1 // This file is part of Eigen, a lightweight C++ template library 2 // for linear algebra. 3 // 4 // Copyright (C) 2008-2010 Gael Guennebaud <gael.guennebaud@inria.fr> 5 // 6 // This Source Code Form is subject to the terms of the Mozilla 7 // Public License v. 2.0. If a copy of the MPL was not distributed 8 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. 9 10 #ifndef EIGEN_FUNCTORS_H 11 #define EIGEN_FUNCTORS_H 12 13 namespace Eigen { 14 15 namespace internal { 16 17 // associative functors: 18 19 /** \internal 20 * \brief Template functor to compute the sum of two scalars 21 * 22 * \sa class CwiseBinaryOp, MatrixBase::operator+, class VectorwiseOp, MatrixBase::sum() 23 */ 24 template<typename Scalar> struct scalar_sum_op { EIGEN_EMPTY_STRUCT_CTORscalar_sum_op25 EIGEN_EMPTY_STRUCT_CTOR(scalar_sum_op) 26 EIGEN_STRONG_INLINE const Scalar operator() (const Scalar& a, const Scalar& b) const { return a + b; } 27 template<typename Packet> packetOpscalar_sum_op28 EIGEN_STRONG_INLINE const Packet packetOp(const Packet& a, const Packet& b) const 29 { return internal::padd(a,b); } 30 template<typename Packet> preduxscalar_sum_op31 EIGEN_STRONG_INLINE const Scalar predux(const Packet& a) const 32 { return internal::predux(a); } 33 }; 34 template<typename Scalar> 35 struct functor_traits<scalar_sum_op<Scalar> > { 36 enum { 37 Cost = NumTraits<Scalar>::AddCost, 38 PacketAccess = packet_traits<Scalar>::HasAdd 39 }; 40 }; 41 42 /** \internal 43 * \brief Template functor to compute the product of two scalars 44 * 45 * \sa class CwiseBinaryOp, Cwise::operator*(), class VectorwiseOp, MatrixBase::redux() 46 */ 47 template<typename LhsScalar,typename RhsScalar> struct scalar_product_op { 48 enum { 49 // TODO vectorize mixed product 50 Vectorizable = is_same<LhsScalar,RhsScalar>::value && packet_traits<LhsScalar>::HasMul && packet_traits<RhsScalar>::HasMul 51 }; 52 typedef typename scalar_product_traits<LhsScalar,RhsScalar>::ReturnType result_type; 53 EIGEN_EMPTY_STRUCT_CTOR(scalar_product_op) 54 EIGEN_STRONG_INLINE const result_type operator() (const LhsScalar& a, const RhsScalar& b) const { return a * b; } 55 template<typename Packet> 56 EIGEN_STRONG_INLINE const Packet packetOp(const Packet& a, const Packet& b) const 57 { return internal::pmul(a,b); } 58 template<typename Packet> 59 EIGEN_STRONG_INLINE const result_type predux(const Packet& a) const 60 { return internal::predux_mul(a); } 61 }; 62 template<typename LhsScalar,typename RhsScalar> 63 struct functor_traits<scalar_product_op<LhsScalar,RhsScalar> > { 64 enum { 65 Cost = (NumTraits<LhsScalar>::MulCost + NumTraits<RhsScalar>::MulCost)/2, // rough estimate! 66 PacketAccess = scalar_product_op<LhsScalar,RhsScalar>::Vectorizable 67 }; 68 }; 69 70 /** \internal 71 * \brief Template functor to compute the conjugate product of two scalars 72 * 73 * This is a short cut for conj(x) * y which is needed for optimization purpose; in Eigen2 support mode, this becomes x * conj(y) 74 */ 75 template<typename LhsScalar,typename RhsScalar> struct scalar_conj_product_op { 76 77 enum { 78 Conj = NumTraits<LhsScalar>::IsComplex 79 }; 80 81 typedef typename scalar_product_traits<LhsScalar,RhsScalar>::ReturnType result_type; 82 83 EIGEN_EMPTY_STRUCT_CTOR(scalar_conj_product_op) 84 EIGEN_STRONG_INLINE const result_type operator() (const LhsScalar& a, const RhsScalar& b) const 85 { return conj_helper<LhsScalar,RhsScalar,Conj,false>().pmul(a,b); } 86 87 template<typename Packet> 88 EIGEN_STRONG_INLINE const Packet packetOp(const Packet& a, const Packet& b) const 89 { return conj_helper<Packet,Packet,Conj,false>().pmul(a,b); } 90 }; 91 template<typename LhsScalar,typename RhsScalar> 92 struct functor_traits<scalar_conj_product_op<LhsScalar,RhsScalar> > { 93 enum { 94 Cost = NumTraits<LhsScalar>::MulCost, 95 PacketAccess = internal::is_same<LhsScalar, RhsScalar>::value && packet_traits<LhsScalar>::HasMul 96 }; 97 }; 98 99 /** \internal 100 * \brief Template functor to compute the min of two scalars 101 * 102 * \sa class CwiseBinaryOp, MatrixBase::cwiseMin, class VectorwiseOp, MatrixBase::minCoeff() 103 */ 104 template<typename Scalar> struct scalar_min_op { 105 EIGEN_EMPTY_STRUCT_CTOR(scalar_min_op) 106 EIGEN_STRONG_INLINE const Scalar operator() (const Scalar& a, const Scalar& b) const { using std::min; return (min)(a, b); } 107 template<typename Packet> 108 EIGEN_STRONG_INLINE const Packet packetOp(const Packet& a, const Packet& b) const 109 { return internal::pmin(a,b); } 110 template<typename Packet> 111 EIGEN_STRONG_INLINE const Scalar predux(const Packet& a) const 112 { return internal::predux_min(a); } 113 }; 114 template<typename Scalar> 115 struct functor_traits<scalar_min_op<Scalar> > { 116 enum { 117 Cost = NumTraits<Scalar>::AddCost, 118 PacketAccess = packet_traits<Scalar>::HasMin 119 }; 120 }; 121 122 /** \internal 123 * \brief Template functor to compute the max of two scalars 124 * 125 * \sa class CwiseBinaryOp, MatrixBase::cwiseMax, class VectorwiseOp, MatrixBase::maxCoeff() 