1 // This file is part of Eigen, a lightweight C++ template library
2 // for linear algebra.
3 //
4 // Copyright (C) 2008-2010 Gael Guennebaud <gael.guennebaud@inria.fr>
5 //
6 // This Source Code Form is subject to the terms of the Mozilla
7 // Public License v. 2.0. If a copy of the MPL was not distributed
8 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
9 
10 #ifndef EIGEN_FUNCTORS_H
11 #define EIGEN_FUNCTORS_H
12 
13 namespace Eigen {
14 
15 namespace internal {
16 
17 // associative functors:
18 
19 /** \internal
20   * \brief Template functor to compute the sum of two scalars
21   *
22   * \sa class CwiseBinaryOp, MatrixBase::operator+, class VectorwiseOp, MatrixBase::sum()
23   */
24 template<typename Scalar> struct scalar_sum_op {
EIGEN_EMPTY_STRUCT_CTORscalar_sum_op25   EIGEN_EMPTY_STRUCT_CTOR(scalar_sum_op)
26   EIGEN_STRONG_INLINE const Scalar operator() (const Scalar& a, const Scalar& b) const { return a + b; }
27   template<typename Packet>
packetOpscalar_sum_op28   EIGEN_STRONG_INLINE const Packet packetOp(const Packet& a, const Packet& b) const
29   { return internal::padd(a,b); }
30   template<typename Packet>
preduxscalar_sum_op31   EIGEN_STRONG_INLINE const Scalar predux(const Packet& a) const
32   { return internal::predux(a); }
33 };
34 template<typename Scalar>
35 struct functor_traits<scalar_sum_op<Scalar> > {
36   enum {
37     Cost = NumTraits<Scalar>::AddCost,
38     PacketAccess = packet_traits<Scalar>::HasAdd
39   };
40 };
41 
42 /** \internal
43   * \brief Template functor to compute the product of two scalars
44   *
45   * \sa class CwiseBinaryOp, Cwise::operator*(), class VectorwiseOp, MatrixBase::redux()
46   */
47 template<typename LhsScalar,typename RhsScalar> struct scalar_product_op {
48   enum {
49     // TODO vectorize mixed product
50     Vectorizable = is_same<LhsScalar,RhsScalar>::value && packet_traits<LhsScalar>::HasMul && packet_traits<RhsScalar>::HasMul
51   };
52   typedef typename scalar_product_traits<LhsScalar,RhsScalar>::ReturnType result_type;
53   EIGEN_EMPTY_STRUCT_CTOR(scalar_product_op)
54   EIGEN_STRONG_INLINE const result_type operator() (const LhsScalar& a, const RhsScalar& b) const { return a * b; }
55   template<typename Packet>
56   EIGEN_STRONG_INLINE const Packet packetOp(const Packet& a, const Packet& b) const
57   { return internal::pmul(a,b); }
58   template<typename Packet>
59   EIGEN_STRONG_INLINE const result_type predux(const Packet& a) const
60   { return internal::predux_mul(a); }
61 };
62 template<typename LhsScalar,typename RhsScalar>
63 struct functor_traits<scalar_product_op<LhsScalar,RhsScalar> > {
64   enum {
65     Cost = (NumTraits<LhsScalar>::MulCost + NumTraits<RhsScalar>::MulCost)/2, // rough estimate!
66     PacketAccess = scalar_product_op<LhsScalar,RhsScalar>::Vectorizable
67   };
68 };
69 
70 /** \internal
71   * \brief Template functor to compute the conjugate product of two scalars
72   *
73   * This is a short cut for conj(x) * y which is needed for optimization purpose; in Eigen2 support mode, this becomes x * conj(y)
74   */
75 template<typename LhsScalar,typename RhsScalar> struct scalar_conj_product_op {
76 
77   enum {
78     Conj = NumTraits<LhsScalar>::IsComplex
79   };
80 
81   typedef typename scalar_product_traits<LhsScalar,RhsScalar>::ReturnType result_type;
82 
83   EIGEN_EMPTY_STRUCT_CTOR(scalar_conj_product_op)
84   EIGEN_STRONG_INLINE const result_type operator() (const LhsScalar& a, const RhsScalar& b) const
85   { return conj_helper<LhsScalar,RhsScalar,Conj,false>().pmul(a,b); }
86 
87   template<typename Packet>
88   EIGEN_STRONG_INLINE const Packet packetOp(const Packet& a, const Packet& b) const
89   { return conj_helper<Packet,Packet,Conj,false>().pmul(a,b); }
90 };
91 template<typename LhsScalar,typename RhsScalar>
92 struct functor_traits<scalar_conj_product_op<LhsScalar,RhsScalar> > {
93   enum {
94     Cost = NumTraits<LhsScalar>::MulCost,
95     PacketAccess = internal::is_same<LhsScalar, RhsScalar>::value && packet_traits<LhsScalar>::HasMul
96   };
97 };
98 
99 /** \internal
100   * \brief Template functor to compute the min of two scalars
101   *
102   * \sa class CwiseBinaryOp, MatrixBase::cwiseMin, class VectorwiseOp, MatrixBase::minCoeff()
103   */
104 template<typename Scalar> struct scalar_min_op {
105   EIGEN_EMPTY_STRUCT_CTOR(scalar_min_op)
106   EIGEN_STRONG_INLINE const Scalar operator() (const Scalar& a, const Scalar& b) const { using std::min; return (min)(a, b); }
