1 // This file is part of Eigen, a lightweight C++ template library
2 // for linear algebra.
3 //
4 // Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1@gmail.com>
5 // Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr>
6 //
7 // This Source Code Form is subject to the terms of the Mozilla
8 // Public License v. 2.0. If a copy of the MPL was not distributed
9 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
10 
11 #ifndef EIGEN_FUZZY_H
12 #define EIGEN_FUZZY_H
13 
14 namespace Eigen {
15 
16 namespace internal
17 {
18 
19 template<typename Derived, typename OtherDerived, bool is_integer = NumTraits<typename Derived::Scalar>::IsInteger>
20 struct isApprox_selector
21 {
runisApprox_selector22   static bool run(const Derived& x, const OtherDerived& y, const typename Derived::RealScalar& prec)
23   {
24     using std::min;
25     typename internal::nested<Derived,2>::type nested(x);
26     typename internal::nested<OtherDerived,2>::type otherNested(y);
27     return (nested - otherNested).cwiseAbs2().sum() <= prec * prec * (min)(nested.cwiseAbs2().sum(), otherNested.cwiseAbs2().sum());
28   }
29 };
30 
31 template<typename Derived, typename OtherDerived>
32 struct isApprox_selector<Derived, OtherDerived, true>
33 {
34   static bool run(const Derived& x, const OtherDerived& y, const typename Derived::RealScalar&)
35   {
36     return x.matrix() == y.matrix();
37   }
38 };
39 
40 template<typename Derived, typename OtherDerived, bool is_integer = NumTraits<typename Derived::Scalar>::IsInteger>
41 struct isMuchSmallerThan_object_selector
42 {
43   static bool run(const Derived& x, const OtherDerived& y, const typename Derived::RealScalar& prec)
44   {
45     return x.cwiseAbs2().sum() <= numext::abs2(prec) * y.cwiseAbs2().sum();
46   }
47 };
48 
49 template<typename Derived, typename OtherDerived>
50 struct isMuchSmallerThan_object_selector<Derived, OtherDerived, true>
51 {
52   static bool run(const Derived& x, const OtherDerived&, const typename Derived::RealScalar&)
53   {
54     return x.matrix() == Derived::Zero(x.rows(), x.cols()).matrix();
55   }
56 };
57 
58 template<typename Derived, bool is_integer = NumTraits<typename Derived::Scalar>::IsInteger>
59 struct isMuchSmallerThan_scalar_selector
60 {
61   static bool run(const Derived& x, const typename Derived::RealScalar& y, const typename Derived::RealScalar& prec)
62   {
63     return x.cwiseAbs2().sum() <= numext::abs2(prec * y);
64   }
65 };
66 
67 template<typename Derived>
68 struct isMuchSmallerThan_scalar_selector<Derived, true>
69 {
70   static bool run(const Derived& x, const typename Derived::RealScalar&, const typename Derived::RealScalar&)
71   {
72     return x.matrix() == Derived::Zero(x.rows(), x.cols()).matrix();
73   }
74 };
75 
76 } // end namespace internal
77 
78 
79 /** \returns \c true if \c *this is approximately equal to \a other, within the precision
80   * determined by \a prec.
81   *
82   * \note The fuzzy compares are done multiplicatively. Two vectors \f$ v \f$ and \f$ w \f$
83   * are considered to be approximately equal within precision \f$ p \f$ if
84   * \f[ \Vert v - w \Vert \leqslant p\,\min(\Vert v\Vert, \Vert w\Vert). \f]
85   * For matrices, the comparison is done using the Hilbert-Schmidt norm (aka Frobenius norm
86   * L2 norm).
87   *
88   * \note Because of the multiplicativeness of this comparison, one can't use this function
89   * to check whether \c *this is approximately equal to the zero matrix or vector.
90   * Indeed, \c isApprox(zero) returns false unless \c *this itself is exactly the zero matrix
91   * or vector. If you want to test whether \c *this is zero, use internal::isMuchSmallerThan(const
92   * RealScalar&, RealScalar) instead.
93   *
94   * \sa internal::isMuchSmallerThan(const RealScalar&, RealScalar) const
95   */
96 template<typename Derived>
97 template<typename OtherDerived>
98 bool DenseBase<Derived>::isApprox(
99   const DenseBase<OtherDerived>& other,
100   const RealScalar& prec
101 ) const
102 {
103   return internal::isApprox_selector<Derived, OtherDerived>::run(derived(), other.derived(), prec);
104 }
105 
106 /** \returns \c true if the norm of \c *this is much smaller than \a other,
107   * within the precision determined by \a prec.
108   *
109   * \note The fuzzy compares are done multiplicatively. A vector \f$ v \f$ is
110   * considered to be much smaller than \f$ x \f$ within precision \f$ p \f$ if
111   * \f[ \Vert v \Vert \leqslant p\,\vert x\vert. \f]
112   *
113   * For matrices, the comparison is done using the Hilbert-Schmidt norm. For this reason,
114   * the value of the reference scalar \a other should come from the Hilbert-Schmidt norm
115   * of a reference matrix of same dimensions.
116   *
117   * \sa isApprox(), isMuchSmallerThan(const DenseBase<OtherDerived>&, RealScalar) const
118   */
119 template<typename Derived>
120 bool DenseBase<Derived>::isMuchSmallerThan(
121   const typename NumTraits<Scalar>::Real& other,
122   const RealScalar& prec
123 ) const
124 {
125   return internal::isMuchSmallerThan_scalar_selector<Derived>::run(derived(), other, prec);
126 }
127 
128 /** \returns \c true if the norm of \c *this is much smaller than the norm of \a other,
129   * within the precision determined by \a prec.
130   *
131   * \note The fuzzy compares are done multiplicatively. A vector \f$ v \f$ is
132   * considered to be much smaller than a vector \f$ w \f$ within precision \f$ p \f$ if
133   * \f[ \Vert v \Vert \leqslant p\,\Vert w\Vert. \f]
134   * For matrices, the comparison is done using the Hilbert-Schmidt norm.
135   *
136   * \sa isApprox(), isMuchSmallerThan(const RealScalar&, RealScalar) const
137   */
138 template<typename Derived>
139 template<typename OtherDerived>
140 bool DenseBase<Derived>::isMuchSmallerThan(
141   const DenseBase<OtherDerived>& other,
142   const RealScalar& prec
143 ) const
144 {
145   return internal::isMuchSmallerThan_object_selector<Derived, OtherDerived>::run(derived(), other.derived(), prec);
146 }
147 
148 } // end namespace Eigen
149 
150 #endif // EIGEN_FUZZY_H
151