126 */ 127 template<typename Scalar> struct scalar_max_op { 128 EIGEN_EMPTY_STRUCT_CTOR(scalar_max_op) 129 EIGEN_STRONG_INLINE const Scalar operator() (const Scalar& a, const Scalar& b) const { using std::max; return (max)(a, b); } 130 template<typename Packet> 131 EIGEN_STRONG_INLINE const Packet packetOp(const Packet& a, const Packet& b) const 132 { return internal::pmax(a,b); } 133 template<typename Packet> 134 EIGEN_STRONG_INLINE const Scalar predux(const Packet& a) const 135 { return internal::predux_max(a); } 136 }; 137 template<typename Scalar> 138 struct functor_traits<scalar_max_op<Scalar> > { 139 enum { 140 Cost = NumTraits<Scalar>::AddCost, 141 PacketAccess = packet_traits<Scalar>::HasMax 142 }; 143 }; 144 145 /** \internal 146 * \brief Template functor to compute the hypot of two scalars 147 * 148 * \sa MatrixBase::stableNorm(), class Redux 149 */ 150 template<typename Scalar> struct scalar_hypot_op { 151 EIGEN_EMPTY_STRUCT_CTOR(scalar_hypot_op) 152 // typedef typename NumTraits<Scalar>::Real result_type; 153 EIGEN_STRONG_INLINE const Scalar operator() (const Scalar& _x, const Scalar& _y) const 154 { 155 using std::max; 156 using std::min; 157 using std::sqrt; 158 Scalar p = (max)(_x, _y); 159 Scalar q = (min)(_x, _y); 160 Scalar qp = q/p; 161 return p * sqrt(Scalar(1) + qp*qp); 162 } 163 }; 164 template<typename Scalar> 165 struct functor_traits<scalar_hypot_op<Scalar> > { 166 enum { Cost = 5 * NumTraits<Scalar>::MulCost, PacketAccess=0 }; 167 }; 168 169 /** \internal 170 * \brief Template functor to compute the pow of two scalars 171 */ 172 template<typename Scalar, typename OtherScalar> struct scalar_binary_pow_op { 173 EIGEN_EMPTY_STRUCT_CTOR(scalar_binary_pow_op) 174 inline Scalar operator() (const Scalar& a, const OtherScalar& b) const { return numext::pow(a, b); } 175 }; 176 template<typename Scalar, typename OtherScalar> 177 struct functor_traits<scalar_binary_pow_op<Scalar,OtherScalar> > { 178 enum { Cost = 5 * NumTraits<Scalar>::MulCost, PacketAccess = false }; 179 }; 180 181 // other binary functors: 182 183 /** \internal 184 * \brief Template functor to compute the difference of two scalars 185 * 186 * \sa class CwiseBinaryOp, MatrixBase::operator- 187 */ 188 template<typename Scalar> struct scalar_difference_op { 189 EIGEN_EMPTY_STRUCT_CTOR(scalar_difference_op) 190 EIGEN_STRONG_INLINE const Scalar operator() (const Scalar& a, const Scalar& b) const { return a - b; } 191 template<typename Packet> 192 EIGEN_STRONG_INLINE const Packet packetOp(const Packet& a, const Packet& b) const 193 { return internal::psub(a,b); } 194 }; 195 template<typename Scalar> 196 struct functor_traits<scalar_difference_op<Scalar> > { 197 enum { 198 Cost = NumTraits<Scalar>::AddCost, 199 PacketAccess = packet_traits<Scalar>::HasSub 200 }; 201 }; 202 203 /** \internal 204 * \brief Template functor to compute the quotient of two scalars 205 * 206 * \sa class CwiseBinaryOp, Cwise::operator/() 207 */ 208 template<typename LhsScalar,typename RhsScalar> struct scalar_quotient_op { 209 enum { 210 // TODO vectorize mixed product 211 Vectorizable = is_same<LhsScalar,RhsScalar>::value && packet_traits<LhsScalar>::HasDiv && packet_traits<RhsScalar>::HasDiv 212 }; 213 typedef typename scalar_product_traits<LhsScalar,RhsScalar>::ReturnType result_type; 214 EIGEN_EMPTY_STRUCT_CTOR(scalar_quotient_op) 215 EIGEN_STRONG_INLINE const result_type operator() (const LhsScalar& a, const RhsScalar& b) const { return a / b; } 216 template<typename Packet> 217 EIGEN_STRONG_INLINE const Packet packetOp(const Packet& a, const Packet& b) const 218 { return internal::pdiv(a,b); } 219 }; 220 template<typename LhsScalar,typename RhsScalar> 221 struct functor_traits<scalar_quotient_op<LhsScalar,RhsScalar> > { 222 enum { 223 Cost = (NumTraits<LhsScalar>::MulCost + NumTraits<RhsScalar>::MulCost), // rough estimate! 224 PacketAccess = scalar_quotient_op<LhsScalar,RhsScalar>::Vectorizable 225 }; 226 }; 227 228 229 230 /** \internal 231 * \brief Template functor to compute the and of two booleans 232 * 233 * \sa class CwiseBinaryOp, ArrayBase::operator&& 234 */ 235 struct scalar_boolean_and_op { 236 EIGEN_EMPTY_STRUCT_CTOR(scalar_boolean_and_op) 237 EIGEN_STRONG_INLINE bool operator() (const bool& a, const bool& b) const { return a && b; } 238 }; 239 template<> struct functor_traits<scalar_boolean_and_op> { 240 enum { 241 Cost = NumTraits<bool>::AddCost, 242 PacketAccess = false 243 }; 244 }; 245 246 /** \internal 247 * \brief Template functor to compute the or of two booleans 248 * 249 * \sa class CwiseBinaryOp, ArrayBase::operator|| 250 */ 251 struct scalar_boolean_or_op { 252 EIGEN_EMPTY_STRUCT_CTOR(scalar_boolean_or_op) 253 EIGEN_STRONG_INLINE bool operator() (const bool& a, const bool& b) const { return a || b; } 254 }; 255 template<> struct functor_traits<scalar_boolean_or_op> { 256 enum { 257 Cost = NumTraits<bool>::AddCost, 258 PacketAccess = false 259 }; 260 }; 261 262 // unary functors: 263 264 /** \internal 265 * \brief Template functor