107   template<typename Packet>
108   EIGEN_STRONG_INLINE const Packet packetOp(const Packet& a, const Packet& b) const
109   { return internal::pmin(a,b); }
110   template<typename Packet>
111   EIGEN_STRONG_INLINE const Scalar predux(const Packet& a) const
112   { return internal::predux_min(a); }
113 };
114 template<typename Scalar>
115 struct functor_traits<scalar_min_op<Scalar> > {
116   enum {
117     Cost = NumTraits<Scalar>::AddCost,
118     PacketAccess = packet_traits<Scalar>::HasMin
119   };
120 };
121 
122 /** \internal
123   * \brief Template functor to compute the max of two scalars
124   *
125   * \sa class CwiseBinaryOp, MatrixBase::cwiseMax, class VectorwiseOp, MatrixBase::maxCoeff()
126   */
127 template<typename Scalar> struct scalar_max_op {
128   EIGEN_EMPTY_STRUCT_CTOR(scalar_max_op)
129   EIGEN_STRONG_INLINE const Scalar operator() (const Scalar& a, const Scalar& b) const { using std::max; return (max)(a, b); }
130   template<typename Packet>
131   EIGEN_STRONG_INLINE const Packet packetOp(const Packet& a, const Packet& b) const
132   { return internal::pmax(a,b); }
133   template<typename Packet>
134   EIGEN_STRONG_INLINE const Scalar predux(const Packet& a) const
135   { return internal::predux_max(a); }
136 };
137 template<typename Scalar>
138 struct functor_traits<scalar_max_op<Scalar> > {
139   enum {
140     Cost = NumTraits<Scalar>::AddCost,
141     PacketAccess = packet_traits<Scalar>::HasMax
142   };
143 };
144 
145 /** \internal
146   * \brief Template functor to compute the hypot of two scalars
147   *
148   * \sa MatrixBase::stableNorm(), class Redux
149   */
150 template<typename Scalar> struct scalar_hypot_op {
151   EIGEN_EMPTY_STRUCT_CTOR(scalar_hypot_op)
152 //   typedef typename NumTraits<Scalar>::Real result_type;
153   EIGEN_STRONG_INLINE const Scalar operator() (const Scalar& _x, const Scalar& _y) const
154   {
155     using std::max;
156     using std::min;
157     using std::sqrt;
158     Scalar p = (max)(_x, _y);
159     Scalar q = (min)(_x, _y);
160     Scalar qp = q/p;
161     return p * sqrt(Scalar(1) + qp*qp);
162   }
163 };
164 template<typename Scalar>
165 struct functor_traits<scalar_hypot_op<Scalar> > {
166   enum { Cost = 5 * NumTraits<Scalar>::MulCost, PacketAccess=0 };
167 };
168 
169 /** \internal
170   * \brief Template functor to compute the pow of two scalars
171   */
172 template<typename Scalar, typename OtherScalar> struct scalar_binary_pow_op {
173   EIGEN_EMPTY_STRUCT_CTOR(scalar_binary_pow_op)
174   inline Scalar operator() (const Scalar& a, const OtherScalar& b) const { return numext::pow(a, b); }
175 };
176 template<typename Scalar, typename OtherScalar>
177 struct functor_traits<scalar_binary_pow_op<Scalar,OtherScalar> > {
178   enum { Cost = 5 * NumTraits<Scalar>::MulCost, PacketAccess = false };
179 };
180 
181 // other binary functors:
182 
183 /** \internal
184   * \brief Template functor to compute the difference of two scalars
185   *
186   * \sa class CwiseBinaryOp, MatrixBase::operator-
187   */
188 template<typename Scalar> struct scalar_difference_op {
189   EIGEN_EMPTY_STRUCT_CTOR(scalar_difference_op)
190   EIGEN_STRONG_INLINE const Scalar operator() (const Scalar& a, const Scalar& b) const { return a - b; }
191   template<typename Packet>
192   EIGEN_STRONG_INLINE const Packet packetOp(const Packet& a, const Packet& b) const
193   { return internal::psub(a,b); }
194 };
195 template<typename Scalar>
196 struct functor_traits<scalar_difference_op<Scalar> > {
197   enum {
198     Cost = NumTraits<Scalar>::AddCost,
199     PacketAccess = packet_traits<Scalar>::HasSub
200   };
201 };
202 
203 /** \internal
204   * \brief Template functor to compute the quotient of two scalars
205   *
206   * \sa class CwiseBinaryOp, Cwise::operator/()
207   */
208 template<typename LhsScalar,typename RhsScalar> struct scalar_quotient_op {
209   enum {
210     // TODO vectorize mixed product
211     Vectorizable = is_same<LhsScalar,RhsScalar>::value && packet_traits<LhsScalar>::HasDiv && packet_traits<RhsScalar>::HasDiv
212   };
213   typedef typename scalar_product_traits<LhsScalar,RhsScalar>::ReturnType result_type;
214   EIGEN_EMPTY_STRUCT_CTOR(scalar_quotient_op)
215   EIGEN_STRONG_INLINE const result_type operator() (const LhsScalar& a, const RhsScalar& b) const { return a / b; }
216   template<typename Packet>
217   EIGEN_STRONG_INLINE const Packet packetOp(const Packet& a, const Packet& b) const
218   { return internal::pdiv(a,b); }
219 };
