1 // This file is part of Eigen, a lightweight C++ template library
2 // for linear algebra.
3 //
4 // Copyright (C) 2008 Gael Guennebaud <g.gael@free.fr>
5 // Copyright (C) 2009 Benoit Jacob <jacob.benoit.1@gmail.com>
6 //
7 // This Source Code Form is subject to the terms of the Mozilla
8 // Public License v. 2.0. If a copy of the MPL was not distributed
9 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
10 
11 // no include guard, we'll include this twice from All.h from Eigen2Support, and it's internal anyway
12 
13 namespace Eigen {
14 
15 // Note that we have to pass Dim and HDim because it is not allowed to use a template
16 // parameter to define a template specialization. To be more precise, in the following
17 // specializations, it is not allowed to use Dim+1 instead of HDim.
18 template< typename Other,
19           int Dim,
20           int HDim,
21           int OtherRows=Other::RowsAtCompileTime,
22           int OtherCols=Other::ColsAtCompileTime>
23 struct ei_transform_product_impl;
24 
25 /** \geometry_module \ingroup Geometry_Module
26   *
27   * \class Transform
28   *
29   * \brief Represents an homogeneous transformation in a N dimensional space
30   *
31   * \param _Scalar the scalar type, i.e., the type of the coefficients
32   * \param _Dim the dimension of the space
33   *
34   * The homography is internally represented and stored as a (Dim+1)^2 matrix which
35   * is available through the matrix() method.
36   *
37   * Conversion methods from/to Qt's QMatrix and QTransform are available if the
38   * preprocessor token EIGEN_QT_SUPPORT is defined.
39   *
40   * \sa class Matrix, class Quaternion
41   */
42 template<typename _Scalar, int _Dim>
43 class Transform
44 {
45 public:
46   EIGEN_MAKE_ALIGNED_OPERATOR_NEW_IF_VECTORIZABLE_FIXED_SIZE(_Scalar,_Dim==Dynamic ? Dynamic : (_Dim+1)*(_Dim+1))
47   enum {
48     Dim = _Dim,     ///< space dimension in which the transformation holds
49     HDim = _Dim+1   ///< size of a respective homogeneous vector
50   };
51   /** the scalar type of the coefficients */
52   typedef _Scalar Scalar;
53   /** type of the matrix used to represent the transformation */
54   typedef Matrix<Scalar,HDim,HDim> MatrixType;
55   /** type of the matrix used to represent the linear part of the transformation */
56   typedef Matrix<Scalar,Dim,Dim> LinearMatrixType;
57   /** type of read/write reference to the linear part of the transformation */
58   typedef Block<MatrixType,Dim,Dim> LinearPart;
59   /** type of read/write reference to the linear part of the transformation */
60   typedef const Block<const MatrixType,Dim,Dim> ConstLinearPart;
61   /** type of a vector */
62   typedef Matrix<Scalar,Dim,1> VectorType;
63   /** type of a read/write reference to the translation part of the rotation */
64   typedef Block<MatrixType,Dim,1> TranslationPart;
65   /** type of a read/write reference to the translation part of the rotation */
66   typedef const Block<const MatrixType,Dim,1> ConstTranslationPart;
67   /** corresponding translation type */
68   typedef Translation<Scalar,Dim> TranslationType;
69   /** corresponding scaling transformation type */
70   typedef Scaling<Scalar,Dim> ScalingType;
71 
72 protected:
73 
74   MatrixType m_matrix;
75 
76 public:
77 
78   /** Default constructor without initialization of the coefficients. */
Transform()79   inline Transform() { }
80 
Transform(const Transform & other)81   inline Transform(const Transform& other)
82   {
83     m_matrix = other.m_matrix;
84   }
85 
Transform(const TranslationType & t)86   inline explicit Transform(const TranslationType& t) { *this = t; }
Transform(const ScalingType & s)87   inline explicit Transform(const ScalingType& s) { *this = s; }