to compute the opposite of a scalar 266 * 267 * \sa class CwiseUnaryOp, MatrixBase::operator- 268 */ 269 template<typename Scalar> struct scalar_opposite_op { 270 EIGEN_EMPTY_STRUCT_CTOR(scalar_opposite_op) 271 EIGEN_STRONG_INLINE const Scalar operator() (const Scalar& a) const { return -a; } 272 template<typename Packet> 273 EIGEN_STRONG_INLINE const Packet packetOp(const Packet& a) const 274 { return internal::pnegate(a); } 275 }; 276 template<typename Scalar> 277 struct functor_traits<scalar_opposite_op<Scalar> > 278 { enum { 279 Cost = NumTraits<Scalar>::AddCost, 280 PacketAccess = packet_traits<Scalar>::HasNegate }; 281 }; 282 283 /** \internal 284 * \brief Template functor to compute the absolute value of a scalar 285 * 286 * \sa class CwiseUnaryOp, Cwise::abs 287 */ 288 template<typename Scalar> struct scalar_abs_op { 289 EIGEN_EMPTY_STRUCT_CTOR(scalar_abs_op) 290 typedef typename NumTraits<Scalar>::Real result_type; 291 EIGEN_STRONG_INLINE const result_type operator() (const Scalar& a) const { using std::abs; return abs(a); } 292 template<typename Packet> 293 EIGEN_STRONG_INLINE const Packet packetOp(const Packet& a) const 294 { return internal::pabs(a); } 295 }; 296 template<typename Scalar> 297 struct functor_traits<scalar_abs_op<Scalar> > 298 { 299 enum { 300 Cost = NumTraits<Scalar>::AddCost, 301 PacketAccess = packet_traits<Scalar>::HasAbs 302 }; 303 }; 304 305 /** \internal 306 * \brief Template functor to compute the squared absolute value of a scalar 307 * 308 * \sa class CwiseUnaryOp, Cwise::abs2 309 */ 310 template<typename Scalar> struct scalar_abs2_op { 311 EIGEN_EMPTY_STRUCT_CTOR(scalar_abs2_op) 312 typedef typename NumTraits<Scalar>::Real result_type; 313 EIGEN_STRONG_INLINE const result_type operator() (const Scalar& a) const { return numext::abs2(a); } 314 template<typename Packet> 315 EIGEN_STRONG_INLINE const Packet packetOp(const Packet& a) const 316 { return internal::pmul(a,a); } 317 }; 318 template<typename Scalar> 319 struct functor_traits<scalar_abs2_op<Scalar> > 320 { enum { Cost = NumTraits<Scalar>::MulCost, PacketAccess = packet_traits<Scalar>::HasAbs2 }; }; 321 322 /** \internal 323 * \brief Template functor to compute the conjugate of a complex value 324 * 325 * \sa class CwiseUnaryOp, MatrixBase::conjugate() 326 */ 327 template<typename Scalar> struct scalar_conjugate_op { 328 EIGEN_EMPTY_STRUCT_CTOR(scalar_conjugate_op) 329 EIGEN_STRONG_INLINE const Scalar operator() (const Scalar& a) const { using numext::conj; return conj(a); } 330 template<typename Packet> 331 EIGEN_STRONG_INLINE const Packet packetOp(const Packet& a) const { return internal::pconj(a); } 332 }; 333 template<typename Scalar> 334 struct functor_traits<scalar_conjugate_op<Scalar> > 335 { 336 enum { 337 Cost = NumTraits<Scalar>::IsComplex ? NumTraits<Scalar>::AddCost : 0, 338 PacketAccess = packet_traits<Scalar>::HasConj 339 }; 340 }; 341 342 /** \internal 343 * \brief Template functor to cast a scalar to another type 344 * 345 * \sa class CwiseUnaryOp, MatrixBase::cast() 346 */ 347 template<typename Scalar, typename NewType> 348 struct scalar_cast_op { 349 EIGEN_EMPTY_STRUCT_CTOR(scalar_cast_op) 350 typedef NewType result_type; 351 EIGEN_STRONG_INLINE const NewType operator() (const Scalar& a) const { return cast<Scalar, NewType>(a); } 352 }; 353 template<typename Scalar, typename NewType> 354 struct functor_traits<scalar_cast_op<Scalar,NewType> > 355 { enum { Cost = is_same<Scalar, NewType>::value ? 0 : NumTraits<NewType>::AddCost, PacketAccess = false }; }; 356 357 /** \internal 358 * \brief Template functor to extract the real part of a complex 359 * 360 * \sa class CwiseUnaryOp, MatrixBase::real() 361 */ 362 template<typename Scalar> 363 struct scalar_real_op { 364 EIGEN_EMPTY_STRUCT_CTOR(scalar_real_op) 365 typedef typename NumTraits<Scalar>::Real result_type; 366 EIGEN_STRONG_INLINE result_type operator() (const Scalar& a) const { return numext::real(a); } 367 }; 368 template<typename Scalar> 369 struct functor_traits<scalar_real_op<Scalar> > 370 { enum { Cost = 0, PacketAccess = false }; }; 371 372 /** \internal 373 * \brief Template functor to extract the imaginary part of a complex 374 * 375 * \sa class CwiseUnaryOp, MatrixBase::imag() 376 */ 377 template<typename Scalar> 378 struct scalar_imag_op { 379 EIGEN_EMPTY_STRUCT_CTOR(scalar_imag_op) 380 typedef typename NumTraits<Scalar>::Real result_type; 381 EIGEN_STRONG_INLINE result_type operator() (const Scalar& a) const { return numext::imag(a); } 382 }; 383 template<typename Scalar> 384 struct functor_traits<scalar_imag_op<Scalar> > 385 { enum { Cost = 0, PacketAccess = false }; }; 386 387 /** \internal 388 * \brief Template functor to extract the real part of a complex as a reference 389 * 390 * \sa class CwiseUnaryOp, MatrixBase::real() 391 */ 392 template<typename Scalar> 393 struct scalar_real_ref_op { 394 EIGEN_EMPTY_STRUCT_CTOR(scalar_real_ref_op) 395 typedef typename NumTraits<Scalar>::Real result_type; 396 EIGEN_STRONG_INLINE