220 template<typename LhsScalar,typename RhsScalar>
221 struct functor_traits<scalar_quotient_op<LhsScalar,RhsScalar> > {
222   enum {
223     Cost = (NumTraits<LhsScalar>::MulCost + NumTraits<RhsScalar>::MulCost), // rough estimate!
224     PacketAccess = scalar_quotient_op<LhsScalar,RhsScalar>::Vectorizable
225   };
226 };
227 
228 
229 
230 /** \internal
231   * \brief Template functor to compute the and of two booleans
232   *
233   * \sa class CwiseBinaryOp, ArrayBase::operator&&
234   */
235 struct scalar_boolean_and_op {
236   EIGEN_EMPTY_STRUCT_CTOR(scalar_boolean_and_op)
237   EIGEN_STRONG_INLINE bool operator() (const bool& a, const bool& b) const { return a && b; }
238 };
239 template<> struct functor_traits<scalar_boolean_and_op> {
240   enum {
241     Cost = NumTraits<bool>::AddCost,
242     PacketAccess = false
243   };
244 };
245 
246 /** \internal
247   * \brief Template functor to compute the or of two booleans
248   *
249   * \sa class CwiseBinaryOp, ArrayBase::operator||
250   */
251 struct scalar_boolean_or_op {
252   EIGEN_EMPTY_STRUCT_CTOR(scalar_boolean_or_op)
253   EIGEN_STRONG_INLINE bool operator() (const bool& a, const bool& b) const { return a || b; }
254 };
255 template<> struct functor_traits<scalar_boolean_or_op> {
256   enum {
257     Cost = NumTraits<bool>::AddCost,
258     PacketAccess = false
259   };
260 };
261 
262 // unary functors:
263 
264 /** \internal
265   * \brief Template functor to compute the opposite of a scalar
266   *
267   * \sa class CwiseUnaryOp, MatrixBase::operator-
268   */
269 template<typename Scalar> struct scalar_opposite_op {
270   EIGEN_EMPTY_STRUCT_CTOR(scalar_opposite_op)
271   EIGEN_STRONG_INLINE const Scalar operator() (const Scalar& a) const { return -a; }
272   template<typename Packet>
273   EIGEN_STRONG_INLINE const Packet packetOp(const Packet& a) const
274   { return internal::pnegate(a); }
275 };
276 template<typename Scalar>
277 struct functor_traits<scalar_opposite_op<Scalar> >
278 { enum {
279     Cost = NumTraits<Scalar>::AddCost,
280     PacketAccess = packet_traits<Scalar>::HasNegate };
281 };
282 
283 /** \internal
284   * \brief Template functor to compute the absolute value of a scalar
285   *
286   * \sa class CwiseUnaryOp, Cwise::abs
287   */
288 template<typename Scalar> struct scalar_abs_op {
289   EIGEN_EMPTY_STRUCT_CTOR(scalar_abs_op)
290   typedef typename NumTraits<Scalar>::Real result_type;
291   EIGEN_STRONG_INLINE const result_type operator() (const Scalar& a) const { using std::abs; return abs(a); }
292   template<typename Packet>
293   EIGEN_STRONG_INLINE const Packet packetOp(const Packet& a) const
294   { return internal::pabs(a); }
295 };
296 template<typename Scalar>
297 struct functor_traits<scalar_abs_op<Scalar> >
298 {
299   enum {
300     Cost = NumTraits<Scalar>::AddCost,
301     PacketAccess = packet_traits<Scalar>::HasAbs
302   };
303 };
304 
305 /** \internal
306   * \brief Template functor to compute the squared absolute value of a scalar
307   *
308   * \sa class CwiseUnaryOp, Cwise::abs2
309   */
310 template<typename Scalar> struct scalar_abs2_op {
311   EIGEN_EMPTY_STRUCT_CTOR(scalar_abs2_op)
312   typedef typename NumTraits<Scalar>::Real result_type;
313   EIGEN_STRONG_INLINE const result_type operator() (const Scalar& a) const { return numext::abs2(a); }
314   template<typename Packet>
315   EIGEN_STRONG_INLINE const Packet packetOp(const Packet& a) const
316   { return internal::pmul(a,a); }
317 };
318 template<typename Scalar>
319 struct functor_traits<scalar_abs2_op<Scalar> >
320 { enum { Cost = NumTraits<Scalar>::MulCost, PacketAccess = packet_traits<Scalar>::HasAbs2 }; };
321 
322 /** \internal
323   * \brief Template functor to compute the conjugate of a complex value
324   *
325   * \sa class CwiseUnaryOp, MatrixBase::conjugate()
326   */
327 template<typename Scalar> struct scalar_conjugate_op {
328   EIGEN_EMPTY_STRUCT_CTOR(scalar_conjugate_op)
329   EIGEN_STRONG_INLINE const Scalar operator() (const Scalar& a) const { using numext::conj; return conj(a); }
330   template<typename Packet>
331   EIGEN_STRONG_INLINE const Packet packetOp(const Packet& a) const { return internal::pconj(a); }
332 };
333 template<typename Scalar>
334 struct functor_traits<scalar_conjugate_op<Scalar> >
335 {
336   enum {
337     Cost = NumTraits<Scalar>::IsComplex ? NumTraits<Scalar>::AddCost : 0,
338     PacketAccess = packet_traits<Scalar>::HasConj
339   };
340 };
341 
342 /** \internal
343   * \brief Template functor to cast a scalar to another type
344   *
345   * \sa class CwiseUnaryOp, MatrixBase::cast()
346   */
347 template<typename Scalar, typename NewType>
348 struct scalar_cast_op {
349   EIGEN_EMPTY_STRUCT_CTOR(scalar_cast_op)
350   typedef NewType result_type;
351   EIGEN_STRONG_INLINE const NewType operator() (const Scalar& a) const { return cast<Scalar, NewType>(a); }
352 };
353 template<typename Scalar, typename NewType>
354 struct functor_traits<scalar_cast_op<Scalar,NewType> >
355 { enum { Cost = is_same<Scalar, NewType>::value ? 0 : NumTraits<NewType>::AddCost, PacketAccess = false }; };
356 
357 /** \internal
358   * \brief Template functor to extract the real part of a complex
359   *
360   * \sa class CwiseUnaryOp, MatrixBase::real()
361   */
362 template<typename Scalar>
363 struct scalar_real_op {
364   EIGEN_EMPTY_STRUCT_CTOR(scalar_real_op)
365   typedef typename NumTraits<Scalar>::Real result_type;
366   EIGEN_STRONG_INLINE result_type operator() (const Scalar& a) const { return numext::real(a); }
367 };
368 template<typename Scalar>
369 struct functor_traits<scalar_real_op<Scalar> >
370 { enum { Cost = 0, PacketAccess = false }; };
371 
372 /** \internal
373   * \brief Template functor to extract the imaginary part of a complex
