35 using namespace clang;
36 using namespace ento;
37 
38 namespace {
39 
40 // Used to check correspondence between allocators and deallocators.
41 enum AllocationFamily {
42   AF_None,
43   AF_Malloc,
44   AF_CXXNew,
45   AF_CXXNewArray,
46   AF_IfNameIndex,
47   AF_Alloca
48 };
49 
50 class RefState {
51   enum Kind { // Reference to allocated memory.
52               Allocated,
53               // Reference to zero-allocated memory.
54               AllocatedOfSizeZero,
55               // Reference to released/freed memory.
56               Released,
57               // The responsibility for freeing resources has transferred from
58               // this reference. A relinquished symbol should not be freed.
59               Relinquished,
60               // We are no longer guaranteed to have observed all manipulations
61               // of this pointer/memory. For example, it could have been
62               // passed as a parameter to an opaque function.
63               Escaped
64   };
65 
66   const Stmt *S;
67   unsigned K : 3; // Kind enum, but stored as a bitfield.
68   unsigned Family : 29; // Rest of 32-bit word, currently just an allocation
69                         // family.
70 
RefState(Kind k,const Stmt * s,unsigned family)71   RefState(Kind k, const Stmt *s, unsigned family)
72     : S(s), K(k), Family(family) {
73     assert(family != AF_None);
74   }
75 public:
isAllocated() const76   bool isAllocated() const { return K == Allocated; }
isAllocatedOfSizeZero() const77   bool isAllocatedOfSizeZero() const { return K == AllocatedOfSizeZero; }
isReleased() const78   bool isReleased() const { return K == Released; }
isRelinquished() const79   bool isRelinquished() const { return K == Relinquished; }
isEscaped() const80   bool isEscaped() const { return K == Escaped; }
getAllocationFamily() const81   AllocationFamily getAllocationFamily() const {
82     return (AllocationFamily)Family;
83   }
getStmt() const84   const Stmt *getStmt() const { return S; }
85 
operator ==(const RefState & X) const86   bool operator==(const RefState &X) const {
87     return K == X.K && S == X.S && Family == X.Family;
88   }
89 
getAllocated(unsigned family,const Stmt * s)90   static RefState getAllocated(unsigned family, const Stmt *s) {
91     return RefState(Allocated, s, family);
92   }
getAllocatedOfSizeZero(const RefState * RS)93   static RefState getAllocatedOfSizeZero(const RefState *RS) {
94     return RefState(AllocatedOfSizeZero, RS->getStmt(),
95                     RS->getAllocationFamily());
96   }
getReleased(unsigned family,const Stmt * s)97   static RefState getReleased(unsigned family, const Stmt *s) {
98     return RefState(Released, s, family);
99   }
getRelinquished(unsigned family,const Stmt * s)100   static RefState getRelinquished(unsigned family, const Stmt *s) {
101     return RefState(Relinquished, s, family);
102   }
getEscaped(const RefState * RS)103   static RefState getEscaped(const RefState *RS) {
104     return RefState(Escaped, RS->getStmt(), RS->getAllocationFamily());
105   }
106 
Profile(llvm::FoldingSetNodeID & ID) const107   void Profile(llvm::FoldingSetNodeID &ID) const {
108     ID.AddInteger(K);
109     ID.AddPointer(S);
110     ID.AddInteger(Family);
111   }
112 
dump(raw_ostream & OS) const113   void dump(raw_ostream &OS) const {
114     switch (static_cast<Kind>(K)) {
115 #define CASE(ID) case ID: OS << #ID; break;
116     CASE(Allocated)
117     CASE(AllocatedOfSizeZero)
118     CASE(Released)
119     CASE(Relinquished)
120     CASE(Escaped)
121     }
122   }
123 
dump() const124   LLVM_DUMP_METHOD void dump() const { dump(llvm::errs()); }
125 };
126 
127 enum ReallocPairKind {
128   RPToBeFreedAfterFailure,
129   // The symbol has been freed when reallocation failed.
130   RPIsFreeOnFailure,
131   // The symbol does not need to be freed after reallocation fails.
132   RPDoNotTrackAfterFailure
133 };
134 
135 /// \class ReallocPair
136 /// \brief Stores information about the symbol being reallocated by a call to
137 /// 'realloc' to allow modeling failed reallocation later in the path.
138 struct ReallocPair {
139   // \brief The symbol which realloc reallocated.
140   SymbolRef ReallocatedSym;
141   ReallocPairKind Kind;
142 
ReallocPair__anone8977cbd0111::ReallocPair143   ReallocPair(SymbolRef S, ReallocPairKind K) :
144     ReallocatedSym(S), Kind(K) {}
Profile__anone8977cbd0111::ReallocPair145   void Profile(llvm::FoldingSetNodeID &ID) const {
146     ID.AddInteger(Kind);
147     ID.AddPointer(ReallocatedSym);
148   }
operator ==__anone8977cbd0111::ReallocPair149   bool operator==(const ReallocPair &X) const {
150     return ReallocatedSym == X.ReallocatedSym &&
151            Kind == X.Kind;
152   }
153 };
154 
155 typedef std::pair<const ExplodedNode*, const MemRegion*> LeakInfo;
156 
157 class MallocChecker : public Checker<check::DeadSymbols,
158                                      check::PointerEscape,
159                                      check::ConstPointerEscape,
160                                      check::PreStmt<ReturnStmt>,
161                                      check::PreCall,
162                                      check::PostStmt<CallExpr>,
163                                      check::PostStmt<CXXNewExpr>,
164                                      check::PreStmt<CXXDeleteExpr>,
165                                      check::PostStmt<BlockExpr>,
166                                      check::PostObjCMessage,
167                                      check::Location,
168                                      eval::Assume>
169 {
170 public:
MallocChecker()171   MallocChecker()
172       : II_alloca(nullptr), II_malloc(nullptr), II_free(nullptr),
173         II_realloc(nullptr), II_calloc(nullptr), II_valloc(nullptr),
174         II_reallocf(nullptr), II_strndup(nullptr), II_strdup(nullptr),
175         II_kmalloc(nullptr), II_if_nameindex(nullptr),
176         II_if_freenameindex(nullptr) {}
177 
178   /// In pessimistic mode, the checker assumes that it does not know which
179   /// functions might free the memory.
180   enum CheckKind {
181     CK_MallocChecker,
182     CK_NewDeleteChecker,
183     CK_NewDeleteLeaksChecker,
184     CK_MismatchedDeallocatorChecker,
185     CK_NumCheckKinds
186   };
187 
188   enum class MemoryOperationKind {
189     MOK_Allocate,
190     MOK_Free,
191     MOK_Any
192   };
193 
194   DefaultBool IsOptimistic;
195 
196   DefaultBool ChecksEnabled[CK_NumCheckKinds];
197   CheckName CheckNames[CK_NumCheckKinds];
198 
199   void checkPreCall(const CallEvent &Call, CheckerContext &C) const;
200   void checkPostStmt(const CallExpr *CE, CheckerContext &C) const;
201   void checkPostStmt(const CXXNewExpr *NE, CheckerContext &C) const;
202   void checkPreStmt(const CXXDeleteExpr *DE, CheckerContext &C) const;
203   void checkPostObjCMessage(const ObjCMethodCall &Call, CheckerContext &C) const;
204   void checkPostStmt(const BlockExpr *BE, CheckerContext &C) const;
205   void checkDeadSymbols(SymbolReaper &SymReaper, CheckerContext &C) const;
206   void checkPreStmt(const ReturnStmt *S, CheckerContext &C) const;
207   ProgramStateRef evalAssume(ProgramStateRef state, SVal Cond,
208                             bool Assumption) const;
209   void checkLocation(SVal l, bool isLoad, const Stmt *S,
210                      CheckerContext &C) const;
211 
212   ProgramStateRef checkPointerEscape(ProgramStateRef State,
213                                     const InvalidatedSymbols &Escaped,
214                                     const CallEvent *Call,
215                                     PointerEscapeKind Kind) const;
216   ProgramStateRef checkConstPointerEscape(ProgramStateRef State,
217                                           const InvalidatedSymbols &Escaped,
218                                           const CallEvent *Call,
219                                           PointerEscapeKind Kind) const;
220 
221   void printState(raw_ostream &Out, ProgramStateRef State,
222                   const char *NL, const char *Sep) const override;
223 
224 private:
225   mutable std::unique_ptr<BugType> BT_DoubleFree[CK_NumCheckKinds];
226   mutable std::unique_ptr<BugType> BT_DoubleDelete;
227   mutable std::unique_ptr<BugType> BT_Leak[CK_NumCheckKinds];
228   mutable std::unique_ptr<BugType> BT_UseFree[CK_NumCheckKinds];
229   mutable std::unique_ptr<BugType> BT_BadFree[CK_NumCheckKinds];
230   mutable std::unique_ptr<BugType> BT_FreeAlloca[CK_NumCheckKinds];
231   mutable std::unique_ptr<BugType> BT_MismatchedDealloc;
232   mutable std::unique_ptr<BugType> BT_OffsetFree[CK_NumCheckKinds];
233   mutable std::unique_ptr<BugType> BT_UseZerroAllocated[CK_NumCheckKinds];
234   mutable IdentifierInfo *II_alloca, *II_malloc, *II_free, *II_realloc,
235                          *II_calloc, *II_valloc, *II_reallocf, *II_strndup,
236                          *II_strdup, *II_kmalloc, *II_if_nameindex,
237                          *II_if_freenameindex;
238   mutable Optional<uint64_t> KernelZeroFlagVal;
239 
240   void initIdentifierInfo(ASTContext &C) const;
241 
242   /// \brief Determine family of a deallocation expression.
243   AllocationFamily getAllocationFamily(CheckerContext &C, const Stmt *S) const;
244 
245   /// \brief Print names of allocators and deallocators.
246   ///
247   /// \returns true on success.
248   bool printAllocDeallocName(raw_ostream &os, CheckerContext &C,
249                              const Expr *E) const;
250 
251   /// \brief Print expected name of an allocator based on the deallocator's
252   /// family derived from the DeallocExpr.
253   void printExpectedAllocName(raw_ostream &os, CheckerContext &C,
254                               const Expr *DeallocExpr) const;
255   /// \brief Print expected name of a deallocator based on the allocator's
256   /// family.
257   void printExpectedDeallocName(raw_ostream &os, AllocationFamily Family) const;
258 
259   ///@{
260   /// Check if this is one of the functions which can allocate/reallocate memory
261   /// pointed to by one of its arguments.
262   bool isMemFunction(const FunctionDecl *FD, ASTContext &C) const;
263   bool isCMemFunction(const FunctionDecl *FD,
264                       ASTContext &C,
265                       AllocationFamily Family,
266                       MemoryOperationKind MemKind) const;
267   bool isStandardNewDelete(const FunctionDecl *FD, ASTContext &C) const;
268   ///@}
269 
270   /// \brief Perform a zero-allocation check.
271   ProgramStateRef ProcessZeroAllocation(CheckerContext &C, const Expr *E,
272                                         const unsigned AllocationSizeArg,
273                                         ProgramStateRef State) const;
274 
275   ProgramStateRef MallocMemReturnsAttr(CheckerContext &C,
276                                        const CallExpr *CE,
277                                        const OwnershipAttr* Att,
278                                        ProgramStateRef State) const;
279   static ProgramStateRef MallocMemAux(CheckerContext &C, const CallExpr *CE,
280                                       const Expr *SizeEx, SVal Init,
281                                       ProgramStateRef State,
282                                       AllocationFamily Family = AF_Malloc);
283   static ProgramStateRef MallocMemAux(CheckerContext &C, const CallExpr *CE,
284                                       SVal SizeEx, SVal Init,
285                                       ProgramStateRef State,
286                                       AllocationFamily Family = AF_Malloc);
287 
288   // Check if this malloc() for special flags. At present that means M_ZERO or
289   // __GFP_ZERO (in which case, treat it like calloc).
290   llvm::Optional<ProgramStateRef>
291   performKernelMalloc(const CallExpr *CE, CheckerContext &C,
292                       const ProgramStateRef &State) const;
293 
294   /// Update the RefState to reflect the new memory allocation.
295   static ProgramStateRef
296   MallocUpdateRefState(CheckerContext &C, const Expr *E, ProgramStateRef State,
297                        AllocationFamily Family = AF_Malloc);
298 
299   ProgramStateRef FreeMemAttr(CheckerContext &C, const CallExpr *CE,
300                               const OwnershipAttr* Att,
301                               ProgramStateRef State) const;
302   ProgramStateRef FreeMemAux(CheckerContext &C, const CallExpr *CE,
303                              ProgramStateRef state, unsigned Num,
304                              bool Hold,
305                              bool &ReleasedAllocated,
306                              bool ReturnsNullOnFailure = false) const;
307   ProgramStateRef FreeMemAux(CheckerContext &C, const Expr *Arg,
308                              const Expr *ParentExpr,
309                              ProgramStateRef State,
310                              bool Hold,
311                              bool &ReleasedAllocated,
312                              bool ReturnsNullOnFailure = false) const;
313 
314   ProgramStateRef ReallocMem(CheckerContext &C, const CallExpr *CE,
315                              bool FreesMemOnFailure,
316                              ProgramStateRef State) const;
317   static ProgramStateRef CallocMem(CheckerContext &C, const CallExpr *CE,
318                                    ProgramStateRef State);
319 
320   ///\brief Check if the memory associated with this symbol was released.
321   bool isReleased(SymbolRef Sym, CheckerContext &C) const;
322 
323   bool checkUseAfterFree(SymbolRef Sym, CheckerContext &C, const Stmt *S) const;
324 
325   void checkUseZeroAllocated(SymbolRef Sym, CheckerContext &C,
326                              const Stmt *S) const;
327 
328   bool checkDoubleDelete(SymbolRef Sym, CheckerContext &C) const;
329 
330   /// Check if the function is known free memory, or if it is
331   /// "interesting" and should be modeled explicitly.
332   ///
333   /// \param [out] EscapingSymbol A function might not free memory in general,
334   ///   but could be known to free a particular symbol. In this case, false is
335   ///   returned and the single escaping symbol is returned through the out
336   ///   parameter.
337   ///
338   /// We assume that pointers do not escape through calls to system functions
339   /// not handled by this checker.
340   bool mayFreeAnyEscapedMemoryOrIsModeledExplicitly(const CallEvent *Call,
341                                    ProgramStateRef State,
342                                    SymbolRef &EscapingSymbol) const;
343 
344   // Implementation of the checkPointerEscape callabcks.
345   ProgramStateRef checkPointerEscapeAux(ProgramStateRef State,
346                                   const InvalidatedSymbols &Escaped,
347                                   const CallEvent *Call,
348                                   PointerEscapeKind Kind,
349                                   bool(*CheckRefState)(const RefState*)) const;
350 
351   ///@{
352   /// Tells if a given family/call/symbol is tracked by the current checker.
353   /// Sets CheckKind to the kind of the checker responsible for this
354   /// family/call/symbol.
