1 //===-- divdc3_test.c - Test __divdc3 -------------------------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is dual licensed under the MIT and the University of Illinois Open
6 // Source Licenses. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file tests __divdc3 for the compiler_rt library.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "int_lib.h"
15 #include <math.h>
16 #include <complex.h>
17 #include <stdio.h>
18 
19 // Returns: the quotient of (a + ib) / (c + id)
20 
21 double _Complex __divdc3(double __a, double __b, double __c, double __d);
22 
23 enum {zero, non_zero, inf, NaN, non_zero_nan};
24 
25 int
classify(double _Complex x)26 classify(double _Complex x)
27 {
28     if (x == 0)
29         return zero;
30     if (isinf(creal(x)) || isinf(cimag(x)))
31         return inf;
32     if (isnan(creal(x)) && isnan(cimag(x)))
33         return NaN;
34     if (isnan(creal(x)))
35     {
36         if (cimag(x) == 0)
37             return NaN;
38         return non_zero_nan;
39     }
40     if (isnan(cimag(x)))
41     {
42         if (creal(x) == 0)
43             return NaN;
44         return non_zero_nan;
45     }
46     return non_zero;
47 }
48 
test__divdc3(double a,double b,double c,double d)49 int test__divdc3(double a, double b, double c, double d)
50 {
51     double _Complex r = __divdc3(a, b, c, d);
52 //     printf("test__divdc3(%f, %f, %f, %f) = %f + I%f\n",
53 //             a, b, c, d, creal(r), cimag(r));
54 	double _Complex dividend;
55 	double _Complex divisor;
56 
57 	__real__ dividend = a;
58 	__imag__ dividend = b;
59 	__real__ divisor = c;
60 	__imag__ divisor = d;
61 
62     switch (classify(dividend))
63     {
64     case zero:
65         switch (classify(divisor))
66         {
67         case zero:
68             if (classify(r) != NaN)
69                 return 1;
70             break;
71         case non_zero:
72             if (classify(r) != zero)
73                 return 1;
74             break;
75         case inf:
76             if (classify(r) != zero)
77                 return 1;
78             break;
79         case NaN:
80             if (classify(r) != NaN)
81                 return 1;
82             break;
83         case non_zero_nan:
84             if (classify(r) != NaN)
85                 return 1;
86             break;
87         }
88         break;
89     case non_zero:
90         switch (classify(divisor))
91         {
92         case zero:
93             if (classify(r) != inf)
94                 return 1;
95             break;
96         case non_zero:
97             if (classify(r) != non_zero)
98                 return 1;
99             {
100             double _Complex z = (a * c + b * d) / (c * c + d * d)
101                              + (b * c - a * d) / (c * c + d * d) * _Complex_I;
102             if (cabs((r-z)/r) > 1.e-6)
103                 return 1;
104             }
105             break;
106         case inf:
107             if (classify(r) != zero)
108                 return 1;
109             break;
110         case NaN:
111             if (classify(r) != NaN)
112                 return 1;
113             break;
114         case non_zero_nan:
115             if (classify(r) != NaN)
116                 return 1;
117             break;
118         }
119         break;
120     case inf:
121         switch (classify(divisor))
122         {
123         case zero:
124             if (classify(r) != inf)
125                 return 1;
126             break;
127         case non_zero:
128             if (classify(r) != inf)
129                 return 1;
130             break;
131         case inf:
132             if (classify(r) != NaN)
133                 return 1;
134             break;
135         case NaN:
136             if (classify(r) != NaN)
137                 return 1;
138             break;
139         case non_zero_nan:
140             if (classify(r) != NaN)
141                 return 1;
142             break;
143         }
144         break;
145     case NaN:
146         switch (classify(divisor))
147         {
148         case zero:
149             if (classify(r) != NaN)
150                 return 1;
151             break;
152         case non_zero:
153             if (classify(r) != NaN)
154                 return 1;
155             break;
156         case inf:
157             if (classify(r) != NaN)
158                 return 1;
159             break;