88   template<typename Derived>
Transform(const RotationBase<Derived,Dim> & r)89   inline explicit Transform(const RotationBase<Derived, Dim>& r) { *this = r; }
90 
91   inline Transform& operator=(const Transform& other)
92   { m_matrix = other.m_matrix; return *this; }
93 
94   template<typename OtherDerived, bool BigMatrix> // MSVC 2005 will commit suicide if BigMatrix has a default value
95   struct construct_from_matrix
96   {
runconstruct_from_matrix97     static inline void run(Transform *transform, const MatrixBase<OtherDerived>& other)
98     {
99       transform->matrix() = other;
100     }
101   };
102 
103   template<typename OtherDerived> struct construct_from_matrix<OtherDerived, true>
104   {
105     static inline void run(Transform *transform, const MatrixBase<OtherDerived>& other)
106     {
107       transform->linear() = other;
108       transform->translation().setZero();
109       transform->matrix()(Dim,Dim) = Scalar(1);
110       transform->matrix().template block<1,Dim>(Dim,0).setZero();
111     }
112   };
113 
114   /** Constructs and initializes a transformation from a Dim^2 or a (Dim+1)^2 matrix. */
115   template<typename OtherDerived>
116   inline explicit Transform(const MatrixBase<OtherDerived>& other)
117   {
118     construct_from_matrix<OtherDerived, int(OtherDerived::RowsAtCompileTime) == Dim>::run(this, other);
119   }
120 
121   /** Set \c *this from a (Dim+1)^2 matrix. */
122   template<typename OtherDerived>
123   inline Transform& operator=(const MatrixBase<OtherDerived>& other)
124   { m_matrix = other; return *this; }
125 
126   #ifdef EIGEN_QT_SUPPORT
127   inline Transform(const QMatrix& other);
128   inline Transform& operator=(const QMatrix& other);
129   inline QMatrix toQMatrix(void) const;
130   inline Transform(const QTransform& other);
131   inline Transform& operator=(const QTransform& other);
132   inline QTransform toQTransform(void) const;
133   #endif
134 
135   /** shortcut for m_matrix(row,col);
136     * \sa MatrixBase::operaror(int,int) const */
137   inline Scalar operator() (int row, int col) const { return m_matrix(row,col); }
138   /** shortcut for m_matrix(row,col);
139     * \sa MatrixBase::operaror(int,int) */
140   inline Scalar& operator() (int row, int col) { return m_matrix(row,col); }
141 
142   /** \returns a read-only expression of the transformation matrix */
143   inline const MatrixType& matrix() const { return m_matrix; }
144   /** \returns a writable expression of the transformation matrix */
145   inline MatrixType& matrix() { return m_matrix; }
146 
147   /** \returns a read-only expression of the linear (linear) part of the transformation */
148   inline ConstLinearPart linear() const { return m_matrix.template block<Dim,Dim>(0,0); }
149   /** \returns a writable expression of the linear (linear) part of the transformation */
150   inline LinearPart linear() { return m_matrix.template block<Dim,Dim>(0,0); }
151 
152   /** \returns a read-only expression of the translation vector of the transformation */
153   inline ConstTranslationPart translation() const { return m_matrix.template block<Dim,1>(0,Dim); }
154   /** \returns a writable expression of the translation vector of the transformation */
155   inline TranslationPart translation() { return m_matrix.template block<Dim,1>(0,Dim); }
156 
157   /** \returns an expression of the product between the transform \c *this and a matrix expression \a other
158   *
159   * The right hand side \a other might be either:
160   * \li a vector of size Dim,
161   * \li an homogeneous vector of size Dim+1,
162   * \li a transformation matrix of size Dim+1 x Dim+1.