result_type& operator() (const Scalar& a) const { return numext::real_ref(*const_cast<Scalar*>(&a)); } 397 }; 398 template<typename Scalar> 399 struct functor_traits<scalar_real_ref_op<Scalar> > 400 { enum { Cost = 0, PacketAccess = false }; }; 401 402 /** \internal 403 * \brief Template functor to extract the imaginary part of a complex as a reference 404 * 405 * \sa class CwiseUnaryOp, MatrixBase::imag() 406 */ 407 template<typename Scalar> 408 struct scalar_imag_ref_op { 409 EIGEN_EMPTY_STRUCT_CTOR(scalar_imag_ref_op) 410 typedef typename NumTraits<Scalar>::Real result_type; 411 EIGEN_STRONG_INLINE result_type& operator() (const Scalar& a) const { return numext::imag_ref(*const_cast<Scalar*>(&a)); } 412 }; 413 template<typename Scalar> 414 struct functor_traits<scalar_imag_ref_op<Scalar> > 415 { enum { Cost = 0, PacketAccess = false }; }; 416 417 /** \internal 418 * 419 * \brief Template functor to compute the exponential of a scalar 420 * 421 * \sa class CwiseUnaryOp, Cwise::exp() 422 */ 423 template<typename Scalar> struct scalar_exp_op { 424 EIGEN_EMPTY_STRUCT_CTOR(scalar_exp_op) 425 inline const Scalar operator() (const Scalar& a) const { using std::exp; return exp(a); } 426 typedef typename packet_traits<Scalar>::type Packet; 427 inline Packet packetOp(const Packet& a) const { return internal::pexp(a); } 428 }; 429 template<typename Scalar> 430 struct functor_traits<scalar_exp_op<Scalar> > 431 { enum { Cost = 5 * NumTraits<Scalar>::MulCost, PacketAccess = packet_traits<Scalar>::HasExp }; }; 432 433 /** \internal 434 * 435 * \brief Template functor to compute the logarithm of a scalar 436 * 437 * \sa class CwiseUnaryOp, Cwise::log() 438 */ 439 template<typename Scalar> struct scalar_log_op { 440 EIGEN_EMPTY_STRUCT_CTOR(scalar_log_op) 441 inline const Scalar operator() (const Scalar& a) const { using std::log; return log(a); } 442 typedef typename packet_traits<Scalar>::type Packet; 443 inline Packet packetOp(const Packet& a) const { return internal::plog(a); } 444 }; 445 template<typename Scalar> 446 struct functor_traits<scalar_log_op<Scalar> > 447 { enum { Cost = 5 * NumTraits<Scalar>::MulCost, PacketAccess = packet_traits<Scalar>::HasLog }; }; 448 449 /** \internal 450 * \brief Template functor to multiply a scalar by a fixed other one 451 * 452 * \sa class CwiseUnaryOp, MatrixBase::operator*, MatrixBase::operator/ 453 */ 454 /* NOTE why doing the pset1() in packetOp *is* an optimization ? 455 * indeed it seems better to declare m_other as a Packet and do the pset1() once 456 * in the constructor. However, in practice: 457 * - GCC does not like m_other as a Packet and generate a load every time it needs it 458 * - on the other hand GCC is able to moves the pset1() outside the loop :) 459 * - simpler code ;) 460 * (ICC and gcc 4.4 seems to perform well in both cases, the issue is visible with y = a*x + b*y) 461 */ 462 template<typename Scalar> 463 struct scalar_multiple_op { 464 typedef typename packet_traits<Scalar>::type Packet; 465 // FIXME default copy constructors seems bugged with std::complex<> 466 EIGEN_STRONG_INLINE scalar_multiple_op(const scalar_multiple_op& other) : m_other(other.m_other) { } 467 EIGEN_STRONG_INLINE scalar_multiple_op(const Scalar& other) : m_other(other) { } 468 EIGEN_STRONG_INLINE Scalar operator() (const Scalar& a) const { return a * m_other; } 469 EIGEN_STRONG_INLINE const Packet packetOp(const Packet& a) const 470 { return internal::pmul(a, pset1<Packet>(m_other)); } 471 typename add_const_on_value_type<typename NumTraits<Scalar>::Nested>::type m_other; 472 }; 473 template<typename Scalar> 474 struct functor_traits<scalar_multiple_op<Scalar> > 475 { enum { Cost = NumTraits<Scalar>::MulCost, PacketAccess = packet_traits<Scalar>::HasMul }; }; 476 477 template<typename Scalar1, typename Scalar2> 478 struct scalar_multiple2_op { 479 typedef typename scalar_product_traits<Scalar1,Scalar2>::ReturnType result_type; 480 EIGEN_STRONG_INLINE scalar_multiple2_op(const scalar_multiple2_op& other) : m_other(other.m_other) { } 481 EIGEN_STRONG_INLINE scalar_multiple2_op(const Scalar2& other) : m_other(other) { } 482 EIGEN_STRONG_INLINE result_type operator() (const Scalar1& a) const { return a * m_other; } 483 typename add_const_on_value_type<typename NumTraits<Scalar2>::Nested>::type m_other; 484 }; 485 template<typename Scalar1,typename Scalar2> 486 struct functor_traits<scalar_multiple2_op<Scalar1,Scalar2> > 487 { enum { Cost = NumTraits<Scalar1>::MulCost, PacketAccess = false }; }; 488 489 /** \internal 490 * \brief Template functor to divide a scalar by a fixed other one 491 * 492 * This functor is used to implement the quotient of a matrix by 493 * a scalar where the scalar type is not necessarily a floating point type. 494 * 495 * \sa class CwiseUnaryOp, MatrixBase::operator/ 496 */ 497 template<typename Scalar> 498 struct scalar_quotient1_op { 499 typedef typename packet_traits<Scalar>::type Packet; 500 // FIXME default copy constructors seems bugged with std::complex<> 501 EIGEN_STRONG_INLINE