355   Optional<CheckKind> getCheckIfTracked(AllocationFamily Family,
356                                         bool IsALeakCheck = false) const;
357   Optional<CheckKind> getCheckIfTracked(CheckerContext &C,
358                                         const Stmt *AllocDeallocStmt,
359                                         bool IsALeakCheck = false) const;
360   Optional<CheckKind> getCheckIfTracked(CheckerContext &C, SymbolRef Sym,
361                                         bool IsALeakCheck = false) const;
362   ///@}
363   static bool SummarizeValue(raw_ostream &os, SVal V);
364   static bool SummarizeRegion(raw_ostream &os, const MemRegion *MR);
365   void ReportBadFree(CheckerContext &C, SVal ArgVal, SourceRange Range,
366                      const Expr *DeallocExpr) const;
367   void ReportFreeAlloca(CheckerContext &C, SVal ArgVal,
368                         SourceRange Range) const;
369   void ReportMismatchedDealloc(CheckerContext &C, SourceRange Range,
370                                const Expr *DeallocExpr, const RefState *RS,
371                                SymbolRef Sym, bool OwnershipTransferred) const;
372   void ReportOffsetFree(CheckerContext &C, SVal ArgVal, SourceRange Range,
373                         const Expr *DeallocExpr,
374                         const Expr *AllocExpr = nullptr) const;
375   void ReportUseAfterFree(CheckerContext &C, SourceRange Range,
376                           SymbolRef Sym) const;
377   void ReportDoubleFree(CheckerContext &C, SourceRange Range, bool Released,
378                         SymbolRef Sym, SymbolRef PrevSym) const;
379 
380   void ReportDoubleDelete(CheckerContext &C, SymbolRef Sym) const;
381 
382   void ReportUseZeroAllocated(CheckerContext &C, SourceRange Range,
383                               SymbolRef Sym) const;
384 
385   /// Find the location of the allocation for Sym on the path leading to the
386   /// exploded node N.
387   LeakInfo getAllocationSite(const ExplodedNode *N, SymbolRef Sym,
388                              CheckerContext &C) const;
389 
390   void reportLeak(SymbolRef Sym, ExplodedNode *N, CheckerContext &C) const;
391 
392   /// The bug visitor which allows us to print extra diagnostics along the
393   /// BugReport path. For example, showing the allocation site of the leaked
394   /// region.
395   class MallocBugVisitor : public BugReporterVisitorImpl<MallocBugVisitor> {
396   protected:
397     enum NotificationMode {
398       Normal,
399       ReallocationFailed
400     };
401 
402     // The allocated region symbol tracked by the main analysis.
403     SymbolRef Sym;
404 
405     // The mode we are in, i.e. what kind of diagnostics will be emitted.
406     NotificationMode Mode;
407 
408     // A symbol from when the primary region should have been reallocated.
409     SymbolRef FailedReallocSymbol;
410 
411     bool IsLeak;
412 
413   public:
MallocBugVisitor(SymbolRef S,bool isLeak=false)414     MallocBugVisitor(SymbolRef S, bool isLeak = false)
415        : Sym(S), Mode(Normal), FailedReallocSymbol(nullptr), IsLeak(isLeak) {}
416 
~MallocBugVisitor()417     ~MallocBugVisitor() override {}
418 
Profile(llvm::FoldingSetNodeID & ID) const419     void Profile(llvm::FoldingSetNodeID &ID) const override {
420       static int X = 0;
421       ID.AddPointer(&X);
422       ID.AddPointer(Sym);
423     }
424 
isAllocated(const RefState * S,const RefState * SPrev,const Stmt * Stmt)425     inline bool isAllocated(const RefState *S, const RefState *SPrev,
426                             const Stmt *Stmt) {
427       // Did not track -> allocated. Other state (released) -> allocated.
428       return (Stmt && (isa<CallExpr>(Stmt) || isa<CXXNewExpr>(Stmt)) &&
429               (S && (S->isAllocated() || S->isAllocatedOfSizeZero())) &&
430               (!SPrev || !(SPrev->isAllocated() ||
431                            SPrev->isAllocatedOfSizeZero())));
432     }
433 
isReleased(const RefState * S,const RefState * SPrev,const Stmt * Stmt)434     inline bool isReleased(const RefState *S, const RefState *SPrev,
435                            const Stmt *Stmt) {
436       // Did not track -> released. Other state (allocated) -> released.
437       return (Stmt && (isa<CallExpr>(Stmt) || isa<CXXDeleteExpr>(Stmt)) &&
438               (S && S->isReleased()) && (!SPrev || !SPrev->isReleased()));
439     }
440 
isRelinquished(const RefState * S,const RefState * SPrev,const Stmt * Stmt)441     inline bool isRelinquished(const RefState *S, const RefState *SPrev,
442                                const Stmt *Stmt) {
443       // Did not track -> relinquished. Other state (allocated) -> relinquished.
444       return (Stmt && (isa<CallExpr>(Stmt) || isa<ObjCMessageExpr>(Stmt) ||
445                                               isa<ObjCPropertyRefExpr>(Stmt)) &&
446               (S && S->isRelinquished()) &&
447               (!SPrev || !SPrev->isRelinquished()));
448     }
449 
isReallocFailedCheck(const RefState * S,const RefState * SPrev,const Stmt * Stmt)450     inline bool isReallocFailedCheck(const RefState *S, const RefState *SPrev,
451                                      const Stmt *Stmt) {
452       // If the expression is not a call, and the state change is
453       // released -> allocated, it must be the realloc return value
454       // check. If we have to handle more cases here, it might be cleaner just
455       // to track this extra bit in the state itself.
456       return ((!Stmt || !isa<CallExpr>(Stmt)) &&
457               (S && (S->isAllocated() || S->isAllocatedOfSizeZero())) &&
458               (SPrev && !(SPrev->isAllocated() ||
459                           SPrev->isAllocatedOfSizeZero())));
460     }
461 
462     PathDiagnosticPiece *VisitNode(const ExplodedNode *N,
463                                    const ExplodedNode *PrevN,
464                                    BugReporterContext &BRC,
465                                    BugReport &BR) override;
466 
467     std::unique_ptr<PathDiagnosticPiece>
getEndPath(BugReporterContext & BRC,const ExplodedNode * EndPathNode,BugReport & BR)468     getEndPath(BugReporterContext &BRC, const ExplodedNode *EndPathNode,
469                BugReport &BR) override {
470       if (!IsLeak)
471         return nullptr;
472 
473       PathDiagnosticLocation L =
474         PathDiagnosticLocation::createEndOfPath(EndPathNode,
475                                                 BRC.getSourceManager());
476       // Do not add the statement itself as a range in case of leak.
477       return llvm::make_unique<PathDiagnosticEventPiece>(L, BR.getDescription(),
478                                                          false);
479     }
480 
481   private:
482     class StackHintGeneratorForReallocationFailed
483         : public StackHintGeneratorForSymbol {
484     public:
StackHintGeneratorForReallocationFailed(SymbolRef S,StringRef M)485       StackHintGeneratorForReallocationFailed(SymbolRef S, StringRef M)
486         : StackHintGeneratorForSymbol(S, M) {}
487 
getMessageForArg(const Expr * ArgE,unsigned ArgIndex)488       std::string getMessageForArg(const Expr *ArgE,
489                                    unsigned ArgIndex) override {
490         // Printed parameters start at 1, not 0.
491         ++ArgIndex;
492 
493         SmallString<200> buf;
494         llvm::raw_svector_ostream os(buf);
495 
496         os << "Reallocation of " << ArgIndex << llvm::getOrdinalSuffix(ArgIndex)
497            << " parameter failed";
498 
499         return os.str();
500       }
501 
getMessageForReturn(const CallExpr * CallExpr)502       std::string getMessageForReturn(const CallExpr *CallExpr) override {
503         return "Reallocation of returned value failed";
504       }
505     };
506   };
507 };
508 } // end anonymous namespace
509 
510 REGISTER_MAP_WITH_PROGRAMSTATE(RegionState, SymbolRef, RefState)
511 REGISTER_MAP_WITH_PROGRAMSTATE(ReallocPairs, SymbolRef, ReallocPair)
512 
513 // A map from the freed symbol to the symbol representing the return value of
514 // the free function.
515 REGISTER_MAP_WITH_PROGRAMSTATE(FreeReturnValue, SymbolRef, SymbolRef)
516 
517 namespace {
518 class StopTrackingCallback : public SymbolVisitor {
519   ProgramStateRef state;
520 public:
StopTrackingCallback(ProgramStateRef st)521   StopTrackingCallback(ProgramStateRef st) : state(st) {}
getState() const522   ProgramStateRef getState() const { return state; }
523 
VisitSymbol(SymbolRef sym)524   bool VisitSymbol(SymbolRef sym) override {
525     state = state->remove<RegionState>(sym);
526     return true;
527   }
528 };
529 } // end anonymous namespace
530 
initIdentifierInfo(ASTContext & Ctx) const531 void MallocChecker::initIdentifierInfo(ASTContext &Ctx) const {
532   if (II_malloc)
533     return;
534   II_alloca = &Ctx.Idents.get("alloca");
535   II_malloc = &Ctx.Idents.get("malloc");
536   II_free = &Ctx.Idents.get("free");
537   II_realloc = &Ctx.Idents.get("realloc");
538   II_reallocf = &Ctx.Idents.get("reallocf");
539   II_calloc = &Ctx.Idents.get("calloc");
540   II_valloc = &Ctx.Idents.get("valloc");
541   II_strdup = &Ctx.Idents.get("strdup");
542   II_strndup = &Ctx.Idents.get("strndup");
543   II_kmalloc = &Ctx.Idents.get("kmalloc");
544   II_if_nameindex = &Ctx.Idents.get("if_nameindex");
545   II_if_freenameindex = &Ctx.Idents.get("if_freenameindex");
546 }
547 
isMemFunction(const FunctionDecl * FD,ASTContext & C) const548 bool MallocChecker::isMemFunction(const FunctionDecl *FD, ASTContext &C) const {
549   if (isCMemFunction(FD, C, AF_Malloc, MemoryOperationKind::MOK_Any))
550     return true;
551 
552   if (isCMemFunction(FD, C, AF_IfNameIndex, MemoryOperationKind::MOK_Any))
553     return true;
554 
555   if (isCMemFunction(FD, C, AF_Alloca, MemoryOperationKind::MOK_Any))
556     return true;
557 
558   if (isStandardNewDelete(FD, C))
559     return true;
560 
561   return false;
562 }
563 
isCMemFunction(const FunctionDecl * FD,ASTContext & C,AllocationFamily Family,MemoryOperationKind MemKind) const564 bool MallocChecker::isCMemFunction(const FunctionDecl *FD,
565                                    ASTContext &C,
566                                    AllocationFamily Family,
567                                    MemoryOperationKind MemKind) const {
568   if (!FD)
569     return false;
570 
571   bool CheckFree = (MemKind == MemoryOperationKind::MOK_Any ||
572                     MemKind == MemoryOperationKind::MOK_Free);
573   bool CheckAlloc = (MemKind == MemoryOperationKind::MOK_Any ||
574                      MemKind == MemoryOperationKind::MOK_Allocate);
575 
576   if (FD->getKind() == Decl::Function) {
577     const IdentifierInfo *FunI = FD->getIdentifier();
578     initIdentifierInfo(C);
579 
580     if (Family == AF_Malloc && CheckFree) {
581       if (FunI == II_free || FunI == II_realloc || FunI == II_reallocf)
582         return true;
583     }
584 
585     if (Family == AF_Malloc && CheckAlloc) {
586       if (FunI == II_malloc || FunI == II_realloc || FunI == II_reallocf ||
587           FunI == II_calloc || FunI == II_valloc || FunI == II_strdup ||
588           FunI == II_strndup || FunI == II_kmalloc)
589         return true;
590     }
591 
592     if (Family == AF_IfNameIndex && CheckFree) {
593       if (FunI == II_if_freenameindex)
594         return true;
595     }
596 
597     if (Family == AF_IfNameIndex && CheckAlloc) {
598       if (FunI == II_if_nameindex)
599         return true;
600     }
601 
602     if (Family == AF_Alloca && CheckAlloc) {
603       if (FunI == II_alloca)
604         return true;
605     }
606   }
607 
608   if (Family != AF_Malloc)
609     return false;
610 
611   if (IsOptimistic && FD->hasAttrs()) {
612     for (const auto *I : FD->specific_attrs<OwnershipAttr>()) {
613       OwnershipAttr::OwnershipKind OwnKind = I->getOwnKind();
614       if(OwnKind == OwnershipAttr::Takes || OwnKind == OwnershipAttr::Holds) {
615         if (CheckFree)
616           return true;
617       } else if (OwnKind == OwnershipAttr::Returns) {
618         if (CheckAlloc)
619           return true;
620       }
621     }
622   }
623 
624   return false;
625 }
626 
627 // Tells if the callee is one of the following:
628 // 1) A global non-placement new/delete operator function.
629 // 2) A global placement operator function with the single placement argument
630 //    of type std::nothrow_t.
isStandardNewDelete(const FunctionDecl * FD,ASTContext & C) const631 bool MallocChecker::isStandardNewDelete(const FunctionDecl *FD,
632                                         ASTContext &C) const {
633   if (!FD)
634     return false;
635 
636   OverloadedOperatorKind Kind = FD->getOverloadedOperator();
637   if (Kind != OO_New && Kind != OO_Array_New &&
638       Kind != OO_Delete && Kind != OO_Array_Delete)
639     return false;
640 
641   // Skip all operator new/delete methods.
642   if (isa<CXXMethodDecl>(FD))
643     return false;
644 
645   // Return true if tested operator is a standard placement nothrow operator.
646   if (FD->getNumParams() == 2) {
647     QualType T = FD->getParamDecl(1)->getType();
648     if (const IdentifierInfo *II = T.getBaseTypeIdentifier())
649       return II->getName().equals("nothrow_t");
650   }
651 
652   // Skip placement operators.
653   if (FD->getNumParams() != 1 || FD->isVariadic())
654     return false;
655 
656   // One of the standard new/new[]/delete/delete[] non-placement operators.
657   return true;
658 }
659 
performKernelMalloc(const CallExpr * CE,CheckerContext & C,const ProgramStateRef & State) const660 llvm::Optional<ProgramStateRef> MallocChecker::performKernelMalloc(
661   const CallExpr *CE, CheckerContext &C, const ProgramStateRef &State) const {
662   // 3-argument malloc(), as commonly used in {Free,Net,Open}BSD Kernels:
663   //
664   // void *malloc(unsigned long size, struct malloc_type *mtp, int flags);
665   //
666   // One of the possible flags is M_ZERO, which means 'give me back an
667   // allocation which is already zeroed', like calloc.
668 
669   // 2-argument kmalloc(), as used in the Linux kernel:
670   //
671   // void *kmalloc(size_t size, gfp_t flags);
672   //
673   // Has the similar flag value __GFP_ZERO.
674 
675   // This logic is largely cloned from O_CREAT in UnixAPIChecker, maybe some
676   // code could be shared.
677 
678   ASTContext &Ctx = C.getASTContext();
679   llvm::Triple::OSType OS = Ctx.getTargetInfo().getTriple().getOS();
680 
681   if (!KernelZeroFlagVal.hasValue()) {
682     if (OS == llvm::Triple::FreeBSD)
683       KernelZeroFlagVal = 0x0100;
684     else if (OS == llvm::Triple::NetBSD)
685       KernelZeroFlagVal = 0x0002;
686     else if (OS == llvm::Triple::OpenBSD)
687       KernelZeroFlagVal = 0x0008;
688     else if (OS == llvm::Triple::Linux)
689       // __GFP_ZERO
690       KernelZeroFlagVal = 0x8000;
691     else
692       // FIXME: We need a more general way of getting the M_ZERO value.
693       // See also: O_CREAT in UnixAPIChecker.cpp.
694 
695       // Fall back to normal malloc behavior on platforms where we don't
696       // know M_ZERO.
697       return None;
698   }
699 
700   // We treat the last argument as the flags argument, and callers fall-back to
701   // normal malloc on a None return. This works for the FreeBSD kernel malloc
702   // as well as Linux kmalloc.