374   *
375   * \sa class CwiseUnaryOp, MatrixBase::imag()
376   */
377 template<typename Scalar>
378 struct scalar_imag_op {
379   EIGEN_EMPTY_STRUCT_CTOR(scalar_imag_op)
380   typedef typename NumTraits<Scalar>::Real result_type;
381   EIGEN_STRONG_INLINE result_type operator() (const Scalar& a) const { return numext::imag(a); }
382 };
383 template<typename Scalar>
384 struct functor_traits<scalar_imag_op<Scalar> >
385 { enum { Cost = 0, PacketAccess = false }; };
386 
387 /** \internal
388   * \brief Template functor to extract the real part of a complex as a reference
389   *
390   * \sa class CwiseUnaryOp, MatrixBase::real()
391   */
392 template<typename Scalar>
393 struct scalar_real_ref_op {
394   EIGEN_EMPTY_STRUCT_CTOR(scalar_real_ref_op)
395   typedef typename NumTraits<Scalar>::Real result_type;
396   EIGEN_STRONG_INLINE result_type& operator() (const Scalar& a) const { return numext::real_ref(*const_cast<Scalar*>(&a)); }
397 };
398 template<typename Scalar>
399 struct functor_traits<scalar_real_ref_op<Scalar> >
400 { enum { Cost = 0, PacketAccess = false }; };
401 
402 /** \internal
403   * \brief Template functor to extract the imaginary part of a complex as a reference
404   *
405   * \sa class CwiseUnaryOp, MatrixBase::imag()
406   */
407 template<typename Scalar>
408 struct scalar_imag_ref_op {
409   EIGEN_EMPTY_STRUCT_CTOR(scalar_imag_ref_op)
410   typedef typename NumTraits<Scalar>::Real result_type;
411   EIGEN_STRONG_INLINE result_type& operator() (const Scalar& a) const { return numext::imag_ref(*const_cast<Scalar*>(&a)); }
412 };
413 template<typename Scalar>
414 struct functor_traits<scalar_imag_ref_op<Scalar> >
415 { enum { Cost = 0, PacketAccess = false }; };
416 
417 /** \internal
418   *
419   * \brief Template functor to compute the exponential of a scalar
420   *
421   * \sa class CwiseUnaryOp, Cwise::exp()
422   */
423 template<typename Scalar> struct scalar_exp_op {
424   EIGEN_EMPTY_STRUCT_CTOR(scalar_exp_op)
425   inline const Scalar operator() (const Scalar& a) const { using std::exp; return exp(a); }
426   typedef typename packet_traits<Scalar>::type Packet;
427   inline Packet packetOp(const Packet& a) const { return internal::pexp(a); }
428 };
429 template<typename Scalar>
430 struct functor_traits<scalar_exp_op<Scalar> >
431 { enum { Cost = 5 * NumTraits<Scalar>::MulCost, PacketAccess = packet_traits<Scalar>::HasExp }; };
432 
433 /** \internal
434   *
435   * \brief Template functor to compute the logarithm of a scalar
436   *
437   * \sa class CwiseUnaryOp, Cwise::log()
438   */
439 template<typename Scalar> struct scalar_log_op {
440   EIGEN_EMPTY_STRUCT_CTOR(scalar_log_op)
441   inline const Scalar operator() (const Scalar& a) const { using std::log; return log(a); }
442   typedef typename packet_traits<Scalar>::type Packet;
443   inline Packet packetOp(const Packet& a) const { return internal::plog(a); }
444 };
445 template<typename Scalar>
446 struct functor_traits<scalar_log_op<Scalar> >
447 { enum { Cost = 5 * NumTraits<Scalar>::MulCost, PacketAccess = packet_traits<Scalar>::HasLog }; };
448 
449 /** \internal
450   * \brief Template functor to multiply a scalar by a fixed other one
451   *
452   * \sa class CwiseUnaryOp, MatrixBase::operator*, MatrixBase::operator/
453   */
454 /* NOTE why doing the pset1() in packetOp *is* an optimization ?
455  * indeed it seems better to declare m_other as a Packet and do the pset1() once
456  * in the constructor. However, in practice:
457  *  - GCC does not like m_other as a Packet and generate a load every time it needs it
458  *  - on the other hand GCC is able to moves the pset1() outside the loop :)
459  *  - simpler code ;)
460  * (ICC and gcc 4.4 seems to perform well in both cases, the issue is visible with y = a*x + b*y)
461  */
462 template<typename Scalar>
463 struct scalar_multiple_op {
464   typedef typename packet_traits<Scalar>::type Packet;
465   // FIXME default copy constructors seems bugged with std::complex<>
466   EIGEN_STRONG_INLINE scalar_multiple_op(const scalar_multiple_op& other) : m_other(other.m_other) { }
467   EIGEN_STRONG_INLINE scalar_multiple_op(const Scalar& other) : m_other(other) { }
468   EIGEN_STRONG_INLINE Scalar operator() (const Scalar& a) const { return a * m_other; }
469   EIGEN_STRONG_INLINE const Packet packetOp(const Packet& a) const
470   { return internal::pmul(a, pset1<Packet>(m_other)); }
471   typename add_const_on_value_type<typename NumTraits<Scalar>::Nested>::type m_other;
472 };
473 template<typename Scalar>
474 struct functor_traits<scalar_multiple_op<Scalar> >
475 { enum { Cost = NumTraits<Scalar>::MulCost, PacketAccess = packet_traits<Scalar>::HasMul }; };
476 
477 template<typename Scalar1, typename Scalar2>
478 struct scalar_multiple2_op {
479   typedef typename scalar_product_traits<Scalar1,Scalar2>::ReturnType result_type;
480   EIGEN_STRONG_INLINE scalar_multiple2_op(const scalar_multiple2_op& other) : m_other(other.m_other) { }
481   EIGEN_STRONG_INLINE scalar_multiple2_op(const Scalar2& other) : m_other(other) { }
482   EIGEN_STRONG_INLINE result_type operator() (const Scalar1& a) const { return a * m_other; }
483   typename add_const_on_value_type<typename NumTraits<Scalar2>::Nested>::type m_other;
484 };
485 template<typename Scalar1,typename Scalar2>
486 struct functor_traits<scalar_multiple2_op<Scalar1,Scalar2> >
487 { enum { Cost = NumTraits<Scalar1>::MulCost, PacketAccess = false }; };
488 
489 /** \internal
490   * \brief Template functor to divide a scalar by a fixed other one
491   *
492   * This functor is used to implement the quotient of a matrix by
493   * a scalar where the scalar type is not necessarily a floating point type.