160         case NaN:
161             if (classify(r) != NaN)
162                 return 1;
163             break;
164         case non_zero_nan:
165             if (classify(r) != NaN)
166                 return 1;
167             break;
168         }
169         break;
170     case non_zero_nan:
171         switch (classify(divisor))
172         {
173         case zero:
174             if (classify(r) != inf)
175                 return 1;
176             break;
177         case non_zero:
178             if (classify(r) != NaN)
179                 return 1;
180             break;
181         case inf:
182             if (classify(r) != NaN)
183                 return 1;
184             break;
185         case NaN:
186             if (classify(r) != NaN)
187                 return 1;
188             break;
189         case non_zero_nan:
190             if (classify(r) != NaN)
191                 return 1;
192             break;
193         }
194         break;
195     }
196 
197     return 0;
198 }
199 
200 double x[][2] =
201 {
202     { 1.e-6,  1.e-6},
203     {-1.e-6,  1.e-6},
204     {-1.e-6, -1.e-6},
205     { 1.e-6, -1.e-6},
206 
207     { 1.e+6,  1.e-6},
208     {-1.e+6,  1.e-6},
209     {-1.e+6, -1.e-6},
210     { 1.e+6, -1.e-6},
211 
212     { 1.e-6,  1.e+6},
213     {-1.e-6,  1.e+6},
214     {-1.e-6, -1.e+6},
215     { 1.e-6, -1.e+6},
216 
217     { 1.e+6,  1.e+6},
218     {-1.e+6,  1.e+6},
219     {-1.e+6, -1.e+6},
220     { 1.e+6, -1.e+6},
221 
222     {NAN, NAN},
223     {-INFINITY, NAN},
224     {-2, NAN},
225     {-1, NAN},
226     {-0.5, NAN},
227     {-0., NAN},
228     {+0., NAN},
229     {0.5, NAN},
230     {1, NAN},
231     {2, NAN},
232     {INFINITY, NAN},
233 
234     {NAN, -INFINITY},
235     {-INFINITY, -INFINITY},
236     {-2, -INFINITY},
237     {-1, -INFINITY},
238     {-0.5, -INFINITY},
239     {-0., -INFINITY},
240     {+0., -INFINITY},
241     {0.5, -INFINITY},
242     {1, -INFINITY},
243     {2, -INFINITY},
244     {INFINITY, -INFINITY},
245 
246     {NAN, -2},
247     {-INFINITY, -2},
248     {-2, -2},
249     {-1, -2},
250     {-0.5, -2},
251     {-0., -2},
252     {+0., -2},
253     {0.5, -2},
254     {1, -2},
255     {2, -2},
256     {INFINITY, -2},
257 
258     {NAN, -1},
259     {-INFINITY, -1},
260     {-2, -1},
261     {-1, -1},
262     {-0.5, -1},
263     {-0., -1},
264     {+0., -1},
265     {0.5, -1},
266     {1, -1},
267     {2, -1},
268     {INFINITY, -1},
269 
270     {NAN, -0.5},
271     {-INFINITY, -0.5},
272     {-2, -0.5},
273     {-1, -0.5},
274     {-0.5, -0.5},
275     {-0., -0.5},
276     {+0., -0.5},
277     {0.5, -0.5},
278     {1, -0.5},
279     {2, -0.5},
280     {INFINITY, -0.5},
281 
282     {NAN, -0.},
283     {-INFINITY, -0.},
284     {-2, -0.},
285     {-1, -0.},
286     {-0.5, -0.},
287     {-0., -0.},
288     {+0., -0.},
289     {0.5, -0.},
290     {1, -0.},
291     {2, -0.},
292     {INFINITY, -0.},
293 
294     {NAN, 0.},
295     {-INFINITY, 0.},
296     {-2, 0.},
297     {-1, 0.},
298     {-0.5, 0.},
299     {-0., 0.},
300     {+0., 0.},
301     {0.5, 0.},
302     {1, 0.},
303     {2, 0.},
304     {INFINITY, 0.},
305 
306     {NAN, 0.5},
307     {-INFINITY, 0.5},
308     {-2, 0.5},
309     {-1, 0.5},
310     {-0.5, 0.5},
311     {-0., 0.5},
312     {+0., 0.5},
313     {0.5, 0.5},
314     {1, 0.5},
315     {2, 0.5},
316     {INFINITY, 0.5},
317 
318     {NAN, 1},
319     {-INFINITY, 1},
320     {-2, 1},
321     {-1, 1},
322     {-0.5, 1},
323     {-0., 1},
324     {+0., 1},
325     {0.5, 1},
326     {1, 1},
327     {2, 1},
328     {INFINITY, 1},
329 
330     {NAN, 2},
331     {-INFINITY, 2},
332     {-2, 2},
333     {-1, 2},
334     {-0.5, 2},
335     {-0., 2},
336     {+0., 2},
337     {0.5, 2},
338     {1, 2},
339     {2, 2},
340     {INFINITY, 2},
341 
342     {NAN, INFINITY},
343     {-INFINITY, INFINITY},
344     {-2, INFINITY},
345     {-1, INFINITY},
346     {-0.5, INFINITY},
347     {-0., INFINITY},
348     {+0., INFINITY},
349     {0.5, INFINITY},
350     {1, INFINITY},
351     {2, INFINITY},
352     {INFINITY, INFINITY}
353 
354 };
355 
main()356 int main()
357 {
358     const unsigned N = sizeof(x) / sizeof(x[0]);
359     unsigned i, j;
360     for (i = 0; i < N; ++i)
361     {
362         for (j = 0; j < N; ++j)
363         {
364             if (test__divdc3(x[i][0], x[i][1], x[j][0], x[j][1]))
365                 return 1;
366         }
367     }
368 
369     return 0;
370 }
371