703   if (CE->getNumArgs() < 2)
704     return None;
705 
706   const Expr *FlagsEx = CE->getArg(CE->getNumArgs() - 1);
707   const SVal V = State->getSVal(FlagsEx, C.getLocationContext());
708   if (!V.getAs<NonLoc>()) {
709     // The case where 'V' can be a location can only be due to a bad header,
710     // so in this case bail out.
711     return None;
712   }
713 
714   NonLoc Flags = V.castAs<NonLoc>();
715   NonLoc ZeroFlag = C.getSValBuilder()
716       .makeIntVal(KernelZeroFlagVal.getValue(), FlagsEx->getType())
717       .castAs<NonLoc>();
718   SVal MaskedFlagsUC = C.getSValBuilder().evalBinOpNN(State, BO_And,
719                                                       Flags, ZeroFlag,
720                                                       FlagsEx->getType());
721   if (MaskedFlagsUC.isUnknownOrUndef())
722     return None;
723   DefinedSVal MaskedFlags = MaskedFlagsUC.castAs<DefinedSVal>();
724 
725   // Check if maskedFlags is non-zero.
726   ProgramStateRef TrueState, FalseState;
727   std::tie(TrueState, FalseState) = State->assume(MaskedFlags);
728 
729   // If M_ZERO is set, treat this like calloc (initialized).
730   if (TrueState && !FalseState) {
731     SVal ZeroVal = C.getSValBuilder().makeZeroVal(Ctx.CharTy);
732     return MallocMemAux(C, CE, CE->getArg(0), ZeroVal, TrueState);
733   }
734 
735   return None;
736 }
737 
checkPostStmt(const CallExpr * CE,CheckerContext & C) const738 void MallocChecker::checkPostStmt(const CallExpr *CE, CheckerContext &C) const {
739   if (C.wasInlined)
740     return;
741 
742   const FunctionDecl *FD = C.getCalleeDecl(CE);
743   if (!FD)
744     return;
745 
746   ProgramStateRef State = C.getState();
747   bool ReleasedAllocatedMemory = false;
748 
749   if (FD->getKind() == Decl::Function) {
750     initIdentifierInfo(C.getASTContext());
751     IdentifierInfo *FunI = FD->getIdentifier();
752 
753     if (FunI == II_malloc) {
754       if (CE->getNumArgs() < 1)
755         return;
756       if (CE->getNumArgs() < 3) {
757         State = MallocMemAux(C, CE, CE->getArg(0), UndefinedVal(), State);
758         if (CE->getNumArgs() == 1)
759           State = ProcessZeroAllocation(C, CE, 0, State);
760       } else if (CE->getNumArgs() == 3) {
761         llvm::Optional<ProgramStateRef> MaybeState =
762           performKernelMalloc(CE, C, State);
763         if (MaybeState.hasValue())
764           State = MaybeState.getValue();
765         else
766           State = MallocMemAux(C, CE, CE->getArg(0), UndefinedVal(), State);
767       }
768     } else if (FunI == II_kmalloc) {
769       llvm::Optional<ProgramStateRef> MaybeState =
770         performKernelMalloc(CE, C, State);
771       if (MaybeState.hasValue())
772         State = MaybeState.getValue();
773       else
774         State = MallocMemAux(C, CE, CE->getArg(0), UndefinedVal(), State);
775     } else if (FunI == II_valloc) {
776       if (CE->getNumArgs() < 1)
777         return;
778       State = MallocMemAux(C, CE, CE->getArg(0), UndefinedVal(), State);
779       State = ProcessZeroAllocation(C, CE, 0, State);
780     } else if (FunI == II_realloc) {
781       State = ReallocMem(C, CE, false, State);
782       State = ProcessZeroAllocation(C, CE, 1, State);
783     } else if (FunI == II_reallocf) {
784       State = ReallocMem(C, CE, true, State);
785       State = ProcessZeroAllocation(C, CE, 1, State);
786     } else if (FunI == II_calloc) {
787       State = CallocMem(C, CE, State);
788       State = ProcessZeroAllocation(C, CE, 0, State);
789       State = ProcessZeroAllocation(C, CE, 1, State);
790     } else if (FunI == II_free) {
791       State = FreeMemAux(C, CE, State, 0, false, ReleasedAllocatedMemory);
792     } else if (FunI == II_strdup) {
793       State = MallocUpdateRefState(C, CE, State);
794     } else if (FunI == II_strndup) {
795       State = MallocUpdateRefState(C, CE, State);
796     } else if (FunI == II_alloca) {
797       State = MallocMemAux(C, CE, CE->getArg(0), UndefinedVal(), State,
798                            AF_Alloca);
799       State = ProcessZeroAllocation(C, CE, 0, State);
800     } else if (isStandardNewDelete(FD, C.getASTContext())) {
801       // Process direct calls to operator new/new[]/delete/delete[] functions
802       // as distinct from new/new[]/delete/delete[] expressions that are
803       // processed by the checkPostStmt callbacks for CXXNewExpr and
804       // CXXDeleteExpr.
805       OverloadedOperatorKind K = FD->getOverloadedOperator();
806       if (K == OO_New) {
807         State = MallocMemAux(C, CE, CE->getArg(0), UndefinedVal(), State,
808                              AF_CXXNew);
809         State = ProcessZeroAllocation(C, CE, 0, State);
810       }
811       else if (K == OO_Array_New) {
812         State = MallocMemAux(C, CE, CE->getArg(0), UndefinedVal(), State,
813                              AF_CXXNewArray);
814         State = ProcessZeroAllocation(C, CE, 0, State);
815       }
816       else if (K == OO_Delete || K == OO_Array_Delete)
817         State = FreeMemAux(C, CE, State, 0, false, ReleasedAllocatedMemory);
818       else
819         llvm_unreachable("not a new/delete operator");
820     } else if (FunI == II_if_nameindex) {
821       // Should we model this differently? We can allocate a fixed number of
822       // elements with zeros in the last one.
823       State = MallocMemAux(C, CE, UnknownVal(), UnknownVal(), State,
824                            AF_IfNameIndex);
825     } else if (FunI == II_if_freenameindex) {
826       State = FreeMemAux(C, CE, State, 0, false, ReleasedAllocatedMemory);
827     }
828   }
829 
830   if (IsOptimistic || ChecksEnabled[CK_MismatchedDeallocatorChecker]) {
831     // Check all the attributes, if there are any.
832     // There can be multiple of these attributes.
833     if (FD->hasAttrs())
834       for (const auto *I : FD->specific_attrs<OwnershipAttr>()) {
835         switch (I->getOwnKind()) {
836         case OwnershipAttr::Returns:
837           State = MallocMemReturnsAttr(C, CE, I, State);
838           break;
839         case OwnershipAttr::Takes:
840         case OwnershipAttr::Holds:
841           State = FreeMemAttr(C, CE, I, State);
842           break;
843         }
844       }
845   }
846   C.addTransition(State);
847 }
848 
849 // Performs a 0-sized allocations check.
ProcessZeroAllocation(CheckerContext & C,const Expr * E,const unsigned AllocationSizeArg,ProgramStateRef State) const850 ProgramStateRef MallocChecker::ProcessZeroAllocation(CheckerContext &C,
851                                                const Expr *E,
852                                                const unsigned AllocationSizeArg,
853                                                ProgramStateRef State) const {
854   if (!State)
855     return nullptr;
856 
857   const Expr *Arg = nullptr;
858 
859   if (const CallExpr *CE = dyn_cast<CallExpr>(E)) {
860     Arg = CE->getArg(AllocationSizeArg);
861   }
862   else if (const CXXNewExpr *NE = dyn_cast<CXXNewExpr>(E)) {
863     if (NE->isArray())
864       Arg = NE->getArraySize();
865     else
866       return State;
867   }
868   else
869     llvm_unreachable("not a CallExpr or CXXNewExpr");
870 
871   assert(Arg);
872 
873   Optional<DefinedSVal> DefArgVal =
874       State->getSVal(Arg, C.getLocationContext()).getAs<DefinedSVal>();
875 
876   if (!DefArgVal)
877     return State;
878 
879   // Check if the allocation size is 0.
880   ProgramStateRef TrueState, FalseState;
881   SValBuilder &SvalBuilder = C.getSValBuilder();
882   DefinedSVal Zero =
883       SvalBuilder.makeZeroVal(Arg->getType()).castAs<DefinedSVal>();
884 
885   std::tie(TrueState, FalseState) =
886       State->assume(SvalBuilder.evalEQ(State, *DefArgVal, Zero));
887 
888   if (TrueState && !FalseState) {
889     SVal retVal = State->getSVal(E, C.getLocationContext());
890     SymbolRef Sym = retVal.getAsLocSymbol();
891     if (!Sym)
892       return State;
893 
894     const RefState *RS = State->get<RegionState>(Sym);
895     if (!RS)
896       return State; // TODO: change to assert(RS); after realloc() will
897                     // guarantee have a RegionState attached.
898 
899     if (!RS->isAllocated())
900       return State;
901 
902     return TrueState->set<RegionState>(Sym,
903                                        RefState::getAllocatedOfSizeZero(RS));
904   }
905 
906   // Assume the value is non-zero going forward.
907   assert(FalseState);
908   return FalseState;
909 }
910 
getDeepPointeeType(QualType T)911 static QualType getDeepPointeeType(QualType T) {
912   QualType Result = T, PointeeType = T->getPointeeType();
913   while (!PointeeType.isNull()) {
914     Result = PointeeType;
915     PointeeType = PointeeType->getPointeeType();
916   }
917   return Result;
918 }
919 
treatUnusedNewEscaped(const CXXNewExpr * NE)920 static bool treatUnusedNewEscaped(const CXXNewExpr *NE) {
921 
922   const CXXConstructExpr *ConstructE = NE->getConstructExpr();
923   if (!ConstructE)
924     return false;
925 
926   if (!NE->getAllocatedType()->getAsCXXRecordDecl())
927     return false;
928 
929   const CXXConstructorDecl *CtorD = ConstructE->getConstructor();
930 
931   // Iterate over the constructor parameters.
932   for (const auto *CtorParam : CtorD->params()) {
933 
934     QualType CtorParamPointeeT = CtorParam->getType()->getPointeeType();
935     if (CtorParamPointeeT.isNull())
936       continue;
937 
938     CtorParamPointeeT = getDeepPointeeType(CtorParamPointeeT);
939 
940     if (CtorParamPointeeT->getAsCXXRecordDecl())
941       return true;
942   }
943 
944   return false;
945 }
946 
checkPostStmt(const CXXNewExpr * NE,CheckerContext & C) const947 void MallocChecker::checkPostStmt(const CXXNewExpr *NE,
948                                   CheckerContext &C) const {
949 
950   if (NE->getNumPlacementArgs())
951     for (CXXNewExpr::const_arg_iterator I = NE->placement_arg_begin(),
952          E = NE->placement_arg_end(); I != E; ++I)
953       if (SymbolRef Sym = C.getSVal(*I).getAsSymbol())
954         checkUseAfterFree(Sym, C, *I);
955 
956   if (!isStandardNewDelete(NE->getOperatorNew(), C.getASTContext()))
957     return;
958 
959   ParentMap &PM = C.getLocationContext()->getParentMap();
960   if (!PM.isConsumedExpr(NE) && treatUnusedNewEscaped(NE))
961     return;
962 
963   ProgramStateRef State = C.getState();
964   // The return value from operator new is bound to a specified initialization
965   // value (if any) and we don't want to loose this value. So we call
966   // MallocUpdateRefState() instead of MallocMemAux() which breakes the
967   // existing binding.
968   State = MallocUpdateRefState(C, NE, State, NE->isArray() ? AF_CXXNewArray
969                                                            : AF_CXXNew);
970   State = ProcessZeroAllocation(C, NE, 0, State);
971   C.addTransition(State);
972 }
973 
checkPreStmt(const CXXDeleteExpr * DE,CheckerContext & C) const974 void MallocChecker::checkPreStmt(const CXXDeleteExpr *DE,
975                                  CheckerContext &C) const {
976 
977   if (!ChecksEnabled[CK_NewDeleteChecker])
978     if (SymbolRef Sym = C.getSVal(DE->getArgument()).getAsSymbol())
979       checkUseAfterFree(Sym, C, DE->getArgument());
980 
981   if (!isStandardNewDelete(DE->getOperatorDelete(), C.getASTContext()))
982     return;
983 
984   ProgramStateRef State = C.getState();
985   bool ReleasedAllocated;
986   State = FreeMemAux(C, DE->getArgument(), DE, State,
987                      /*Hold*/false, ReleasedAllocated);
988 
989   C.addTransition(State);
990 }
991 
isKnownDeallocObjCMethodName(const ObjCMethodCall & Call)992 static bool isKnownDeallocObjCMethodName(const ObjCMethodCall &Call) {
993   // If the first selector piece is one of the names below, assume that the
994   // object takes ownership of the memory, promising to eventually deallocate it
995   // with free().
996   // Ex:  [NSData dataWithBytesNoCopy:bytes length:10];
997   // (...unless a 'freeWhenDone' parameter is false, but that's checked later.)
998   StringRef FirstSlot = Call.getSelector().getNameForSlot(0);
999   if (FirstSlot == "dataWithBytesNoCopy" ||
1000       FirstSlot == "initWithBytesNoCopy" ||
1001       FirstSlot == "initWithCharactersNoCopy")
1002     return true;
1003 
1004   return false;
1005 }
1006 
getFreeWhenDoneArg(const ObjCMethodCall & Call)1007 static Optional<bool> getFreeWhenDoneArg(const ObjCMethodCall &Call) {
1008   Selector S = Call.getSelector();
1009 
1010   // FIXME: We should not rely on fully-constrained symbols being folded.
1011   for (unsigned i = 1; i < S.getNumArgs(); ++i)
1012     if (S.getNameForSlot(i).equals("freeWhenDone"))
1013       return !Call.getArgSVal(i).isZeroConstant();
1014 
1015   return None;
1016 }
1017 
checkPostObjCMessage(const ObjCMethodCall & Call,CheckerContext & C) const1018 void MallocChecker::checkPostObjCMessage(const ObjCMethodCall &Call,
1019                                          CheckerContext &C) const {
1020   if (C.wasInlined)
1021     return;
1022 
1023   if (!isKnownDeallocObjCMethodName(Call))
1024     return;
1025 
1026   if (Optional<bool> FreeWhenDone = getFreeWhenDoneArg(Call))
1027     if (!*FreeWhenDone)
1028       return;
1029 
1030   bool ReleasedAllocatedMemory;
1031   ProgramStateRef State = FreeMemAux(C, Call.getArgExpr(0),
1032                                      Call.getOriginExpr(), C.getState(),
1033                                      /*Hold=*/true, ReleasedAllocatedMemory,
1034                                      /*RetNullOnFailure=*/true);
1035 
1036   C.addTransition(State);
1037 }
1038 
1039 ProgramStateRef
MallocMemReturnsAttr(CheckerContext & C,const CallExpr * CE,const OwnershipAttr * Att,ProgramStateRef State) const1040 MallocChecker::MallocMemReturnsAttr(CheckerContext &C, const CallExpr *CE,
1041                                     const OwnershipAttr *Att,
1042                                     ProgramStateRef State) const {
1043   if (!State)
1044     return nullptr;
1045 
1046   if (Att->getModule() != II_malloc)
1047     return nullptr;
1048 
1049   OwnershipAttr::args_iterator I = Att->args_begin(), E = Att->args_end();
1050   if (I != E) {
1051     return MallocMemAux(C, CE, CE->getArg(*I), UndefinedVal(), State);
1052   }
1053   return MallocMemAux(C, CE, UnknownVal(), UndefinedVal(), State);
1054 }
1055 
MallocMemAux(CheckerContext & C,const CallExpr * CE,const Expr * SizeEx,SVal Init,ProgramStateRef State,AllocationFamily Family)1056 ProgramStateRef MallocChecker::MallocMemAux(CheckerContext &C,
1057                                             const CallExpr *CE,
1058                                             const Expr *SizeEx, SVal Init,
1059                                             ProgramStateRef State,
1060                                             AllocationFamily Family) {
1061   if (!State)
1062     return nullptr;
1063 
1064   return MallocMemAux(C, CE, State->getSVal(SizeEx, C.getLocationContext()),
1065                       Init, State, Family);
1066 }
1067 
MallocMemAux(CheckerContext & C,const CallExpr * CE,SVal Size,SVal Init,ProgramStateRef State,AllocationFamily Family)1068 ProgramStateRef MallocChecker::MallocMemAux(CheckerContext &C,
1069                                            const CallExpr *CE,
1070                                            SVal Size, SVal Init,
1071                                            ProgramStateRef State,
1072                                            AllocationFamily Family) {
1073   if (!State)
1074     return nullptr;
1075 
1076   // We expect the malloc functions to return a pointer.