163   */
164   // note: this function is defined here because some compilers cannot find the respective declaration
165   template<typename OtherDerived>
166   inline const typename ei_transform_product_impl<OtherDerived,_Dim,_Dim+1>::ResultType
167   operator * (const MatrixBase<OtherDerived> &other) const
168   { return ei_transform_product_impl<OtherDerived,Dim,HDim>::run(*this,other.derived()); }
169 
170   /** \returns the product expression of a transformation matrix \a a times a transform \a b
171     * The transformation matrix \a a must have a Dim+1 x Dim+1 sizes. */
172   template<typename OtherDerived>
173   friend inline const typename ProductReturnType<OtherDerived,MatrixType>::Type
174   operator * (const MatrixBase<OtherDerived> &a, const Transform &b)
175   { return a.derived() * b.matrix(); }
176 
177   /** Contatenates two transformations */
178   inline const Transform
179   operator * (const Transform& other) const
180   { return Transform(m_matrix * other.matrix()); }
181 
182   /** \sa MatrixBase::setIdentity() */
183   void setIdentity() { m_matrix.setIdentity(); }
184   static const typename MatrixType::IdentityReturnType Identity()
185   {
186     return MatrixType::Identity();
187   }
188 
189   template<typename OtherDerived>
190   inline Transform& scale(const MatrixBase<OtherDerived> &other);
191 
192   template<typename OtherDerived>
193   inline Transform& prescale(const MatrixBase<OtherDerived> &other);
194 
195   inline Transform& scale(Scalar s);
196   inline Transform& prescale(Scalar s);
197 
198   template<typename OtherDerived>
199   inline Transform& translate(const MatrixBase<OtherDerived> &other);
200 
201   template<typename OtherDerived>
202   inline Transform& pretranslate(const MatrixBase<OtherDerived> &other);
203 
204   template<typename RotationType>
205   inline Transform& rotate(const RotationType& rotation);
206 
207   template<typename RotationType>
208   inline Transform& prerotate(const RotationType& rotation);
209 
210   Transform& shear(Scalar sx, Scalar sy);
211   Transform& preshear(Scalar sx, Scalar sy);
212 
213   inline Transform& operator=(const TranslationType& t);
214   inline Transform& operator*=(const TranslationType& t) { return translate(t.vector()); }
215   inline Transform operator*(const TranslationType& t) const;
216 
217   inline Transform& operator=(const ScalingType& t);
218   inline Transform& operator*=(const ScalingType& s) { return scale(s.coeffs()); }
219   inline Transform operator*(const ScalingType& s) const;
220   friend inline Transform operator*(const LinearMatrixType& mat, const Transform& t)
221   {
222     Transform res = t;
223     res.matrix().row(Dim) = t.matrix().row(Dim);
224     res.matrix().template block<Dim,HDim>(0,0) = (mat * t.matrix().template block<Dim,HDim>(0,0)).lazy();
225     return res;
226   }
227 
228   template<typename Derived>
229   inline Transform& operator=(const RotationBase<Derived,Dim>& r);
230   template<typename Derived>
231   inline Transform& operator*=(const RotationBase<Derived,Dim>& r) { return rotate(r.toRotationMatrix()); }
232   template<typename Derived>
233   inline Transform operator*(const RotationBase<Derived,Dim>& r) const;
234 
235   LinearMatrixType rotation() const;
236   template<typename RotationMatrixType, typename ScalingMatrixType>
237   void computeRotationScaling(RotationMatrixType *rotation, ScalingMatrixType *scaling) const;
238   template<typename ScalingMatrixType, typename RotationMatrixType>
239   void computeScalingRotation(ScalingMatrixType *scaling, RotationMatrixType *rotation) const;
240 
241   template<typename PositionDerived, typename OrientationType, typename ScaleDerived>
242   Transform& fromPositionOrientationScale(const MatrixBase<PositionDerived> &position,
243     const OrientationType& orientation, const MatrixBase<ScaleDerived> &scale);
244 
245   inline const MatrixType inverse(TransformTraits traits = Affine) const;
246 
247   /** \returns a const pointer to the column major internal matrix */
248   const Scalar* data() const { return m_matrix.data(); }
249   /** \returns a non-const pointer to the column major internal matrix */
250   Scalar* data() { return m_matrix.data(); }
251 
252   /** \returns \c *this with scalar type casted to \a NewScalarType
253     *
254     * Note that if \a NewScalarType is equal to the current scalar type of \c *this
255     * then this function smartly returns a const reference to \c *this.
256     */
257   template<typename NewScalarType>
258   inline typename internal::cast_return_type<Transform,Transform<NewScalarType,Dim> >::type cast() const
259   { return typename internal::cast_return_type<Transform,Transform<NewScalarType,Dim> >::type(*this); }
260 
261   /** Copy constructor with scalar type conversion */
262   template<typename OtherScalarType>
263   inline explicit Transform(const Transform<OtherScalarType,Dim>& other)
264   { m_matrix = other.matrix().template cast<Scalar>(); }
265 
266   /** \returns \c true if \c *this is approximately equal to \a other, within the precision
267     * determined by \a prec.