scalar_quotient1_op(const scalar_quotient1_op& other) : m_other(other.m_other) { } 502 EIGEN_STRONG_INLINE scalar_quotient1_op(const Scalar& other) : m_other(other) {} 503 EIGEN_STRONG_INLINE Scalar operator() (const Scalar& a) const { return a / m_other; } 504 EIGEN_STRONG_INLINE const Packet packetOp(const Packet& a) const 505 { return internal::pdiv(a, pset1<Packet>(m_other)); } 506 typename add_const_on_value_type<typename NumTraits<Scalar>::Nested>::type m_other; 507 }; 508 template<typename Scalar> 509 struct functor_traits<scalar_quotient1_op<Scalar> > 510 { enum { Cost = 2 * NumTraits<Scalar>::MulCost, PacketAccess = packet_traits<Scalar>::HasDiv }; }; 511 512 // nullary functors 513 514 template<typename Scalar> 515 struct scalar_constant_op { 516 typedef typename packet_traits<Scalar>::type Packet; 517 EIGEN_STRONG_INLINE scalar_constant_op(const scalar_constant_op& other) : m_other(other.m_other) { } 518 EIGEN_STRONG_INLINE scalar_constant_op(const Scalar& other) : m_other(other) { } 519 template<typename Index> 520 EIGEN_STRONG_INLINE const Scalar operator() (Index, Index = 0) const { return m_other; } 521 template<typename Index> 522 EIGEN_STRONG_INLINE const Packet packetOp(Index, Index = 0) const { return internal::pset1<Packet>(m_other); } 523 const Scalar m_other; 524 }; 525 template<typename Scalar> 526 struct functor_traits<scalar_constant_op<Scalar> > 527 // FIXME replace this packet test by a safe one 528 { enum { Cost = 1, PacketAccess = packet_traits<Scalar>::Vectorizable, IsRepeatable = true }; }; 529 530 template<typename Scalar> struct scalar_identity_op { 531 EIGEN_EMPTY_STRUCT_CTOR(scalar_identity_op) 532 template<typename Index> 533 EIGEN_STRONG_INLINE const Scalar operator() (Index row, Index col) const { return row==col ? Scalar(1) : Scalar(0); } 534 }; 535 template<typename Scalar> 536 struct functor_traits<scalar_identity_op<Scalar> > 537 { enum { Cost = NumTraits<Scalar>::AddCost, PacketAccess = false, IsRepeatable = true }; }; 538 539 template <typename Scalar, bool RandomAccess> struct linspaced_op_impl; 540 541 // linear access for packet ops: 542 // 1) initialization 543 // base = [low, ..., low] + ([step, ..., step] * [-size, ..., 0]) 544 // 2) each step (where size is 1 for coeff access or PacketSize for packet access) 545 // base += [size*step, ..., size*step] 546 // 547 // TODO: Perhaps it's better to initialize lazily (so not in the constructor but in packetOp) 548 // in order to avoid the padd() in operator() ? 549 template <typename Scalar> 550 struct linspaced_op_impl<Scalar,false> 551 { 552 typedef typename packet_traits<Scalar>::type Packet; 553 554 linspaced_op_impl(const Scalar& low, const Scalar& step) : 555 m_low(low), m_step(step), 556 m_packetStep(pset1<Packet>(packet_traits<Scalar>::size*step)), 557 m_base(padd(pset1<Packet>(low), pmul(pset1<Packet>(step),plset<Scalar>(-packet_traits<Scalar>::size)))) {} 558 559 template<typename Index> 560 EIGEN_STRONG_INLINE const Scalar operator() (Index i) const 561 { 562 m_base = padd(m_base, pset1<Packet>(m_step)); 563 return m_low+Scalar(i)*m_step; 564 } 565 566 template<typename Index> 567 EIGEN_STRONG_INLINE const Packet packetOp(Index) const { return m_base = padd(m_base,m_packetStep); } 568 569 const Scalar m_low; 570 const Scalar m_step; 571 const Packet m_packetStep; 572 mutable Packet m_base; 573 }; 574 575 // random access for packet ops: 576 // 1) each step 577 // [low, ..., low] + ( [step, ..., step] * ( [i, ..., i] + [0, ..., size] ) ) 578 template <typename Scalar> 579 struct linspaced_op_impl<Scalar,true> 580 { 581 typedef typename packet_traits<Scalar>::type Packet; 582 583 linspaced_op_impl(const Scalar& low, const Scalar& step) : 584 m_low(low), m_step(step), 585 m_lowPacket(pset1<Packet>(m_low)), m_stepPacket(pset1<Packet>(m_step)), m_interPacket(plset<Scalar>(0)) {} 586 587 template<typename Index> 588 EIGEN_STRONG_INLINE const Scalar operator() (Index i) const { return m_low+i*m_step; } 589 590 template<typename Index> 591 EIGEN_STRONG_INLINE const Packet packetOp(Index i) const 592 { return internal::padd(m_lowPacket, pmul(m_stepPacket, padd(pset1<Packet>(Scalar(i)),m_interPacket))); } 593 594 const Scalar m_low; 595 const Scalar m_step; 596 const Packet m_lowPacket; 597 const Packet m_stepPacket; 598 const Packet m_interPacket; 599 }; 600 601 // ----- Linspace functor ---------------------------------------------------------------- 602 603 // Forward declaration (we default to random access which does not really give 604 // us a speed gain when using packet access but it allows to use the functor in 605 // nested expressions). 