1077   if (!Loc::isLocType(CE->getType()))
1078     return nullptr;
1079 
1080   // Bind the return value to the symbolic value from the heap region.
1081   // TODO: We could rewrite post visit to eval call; 'malloc' does not have
1082   // side effects other than what we model here.
1083   unsigned Count = C.blockCount();
1084   SValBuilder &svalBuilder = C.getSValBuilder();
1085   const LocationContext *LCtx = C.getPredecessor()->getLocationContext();
1086   DefinedSVal RetVal = svalBuilder.getConjuredHeapSymbolVal(CE, LCtx, Count)
1087       .castAs<DefinedSVal>();
1088   State = State->BindExpr(CE, C.getLocationContext(), RetVal);
1089 
1090   // Fill the region with the initialization value.
1091   State = State->bindDefault(RetVal, Init);
1092 
1093   // Set the region's extent equal to the Size parameter.
1094   const SymbolicRegion *R =
1095       dyn_cast_or_null<SymbolicRegion>(RetVal.getAsRegion());
1096   if (!R)
1097     return nullptr;
1098   if (Optional<DefinedOrUnknownSVal> DefinedSize =
1099           Size.getAs<DefinedOrUnknownSVal>()) {
1100     SValBuilder &svalBuilder = C.getSValBuilder();
1101     DefinedOrUnknownSVal Extent = R->getExtent(svalBuilder);
1102     DefinedOrUnknownSVal extentMatchesSize =
1103         svalBuilder.evalEQ(State, Extent, *DefinedSize);
1104 
1105     State = State->assume(extentMatchesSize, true);
1106     assert(State);
1107   }
1108 
1109   return MallocUpdateRefState(C, CE, State, Family);
1110 }
1111 
MallocUpdateRefState(CheckerContext & C,const Expr * E,ProgramStateRef State,AllocationFamily Family)1112 ProgramStateRef MallocChecker::MallocUpdateRefState(CheckerContext &C,
1113                                                     const Expr *E,
1114                                                     ProgramStateRef State,
1115                                                     AllocationFamily Family) {
1116   if (!State)
1117     return nullptr;
1118 
1119   // Get the return value.
1120   SVal retVal = State->getSVal(E, C.getLocationContext());
1121 
1122   // We expect the malloc functions to return a pointer.
1123   if (!retVal.getAs<Loc>())
1124     return nullptr;
1125 
1126   SymbolRef Sym = retVal.getAsLocSymbol();
1127   assert(Sym);
1128 
1129   // Set the symbol's state to Allocated.
1130   return State->set<RegionState>(Sym, RefState::getAllocated(Family, E));
1131 }
1132 
FreeMemAttr(CheckerContext & C,const CallExpr * CE,const OwnershipAttr * Att,ProgramStateRef State) const1133 ProgramStateRef MallocChecker::FreeMemAttr(CheckerContext &C,
1134                                            const CallExpr *CE,
1135                                            const OwnershipAttr *Att,
1136                                            ProgramStateRef State) const {
1137   if (!State)
1138     return nullptr;
1139 
1140   if (Att->getModule() != II_malloc)
1141     return nullptr;
1142 
1143   bool ReleasedAllocated = false;
1144 
1145   for (const auto &Arg : Att->args()) {
1146     ProgramStateRef StateI = FreeMemAux(C, CE, State, Arg,
1147                                Att->getOwnKind() == OwnershipAttr::Holds,
1148                                ReleasedAllocated);
1149     if (StateI)
1150       State = StateI;
1151   }
1152   return State;
1153 }
1154 
FreeMemAux(CheckerContext & C,const CallExpr * CE,ProgramStateRef State,unsigned Num,bool Hold,bool & ReleasedAllocated,bool ReturnsNullOnFailure) const1155 ProgramStateRef MallocChecker::FreeMemAux(CheckerContext &C,
1156                                           const CallExpr *CE,
1157                                           ProgramStateRef State,
1158                                           unsigned Num,
1159                                           bool Hold,
1160                                           bool &ReleasedAllocated,
1161                                           bool ReturnsNullOnFailure) const {
1162   if (!State)
1163     return nullptr;
1164 
1165   if (CE->getNumArgs() < (Num + 1))
1166     return nullptr;
1167 
1168   return FreeMemAux(C, CE->getArg(Num), CE, State, Hold,
1169                     ReleasedAllocated, ReturnsNullOnFailure);
1170 }
1171 
1172 /// Checks if the previous call to free on the given symbol failed - if free
1173 /// failed, returns true. Also, returns the corresponding return value symbol.
didPreviousFreeFail(ProgramStateRef State,SymbolRef Sym,SymbolRef & RetStatusSymbol)1174 static bool didPreviousFreeFail(ProgramStateRef State,
1175                                 SymbolRef Sym, SymbolRef &RetStatusSymbol) {
1176   const SymbolRef *Ret = State->get<FreeReturnValue>(Sym);
1177   if (Ret) {
1178     assert(*Ret && "We should not store the null return symbol");
1179     ConstraintManager &CMgr = State->getConstraintManager();
1180     ConditionTruthVal FreeFailed = CMgr.isNull(State, *Ret);
1181     RetStatusSymbol = *Ret;
1182     return FreeFailed.isConstrainedTrue();
1183   }
1184   return false;
1185 }
1186 
getAllocationFamily(CheckerContext & C,const Stmt * S) const1187 AllocationFamily MallocChecker::getAllocationFamily(CheckerContext &C,
1188                                                     const Stmt *S) const {
1189   if (!S)
1190     return AF_None;
1191 
1192   if (const CallExpr *CE = dyn_cast<CallExpr>(S)) {
1193     const FunctionDecl *FD = C.getCalleeDecl(CE);
1194 
1195     if (!FD)
1196       FD = dyn_cast<FunctionDecl>(CE->getCalleeDecl());
1197 
1198     ASTContext &Ctx = C.getASTContext();
1199 
1200     if (isCMemFunction(FD, Ctx, AF_Malloc, MemoryOperationKind::MOK_Any))
1201       return AF_Malloc;
1202 
1203     if (isStandardNewDelete(FD, Ctx)) {
1204       OverloadedOperatorKind Kind = FD->getOverloadedOperator();
1205       if (Kind == OO_New || Kind == OO_Delete)
1206         return AF_CXXNew;
1207       else if (Kind == OO_Array_New || Kind == OO_Array_Delete)
1208         return AF_CXXNewArray;
1209     }
1210 
1211     if (isCMemFunction(FD, Ctx, AF_IfNameIndex, MemoryOperationKind::MOK_Any))
1212       return AF_IfNameIndex;
1213 
1214     if (isCMemFunction(FD, Ctx, AF_Alloca, MemoryOperationKind::MOK_Any))
1215       return AF_Alloca;
1216 
1217     return AF_None;
1218   }
1219 
1220   if (const CXXNewExpr *NE = dyn_cast<CXXNewExpr>(S))
1221     return NE->isArray() ? AF_CXXNewArray : AF_CXXNew;
1222 
1223   if (const CXXDeleteExpr *DE = dyn_cast<CXXDeleteExpr>(S))
1224     return DE->isArrayForm() ? AF_CXXNewArray : AF_CXXNew;
1225 
1226   if (isa<ObjCMessageExpr>(S))
1227     return AF_Malloc;
1228 
1229   return AF_None;
1230 }
1231 
printAllocDeallocName(raw_ostream & os,CheckerContext & C,const Expr * E) const1232 bool MallocChecker::printAllocDeallocName(raw_ostream &os, CheckerContext &C,
1233                                           const Expr *E) const {
1234   if (const CallExpr *CE = dyn_cast<CallExpr>(E)) {
1235     // FIXME: This doesn't handle indirect calls.
1236     const FunctionDecl *FD = CE->getDirectCallee();
1237     if (!FD)
1238       return false;
1239 
1240     os << *FD;
1241     if (!FD->isOverloadedOperator())
1242       os << "()";
1243     return true;
1244   }
1245 
1246   if (const ObjCMessageExpr *Msg = dyn_cast<ObjCMessageExpr>(E)) {
1247     if (Msg->isInstanceMessage())
1248       os << "-";
1249     else
1250       os << "+";
1251     Msg->getSelector().print(os);
1252     return true;
1253   }
1254 
1255   if (const CXXNewExpr *NE = dyn_cast<CXXNewExpr>(E)) {
1256     os << "'"
1257        << getOperatorSpelling(NE->getOperatorNew()->getOverloadedOperator())
1258        << "'";
1259     return true;
1260   }
1261 
1262   if (const CXXDeleteExpr *DE = dyn_cast<CXXDeleteExpr>(E)) {
1263     os << "'"
1264        << getOperatorSpelling(DE->getOperatorDelete()->getOverloadedOperator())
1265        << "'";
1266     return true;
1267   }
1268 
1269   return false;
1270 }
1271 
printExpectedAllocName(raw_ostream & os,CheckerContext & C,const Expr * E) const1272 void MallocChecker::printExpectedAllocName(raw_ostream &os, CheckerContext &C,
1273                                            const Expr *E) const {
1274   AllocationFamily Family = getAllocationFamily(C, E);
1275 
1276   switch(Family) {
1277     case AF_Malloc: os << "malloc()"; return;
1278     case AF_CXXNew: os << "'new'"; return;
1279     case AF_CXXNewArray: os << "'new[]'"; return;
1280     case AF_IfNameIndex: os << "'if_nameindex()'"; return;
1281     case AF_Alloca:
1282     case AF_None: llvm_unreachable("not a deallocation expression");
1283   }
1284 }
1285 
printExpectedDeallocName(raw_ostream & os,AllocationFamily Family) const1286 void MallocChecker::printExpectedDeallocName(raw_ostream &os,
1287                                              AllocationFamily Family) const {
1288   switch(Family) {
1289     case AF_Malloc: os << "free()"; return;
1290     case AF_CXXNew: os << "'delete'"; return;
1291     case AF_CXXNewArray: os << "'delete[]'"; return;
1292     case AF_IfNameIndex: os << "'if_freenameindex()'"; return;
1293     case AF_Alloca:
1294     case AF_None: llvm_unreachable("suspicious argument");
1295   }
1296 }
1297 
FreeMemAux(CheckerContext & C,const Expr * ArgExpr,const Expr * ParentExpr,ProgramStateRef State,bool Hold,bool & ReleasedAllocated,bool ReturnsNullOnFailure) const1298 ProgramStateRef MallocChecker::FreeMemAux(CheckerContext &C,
1299                                           const Expr *ArgExpr,
1300                                           const Expr *ParentExpr,
1301                                           ProgramStateRef State,
1302                                           bool Hold,
1303                                           bool &ReleasedAllocated,
1304                                           bool ReturnsNullOnFailure) const {
1305 
1306   if (!State)
1307     return nullptr;
1308 
1309   SVal ArgVal = State->getSVal(ArgExpr, C.getLocationContext());
1310   if (!ArgVal.getAs<DefinedOrUnknownSVal>())
1311     return nullptr;
1312   DefinedOrUnknownSVal location = ArgVal.castAs<DefinedOrUnknownSVal>();
1313 
1314   // Check for null dereferences.
1315   if (!location.getAs<Loc>())
1316     return nullptr;
1317 
1318   // The explicit NULL case, no operation is performed.
1319   ProgramStateRef notNullState, nullState;
1320   std::tie(notNullState, nullState) = State->assume(location);
1321   if (nullState && !notNullState)
1322     return nullptr;
1323 
1324   // Unknown values could easily be okay
1325   // Undefined values are handled elsewhere
1326   if (ArgVal.isUnknownOrUndef())
1327     return nullptr;
1328 
1329   const MemRegion *R = ArgVal.getAsRegion();
1330 
1331   // Nonlocs can't be freed, of course.
1332   // Non-region locations (labels and fixed addresses) also shouldn't be freed.
1333   if (!R) {
1334     ReportBadFree(C, ArgVal, ArgExpr->getSourceRange(), ParentExpr);
1335     return nullptr;
1336   }
1337 
1338   R = R->StripCasts();
1339 
1340   // Blocks might show up as heap data, but should not be free()d
1341   if (isa<BlockDataRegion>(R)) {
1342     ReportBadFree(C, ArgVal, ArgExpr->getSourceRange(), ParentExpr);
1343     return nullptr;
1344   }
1345 
1346   const MemSpaceRegion *MS = R->getMemorySpace();
1347 
1348   // Parameters, locals, statics, globals, and memory returned by
1349   // __builtin_alloca() shouldn't be freed.
1350   if (!(isa<UnknownSpaceRegion>(MS) || isa<HeapSpaceRegion>(MS))) {
1351     // FIXME: at the time this code was written, malloc() regions were
1352     // represented by conjured symbols, which are all in UnknownSpaceRegion.
1353     // This means that there isn't actually anything from HeapSpaceRegion
1354     // that should be freed, even though we allow it here.
1355     // Of course, free() can work on memory allocated outside the current
1356     // function, so UnknownSpaceRegion is always a possibility.
1357     // False negatives are better than false positives.
1358 
1359     if (isa<AllocaRegion>(R))
1360       ReportFreeAlloca(C, ArgVal, ArgExpr->getSourceRange());
1361     else
1362       ReportBadFree(C, ArgVal, ArgExpr->getSourceRange(), ParentExpr);
1363 
1364     return nullptr;
1365   }
1366 
1367   const SymbolicRegion *SrBase = dyn_cast<SymbolicRegion>(R->getBaseRegion());
1368   // Various cases could lead to non-symbol values here.
1369   // For now, ignore them.
1370   if (!SrBase)
1371     return nullptr;
1372 
1373   SymbolRef SymBase = SrBase->getSymbol();
1374   const RefState *RsBase = State->get<RegionState>(SymBase);
1375   SymbolRef PreviousRetStatusSymbol = nullptr;
1376 
1377   if (RsBase) {
1378 
1379     // Memory returned by alloca() shouldn't be freed.
1380     if (RsBase->getAllocationFamily() == AF_Alloca) {
1381       ReportFreeAlloca(C, ArgVal, ArgExpr->getSourceRange());
1382       return nullptr;
1383     }
1384 
1385     // Check for double free first.
1386     if ((RsBase->isReleased() || RsBase->isRelinquished()) &&
1387         !didPreviousFreeFail(State, SymBase, PreviousRetStatusSymbol)) {
1388       ReportDoubleFree(C, ParentExpr->getSourceRange(), RsBase->isReleased(),
1389                        SymBase, PreviousRetStatusSymbol);
1390       return nullptr;
1391 
1392     // If the pointer is allocated or escaped, but we are now trying to free it,
1393     // check that the call to free is proper.