494   *
495   * \sa class CwiseUnaryOp, MatrixBase::operator/
496   */
497 template<typename Scalar>
498 struct scalar_quotient1_op {
499   typedef typename packet_traits<Scalar>::type Packet;
500   // FIXME default copy constructors seems bugged with std::complex<>
501   EIGEN_STRONG_INLINE scalar_quotient1_op(const scalar_quotient1_op& other) : m_other(other.m_other) { }
502   EIGEN_STRONG_INLINE scalar_quotient1_op(const Scalar& other) : m_other(other) {}
503   EIGEN_STRONG_INLINE Scalar operator() (const Scalar& a) const { return a / m_other; }
504   EIGEN_STRONG_INLINE const Packet packetOp(const Packet& a) const
505   { return internal::pdiv(a, pset1<Packet>(m_other)); }
506   typename add_const_on_value_type<typename NumTraits<Scalar>::Nested>::type m_other;
507 };
508 template<typename Scalar>
509 struct functor_traits<scalar_quotient1_op<Scalar> >
510 { enum { Cost = 2 * NumTraits<Scalar>::MulCost, PacketAccess = packet_traits<Scalar>::HasDiv }; };
511 
512 // nullary functors
513 
514 template<typename Scalar>
515 struct scalar_constant_op {
516   typedef typename packet_traits<Scalar>::type Packet;
517   EIGEN_STRONG_INLINE scalar_constant_op(const scalar_constant_op& other) : m_other(other.m_other) { }
518   EIGEN_STRONG_INLINE scalar_constant_op(const Scalar& other) : m_other(other) { }
519   template<typename Index>
520   EIGEN_STRONG_INLINE const Scalar operator() (Index, Index = 0) const { return m_other; }
521   template<typename Index>
522   EIGEN_STRONG_INLINE const Packet packetOp(Index, Index = 0) const { return internal::pset1<Packet>(m_other); }
523   const Scalar m_other;
524 };
525 template<typename Scalar>
526 struct functor_traits<scalar_constant_op<Scalar> >
527 // FIXME replace this packet test by a safe one
528 { enum { Cost = 1, PacketAccess = packet_traits<Scalar>::Vectorizable, IsRepeatable = true }; };
529 
530 template<typename Scalar> struct scalar_identity_op {
531   EIGEN_EMPTY_STRUCT_CTOR(scalar_identity_op)
532   template<typename Index>
533   EIGEN_STRONG_INLINE const Scalar operator() (Index row, Index col) const { return row==col ? Scalar(1) : Scalar(0); }
534 };
535 template<typename Scalar>
536 struct functor_traits<scalar_identity_op<Scalar> >
537 { enum { Cost = NumTraits<Scalar>::AddCost, PacketAccess = false, IsRepeatable = true }; };
538 
539 template <typename Scalar, bool RandomAccess> struct linspaced_op_impl;
540 
541 // linear access for packet ops:
542 // 1) initialization
543 //   base = [low, ..., low] + ([step, ..., step] * [-size, ..., 0])
544 // 2) each step (where size is 1 for coeff access or PacketSize for packet access)
545 //   base += [size*step, ..., size*step]
546 //
547 // TODO: Perhaps it's better to initialize lazily (so not in the constructor but in packetOp)
548 //       in order to avoid the padd() in operator() ?
549 template <typename Scalar>
550 struct linspaced_op_impl<Scalar,false>
551 {
552   typedef typename packet_traits<Scalar>::type Packet;
553 
554   linspaced_op_impl(const Scalar& low, const Scalar& step) :
555   m_low(low), m_step(step),
556   m_packetStep(pset1<Packet>(packet_traits<Scalar>::size*step)),
557   m_base(padd(pset1<Packet>(low), pmul(pset1<Packet>(step),plset<Scalar>(-packet_traits<Scalar>::size)))) {}
558 
559   template<typename Index>
560   EIGEN_STRONG_INLINE const Scalar operator() (Index i) const
561   {
562     m_base = padd(m_base, pset1<Packet>(m_step));
563     return m_low+Scalar(i)*m_step;
564   }
565 
566   template<typename Index>
567   EIGEN_STRONG_INLINE const Packet packetOp(Index) const { return m_base = padd(m_base,m_packetStep); }
568 
569   const Scalar m_low;
570   const Scalar m_step;
571   const Packet m_packetStep;
572   mutable Packet m_base;
573 };
574 
575 // random access for packet ops:
576 // 1) each step
577 //   [low, ..., low] + ( [step, ..., step] * ( [i, ..., i] + [0, ..., size] ) )
578 template <typename Scalar>
579 struct linspaced_op_impl<Scalar,true>
580 {
581   typedef typename packet_traits<Scalar>::type Packet;
582 
583   linspaced_op_impl(const Scalar& low, const Scalar& step) :
584   m_low(low), m_step(step),
585   m_lowPacket(pset1<Packet>(m_low)), m_stepPacket(pset1<Packet>(m_step)), m_interPacket(plset<Scalar>(0)) {}
586 
587   template<typename Index>
588   EIGEN_STRONG_INLINE const Scalar operator() (Index i) const { return m_low+i*m_step; }
589 
590   template<typename Index>
591   EIGEN_STRONG_INLINE const Packet packetOp(Index i) const
592   { return internal::padd(m_lowPacket, pmul(m_stepPacket, padd(pset1<Packet>(Scalar(i)),m_interPacket))); }
593 
594   const Scalar m_low;
595   const Scalar m_step;
596   const Packet m_lowPacket;
597   const Packet m_stepPacket;
598   const Packet m_interPacket;
599 };
600 
601 // ----- Linspace functor ----------------------------------------------------------------
602 
603 // Forward declaration (we default to random access which does not really give
604 // us a speed gain when using packet access but it allows to use the functor in
605 // nested expressions).