606 template <typename Scalar, bool RandomAccess = true> struct linspaced_op; 607 template <typename Scalar, bool RandomAccess> struct functor_traits< linspaced_op<Scalar,RandomAccess> > 608 { enum { Cost = 1, PacketAccess = packet_traits<Scalar>::HasSetLinear, IsRepeatable = true }; }; 609 template <typename Scalar, bool RandomAccess> struct linspaced_op 610 { 611 typedef typename packet_traits<Scalar>::type Packet; 612 linspaced_op(const Scalar& low, const Scalar& high, DenseIndex num_steps) : impl((num_steps==1 ? high : low), (num_steps==1 ? Scalar() : (high-low)/Scalar(num_steps-1))) {} 613 614 template<typename Index> 615 EIGEN_STRONG_INLINE const Scalar operator() (Index i) const { return impl(i); } 616 617 // We need this function when assigning e.g. a RowVectorXd to a MatrixXd since 618 // there row==0 and col is used for the actual iteration. 619 template<typename Index> 620 EIGEN_STRONG_INLINE const Scalar operator() (Index row, Index col) const 621 { 622 eigen_assert(col==0 || row==0); 623 return impl(col + row); 624 } 625 626 template<typename Index> 627 EIGEN_STRONG_INLINE const Packet packetOp(Index i) const { return impl.packetOp(i); } 628 629 // We need this function when assigning e.g. a RowVectorXd to a MatrixXd since 630 // there row==0 and col is used for the actual iteration. 631 template<typename Index> 632 EIGEN_STRONG_INLINE const Packet packetOp(Index row, Index col) const 633 { 634 eigen_assert(col==0 || row==0); 635 return impl.packetOp(col + row); 636 } 637 638 // This proxy object handles the actual required temporaries, the different 639 // implementations (random vs. sequential access) as well as the 640 // correct piping to size 2/4 packet operations. 641 const linspaced_op_impl<Scalar,RandomAccess> impl; 642 }; 643 644 // all functors allow linear access, except scalar_identity_op. So we fix here a quick meta 645 // to indicate whether a functor allows linear access, just always answering 'yes' except for 646 // scalar_identity_op. 647 // FIXME move this to functor_traits adding a functor_default 648 template<typename Functor> struct functor_has_linear_access { enum { ret = 1 }; }; 649 template<typename Scalar> struct functor_has_linear_access<scalar_identity_op<Scalar> > { enum { ret = 0 }; }; 650 651 // In Eigen, any binary op (Product, CwiseBinaryOp) require the Lhs and Rhs to have the same scalar type, except for multiplication 652 // where the mixing of different types is handled by scalar_product_traits 653 // In particular, real * complex<real> is allowed. 654 // FIXME move this to functor_traits adding a functor_default 655 template<typename Functor> struct functor_is_product_like { enum { ret = 0 }; }; 656 template<typename LhsScalar,typename RhsScalar> struct functor_is_product_like<scalar_product_op<LhsScalar,RhsScalar> > { enum { ret = 1 }; }; 657 template<typename LhsScalar,typename RhsScalar> struct functor_is_product_like<scalar_conj_product_op<LhsScalar,RhsScalar> > { enum { ret = 1 }; }; 658 template<typename LhsScalar,typename RhsScalar> struct functor_is_product_like<scalar_quotient_op<LhsScalar,RhsScalar> > { enum { ret = 1 }; }; 659 660 661 /** \internal 662 * \brief Template functor to add a scalar to a fixed other one 663 * \sa class CwiseUnaryOp, Array::operator+ 664 */ 665 /* If you wonder why doing the pset1() in packetOp() is an optimization check scalar_multiple_op */ 666 template<typename Scalar> 667 struct scalar_add_op { 668 typedef typename packet_traits<Scalar>::type Packet; 669 // FIXME default copy constructors seems bugged with std::complex<> 670 inline scalar_add_op(const scalar_add_op& other) : m_other(other.m_other) { } 671 inline scalar_add_op(const Scalar& other) : m_other(other) { } 672 inline Scalar operator() (const Scalar& a) const { return a + m_other; } 673 inline const Packet packetOp(const Packet& a) const 674 { return internal::padd(a, pset1<Packet>(m_other)); } 675 const Scalar m_other; 676 }; 677 template<typename Scalar> 678 struct functor_traits<scalar_add_op<Scalar> > 679 { enum { Cost = NumTraits<Scalar>::AddCost, PacketAccess = packet_traits<Scalar>::HasAdd }; }; 680 681 /** \internal 682 * \brief Template functor to compute the square root of a scalar 683 * \sa class CwiseUnaryOp, Cwise::sqrt() 684 */ 685 template<typename Scalar> struct scalar_sqrt_op { 686 EIGEN_EMPTY_STRUCT_CTOR(scalar_sqrt_op) 687 inline const Scalar operator() (const Scalar& a) const { using std::sqrt; return sqrt(a); } 688 typedef typename packet_traits<Scalar>::type Packet; 689 inline Packet packetOp(const Packet& a) const { return internal::psqrt(a); } 690 }; 691 template<typename Scalar> 692 struct functor_traits<scalar_sqrt_op<Scalar> > 693 { enum { 694 Cost = 5 * NumTraits<Scalar>::MulCost, 695 PacketAccess = packet_traits<Scalar>::HasSqrt 696 }; 697 }; 698 699 /** \internal 700 * \brief Template functor to compute the cosine of a scalar 701 * \sa class CwiseUnaryOp, ArrayBase::cos() 702 */ 703 template<typename Scalar> struct scalar_cos_op { 704 EIGEN_EMPTY_STRUCT_CTOR(scalar_cos_op) 705 inline Scalar operator() (const Scalar& a) const { using std::cos; return cos(a); } 706 typedef typename packet_traits<Scalar>::type Packet; 707 inline Packet packetOp(const Packet& a) const { return internal::pcos(a); } 708 }; 709 template<typename Scalar> 710 struct functor_traits<scalar_cos_op<Scalar> > 711 { 712 enum { 713 Cost = 5 * NumTraits<Scalar>::MulCost, 714 PacketAccess = packet_traits<Scalar>::HasCos 715 }; 716 }; 717 718 /** \internal 719 * \brief Template functor to compute the sine of a scalar 720 * \sa class CwiseUnaryOp, ArrayBase::sin() 721 */ 722 template<typename Scalar> struct scalar_sin_op { 723 EIGEN_EMPTY_STRUCT_CTOR(scalar_sin_op) 724 inline const Scalar operator() (const Scalar& a) const { using std::sin; return sin(a); } 725 typedef typename packet_traits<Scalar>::type Packet; 726 inline Packet packetOp(const Packet& a) const { return internal::psin(a); } 727 }; 728 template<typename Scalar> 729 struct functor_traits<scalar_sin_op<Scalar> > 730 { 731 enum { 732 Cost = 5 * NumTraits<Scalar>::MulCost, 733 PacketAccess = packet_traits<Scalar>::HasSin 734 }; 735 }; 736 737 738 /** \internal 739 * \brief Template functor to compute the tan of a scalar 740 * \sa class CwiseUnaryOp, ArrayBase::tan() 741 */ 742 template<typename Scalar> struct scalar_tan_op { 743 EIGEN_EMPTY_STRUCT_CTOR(scalar_tan_op) 744 inline const Scalar operator() (const Scalar& a) const { using std::tan; return tan(a); } 745 typedef typename packet_traits<Scalar>::type Packet; 746 inline Packet packetOp(const Packet& a) const { return internal::ptan(a); } 747 }; 748 template<typename Scalar> 749 struct functor_traits<scalar_tan_op<Scalar> > 750 { 751 enum { 752 Cost = 5 * NumTraits<Scalar>::MulCost, 753 PacketAccess = packet_traits<Scalar>::HasTan 754 }; 755 }; 756 757 /** \internal 758 * \brief Template functor to compute the arc cosine of a scalar 759 * \sa class CwiseUnaryOp, ArrayBase::acos() 760 */ 761 template<typename Scalar> struct scalar_acos_op { 762 EIGEN_EMPTY_STRUCT_CTOR(scalar_acos_op) 763 inline const Scalar operator() (const Scalar& a) const { using std::acos; return acos(a); } 764 typedef typename packet_traits<Scalar>::type Packet; 765 inline Packet packetOp(const Packet& a) const { return internal::pacos(a); } 766 }; 767 template<typename Scalar> 768 struct functor_traits<scalar_acos_op<Scalar> > 769 { 770 enum { 771 Cost = 5 * NumTraits<Scalar>::MulCost, 772 PacketAccess = packet_traits<Scalar>::HasACos 773 }; 774 }; 775 776 /** \internal 777 * \brief Template functor to compute the arc sine of a scalar 778 * \sa class CwiseUnaryOp, ArrayBase::asin() 779 */ 780 template<typename Scalar> struct scalar_asin_op { 781 EIGEN_EMPTY_STRUCT_CTOR(scalar_asin_op) 782 inline const Scalar operator() (const Scalar& a) const { using std::asin; return asin(a); } 783 typedef typename packet_traits<Scalar>::type Packet; 784 inline Packet packetOp(const Packet& a) const { return internal::pasin(a); } 785 }; 786 template<typename Scalar> 787 struct functor_traits<scalar_asin_op<Scalar> > 788 { 789 enum { 790 Cost = 5 * NumTraits<Scalar>::MulCost, 791 PacketAccess = packet_traits<Scalar>::HasASin 792 }; 793 }; 794 795 /** \internal 796 * \brief Template functor to raise a scalar to a power 797 * \sa class CwiseUnaryOp, Cwise::pow 798 */ 799 template<typename Scalar> 800 struct scalar_pow_op { 801 // FIXME default copy constructors seems bugged with std::complex<> 802 inline scalar_pow_op(const scalar_pow_op& other) : m_exponent(other.m_exponent) { } 803 inline scalar_pow_op(const Scalar& exponent) : m_exponent(exponent) {} 804 inline Scalar operator() (const Scalar& a) const { return numext::pow(a, m_exponent); } 805 const Scalar m_exponent; 806 }; 807 template<typename Scalar> 808 struct functor_traits<scalar_pow_op<Scalar> > 809 { enum { Cost = 5 * NumTraits<Scalar>::MulCost, PacketAccess = false }; }; 810 811 /** \internal 812 * \brief Template functor to compute the quotient between a scalar and array entries. 813 * \sa class CwiseUnaryOp, Cwise::inverse() 814 */ 815 template<typename Scalar> 816 struct scalar_inverse_mult_op { 817 scalar_inverse_mult_op(const Scalar& other) : m_other(other) {} 818 inline Scalar operator() (const Scalar& a) const { return m_other / a; } 819 template<typename Packet> 820 inline const Packet packetOp(const Packet& a) const 821 { return internal::pdiv(pset1<Packet>(m_other),a); } 822 Scalar m_other; 823 }; 824 825 /** \internal 826 * \brief Template functor to compute the inverse of a scalar 827 * \sa class CwiseUnaryOp, Cwise::inverse() 828 */ 829 template<typename Scalar> 830 struct scalar_inverse_op { 831 EIGEN_EMPTY_STRUCT_CTOR(scalar_inverse_op) 832 inline Scalar operator() (const Scalar& a) const { return Scalar(1)/a; } 833 template<typename Packet> 834 inline const Packet packetOp(const Packet& a) const 835 { return internal::pdiv(pset1<Packet>(Scalar(1)),a); } 836 }; 837 template<typename Scalar> 838 struct functor_traits<scalar_inverse_op<Scalar> > 839 { enum { Cost = NumTraits<Scalar>::MulCost, PacketAccess = packet_traits<Scalar>::HasDiv }; }; 840 841 /** \internal 842 * \brief Template functor to compute the square of a scalar 843 * \sa class CwiseUnaryOp, Cwise::square() 844 */ 845 template<typename Scalar> 846 struct scalar_square_op { 847 EIGEN_EMPTY_STRUCT_CTOR(scalar_square_op) 848 inline