1394     } else if (RsBase->isAllocated() || RsBase->isAllocatedOfSizeZero() ||
1395                RsBase->isEscaped()) {
1396 
1397       // Check if an expected deallocation function matches the real one.
1398       bool DeallocMatchesAlloc =
1399         RsBase->getAllocationFamily() == getAllocationFamily(C, ParentExpr);
1400       if (!DeallocMatchesAlloc) {
1401         ReportMismatchedDealloc(C, ArgExpr->getSourceRange(),
1402                                 ParentExpr, RsBase, SymBase, Hold);
1403         return nullptr;
1404       }
1405 
1406       // Check if the memory location being freed is the actual location
1407       // allocated, or an offset.
1408       RegionOffset Offset = R->getAsOffset();
1409       if (Offset.isValid() &&
1410           !Offset.hasSymbolicOffset() &&
1411           Offset.getOffset() != 0) {
1412         const Expr *AllocExpr = cast<Expr>(RsBase->getStmt());
1413         ReportOffsetFree(C, ArgVal, ArgExpr->getSourceRange(), ParentExpr,
1414                          AllocExpr);
1415         return nullptr;
1416       }
1417     }
1418   }
1419 
1420   ReleasedAllocated = (RsBase != nullptr) && (RsBase->isAllocated() ||
1421                                               RsBase->isAllocatedOfSizeZero());
1422 
1423   // Clean out the info on previous call to free return info.
1424   State = State->remove<FreeReturnValue>(SymBase);
1425 
1426   // Keep track of the return value. If it is NULL, we will know that free
1427   // failed.
1428   if (ReturnsNullOnFailure) {
1429     SVal RetVal = C.getSVal(ParentExpr);
1430     SymbolRef RetStatusSymbol = RetVal.getAsSymbol();
1431     if (RetStatusSymbol) {
1432       C.getSymbolManager().addSymbolDependency(SymBase, RetStatusSymbol);
1433       State = State->set<FreeReturnValue>(SymBase, RetStatusSymbol);
1434     }
1435   }
1436 
1437   AllocationFamily Family = RsBase ? RsBase->getAllocationFamily()
1438                                    : getAllocationFamily(C, ParentExpr);
1439   // Normal free.
1440   if (Hold)
1441     return State->set<RegionState>(SymBase,
1442                                    RefState::getRelinquished(Family,
1443                                                              ParentExpr));
1444 
1445   return State->set<RegionState>(SymBase,
1446                                  RefState::getReleased(Family, ParentExpr));
1447 }
1448 
1449 Optional<MallocChecker::CheckKind>
getCheckIfTracked(AllocationFamily Family,bool IsALeakCheck) const1450 MallocChecker::getCheckIfTracked(AllocationFamily Family,
1451                                  bool IsALeakCheck) const {
1452   switch (Family) {
1453   case AF_Malloc:
1454   case AF_Alloca:
1455   case AF_IfNameIndex: {
1456     if (ChecksEnabled[CK_MallocChecker])
1457       return CK_MallocChecker;
1458 
1459     return Optional<MallocChecker::CheckKind>();
1460   }
1461   case AF_CXXNew:
1462   case AF_CXXNewArray: {
1463     if (IsALeakCheck) {
1464       if (ChecksEnabled[CK_NewDeleteLeaksChecker])
1465         return CK_NewDeleteLeaksChecker;
1466     }
1467     else {
1468       if (ChecksEnabled[CK_NewDeleteChecker])
1469         return CK_NewDeleteChecker;
1470     }
1471     return Optional<MallocChecker::CheckKind>();
1472   }
1473   case AF_None: {
1474     llvm_unreachable("no family");
1475   }
1476   }
1477   llvm_unreachable("unhandled family");
1478 }
1479 
1480 Optional<MallocChecker::CheckKind>
getCheckIfTracked(CheckerContext & C,const Stmt * AllocDeallocStmt,bool IsALeakCheck) const1481 MallocChecker::getCheckIfTracked(CheckerContext &C,
1482                                  const Stmt *AllocDeallocStmt,
1483                                  bool IsALeakCheck) const {
1484   return getCheckIfTracked(getAllocationFamily(C, AllocDeallocStmt),
1485                            IsALeakCheck);
1486 }
1487 
1488 Optional<MallocChecker::CheckKind>
getCheckIfTracked(CheckerContext & C,SymbolRef Sym,bool IsALeakCheck) const1489 MallocChecker::getCheckIfTracked(CheckerContext &C, SymbolRef Sym,
1490                                  bool IsALeakCheck) const {
1491   const RefState *RS = C.getState()->get<RegionState>(Sym);
1492   assert(RS);
1493   return getCheckIfTracked(RS->getAllocationFamily(), IsALeakCheck);
1494 }
1495 
SummarizeValue(raw_ostream & os,SVal V)1496 bool MallocChecker::SummarizeValue(raw_ostream &os, SVal V) {
1497   if (Optional<nonloc::ConcreteInt> IntVal = V.getAs<nonloc::ConcreteInt>())
1498     os << "an integer (" << IntVal->getValue() << ")";
1499   else if (Optional<loc::ConcreteInt> ConstAddr = V.getAs<loc::ConcreteInt>())
1500     os << "a constant address (" << ConstAddr->getValue() << ")";
1501   else if (Optional<loc::GotoLabel> Label = V.getAs<loc::GotoLabel>())
1502     os << "the address of the label '" << Label->getLabel()->getName() << "'";
1503   else
1504     return false;
1505 
1506   return true;
1507 }
1508 
SummarizeRegion(raw_ostream & os,const MemRegion * MR)1509 bool MallocChecker::SummarizeRegion(raw_ostream &os,
1510                                     const MemRegion *MR) {
1511   switch (MR->getKind()) {
1512   case MemRegion::FunctionTextRegionKind: {
1513     const NamedDecl *FD = cast<FunctionTextRegion>(MR)->getDecl();
1514     if (FD)
1515       os << "the address of the function '" << *FD << '\'';
1516     else
1517       os << "the address of a function";
1518     return true;
1519   }
1520   case MemRegion::BlockTextRegionKind:
1521     os << "block text";
1522     return true;
1523   case MemRegion::BlockDataRegionKind:
1524     // FIXME: where the block came from?
1525     os << "a block";
1526     return true;
1527   default: {
1528     const MemSpaceRegion *MS = MR->getMemorySpace();
1529 
1530     if (isa<StackLocalsSpaceRegion>(MS)) {
1531       const VarRegion *VR = dyn_cast<VarRegion>(MR);
1532       const VarDecl *VD;
1533       if (VR)
1534         VD = VR->getDecl();
1535       else
1536         VD = nullptr;
1537 
1538       if (VD)
1539         os << "the address of the local variable '" << VD->getName() << "'";
1540       else
1541         os << "the address of a local stack variable";
1542       return true;
1543     }
1544 
1545     if (isa<StackArgumentsSpaceRegion>(MS)) {
1546       const VarRegion *VR = dyn_cast<VarRegion>(MR);
1547       const VarDecl *VD;
1548       if (VR)
1549         VD = VR->getDecl();
1550       else
1551         VD = nullptr;
1552 
1553       if (VD)
1554         os << "the address of the parameter '" << VD->getName() << "'";
1555       else
1556         os << "the address of a parameter";
1557       return true;
1558     }
1559 
1560     if (isa<GlobalsSpaceRegion>(MS)) {
1561       const VarRegion *VR = dyn_cast<VarRegion>(MR);
1562       const VarDecl *VD;
1563       if (VR)
1564         VD = VR->getDecl();
1565       else
1566         VD = nullptr;
1567 
1568       if (VD) {
1569         if (VD->isStaticLocal())
1570           os << "the address of the static variable '" << VD->getName() << "'";
1571         else
1572           os << "the address of the global variable '" << VD->getName() << "'";
1573       } else
1574         os << "the address of a global variable";
1575       return true;
1576     }
1577 
1578     return false;
1579   }
1580   }
1581 }
1582 
ReportBadFree(CheckerContext & C,SVal ArgVal,SourceRange Range,const Expr * DeallocExpr) const1583 void MallocChecker::ReportBadFree(CheckerContext &C, SVal ArgVal,
1584                                   SourceRange Range,
1585                                   const Expr *DeallocExpr) const {
1586 
1587   if (!ChecksEnabled[CK_MallocChecker] &&
1588       !ChecksEnabled[CK_NewDeleteChecker])
1589     return;
1590 
1591   Optional<MallocChecker::CheckKind> CheckKind =
1592       getCheckIfTracked(C, DeallocExpr);
1593   if (!CheckKind.hasValue())
1594     return;
1595 
1596   if (ExplodedNode *N = C.generateSink()) {
1597     if (!BT_BadFree[*CheckKind])
1598       BT_BadFree[*CheckKind].reset(
1599           new BugType(CheckNames[*CheckKind], "Bad free", "Memory Error"));
1600 
1601     SmallString<100> buf;
1602     llvm::raw_svector_ostream os(buf);
1603 
1604     const MemRegion *MR = ArgVal.getAsRegion();
1605     while (const ElementRegion *ER = dyn_cast_or_null<ElementRegion>(MR))
1606       MR = ER->getSuperRegion();
1607 
1608     os << "Argument to ";
1609     if (!printAllocDeallocName(os, C, DeallocExpr))
1610       os << "deallocator";
1611 
1612     os << " is ";
1613     bool Summarized = MR ? SummarizeRegion(os, MR)
1614                          : SummarizeValue(os, ArgVal);
1615     if (Summarized)
1616       os << ", which is not memory allocated by ";
1617     else
1618       os << "not memory allocated by ";
1619 
1620     printExpectedAllocName(os, C, DeallocExpr);
1621 
1622     BugReport *R = new BugReport(*BT_BadFree[*CheckKind], os.str(), N);
1623     R->markInteresting(MR);
1624     R->addRange(Range);
1625     C.emitReport(R);
1626   }
1627 }
1628 
ReportFreeAlloca(CheckerContext & C,SVal ArgVal,SourceRange Range) const1629 void MallocChecker::ReportFreeAlloca(CheckerContext &C, SVal ArgVal,
1630                                      SourceRange Range) const {
1631 
1632   Optional<MallocChecker::CheckKind> CheckKind;
1633 
1634   if (ChecksEnabled[CK_MallocChecker])
1635     CheckKind = CK_MallocChecker;
1636   else if (ChecksEnabled[CK_MismatchedDeallocatorChecker])
1637     CheckKind = CK_MismatchedDeallocatorChecker;
1638   else
1639     return;
1640 
1641   if (ExplodedNode *N = C.generateSink()) {
1642     if (!BT_FreeAlloca[*CheckKind])
1643       BT_FreeAlloca[*CheckKind].reset(
1644           new BugType(CheckNames[*CheckKind], "Free alloca()", "Memory Error"));
1645 
1646     BugReport *R = new BugReport(*BT_FreeAlloca[*CheckKind],
1647                  "Memory allocated by alloca() should not be deallocated", N);
1648     R->markInteresting(ArgVal.getAsRegion());
1649     R->addRange(Range);
1650     C.emitReport(R);
1651   }
1652 }
1653 
ReportMismatchedDealloc(CheckerContext & C,SourceRange Range,const Expr * DeallocExpr,const RefState * RS,SymbolRef Sym,bool OwnershipTransferred) const1654 void MallocChecker::ReportMismatchedDealloc(CheckerContext &C,
1655                                             SourceRange Range,
1656                                             const Expr *DeallocExpr,
1657                                             const RefState *RS,
1658                                             SymbolRef Sym,
1659                                             bool OwnershipTransferred) const {
1660 
1661   if (!ChecksEnabled[CK_MismatchedDeallocatorChecker])
1662     return;
1663 
1664   if (ExplodedNode *N = C.generateSink()) {
1665     if (!BT_MismatchedDealloc)
1666       BT_MismatchedDealloc.reset(
1667           new BugType(CheckNames[CK_MismatchedDeallocatorChecker],
1668                       "Bad deallocator", "Memory Error"));
1669 
1670     SmallString<100> buf;
1671     llvm::raw_svector_ostream os(buf);
1672 
1673     const Expr *AllocExpr = cast<Expr>(RS->getStmt());
1674     SmallString<20> AllocBuf;
1675     llvm::raw_svector_ostream AllocOs(AllocBuf);
1676     SmallString<20> DeallocBuf;
1677     llvm::raw_svector_ostream DeallocOs(DeallocBuf);
1678 
1679     if (OwnershipTransferred) {
1680       if (printAllocDeallocName(DeallocOs, C, DeallocExpr))
1681         os << DeallocOs.str() << " cannot";
1682       else
1683         os << "Cannot";
1684 
1685       os << " take ownership of memory";
1686 
1687       if (printAllocDeallocName(AllocOs, C, AllocExpr))
1688         os << " allocated by " << AllocOs.str();
1689     } else {
1690       os << "Memory";
1691       if (printAllocDeallocName(AllocOs, C, AllocExpr))
1692         os << " allocated by " << AllocOs.str();
1693 
1694       os << " should be deallocated by ";
1695         printExpectedDeallocName(os, RS->getAllocationFamily());
1696 
1697       if (printAllocDeallocName(DeallocOs, C, DeallocExpr))
1698         os << ", not " << DeallocOs.str();
1699     }
1700 
1701     BugReport *R = new BugReport(*BT_MismatchedDealloc, os.str(), N);
1702     R->markInteresting(Sym);
1703     R->addRange(Range);
1704     R->addVisitor(llvm::make_unique<MallocBugVisitor>(Sym));
1705     C.emitReport(R);
1706   }
1707 }
1708 
ReportOffsetFree(CheckerContext & C,SVal ArgVal,SourceRange Range,const Expr * DeallocExpr,const Expr * AllocExpr) const1709 void MallocChecker::ReportOffsetFree(CheckerContext &C, SVal ArgVal,
1710                                      SourceRange Range, const Expr *DeallocExpr,
1711                                      const Expr *AllocExpr) const {
1712 
1713 
1714   if (!ChecksEnabled[CK_MallocChecker] &&
1715       !ChecksEnabled[CK_NewDeleteChecker])
1716     return;
1717 
1718   Optional<MallocChecker::CheckKind> CheckKind =
1719       getCheckIfTracked(C, AllocExpr);
1720   if (!CheckKind.hasValue())
1721     return;
1722 
1723   ExplodedNode *N = C.generateSink();
1724   if (!N)
1725     return;
1726 
1727   if (!BT_OffsetFree[*CheckKind])
1728     BT_OffsetFree[*CheckKind].reset(
1729         new BugType(CheckNames[*CheckKind], "Offset free", "Memory Error"));
1730 
1731   SmallString<100> buf;
1732   llvm::raw_svector_ostream os(buf);
1733   SmallString<20> AllocNameBuf;
1734   llvm::raw_svector_ostream AllocNameOs(AllocNameBuf);
1735 
1736   const MemRegion *MR = ArgVal.getAsRegion();
1737   assert(MR && "Only MemRegion based symbols can have offset free errors");
1738 
1739   RegionOffset Offset = MR->getAsOffset();
1740   assert((Offset.isValid() &&
1741           !Offset.hasSymbolicOffset() &&
1742           Offset.getOffset() != 0) &&
1743          "Only symbols with a valid offset can have offset free errors");
1744 
1745   int offsetBytes = Offset.getOffset() / C.getASTContext().getCharWidth();