268     *
269     * \sa MatrixBase::isApprox() */
270   bool isApprox(const Transform& other, typename NumTraits<Scalar>::Real prec = precision<Scalar>()) const
271   { return m_matrix.isApprox(other.m_matrix, prec); }
272 
273   #ifdef EIGEN_TRANSFORM_PLUGIN
274   #include EIGEN_TRANSFORM_PLUGIN
275   #endif
276 
277 protected:
278 
279 };
280 
281 /** \ingroup Geometry_Module */
282 typedef Transform<float,2> Transform2f;
283 /** \ingroup Geometry_Module */
284 typedef Transform<float,3> Transform3f;
285 /** \ingroup Geometry_Module */
286 typedef Transform<double,2> Transform2d;
287 /** \ingroup Geometry_Module */
288 typedef Transform<double,3> Transform3d;
289 
290 /**************************
291 *** Optional QT support ***
292 **************************/
293 
294 #ifdef EIGEN_QT_SUPPORT
295 /** Initialises \c *this from a QMatrix assuming the dimension is 2.
296   *
297   * This function is available only if the token EIGEN_QT_SUPPORT is defined.
298   */
299 template<typename Scalar, int Dim>
300 Transform<Scalar,Dim>::Transform(const QMatrix& other)
301 {
302   *this = other;
303 }
304 
305 /** Set \c *this from a QMatrix assuming the dimension is 2.
306   *
307   * This function is available only if the token EIGEN_QT_SUPPORT is defined.
308   */
309 template<typename Scalar, int Dim>
310 Transform<Scalar,Dim>& Transform<Scalar,Dim>::operator=(const QMatrix& other)
311 {
312   EIGEN_STATIC_ASSERT(Dim==2, YOU_MADE_A_PROGRAMMING_MISTAKE)
313   m_matrix << other.m11(), other.m21(), other.dx(),
314               other.m12(), other.m22(), other.dy(),
315               0, 0, 1;
316    return *this;
317 }
318 
319 /** \returns a QMatrix from \c *this assuming the dimension is 2.
320   *
321   * \warning this convertion might loss data if \c *this is not affine
322   *
323   * This function is available only if the token EIGEN_QT_SUPPORT is defined.
324   */
325 template<typename Scalar, int Dim>
326 QMatrix Transform<Scalar,Dim>::toQMatrix(void) const
327 {
328   EIGEN_STATIC_ASSERT(Dim==2, YOU_MADE_A_PROGRAMMING_MISTAKE)
329   return QMatrix(m_matrix.coeff(0,0), m_matrix.coeff(1,0),
330                  m_matrix.coeff(0,1), m_matrix.coeff(1,1),
331                  m_matrix.coeff(0,2), m_matrix.coeff(1,2));
332 }
333 
334 /** Initialises \c *this from a QTransform assuming the dimension is 2.
335   *
336   * This function is available only if the token EIGEN_QT_SUPPORT is defined.
337   */
338 template<typename Scalar, int Dim>
339 Transform<Scalar,Dim>::Transform(const QTransform& other)
340 {
341   *this = other;
342 }
343 
344 /** Set \c *this from a QTransform assuming the dimension is 2.
345   *
346   * This function is available only if the token EIGEN_QT_SUPPORT is defined.
347   */
348 template<typename Scalar, int Dim>
349 Transform<Scalar,Dim>& Transform<Scalar,Dim>::operator=(const QTransform& other)
350 {
351   EIGEN_STATIC_ASSERT(Dim==2, YOU_MADE_A_PROGRAMMING_MISTAKE)
352   m_matrix << other.m11(), other.m21(), other.dx(),
353               other.m12(), other.m22(), other.dy(),
354               other.m13(), other.m23(), other.m33();
355    return *this;
356 }
357 
358 /** \returns a QTransform from \c *this assuming the dimension is 2.
359   *
360   * This function is available only if the token EIGEN_QT_SUPPORT is defined.
361   */
362 template<typename Scalar, int Dim>
363 QTransform Transform<Scalar,Dim>::toQTransform(void) const
364 {
365   EIGEN_STATIC_ASSERT(Dim==2, YOU_MADE_A_PROGRAMMING_MISTAKE)
366   return QTransform(m_matrix.coeff(0,0), m_matrix.coeff(1,0), m_matrix.coeff(2,0),
367                     m_matrix.coeff(0,1), m_matrix.coeff(1,1), m_matrix.coeff(2,1),
368                     m_matrix.coeff(0,2), m_matrix.coeff(1,2), m_matrix.coeff(2,2));
369 }
370 #endif
371 
372 /*********************
373 *** Procedural API ***
374 *********************/
375 
376 /** Applies on the right the non uniform scale transformation represented
377   * by the vector \a other to \c *this and returns a reference to \c *this.