Scalar operator() (const Scalar& a) const { return a*a; } 849 template<typename Packet> 850 inline const Packet packetOp(const Packet& a) const 851 { return internal::pmul(a,a); } 852 }; 853 template<typename Scalar> 854 struct functor_traits<scalar_square_op<Scalar> > 855 { enum { Cost = NumTraits<Scalar>::MulCost, PacketAccess = packet_traits<Scalar>::HasMul }; }; 856 857 /** \internal 858 * \brief Template functor to compute the cube of a scalar 859 * \sa class CwiseUnaryOp, Cwise::cube() 860 */ 861 template<typename Scalar> 862 struct scalar_cube_op { 863 EIGEN_EMPTY_STRUCT_CTOR(scalar_cube_op) 864 inline Scalar operator() (const Scalar& a) const { return a*a*a; } 865 template<typename Packet> 866 inline const Packet packetOp(const Packet& a) const 867 { return internal::pmul(a,pmul(a,a)); } 868 }; 869 template<typename Scalar> 870 struct functor_traits<scalar_cube_op<Scalar> > 871 { enum { Cost = 2*NumTraits<Scalar>::MulCost, PacketAccess = packet_traits<Scalar>::HasMul }; }; 872 873 // default functor traits for STL functors: 874 875 template<typename T> 876 struct functor_traits<std::multiplies<T> > 877 { enum { Cost = NumTraits<T>::MulCost, PacketAccess = false }; }; 878 879 template<typename T> 880 struct functor_traits<std::divides<T> > 881 { enum { Cost = NumTraits<T>::MulCost, PacketAccess = false }; }; 882 883 template<typename T> 884 struct functor_traits<std::plus<T> > 885 { enum { Cost = NumTraits<T>::AddCost, PacketAccess = false }; }; 886 887 template<typename T> 888 struct functor_traits<std::minus<T> > 889 { enum { Cost = NumTraits<T>::AddCost, PacketAccess = false }; }; 890 891 template<typename T> 892 struct functor_traits<std::negate<T> > 893 { enum { Cost = NumTraits<T>::AddCost, PacketAccess = false }; }; 894 895 template<typename T> 896 struct functor_traits<std::logical_or<T> > 897 { enum { Cost = 1, PacketAccess = false }; }; 898 899 template<typename T> 900 struct functor_traits<std::logical_and<T> > 901 { enum { Cost = 1, PacketAccess = false }; }; 902 903 template<typename T> 904 struct functor_traits<std::logical_not<T> > 905 { enum { Cost = 1, PacketAccess = false }; }; 906 907 template<typename T> 908 struct functor_traits<std::greater<T> > 909 { enum { Cost = 1, PacketAccess = false }; }; 910 911 template<typename T> 912 struct functor_traits<std::less<T> > 913 { enum { Cost = 1, PacketAccess = false }; }; 914 915 template<typename T> 916 struct functor_traits<std::greater_equal<T> > 917 { enum { Cost = 1, PacketAccess = false }; }; 918 919 template<typename T> 920 struct functor_traits<std::less_equal<T> > 921 { enum { Cost = 1, PacketAccess = false }; }; 922 923 template<typename T> 924 struct functor_traits<std::equal_to<T> > 925 { enum { Cost = 1, PacketAccess = false }; }; 926 927 template<typename T> 928 struct functor_traits<std::not_equal_to<T> > 929 { enum { Cost = 1, PacketAccess = false }; }; 930 931 template<typename T> 932 struct functor_traits<std::binder2nd<T> > 933 { enum { Cost = functor_traits<T>::Cost, PacketAccess = false }; }; 934 935 template<typename T> 936 struct functor_traits<std::binder1st<T> > 937 { enum { Cost = functor_traits<T>::Cost, PacketAccess = false }; }; 938 939 template<typename T> 940 struct functor_traits<std::unary_negate<T> > 941 { enum { Cost = 1 + functor_traits<T>::Cost, PacketAccess = false }; }; 942 943 template<typename T> 944 struct functor_traits<std::binary_negate<T> > 945 { enum { Cost = 1 + functor_traits<T>::Cost, PacketAccess = false }; }; 946 947 #ifdef EIGEN_STDEXT_SUPPORT 948 949 template<typename T0,typename T1> 950 struct functor_traits<std::project1st<T0,T1> > 951 { enum { Cost = 0, PacketAccess = false }; }; 952 953 template<typename T0,typename T1> 954 struct functor_traits<std::project2nd<T0,T1> > 955 { enum { Cost = 0, PacketAccess = false }; }; 956 957 template<typename T0,typename T1> 958 struct functor_traits<std::select2nd<std::pair<T0,T1> > > 959 { enum { Cost = 0, PacketAccess = false }; }; 960 961 template<typename T0,typename T1> 962 struct functor_traits<std::select1st<std::pair<T0,T1> > > 963 { enum { Cost = 0, PacketAccess = false }; }; 964 965 template<typename T0,typename T1> 966 struct functor_traits<std::unary_compose<T0,T1> > 967 { enum { Cost = functor_traits<T0>::Cost + functor_traits<T1>::Cost, PacketAccess = false }; }; 968 969 template<typename T0,typename T1,typename T2> 970 struct functor_traits<std::binary_compose<T0,T1,T2> > 971 { enum { Cost = functor_traits<T0>::Cost + functor_traits<T1>::Cost + functor_traits<T2>::Cost, PacketAccess = false }; }; 972 973 #endif // EIGEN_STDEXT_SUPPORT 974 975 // allow to add new functors and specializations of functor_traits from outside Eigen. 976 // this macro is really needed because functor_traits must be specialized after it is declared but before it is used... 977 #ifdef EIGEN_FUNCTORS_PLUGIN 978 #include EIGEN_FUNCTORS_PLUGIN 979 #endif 980 981 } // end namespace internal 982 983 } // end namespace Eigen 984 985 #endif // EIGEN_FUNCTORS_H 986