1746 
1747   os << "Argument to ";
1748   if (!printAllocDeallocName(os, C, DeallocExpr))
1749     os << "deallocator";
1750   os << " is offset by "
1751      << offsetBytes
1752      << " "
1753      << ((abs(offsetBytes) > 1) ? "bytes" : "byte")
1754      << " from the start of ";
1755   if (AllocExpr && printAllocDeallocName(AllocNameOs, C, AllocExpr))
1756     os << "memory allocated by " << AllocNameOs.str();
1757   else
1758     os << "allocated memory";
1759 
1760   BugReport *R = new BugReport(*BT_OffsetFree[*CheckKind], os.str(), N);
1761   R->markInteresting(MR->getBaseRegion());
1762   R->addRange(Range);
1763   C.emitReport(R);
1764 }
1765 
ReportUseAfterFree(CheckerContext & C,SourceRange Range,SymbolRef Sym) const1766 void MallocChecker::ReportUseAfterFree(CheckerContext &C, SourceRange Range,
1767                                        SymbolRef Sym) const {
1768 
1769   if (!ChecksEnabled[CK_MallocChecker] &&
1770       !ChecksEnabled[CK_NewDeleteChecker])
1771     return;
1772 
1773   Optional<MallocChecker::CheckKind> CheckKind = getCheckIfTracked(C, Sym);
1774   if (!CheckKind.hasValue())
1775     return;
1776 
1777   if (ExplodedNode *N = C.generateSink()) {
1778     if (!BT_UseFree[*CheckKind])
1779       BT_UseFree[*CheckKind].reset(new BugType(
1780           CheckNames[*CheckKind], "Use-after-free", "Memory Error"));
1781 
1782     BugReport *R = new BugReport(*BT_UseFree[*CheckKind],
1783                                  "Use of memory after it is freed", N);
1784 
1785     R->markInteresting(Sym);
1786     R->addRange(Range);
1787     R->addVisitor(llvm::make_unique<MallocBugVisitor>(Sym));
1788     C.emitReport(R);
1789   }
1790 }
1791 
ReportDoubleFree(CheckerContext & C,SourceRange Range,bool Released,SymbolRef Sym,SymbolRef PrevSym) const1792 void MallocChecker::ReportDoubleFree(CheckerContext &C, SourceRange Range,
1793                                      bool Released, SymbolRef Sym,
1794                                      SymbolRef PrevSym) const {
1795 
1796   if (!ChecksEnabled[CK_MallocChecker] &&
1797       !ChecksEnabled[CK_NewDeleteChecker])
1798     return;
1799 
1800   Optional<MallocChecker::CheckKind> CheckKind = getCheckIfTracked(C, Sym);
1801   if (!CheckKind.hasValue())
1802     return;
1803 
1804   if (ExplodedNode *N = C.generateSink()) {
1805     if (!BT_DoubleFree[*CheckKind])
1806       BT_DoubleFree[*CheckKind].reset(
1807           new BugType(CheckNames[*CheckKind], "Double free", "Memory Error"));
1808 
1809     BugReport *R =
1810         new BugReport(*BT_DoubleFree[*CheckKind],
1811                       (Released ? "Attempt to free released memory"
1812                                 : "Attempt to free non-owned memory"),
1813                       N);
1814     R->addRange(Range);
1815     R->markInteresting(Sym);
1816     if (PrevSym)
1817       R->markInteresting(PrevSym);
1818     R->addVisitor(llvm::make_unique<MallocBugVisitor>(Sym));
1819     C.emitReport(R);
1820   }
1821 }
1822 
ReportDoubleDelete(CheckerContext & C,SymbolRef Sym) const1823 void MallocChecker::ReportDoubleDelete(CheckerContext &C, SymbolRef Sym) const {
1824 
1825   if (!ChecksEnabled[CK_NewDeleteChecker])
1826     return;
1827 
1828   Optional<MallocChecker::CheckKind> CheckKind = getCheckIfTracked(C, Sym);
1829   if (!CheckKind.hasValue())
1830     return;
1831 
1832   if (ExplodedNode *N = C.generateSink()) {
1833     if (!BT_DoubleDelete)
1834       BT_DoubleDelete.reset(new BugType(CheckNames[CK_NewDeleteChecker],
1835                                         "Double delete", "Memory Error"));
1836 
1837     BugReport *R = new BugReport(*BT_DoubleDelete,
1838                                  "Attempt to delete released memory", N);
1839 
1840     R->markInteresting(Sym);
1841     R->addVisitor(llvm::make_unique<MallocBugVisitor>(Sym));
1842     C.emitReport(R);
1843   }
1844 }
1845 
ReportUseZeroAllocated(CheckerContext & C,SourceRange Range,SymbolRef Sym) const1846 void MallocChecker::ReportUseZeroAllocated(CheckerContext &C,
1847                                            SourceRange Range,
1848                                            SymbolRef Sym) const {
1849 
1850   if (!ChecksEnabled[CK_MallocChecker] &&
1851       !ChecksEnabled[CK_NewDeleteChecker])
1852     return;
1853 
1854   Optional<MallocChecker::CheckKind> CheckKind = getCheckIfTracked(C, Sym);
1855 
1856   if (!CheckKind.hasValue())
1857     return;
1858 
1859   if (ExplodedNode *N = C.generateSink()) {
1860     if (!BT_UseZerroAllocated[*CheckKind])
1861       BT_UseZerroAllocated[*CheckKind].reset(new BugType(
1862           CheckNames[*CheckKind], "Use of zero allocated", "Memory Error"));
1863 
1864     BugReport *R = new BugReport(*BT_UseZerroAllocated[*CheckKind],
1865                                  "Use of zero-allocated memory", N);
1866 
1867     R->addRange(Range);
1868     if (Sym) {
1869       R->markInteresting(Sym);
1870       R->addVisitor(llvm::make_unique<MallocBugVisitor>(Sym));
1871     }
1872     C.emitReport(R);
1873   }
1874 }
1875 
ReallocMem(CheckerContext & C,const CallExpr * CE,bool FreesOnFail,ProgramStateRef State) const1876 ProgramStateRef MallocChecker::ReallocMem(CheckerContext &C,
1877                                           const CallExpr *CE,
1878                                           bool FreesOnFail,
1879                                           ProgramStateRef State) const {
1880   if (!State)
1881     return nullptr;
1882 
1883   if (CE->getNumArgs() < 2)
1884     return nullptr;
1885 
1886   const Expr *arg0Expr = CE->getArg(0);
1887   const LocationContext *LCtx = C.getLocationContext();
1888   SVal Arg0Val = State->getSVal(arg0Expr, LCtx);
1889   if (!Arg0Val.getAs<DefinedOrUnknownSVal>())
1890     return nullptr;
1891   DefinedOrUnknownSVal arg0Val = Arg0Val.castAs<DefinedOrUnknownSVal>();
1892 
1893   SValBuilder &svalBuilder = C.getSValBuilder();
1894 
1895   DefinedOrUnknownSVal PtrEQ =
1896     svalBuilder.evalEQ(State, arg0Val, svalBuilder.makeNull());
1897 
1898   // Get the size argument. If there is no size arg then give up.
1899   const Expr *Arg1 = CE->getArg(1);
1900   if (!Arg1)
1901     return nullptr;
1902 
1903   // Get the value of the size argument.
1904   SVal Arg1ValG = State->getSVal(Arg1, LCtx);
1905   if (!Arg1ValG.getAs<DefinedOrUnknownSVal>())
1906     return nullptr;
1907   DefinedOrUnknownSVal Arg1Val = Arg1ValG.castAs<DefinedOrUnknownSVal>();
1908 
1909   // Compare the size argument to 0.
1910   DefinedOrUnknownSVal SizeZero =
1911     svalBuilder.evalEQ(State, Arg1Val,
1912                        svalBuilder.makeIntValWithPtrWidth(0, false));
1913 
1914   ProgramStateRef StatePtrIsNull, StatePtrNotNull;
1915   std::tie(StatePtrIsNull, StatePtrNotNull) = State->assume(PtrEQ);
1916   ProgramStateRef StateSizeIsZero, StateSizeNotZero;
1917   std::tie(StateSizeIsZero, StateSizeNotZero) = State->assume(SizeZero);
1918   // We only assume exceptional states if they are definitely true; if the
1919   // state is under-constrained, assume regular realloc behavior.
1920   bool PrtIsNull = StatePtrIsNull && !StatePtrNotNull;
1921   bool SizeIsZero = StateSizeIsZero && !StateSizeNotZero;
1922 
1923   // If the ptr is NULL and the size is not 0, the call is equivalent to
1924   // malloc(size).
1925   if ( PrtIsNull && !SizeIsZero) {
1926     ProgramStateRef stateMalloc = MallocMemAux(C, CE, CE->getArg(1),
1927                                                UndefinedVal(), StatePtrIsNull);
1928     return stateMalloc;
1929   }
1930 
1931   if (PrtIsNull && SizeIsZero)
1932     return nullptr;
1933 
1934   // Get the from and to pointer symbols as in toPtr = realloc(fromPtr, size).
1935   assert(!PrtIsNull);
1936   SymbolRef FromPtr = arg0Val.getAsSymbol();
1937   SVal RetVal = State->getSVal(CE, LCtx);
1938   SymbolRef ToPtr = RetVal.getAsSymbol();
1939   if (!FromPtr || !ToPtr)
1940     return nullptr;
1941 
1942   bool ReleasedAllocated = false;
1943 
1944   // If the size is 0, free the memory.
1945   if (SizeIsZero)
1946     if (ProgramStateRef stateFree = FreeMemAux(C, CE, StateSizeIsZero, 0,
1947                                                false, ReleasedAllocated)){
1948       // The semantics of the return value are:
1949       // If size was equal to 0, either NULL or a pointer suitable to be passed
1950       // to free() is returned. We just free the input pointer and do not add
1951       // any constrains on the output pointer.
1952       return stateFree;
1953     }
1954 
1955   // Default behavior.
1956   if (ProgramStateRef stateFree =
1957         FreeMemAux(C, CE, State, 0, false, ReleasedAllocated)) {
1958 
1959     ProgramStateRef stateRealloc = MallocMemAux(C, CE, CE->getArg(1),
1960                                                 UnknownVal(), stateFree);
1961     if (!stateRealloc)
1962       return nullptr;
1963 
1964     ReallocPairKind Kind = RPToBeFreedAfterFailure;
1965     if (FreesOnFail)
1966       Kind = RPIsFreeOnFailure;
1967     else if (!ReleasedAllocated)
1968       Kind = RPDoNotTrackAfterFailure;
1969 
1970     // Record the info about the reallocated symbol so that we could properly
1971     // process failed reallocation.
1972     stateRealloc = stateRealloc->set<ReallocPairs>(ToPtr,
1973                                                    ReallocPair(FromPtr, Kind));
1974     // The reallocated symbol should stay alive for as long as the new symbol.
1975     C.getSymbolManager().addSymbolDependency(ToPtr, FromPtr);
1976     return stateRealloc;
1977   }
1978   return nullptr;
1979 }
1980 
CallocMem(CheckerContext & C,const CallExpr * CE,ProgramStateRef State)1981 ProgramStateRef MallocChecker::CallocMem(CheckerContext &C, const CallExpr *CE,
1982                                          ProgramStateRef State) {
1983   if (!State)
1984     return nullptr;
1985 
1986   if (CE->getNumArgs() < 2)
1987     return nullptr;
1988 
1989   SValBuilder &svalBuilder = C.getSValBuilder();
1990   const LocationContext *LCtx = C.getLocationContext();
1991   SVal count = State->getSVal(CE->getArg(0), LCtx);
1992   SVal elementSize = State->getSVal(CE->getArg(1), LCtx);
1993   SVal TotalSize = svalBuilder.evalBinOp(State, BO_Mul, count, elementSize,
1994                                         svalBuilder.getContext().getSizeType());
1995   SVal zeroVal = svalBuilder.makeZeroVal(svalBuilder.getContext().CharTy);
1996 
1997   return MallocMemAux(C, CE, TotalSize, zeroVal, State);
1998 }
1999 
2000 LeakInfo
getAllocationSite(const ExplodedNode * N,SymbolRef Sym,CheckerContext & C) const2001 MallocChecker::getAllocationSite(const ExplodedNode *N, SymbolRef Sym,
2002                                  CheckerContext &C) const {
2003   const LocationContext *LeakContext = N->getLocationContext();
2004   // Walk the ExplodedGraph backwards and find the first node that referred to
2005   // the tracked symbol.
2006   const ExplodedNode *AllocNode = N;
2007   const MemRegion *ReferenceRegion = nullptr;
2008 
2009   while (N) {
2010     ProgramStateRef State = N->getState();
2011     if (!State->get<RegionState>(Sym))
2012       break;
2013 
2014     // Find the most recent expression bound to the symbol in the current
2015     // context.
2016       if (!ReferenceRegion) {
2017         if (const MemRegion *MR = C.getLocationRegionIfPostStore(N)) {
2018           SVal Val = State->getSVal(MR);
2019           if (Val.getAsLocSymbol() == Sym) {
2020             const VarRegion* VR = MR->getBaseRegion()->getAs<VarRegion>();
2021             // Do not show local variables belonging to a function other than
2022             // where the error is reported.
2023             if (!VR ||
2024                 (VR->getStackFrame() == LeakContext->getCurrentStackFrame()))
2025               ReferenceRegion = MR;
2026           }
2027         }
2028       }
2029 
2030     // Allocation node, is the last node in the current or parent context in
2031     // which the symbol was tracked.
2032     const LocationContext *NContext = N->getLocationContext();
2033     if (NContext == LeakContext ||
2034         NContext->isParentOf(LeakContext))
2035       AllocNode = N;
2036     N = N->pred_empty() ? nullptr : *(N->pred_begin());
2037   }
2038 
2039   return LeakInfo(AllocNode, ReferenceRegion);
2040 }
2041 
reportLeak(SymbolRef Sym,ExplodedNode * N,CheckerContext & C) const2042 void MallocChecker::reportLeak(SymbolRef Sym, ExplodedNode *N,
2043                                CheckerContext &C) const {
2044 
2045   if (!ChecksEnabled[CK_MallocChecker] &&
2046       !ChecksEnabled[CK_NewDeleteLeaksChecker])
2047     return;
2048 
2049   const RefState *RS = C.getState()->get<RegionState>(Sym);
2050   assert(RS && "cannot leak an untracked symbol");
2051   AllocationFamily Family = RS->getAllocationFamily();
2052 
2053   if (Family == AF_Alloca)
2054     return;
2055 
2056   Optional<MallocChecker::CheckKind>
2057       CheckKind = getCheckIfTracked(Family, true);
2058 
2059   if (!CheckKind.hasValue())
2060     return;
2061 
2062   assert(N);
2063   if (!BT_Leak[*CheckKind]) {
2064     BT_Leak[*CheckKind].reset(
2065         new BugType(CheckNames[*CheckKind], "Memory leak", "Memory Error"));
2066     // Leaks should not be reported if they are post-dominated by a sink:
2067     // (1) Sinks are higher importance bugs.
2068     // (2) NoReturnFunctionChecker uses sink nodes to represent paths ending
2069     //     with __noreturn functions such as assert() or exit(). We choose not
2070     //     to report leaks on such paths.
2071     BT_Leak[*CheckKind]->setSuppressOnSink(true);
2072   }
2073 
2074   // Most bug reports are cached at the location where they occurred.
2075   // With leaks, we want to unique them by the location where they were
2076   // allocated, and only report a single path.