606 template <typename Scalar, bool RandomAccess = true> struct linspaced_op;
607 template <typename Scalar, bool RandomAccess> struct functor_traits< linspaced_op<Scalar,RandomAccess> >
608 { enum { Cost = 1, PacketAccess = packet_traits<Scalar>::HasSetLinear, IsRepeatable = true }; };
609 template <typename Scalar, bool RandomAccess> struct linspaced_op
610 {
611   typedef typename packet_traits<Scalar>::type Packet;
612   linspaced_op(const Scalar& low, const Scalar& high, DenseIndex num_steps) : impl((num_steps==1 ? high : low), (num_steps==1 ? Scalar() : (high-low)/Scalar(num_steps-1))) {}
613 
614   template<typename Index>
615   EIGEN_STRONG_INLINE const Scalar operator() (Index i) const { return impl(i); }
616 
617   // We need this function when assigning e.g. a RowVectorXd to a MatrixXd since
618   // there row==0 and col is used for the actual iteration.
619   template<typename Index>
620   EIGEN_STRONG_INLINE const Scalar operator() (Index row, Index col) const
621   {
622     eigen_assert(col==0 || row==0);
623     return impl(col + row);
624   }
625 
626   template<typename Index>
627   EIGEN_STRONG_INLINE const Packet packetOp(Index i) const { return impl.packetOp(i); }
628 
629   // We need this function when assigning e.g. a RowVectorXd to a MatrixXd since
630   // there row==0 and col is used for the actual iteration.
631   template<typename Index>
632   EIGEN_STRONG_INLINE const Packet packetOp(Index row, Index col) const
633   {
634     eigen_assert(col==0 || row==0);
635     return impl.packetOp(col + row);
636   }
637 
638   // This proxy object handles the actual required temporaries, the different
639   // implementations (random vs. sequential access) as well as the
640   // correct piping to size 2/4 packet operations.
641   const linspaced_op_impl<Scalar,RandomAccess> impl;
642 };
643 
644 // all functors allow linear access, except scalar_identity_op. So we fix here a quick meta
645 // to indicate whether a functor allows linear access, just always answering 'yes' except for
646 // scalar_identity_op.
647 // FIXME move this to functor_traits adding a functor_default
648 template<typename Functor> struct functor_has_linear_access { enum { ret = 1 }; };
649 template<typename Scalar> struct functor_has_linear_access<scalar_identity_op<Scalar> > { enum { ret = 0 }; };
650 
651 // In Eigen, any binary op (Product, CwiseBinaryOp) require the Lhs and Rhs to have the same scalar type, except for multiplication
652 // where the mixing of different types is handled by scalar_product_traits
653 // In particular, real * complex<real> is allowed.
654 // FIXME move this to functor_traits adding a functor_default
655 template<typename Functor> struct functor_is_product_like { enum { ret = 0 }; };
656 template<typename LhsScalar,typename RhsScalar> struct functor_is_product_like<scalar_product_op<LhsScalar,RhsScalar> > { enum { ret = 1 }; };
657 template<typename LhsScalar,typename RhsScalar> struct functor_is_product_like<scalar_conj_product_op<LhsScalar,RhsScalar> > { enum { ret = 1 }; };
658 template<typename LhsScalar,typename RhsScalar> struct functor_is_product_like<scalar_quotient_op<LhsScalar,RhsScalar> > { enum { ret = 1 }; };
659 
660 
661 /** \internal
662   * \brief Template functor to add a scalar to a fixed other one
663   * \sa class CwiseUnaryOp, Array::operator+
664   */
665 /* If you wonder why doing the pset1() in packetOp() is an optimization check scalar_multiple_op */
666 template<typename Scalar>
667 struct scalar_add_op {
668   typedef typename packet_traits<Scalar>::type Packet;
669   // FIXME default copy constructors seems bugged with std::complex<>
670   inline scalar_add_op(const scalar_add_op& other) : m_other(other.m_other) { }
671   inline scalar_add_op(const Scalar& other) : m_other(other) { }
672   inline Scalar operator() (const Scalar& a) const { return a + m_other; }
673   inline const Packet packetOp(const Packet& a) const
674   { return internal::padd(a, pset1<Packet>(m_other)); }
675   const Scalar m_other;
676 };
677 template<typename Scalar>
678 struct functor_traits<scalar_add_op<Scalar> >
679 { enum { Cost = NumTraits<Scalar>::AddCost, PacketAccess = packet_traits<Scalar>::HasAdd }; };
680 
681 /** \internal
682   * \brief Template functor to compute the square root of a scalar
683   * \sa class CwiseUnaryOp, Cwise::sqrt()
684   */
685 template<typename Scalar> struct scalar_sqrt_op {
686   EIGEN_EMPTY_STRUCT_CTOR(scalar_sqrt_op)
687   inline const Scalar operator() (const Scalar& a) const { using std::sqrt; return sqrt(a); }
688   typedef typename packet_traits<Scalar>::type Packet;