2077   PathDiagnosticLocation LocUsedForUniqueing;
2078   const ExplodedNode *AllocNode = nullptr;
2079   const MemRegion *Region = nullptr;
2080   std::tie(AllocNode, Region) = getAllocationSite(N, Sym, C);
2081 
2082   ProgramPoint P = AllocNode->getLocation();
2083   const Stmt *AllocationStmt = nullptr;
2084   if (Optional<CallExitEnd> Exit = P.getAs<CallExitEnd>())
2085     AllocationStmt = Exit->getCalleeContext()->getCallSite();
2086   else if (Optional<StmtPoint> SP = P.getAs<StmtPoint>())
2087     AllocationStmt = SP->getStmt();
2088   if (AllocationStmt)
2089     LocUsedForUniqueing = PathDiagnosticLocation::createBegin(AllocationStmt,
2090                                               C.getSourceManager(),
2091                                               AllocNode->getLocationContext());
2092 
2093   SmallString<200> buf;
2094   llvm::raw_svector_ostream os(buf);
2095   if (Region && Region->canPrintPretty()) {
2096     os << "Potential leak of memory pointed to by ";
2097     Region->printPretty(os);
2098   } else {
2099     os << "Potential memory leak";
2100   }
2101 
2102   BugReport *R =
2103       new BugReport(*BT_Leak[*CheckKind], os.str(), N, LocUsedForUniqueing,
2104                     AllocNode->getLocationContext()->getDecl());
2105   R->markInteresting(Sym);
2106   R->addVisitor(llvm::make_unique<MallocBugVisitor>(Sym, true));
2107   C.emitReport(R);
2108 }
2109 
checkDeadSymbols(SymbolReaper & SymReaper,CheckerContext & C) const2110 void MallocChecker::checkDeadSymbols(SymbolReaper &SymReaper,
2111                                      CheckerContext &C) const
2112 {
2113   if (!SymReaper.hasDeadSymbols())
2114     return;
2115 
2116   ProgramStateRef state = C.getState();
2117   RegionStateTy RS = state->get<RegionState>();
2118   RegionStateTy::Factory &F = state->get_context<RegionState>();
2119 
2120   SmallVector<SymbolRef, 2> Errors;
2121   for (RegionStateTy::iterator I = RS.begin(), E = RS.end(); I != E; ++I) {
2122     if (SymReaper.isDead(I->first)) {
2123       if (I->second.isAllocated() || I->second.isAllocatedOfSizeZero())
2124         Errors.push_back(I->first);
2125       // Remove the dead symbol from the map.
2126       RS = F.remove(RS, I->first);
2127 
2128     }
2129   }
2130 
2131   // Cleanup the Realloc Pairs Map.
2132   ReallocPairsTy RP = state->get<ReallocPairs>();
2133   for (ReallocPairsTy::iterator I = RP.begin(), E = RP.end(); I != E; ++I) {
2134     if (SymReaper.isDead(I->first) ||
2135         SymReaper.isDead(I->second.ReallocatedSym)) {
2136       state = state->remove<ReallocPairs>(I->first);
2137     }
2138   }
2139 
2140   // Cleanup the FreeReturnValue Map.
2141   FreeReturnValueTy FR = state->get<FreeReturnValue>();
2142   for (FreeReturnValueTy::iterator I = FR.begin(), E = FR.end(); I != E; ++I) {
2143     if (SymReaper.isDead(I->first) ||
2144         SymReaper.isDead(I->second)) {
2145       state = state->remove<FreeReturnValue>(I->first);
2146     }
2147   }
2148 
2149   // Generate leak node.
2150   ExplodedNode *N = C.getPredecessor();
2151   if (!Errors.empty()) {
2152     static CheckerProgramPointTag Tag("MallocChecker", "DeadSymbolsLeak");
2153     N = C.addTransition(C.getState(), C.getPredecessor(), &Tag);
2154     for (SmallVectorImpl<SymbolRef>::iterator
2155            I = Errors.begin(), E = Errors.end(); I != E; ++I) {
2156       reportLeak(*I, N, C);
2157     }
2158   }
2159 
2160   C.addTransition(state->set<RegionState>(RS), N);
2161 }
2162 
checkPreCall(const CallEvent & Call,CheckerContext & C) const2163 void MallocChecker::checkPreCall(const CallEvent &Call,
2164                                  CheckerContext &C) const {
2165 
2166   if (const CXXDestructorCall *DC = dyn_cast<CXXDestructorCall>(&Call)) {
2167     SymbolRef Sym = DC->getCXXThisVal().getAsSymbol();
2168     if (!Sym || checkDoubleDelete(Sym, C))
2169       return;
2170   }
2171 
2172   // We will check for double free in the post visit.
2173   if (const AnyFunctionCall *FC = dyn_cast<AnyFunctionCall>(&Call)) {
2174     const FunctionDecl *FD = FC->getDecl();
2175     if (!FD)
2176       return;
2177 
2178     ASTContext &Ctx = C.getASTContext();
2179     if (ChecksEnabled[CK_MallocChecker] &&
2180         (isCMemFunction(FD, Ctx, AF_Malloc, MemoryOperationKind::MOK_Free) ||
2181          isCMemFunction(FD, Ctx, AF_IfNameIndex,
2182                         MemoryOperationKind::MOK_Free)))
2183       return;
2184 
2185     if (ChecksEnabled[CK_NewDeleteChecker] &&
2186         isStandardNewDelete(FD, Ctx))
2187       return;
2188   }
2189 
2190   // Check if the callee of a method is deleted.
2191   if (const CXXInstanceCall *CC = dyn_cast<CXXInstanceCall>(&Call)) {
2192     SymbolRef Sym = CC->getCXXThisVal().getAsSymbol();
2193     if (!Sym || checkUseAfterFree(Sym, C, CC->getCXXThisExpr()))
2194       return;
2195   }
2196 
2197   // Check arguments for being used after free.
2198   for (unsigned I = 0, E = Call.getNumArgs(); I != E; ++I) {
2199     SVal ArgSVal = Call.getArgSVal(I);
2200     if (ArgSVal.getAs<Loc>()) {
2201       SymbolRef Sym = ArgSVal.getAsSymbol();
2202       if (!Sym)
2203         continue;
2204       if (checkUseAfterFree(Sym, C, Call.getArgExpr(I)))
2205         return;
2206     }
2207   }
2208 }
2209 
checkPreStmt(const ReturnStmt * S,CheckerContext & C) const2210 void MallocChecker::checkPreStmt(const ReturnStmt *S, CheckerContext &C) const {
2211   const Expr *E = S->getRetValue();
2212   if (!E)
2213     return;
2214 
2215   // Check if we are returning a symbol.
2216   ProgramStateRef State = C.getState();
2217   SVal RetVal = State->getSVal(E, C.getLocationContext());
2218   SymbolRef Sym = RetVal.getAsSymbol();
2219   if (!Sym)
2220     // If we are returning a field of the allocated struct or an array element,
2221     // the callee could still free the memory.
2222     // TODO: This logic should be a part of generic symbol escape callback.
2223     if (const MemRegion *MR = RetVal.getAsRegion())
2224       if (isa<FieldRegion>(MR) || isa<ElementRegion>(MR))
2225         if (const SymbolicRegion *BMR =
2226               dyn_cast<SymbolicRegion>(MR->getBaseRegion()))
2227           Sym = BMR->getSymbol();
2228 
2229   // Check if we are returning freed memory.
2230   if (Sym)
2231     checkUseAfterFree(Sym, C, E);
2232 }
2233 
2234 // TODO: Blocks should be either inlined or should call invalidate regions
2235 // upon invocation. After that's in place, special casing here will not be
2236 // needed.
checkPostStmt(const BlockExpr * BE,CheckerContext & C) const2237 void MallocChecker::checkPostStmt(const BlockExpr *BE,
2238                                   CheckerContext &C) const {
2239 
2240   // Scan the BlockDecRefExprs for any object the retain count checker
2241   // may be tracking.
2242   if (!BE->getBlockDecl()->hasCaptures())
2243     return;
2244 
2245   ProgramStateRef state = C.getState();
2246   const BlockDataRegion *R =
2247     cast<BlockDataRegion>(state->getSVal(BE,
2248                                          C.getLocationContext()).getAsRegion());
2249 
2250   BlockDataRegion::referenced_vars_iterator I = R->referenced_vars_begin(),
2251                                             E = R->referenced_vars_end();
2252 
2253   if (I == E)
2254     return;
2255 
2256   SmallVector<const MemRegion*, 10> Regions;
2257   const LocationContext *LC = C.getLocationContext();
2258   MemRegionManager &MemMgr = C.getSValBuilder().getRegionManager();
2259 
2260   for ( ; I != E; ++I) {
2261     const VarRegion *VR = I.getCapturedRegion();
2262     if (VR->getSuperRegion() == R) {
2263       VR = MemMgr.getVarRegion(VR->getDecl(), LC);
2264     }
2265     Regions.push_back(VR);
2266   }
2267 
2268   state =
2269     state->scanReachableSymbols<StopTrackingCallback>(Regions.data(),
2270                                     Regions.data() + Regions.size()).getState();
2271   C.addTransition(state);
2272 }
2273 
isReleased(SymbolRef Sym,CheckerContext & C) const2274 bool MallocChecker::isReleased(SymbolRef Sym, CheckerContext &C) const {
2275   assert(Sym);
2276   const RefState *RS = C.getState()->get<RegionState>(Sym);
2277   return (RS && RS->isReleased());
2278 }
2279 
checkUseAfterFree(SymbolRef Sym,CheckerContext & C,const Stmt * S) const2280 bool MallocChecker::checkUseAfterFree(SymbolRef Sym, CheckerContext &C,
2281                                       const Stmt *S) const {
2282 
2283   if (isReleased(Sym, C)) {
2284     ReportUseAfterFree(C, S->getSourceRange(), Sym);
2285     return true;
2286   }
2287 
2288   return false;
2289 }
2290 
checkUseZeroAllocated(SymbolRef Sym,CheckerContext & C,const Stmt * S) const2291 void MallocChecker::checkUseZeroAllocated(SymbolRef Sym, CheckerContext &C,
2292                                           const Stmt *S) const {
2293   assert(Sym);
2294   const RefState *RS = C.getState()->get<RegionState>(Sym);
2295 
2296   if (RS && RS->isAllocatedOfSizeZero())
2297     ReportUseZeroAllocated(C, RS->getStmt()->getSourceRange(), Sym);
2298 }
2299 
checkDoubleDelete(SymbolRef Sym,CheckerContext & C) const2300 bool MallocChecker::checkDoubleDelete(SymbolRef Sym, CheckerContext &C) const {
2301 
2302   if (isReleased(Sym, C)) {
2303     ReportDoubleDelete(C, Sym);
2304     return true;
2305   }
2306   return false;
2307 }
2308 
2309 // Check if the location is a freed symbolic region.
checkLocation(SVal l,bool isLoad,const Stmt * S,CheckerContext & C) const2310 void MallocChecker::checkLocation(SVal l, bool isLoad, const Stmt *S,
2311                                   CheckerContext &C) const {
2312   SymbolRef Sym = l.getLocSymbolInBase();
2313   if (Sym) {
2314     checkUseAfterFree(Sym, C, S);
2315     checkUseZeroAllocated(Sym, C, S);
2316   }
2317 }
2318 
2319 // If a symbolic region is assumed to NULL (or another constant), stop tracking
2320 // it - assuming that allocation failed on this path.
evalAssume(ProgramStateRef state,SVal Cond,bool Assumption) const2321 ProgramStateRef MallocChecker::evalAssume(ProgramStateRef state,
2322                                               SVal Cond,
2323                                               bool Assumption) const {
2324   RegionStateTy RS = state->get<RegionState>();
2325   for (RegionStateTy::iterator I = RS.begin(), E = RS.end(); I != E; ++I) {
2326     // If the symbol is assumed to be NULL, remove it from consideration.
2327     ConstraintManager &CMgr = state->getConstraintManager();
2328     ConditionTruthVal AllocFailed = CMgr.isNull(state, I.getKey());
2329     if (AllocFailed.isConstrainedTrue())
2330       state = state->remove<RegionState>(I.getKey());
2331   }
2332 
2333   // Realloc returns 0 when reallocation fails, which means that we should
2334   // restore the state of the pointer being reallocated.
2335   ReallocPairsTy RP = state->get<ReallocPairs>();
2336   for (ReallocPairsTy::iterator I = RP.begin(), E = RP.end(); I != E; ++I) {
2337     // If the symbol is assumed to be NULL, remove it from consideration.
2338     ConstraintManager &CMgr = state->getConstraintManager();
2339     ConditionTruthVal AllocFailed = CMgr.isNull(state, I.getKey());
2340     if (!AllocFailed.isConstrainedTrue())
2341       continue;
2342 
2343     SymbolRef ReallocSym = I.getData().ReallocatedSym;
2344     if (const RefState *RS = state->get<RegionState>(ReallocSym)) {
2345       if (RS->isReleased()) {
2346         if (I.getData().Kind == RPToBeFreedAfterFailure)
2347           state = state->set<RegionState>(ReallocSym,
2348               RefState::getAllocated(RS->getAllocationFamily(), RS->getStmt()));
2349         else if (I.getData().Kind == RPDoNotTrackAfterFailure)
2350           state = state->remove<RegionState>(ReallocSym);
2351         else
2352           assert(I.getData().Kind == RPIsFreeOnFailure);
2353       }
2354     }
2355     state = state->remove<ReallocPairs>(I.getKey());
2356   }
2357 
2358   return state;
2359 }
2360 
mayFreeAnyEscapedMemoryOrIsModeledExplicitly(const CallEvent * Call,ProgramStateRef State,SymbolRef & EscapingSymbol) const2361 bool MallocChecker::mayFreeAnyEscapedMemoryOrIsModeledExplicitly(
2362                                               const CallEvent *Call,
2363                                               ProgramStateRef State,
2364                                               SymbolRef &EscapingSymbol) const {
2365   assert(Call);
2366   EscapingSymbol = nullptr;
2367 
2368   // For now, assume that any C++ or block call can free memory.
2369   // TODO: If we want to be more optimistic here, we'll need to make sure that
2370   // regions escape to C++ containers. They seem to do that even now, but for
2371   // mysterious reasons.
2372   if (!(isa<SimpleFunctionCall>(Call) || isa<ObjCMethodCall>(Call)))
2373     return true;
2374 
2375   // Check Objective-C messages by selector name.
2376   if (const ObjCMethodCall *Msg = dyn_cast<ObjCMethodCall>(Call)) {
2377     // If it's not a framework call, or if it takes a callback, assume it
2378     // can free memory.
2379     if (!Call->isInSystemHeader() || Call->hasNonZeroCallbackArg())
2380       return true;
2381 
2382     // If it's a method we know about, handle it explicitly post-call.
2383     // This should happen before the "freeWhenDone" check below.
2384     if (isKnownDeallocObjCMethodName(*Msg))
2385       return false;
2386 
2387     // If there's a "freeWhenDone" parameter, but the method isn't one we know
2388     // about, we can't be sure that the object will use free() to deallocate the
2389     // memory, so we can't model it explicitly. The best we can do is use it to
2390     // decide whether the pointer escapes.
2391     if (Optional<bool> FreeWhenDone = getFreeWhenDoneArg(*Msg))
2392       return *FreeWhenDone;
2393 
2394     // If the first selector piece ends with "NoCopy", and there is no
2395     // "freeWhenDone" parameter set to zero, we know ownership is being
2396     // transferred. Again, though, we can't be sure that the object will use
2397     // free() to deallocate the memory, so we can't model it explicitly.
2398     StringRef FirstSlot = Msg->getSelector().getNameForSlot(0);
2399     if (FirstSlot.endswith("NoCopy"))
2400       return true;
2401 
2402     // If the first selector starts with addPointer, insertPointer,
2403     // or replacePointer, assume we are dealing with NSPointerArray or similar.
2404     // This is similar to C++ containers (vector); we still might want to check
2405     // that the pointers get freed by following the container itself.
2406     if (FirstSlot.startswith("addPointer") ||
2407         FirstSlot.startswith("insertPointer") ||
2408         FirstSlot.startswith("replacePointer") ||
2409         FirstSlot.equals("valueWithPointer")) {
2410       return true;
2411     }
2412 
2413     // We should escape receiver on call to 'init'. This is especially relevant
2414     // to the receiver, as the corresponding symbol is usually not referenced
2415     // after the call.
2416     if (Msg->getMethodFamily() == OMF_init) {
2417       EscapingSymbol = Msg->getReceiverSVal().getAsSymbol();
2418       return true;
2419     }
2420 
2421     // Otherwise, assume that the method does not free memory.
2422     // Most framework methods do not free memory.
2423     return false;
2424   }
2425 
2426   // At this point the only thing left to handle is straight function calls.
2427   const FunctionDecl *FD = cast<SimpleFunctionCall>(Call)->getDecl();
2428   if (!FD)
2429     return true;
2430 
2431   ASTContext &ASTC = State->getStateManager().getContext();
2432 
2433   // If it's one of the allocation functions we can reason about, we model
2434   // its behavior explicitly.
2435   if (isMemFunction(FD, ASTC))
2436     return false;
2437 
2438   // If it's not a system call, assume it frees memory.
2439   if (!Call->isInSystemHeader())
2440     return true;
2441 
2442   // White list the system functions whose arguments escape.
2443   const IdentifierInfo *II = FD->getIdentifier();
2444   if (!II)
2445     return true;
2446   StringRef FName = II->getName();
2447 
2448   // White list the 'XXXNoCopy' CoreFoundation functions.
2449   // We specifically check these before
2450   if (FName.endswith("NoCopy")) {
2451     // Look for the deallocator argument. We know that the memory ownership
2452     // is not transferred only if the deallocator argument is
2453     // 'kCFAllocatorNull'.
2454     for (unsigned i = 1; i < Call->getNumArgs(); ++i) {
2455       const Expr *ArgE = Call->getArgExpr(i)->IgnoreParenCasts();
2456       if (const DeclRefExpr *DE = dyn_cast<DeclRefExpr>(ArgE)) {
2457         StringRef DeallocatorName = DE->getFoundDecl()->getName();
2458         if (DeallocatorName == "kCFAllocatorNull")
2459           return false;
2460       }
2461     }
2462     return true;
2463   }
2464 
2465   // Associating streams with malloced buffers. The pointer can escape if
2466   // 'closefn' is specified (and if that function does free memory),
2467   // but it will not if closefn is not specified.
2468   // Currently, we do not inspect the 'closefn' function (PR12101).
2469   if (FName == "funopen")
2470     if (Call->getNumArgs() >= 4 && Call->getArgSVal(4).isConstant(0))
2471       return false;
2472 
2473   // Do not warn on pointers passed to 'setbuf' when used with std streams,
2474   // these leaks might be intentional when setting the buffer for stdio.
2475   // http://stackoverflow.com/questions/2671151/who-frees-setvbuf-buffer
2476   if (FName == "setbuf" || FName =="setbuffer" ||
2477       FName == "setlinebuf" || FName == "setvbuf") {
2478     if (Call->getNumArgs() >= 1) {
2479       const Expr *ArgE = Call->getArgExpr(0)->IgnoreParenCasts();
2480       if (const DeclRefExpr *ArgDRE = dyn_cast<DeclRefExpr>(ArgE))
2481         if (const VarDecl *D = dyn_cast<VarDecl>(ArgDRE->getDecl()))
2482           if (D->getCanonicalDecl()->getName().find("std") != StringRef::npos)
2483             return true;
2484     }
2485   }
2486 
2487   // A bunch of other functions which either take ownership of a pointer or
2488   // wrap the result up in a struct or object, meaning it can be freed later.
2489   // (See RetainCountChecker.) Not all the parameters here are invalidated,
2490   // but the Malloc checker cannot differentiate between them. The right way
2491   // of doing this would be to implement a pointer escapes callback.
2492   if (FName == "CGBitmapContextCreate" ||
2493       FName == "CGBitmapContextCreateWithData" ||
2494       FName == "CVPixelBufferCreateWithBytes" ||
2495       FName == "CVPixelBufferCreateWithPlanarBytes" ||
2496       FName == "OSAtomicEnqueue") {
2497     return true;
2498   }
2499 
2500   // Handle cases where we know a buffer's /address/ can escape.
2501   // Note that the above checks handle some special cases where we know that
2502   // even though the address escapes, it's still our responsibility to free the
2503   // buffer.
2504   if (Call->argumentsMayEscape())
2505     return true;
2506 
2507   // Otherwise, assume that the function does not free memory.
2508   // Most system calls do not free the memory.
2509   return false;
2510 }
2511 
retTrue(const RefState * RS)2512 static bool retTrue(const RefState *RS) {
2513   return true;
2514 }
2515 
checkIfNewOrNewArrayFamily(const RefState * RS)2516 static bool checkIfNewOrNewArrayFamily(const RefState *RS) {
2517   return (RS->getAllocationFamily() == AF_CXXNewArray ||
2518           RS->getAllocationFamily() == AF_CXXNew);
2519 }
2520 
checkPointerEscape(ProgramStateRef State,const InvalidatedSymbols & Escaped,const CallEvent * Call,PointerEscapeKind Kind) const2521 ProgramStateRef MallocChecker::checkPointerEscape(ProgramStateRef State,
2522                                              const InvalidatedSymbols &Escaped,
2523                                              const CallEvent *Call,
2524                                              PointerEscapeKind Kind) const {
2525   return checkPointerEscapeAux(State, Escaped, Call, Kind, &retTrue);
2526 }
2527 
checkConstPointerEscape(ProgramStateRef State,const InvalidatedSymbols & Escaped,const CallEvent * Call,PointerEscapeKind Kind) const2528 ProgramStateRef MallocChecker::checkConstPointerEscape(ProgramStateRef State,
2529                                               const InvalidatedSymbols &Escaped,
2530                                               const CallEvent *Call,
2531                                               PointerEscapeKind Kind) const {
2532   return checkPointerEscapeAux(State, Escaped, Call, Kind,
2533                                &checkIfNewOrNewArrayFamily);
2534 }
2535 
checkPointerEscapeAux(ProgramStateRef State,const InvalidatedSymbols & Escaped,const CallEvent * Call,PointerEscapeKind Kind,bool (* CheckRefState)(const RefState *)) const2536 ProgramStateRef MallocChecker::checkPointerEscapeAux(ProgramStateRef State,
2537                                               const InvalidatedSymbols &Escaped,
2538                                               const CallEvent *Call,
2539                                               PointerEscapeKind Kind,
2540                                   bool(*CheckRefState)(const RefState*)) const {
2541   // If we know that the call does not free memory, or we want to process the
2542   // call later, keep tracking the top level arguments.
2543   SymbolRef EscapingSymbol = nullptr;
2544   if (Kind == PSK_DirectEscapeOnCall &&
2545       !mayFreeAnyEscapedMemoryOrIsModeledExplicitly(Call, State,
2546                                                     EscapingSymbol) &&
2547       !EscapingSymbol) {
2548     return State;
2549   }
2550 
2551   for (InvalidatedSymbols::const_iterator I = Escaped.begin(),
2552        E = Escaped.end();
2553        I != E; ++I) {
2554     SymbolRef sym = *I;
2555 
2556     if (EscapingSymbol && EscapingSymbol != sym)
2557       continue;
2558 
2559     if (const RefState *RS = State->get<RegionState>(sym)) {
2560       if ((RS->isAllocated() || RS->isAllocatedOfSizeZero()) &&
2561           CheckRefState(RS)) {
2562         State = State->remove<RegionState>(sym);
2563         State = State->set<RegionState>(sym, RefState::getEscaped(RS));
2564       }
2565     }
2566   }
2567   return State;
2568 }
2569 
findFailedReallocSymbol(ProgramStateRef currState,ProgramStateRef prevState)2570 static SymbolRef findFailedReallocSymbol(ProgramStateRef currState,
2571                                          ProgramStateRef prevState) {
2572   ReallocPairsTy currMap = currState->get<ReallocPairs>();
2573   ReallocPairsTy prevMap = prevState->get<ReallocPairs>();
2574 
2575   for (ReallocPairsTy::iterator I = prevMap.begin(), E = prevMap.end();
2576        I != E; ++I) {
2577     SymbolRef sym = I.getKey();
2578     if (!currMap.lookup(sym))
2579       return sym;
2580   }
2581 
2582   return nullptr;
2583 }
2584 
2585 PathDiagnosticPiece *
VisitNode(const ExplodedNode * N,const ExplodedNode * PrevN,BugReporterContext & BRC,BugReport & BR)2586 MallocChecker::MallocBugVisitor::VisitNode(const ExplodedNode *N,
2587                                            const ExplodedNode *PrevN,
2588                                            BugReporterContext &BRC,
2589                                            BugReport &BR) {
2590   ProgramStateRef state = N->getState();
2591   ProgramStateRef statePrev = PrevN->getState();
2592 
2593   const RefState *RS = state->get<RegionState>(Sym);
2594   const RefState *RSPrev = statePrev->get<RegionState>(Sym);
2595   if (!RS)
2596     return nullptr;
2597 
2598   const Stmt *S = nullptr;
2599   const char *Msg = nullptr;
2600   StackHintGeneratorForSymbol *StackHint = nullptr;
2601 
2602   // Retrieve the associated statement.
2603   ProgramPoint ProgLoc = N->getLocation();
2604   if (Optional<StmtPoint> SP = ProgLoc.getAs<StmtPoint>()) {
2605     S = SP->getStmt();
2606   } else if (Optional<CallExitEnd> Exit = ProgLoc.getAs<CallExitEnd>()) {
2607     S = Exit->getCalleeContext()->getCallSite();
2608   } else if (Optional<BlockEdge> Edge = ProgLoc.getAs<BlockEdge>()) {
2609     // If an assumption was made on a branch, it should be caught
2610     // here by looking at the state transition.
2611     S = Edge->getSrc()->getTerminator();
2612   }
2613 
2614   if (!S)
2615     return nullptr;
2616 
2617   // FIXME: We will eventually need to handle non-statement-based events
2618   // (__attribute__((cleanup))).
2619 
2620   // Find out if this is an interesting point and what is the kind.
2621   if (Mode == Normal) {
2622     if (isAllocated(RS, RSPrev, S)) {
2623       Msg = "Memory is allocated";
2624       StackHint = new StackHintGeneratorForSymbol(Sym,
2625                                                   "Returned allocated memory");
2626     } else if (isReleased(RS, RSPrev, S)) {
2627       Msg = "Memory is released";
2628       StackHint = new StackHintGeneratorForSymbol(Sym,
2629                                              "Returning; memory was released");
2630     } else if (isRelinquished(RS, RSPrev, S)) {
2631       Msg = "Memory ownership is transferred";
2632       StackHint = new StackHintGeneratorForSymbol(Sym, "");
2633     } else if (isReallocFailedCheck(RS, RSPrev, S)) {
2634       Mode = ReallocationFailed;
2635       Msg = "Reallocation failed";
2636       StackHint = new StackHintGeneratorForReallocationFailed(Sym,
2637                                                        "Reallocation failed");
2638 
2639       if (SymbolRef sym = findFailedReallocSymbol(state, statePrev)) {
2640         // Is it possible to fail two reallocs WITHOUT testing in between?
2641         assert((!FailedReallocSymbol || FailedReallocSymbol == sym) &&
2642           "We only support one failed realloc at a time.");
2643         BR.markInteresting(sym);
2644         FailedReallocSymbol = sym;
2645       }
2646     }
2647 
2648   // We are in a special mode if a reallocation failed later in the path.
2649   } else if (Mode == ReallocationFailed) {
2650     assert(FailedReallocSymbol && "No symbol to look for.");
2651 
2652     // Is this is the first appearance of the reallocated symbol?
2653     if (!statePrev->get<RegionState>(FailedReallocSymbol)) {
2654       // We're at the reallocation point.
2655       Msg = "Attempt to reallocate memory";
2656       StackHint = new StackHintGeneratorForSymbol(Sym,
2657                                                  "Returned reallocated memory");
2658       FailedReallocSymbol = nullptr;
2659       Mode = Normal;
2660     }
2661   }
2662 
2663   if (!Msg)
2664     return nullptr;
2665   assert(StackHint);
2666 
2667   // Generate the extra diagnostic.
2668   PathDiagnosticLocation Pos(S, BRC.getSourceManager(),
2669                              N->getLocationContext());
2670   return new PathDiagnosticEventPiece(Pos, Msg, true, StackHint);
2671 }
2672 
printState(raw_ostream & Out,ProgramStateRef State,const char * NL,const char * Sep) const2673 void MallocChecker::printState(raw_ostream &Out, ProgramStateRef State,
2674                                const char *NL, const char *Sep) const {
2675 
2676   RegionStateTy RS = State->get<RegionState>();
2677 
2678   if (!RS.isEmpty()) {
2679     Out << Sep << "MallocChecker :" << NL;
2680     for (RegionStateTy::iterator I = RS.begin(), E = RS.end(); I != E; ++I) {
2681       const RefState *RefS = State->get<RegionState>(I.getKey());
2682       AllocationFamily Family = RefS->getAllocationFamily();
2683       Optional<MallocChecker::CheckKind> CheckKind = getCheckIfTracked(Family);
2684       if (!CheckKind.hasValue())
2685          CheckKind = getCheckIfTracked(Family, true);
2686 
2687       I.getKey()->dumpToStream(Out);
2688       Out << " : ";
2689       I.getData().dump(Out);
2690       if (CheckKind.hasValue())
2691         Out << " (" << CheckNames[*CheckKind].getName() << ")";
2692       Out << NL;
2693     }
2694   }
2695 }
2696 
registerNewDeleteLeaksChecker(CheckerManager & mgr)2697 void ento::registerNewDeleteLeaksChecker(CheckerManager &mgr) {
2698   registerCStringCheckerBasic(mgr);
2699   MallocChecker *checker = mgr.registerChecker<MallocChecker>();
2700   checker->IsOptimistic = mgr.getAnalyzerOptions().getBooleanOption(
2701       "Optimistic", false, checker);
2702   checker->ChecksEnabled[MallocChecker::CK_NewDeleteLeaksChecker] = true;
2703   checker->CheckNames[MallocChecker::CK_NewDeleteLeaksChecker] =
2704       mgr.getCurrentCheckName();
2705   // We currently treat NewDeleteLeaks checker as a subchecker of NewDelete
2706   // checker.
2707   if (!checker->ChecksEnabled[MallocChecker::CK_NewDeleteChecker])
2708     checker->ChecksEnabled[MallocChecker::CK_NewDeleteChecker] = true;
2709 }
2710 
2711 #define REGISTER_CHECKER(name)                                                 \
2712   void ento::register##name(CheckerManager &mgr) {                             \
2713     registerCStringCheckerBasic(mgr);                                          \
2714     MallocChecker *checker = mgr.registerChecker<MallocChecker>();             \
2715     checker->IsOptimistic = mgr.getAnalyzerOptions().getBooleanOption(         \
2716         "Optimistic", false, checker);                                         \
2717     checker->ChecksEnabled[MallocChecker::CK_##name] = true;                   \
2718     checker->CheckNames[MallocChecker::CK_##name] = mgr.getCurrentCheckName(); \
2719   }
2720 
2721 REGISTER_CHECKER(MallocChecker)
2722 REGISTER_CHECKER(NewDeleteChecker)
2723 REGISTER_CHECKER(MismatchedDeallocatorChecker)
2724