689   inline Packet packetOp(const Packet& a) const { return internal::psqrt(a); }
690 };
691 template<typename Scalar>
692 struct functor_traits<scalar_sqrt_op<Scalar> >
693 { enum {
694     Cost = 5 * NumTraits<Scalar>::MulCost,
695     PacketAccess = packet_traits<Scalar>::HasSqrt
696   };
697 };
698 
699 /** \internal
700   * \brief Template functor to compute the cosine of a scalar
701   * \sa class CwiseUnaryOp, ArrayBase::cos()
702   */
703 template<typename Scalar> struct scalar_cos_op {
704   EIGEN_EMPTY_STRUCT_CTOR(scalar_cos_op)
705   inline Scalar operator() (const Scalar& a) const { using std::cos; return cos(a); }
706   typedef typename packet_traits<Scalar>::type Packet;
707   inline Packet packetOp(const Packet& a) const { return internal::pcos(a); }
708 };
709 template<typename Scalar>
710 struct functor_traits<scalar_cos_op<Scalar> >
711 {
712   enum {
713     Cost = 5 * NumTraits<Scalar>::MulCost,
714     PacketAccess = packet_traits<Scalar>::HasCos
715   };
716 };
717 
718 /** \internal
719   * \brief Template functor to compute the sine of a scalar
720   * \sa class CwiseUnaryOp, ArrayBase::sin()
721   */
722 template<typename Scalar> struct scalar_sin_op {
723   EIGEN_EMPTY_STRUCT_CTOR(scalar_sin_op)
724   inline const Scalar operator() (const Scalar& a) const { using std::sin; return sin(a); }
725   typedef typename packet_traits<Scalar>::type Packet;
726   inline Packet packetOp(const Packet& a) const { return internal::psin(a); }
727 };
728 template<typename Scalar>
729 struct functor_traits<scalar_sin_op<Scalar> >
730 {
731   enum {
732     Cost = 5 * NumTraits<Scalar>::MulCost,
733     PacketAccess = packet_traits<Scalar>::HasSin
734   };
735 };
736 
737 
738 /** \internal
739   * \brief Template functor to compute the tan of a scalar
740   * \sa class CwiseUnaryOp, ArrayBase::tan()
741   */
742 template<typename Scalar> struct scalar_tan_op {
743   EIGEN_EMPTY_STRUCT_CTOR(scalar_tan_op)
744   inline const Scalar operator() (const Scalar& a) const { using std::tan; return tan(a); }
745   typedef typename packet_traits<Scalar>::type Packet;
746   inline Packet packetOp(const Packet& a) const { return internal::ptan(a); }
747 };
748 template<typename Scalar>
749 struct functor_traits<scalar_tan_op<Scalar> >
750 {
751   enum {
752     Cost = 5 * NumTraits<Scalar>::MulCost,
753     PacketAccess = packet_traits<Scalar>::HasTan
754   };
755 };
756 
757 /** \internal
758   * \brief Template functor to compute the arc cosine of a scalar
759   * \sa class CwiseUnaryOp, ArrayBase::acos()
760   */
761 template<typename Scalar> struct scalar_acos_op {
762   EIGEN_EMPTY_STRUCT_CTOR(scalar_acos_op)
763   inline const Scalar operator() (const Scalar& a) const { using std::acos; return acos(a); }
764   typedef typename packet_traits<Scalar>::type Packet;
765   inline Packet packetOp(const Packet& a) const { return internal::pacos(a); }
766 };
767 template<typename Scalar>
768 struct functor_traits<scalar_acos_op<Scalar> >
769 {
770   enum {
771     Cost = 5 * NumTraits<Scalar>::MulCost,
772     PacketAccess = packet_traits<Scalar>::HasACos
773   };
774 };
775 
776 /** \internal
777   * \brief Template functor to compute the arc sine of a scalar
778   * \sa class CwiseUnaryOp, ArrayBase::asin()
779   */
780 template<typename Scalar> struct scalar_asin_op {
781   EIGEN_EMPTY_STRUCT_CTOR(scalar_asin_op)
782   inline const Scalar operator() (const Scalar& a) const { using std::asin; return asin(a); }
783   typedef typename packet_traits<Scalar>::type Packet;
784   inline Packet packetOp(const Packet& a) const { return internal::pasin(a); }
785 };
786 template<typename Scalar>
787 struct functor_traits<scalar_asin_op<Scalar> >
788 {
789   enum {
790     Cost = 5 * NumTraits<Scalar>::MulCost,
791     PacketAccess = packet_traits<Scalar>::HasASin
792   };
793 };
794 
795 /** \internal
796   * \brief Template functor to raise a scalar to a power
797   * \sa class CwiseUnaryOp, Cwise::pow
798   */
799 template<typename Scalar>
800 struct scalar_pow_op {
801   // FIXME default copy constructors seems bugged with std::complex<>
802   inline scalar_pow_op(const scalar_pow_op& other) : m_exponent(other.m_exponent) { }
803   inline scalar_pow_op(const Scalar& exponent) : m_exponent(exponent) {}
804   inline Scalar operator() (const Scalar& a) const { return numext::pow(a, m_exponent); }
805   const Scalar m_exponent;
806 };
807 template<typename Scalar>
808 struct functor_traits<scalar_pow_op<Scalar> >
809 { enum { Cost = 5 * NumTraits<Scalar>::MulCost, PacketAccess = false }; };
810 
811 /** \internal
812   * \brief Template functor to compute the quotient between a scalar and array entries.
813   * \sa class CwiseUnaryOp, Cwise::inverse()
814   */
815 template<typename Scalar>
816 struct scalar_inverse_mult_op {
817   scalar_inverse_mult_op(const Scalar& other) : m_other(other) {}
818   inline Scalar operator() (const Scalar& a) const { return m_other / a; }
819   template<typename Packet>
820   inline const Packet packetOp(const Packet& a) const
821   { return internal::pdiv(pset1<Packet>(m_other),a); }
822   Scalar m_other;
823 };
824 
825 /** \internal
826   * \brief Template functor to compute the inverse of a scalar
827   * \sa class CwiseUnaryOp, Cwise::inverse()
828   */
829 template<typename Scalar>
830 struct scalar_inverse_op {
831   EIGEN_EMPTY_STRUCT_CTOR(scalar_inverse_op)
832   inline Scalar operator() (const Scalar& a) const { return Scalar(1)/a; }
833   template<typename Packet>
834   inline const Packet packetOp(const Packet& a) const
835   { return internal::pdiv(pset1<Packet>(Scalar(1)),a); }
836 };
837 template<typename Scalar>
838 struct functor_traits<scalar_inverse_op<Scalar> >
839 { enum { Cost = NumTraits<Scalar>::MulCost, PacketAccess = packet_traits<Scalar>::HasDiv }; };
840 
841 /** \internal
842   * \brief Template functor to compute the square of a scalar
843   * \sa class CwiseUnaryOp, Cwise::square()
844   */
845 template<typename Scalar>
846 struct scalar_square_op {
847   EIGEN_EMPTY_STRUCT_CTOR(scalar_square_op)
848   inline Scalar operator() (const Scalar& a) const { return a*a; }
849   template<typename Packet>
850   inline const Packet packetOp(const Packet& a) const
851   { return internal::pmul(a,a); }
852 };
853 template<typename Scalar>
854 struct functor_traits<scalar_square_op<Scalar> >
855 { enum { Cost = NumTraits<Scalar>::MulCost, PacketAccess = packet_traits<Scalar>::HasMul }; };
856 
857 /** \internal
858   * \brief Template functor to compute the cube of a scalar
859   * \sa class CwiseUnaryOp, Cwise::cube()
860   */
861 template<typename Scalar>
862 struct scalar_cube_op {
863   EIGEN_EMPTY_STRUCT_CTOR(scalar_cube_op)
864   inline Scalar operator() (const Scalar& a) const { return a*a*a; }
865   template<typename Packet>
866   inline const Packet packetOp(const Packet& a) const
867   { return internal::pmul(a,pmul(a,a)); }
868 };
869 template<typename Scalar>
870 struct functor_traits<scalar_cube_op<Scalar> >
871 { enum { Cost = 2*NumTraits<Scalar>::MulCost, PacketAccess = packet_traits<Scalar>::HasMul }; };
872 
873 // default functor traits for STL functors:
874 
875 template<typename T>
876 struct functor_traits<std::multiplies<T> >
877 { enum { Cost = NumTraits<T>::MulCost, PacketAccess = false }; };
878 
879 template<typename T>
880 struct functor_traits<std::divides<T> >
881 { enum { Cost = NumTraits<T>::MulCost, PacketAccess = false }; };
882 
883 template<typename T>
884 struct functor_traits<std::plus<T> >
885 { enum { Cost = NumTraits<T>::AddCost, PacketAccess = false }; };
886 
887 template<typename T>
888 struct functor_traits<std::minus<T> >
889 { enum { Cost = NumTraits<T>::AddCost, PacketAccess = false }; };
890 
891 template<typename T>
892 struct functor_traits<std::negate<T> >
893 { enum { Cost = NumTraits<T>::AddCost, PacketAccess = false }; };
894 
895 template<typename T>
896 struct functor_traits<std::logical_or<T> >
897 { enum { Cost = 1, PacketAccess = false }; };
898 
899 template<typename T>
900 struct functor_traits<std::logical_and<T> >
901 { enum { Cost = 1, PacketAccess = false }; };
902 
903 template<typename T>
904 struct functor_traits<std::logical_not<T> >
905 { enum { Cost = 1, PacketAccess = false }; };
906 
907 template<typename T>
908 struct functor_traits<std::greater<T> >
909 { enum { Cost = 1, PacketAccess = false }; };
910 
911 template<typename T>
912 struct functor_traits<std::less<T> >
913 { enum { Cost = 1, PacketAccess = false }; };
914 
915 template<typename T>
916 struct functor_traits<std::greater_equal<T> >
917 { enum { Cost = 1, PacketAccess = false }; };
918 
919 template<typename T>
920 struct functor_traits<std::less_equal<T> >
921 { enum { Cost = 1, PacketAccess = false }; };
922 
923 template<typename T>
924 struct functor_traits<std::equal_to<T> >
925 { enum { Cost = 1, PacketAccess = false }; };
926 
927 template<typename T>
928 struct functor_traits<std::not_equal_to<T> >
929 { enum { Cost = 1, PacketAccess = false }; };
930 
931 template<typename T>
932 struct functor_traits<std::binder2nd<T> >
933 { enum { Cost = functor_traits<T>::Cost, PacketAccess = false }; };
934 
935 template<typename T>
936 struct functor_traits<std::binder1st<T> >
937 { enum { Cost = functor_traits<T>::Cost, PacketAccess = false }; };
938 
939 template<typename T>
940 struct functor_traits<std::unary_negate<T> >
941 { enum { Cost = 1 + functor_traits<T>::Cost, PacketAccess = false }; };
942 
943 template<typename T>
944 struct functor_traits<std::binary_negate<T> >
945 { enum { Cost = 1 + functor_traits<T>::Cost, PacketAccess = false }; };
946 
947 #ifdef EIGEN_STDEXT_SUPPORT
948 
949 template<typename T0,typename T1>
950 struct functor_traits<std::project1st<T0,T1> >
951 { enum { Cost = 0, PacketAccess = false }; };
952 
953 template<typename T0,typename T1>
954 struct functor_traits<std::project2nd<T0,T1> >
955 { enum { Cost = 0, PacketAccess = false }; };
956 
957 template<typename T0,typename T1>
958 struct functor_traits<std::select2nd<std::pair<T0,T1> > >
959 { enum { Cost = 0, PacketAccess = false }; };
960 
961 template<typename T0,typename T1>
962 struct functor_traits<std::select1st<std::pair<T0,T1> > >
963 { enum { Cost = 0, PacketAccess = false }; };
964 
965 template<typename T0,typename T1>
966 struct functor_traits<std::unary_compose<T0,T1> >
967 { enum { Cost = functor_traits<T0>::Cost + functor_traits<T1>::Cost, PacketAccess = false }; };
968 
969 template<typename T0,typename T1,typename T2>
970 struct functor_traits<std::binary_compose<T0,T1,T2> >
971 { enum { Cost = functor_traits<T0>::Cost + functor_traits<T1>::Cost + functor_traits<T2>::Cost, PacketAccess = false }; };
972 
973 #endif // EIGEN_STDEXT_SUPPORT
974 
975 // allow to add new functors and specializations of functor_traits from outside Eigen.
976 // this macro is really needed because functor_traits must be specialized after it is declared but before it is used...
977 #ifdef EIGEN_FUNCTORS_PLUGIN
978 #include EIGEN_FUNCTORS_PLUGIN
979 #endif
980 
981 } // end namespace internal
982 
983 } // end namespace Eigen
984 
985 #endif // EIGEN_FUNCTORS_H
986