378   * \sa prescale()
379   */
380 template<typename Scalar, int Dim>
381 template<typename OtherDerived>
382 Transform<Scalar,Dim>&
383 Transform<Scalar,Dim>::scale(const MatrixBase<OtherDerived> &other)
384 {
385   EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(OtherDerived,int(Dim))
386   linear() = (linear() * other.asDiagonal()).lazy();
387   return *this;
388 }
389 
390 /** Applies on the right a uniform scale of a factor \a c to \c *this
391   * and returns a reference to \c *this.
392   * \sa prescale(Scalar)
393   */
394 template<typename Scalar, int Dim>
395 inline Transform<Scalar,Dim>& Transform<Scalar,Dim>::scale(Scalar s)
396 {
397   linear() *= s;
398   return *this;
399 }
400 
401 /** Applies on the left the non uniform scale transformation represented
402   * by the vector \a other to \c *this and returns a reference to \c *this.
403   * \sa scale()
404   */
405 template<typename Scalar, int Dim>
406 template<typename OtherDerived>
407 Transform<Scalar,Dim>&
408 Transform<Scalar,Dim>::prescale(const MatrixBase<OtherDerived> &other)
409 {
410   EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(OtherDerived,int(Dim))
411   m_matrix.template block<Dim,HDim>(0,0) = (other.asDiagonal() * m_matrix.template block<Dim,HDim>(0,0)).lazy();
412   return *this;
413 }
414 
415 /** Applies on the left a uniform scale of a factor \a c to \c *this
416   * and returns a reference to \c *this.
417   * \sa scale(Scalar)
418   */
419 template<typename Scalar, int Dim>
420 inline Transform<Scalar,Dim>& Transform<Scalar,Dim>::prescale(Scalar s)
421 {
422   m_matrix.template corner<Dim,HDim>(TopLeft) *= s;
423   return *this;
424 }
425 
426 /** Applies on the right the translation matrix represented by the vector \a other
427   * to \c *this and returns a reference to \c *this.
428   * \sa pretranslate()
429   */
430 template<typename Scalar, int Dim>
431 template<typename OtherDerived>
432 Transform<Scalar,Dim>&
433 Transform<Scalar,Dim>::translate(const MatrixBase<OtherDerived> &other)
434 {
435   EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(OtherDerived,int(Dim))
436   translation() += linear() * other;
437   return *this;
438 }
439 
440 /** Applies on the left the translation matrix represented by the vector \a other
441   * to \c *this and returns a reference to \c *this.
442   * \sa translate()
443   */
444 template<typename Scalar, int Dim>
445 template<typename OtherDerived>
446 Transform<Scalar,Dim>&
447 Transform<Scalar,Dim>::pretranslate(const MatrixBase<OtherDerived> &other)
448 {
449   EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(OtherDerived,int(Dim))
450   translation() += other;
451   return *this;
452 }
453 
454 /** Applies on the right the rotation represented by the rotation \a rotation
455   * to \c *this and returns a reference to \c *this.
456   *
457   * The template parameter \a RotationType is the type of the rotation which
458   * must be known by ei_toRotationMatrix<>.
459   *
460   * Natively supported types includes:
461   *   - any scalar (2D),
462   *   - a Dim x Dim matrix expression,
463   *   - a Quaternion (3D),
464   *   - a AngleAxis (3D)
465   *
466   * This mechanism is easily extendable to support user types such as Euler angles,
467   * or a pair of Quaternion for 4D rotations.
468   *
469   * \sa rotate(Scalar), class Quaternion, class AngleAxis, prerotate(RotationType)
470   */
471 template<typename Scalar, int Dim>
472 template<typename RotationType>
473 Transform<Scalar,Dim>&
474 Transform<Scalar,Dim>::rotate(const RotationType& rotation)
475 {
476   linear() *= ei_toRotationMatrix<Scalar,Dim>(rotation);
477   return *this;
478 }
479 
480 /** Applies on the left the rotation represented by the rotation \a rotation
481   * to \c *this and returns a reference to \c *this.
482   *
483   * See rotate() for further details.
484   *
485   * \sa rotate()
486   */
487 template<typename Scalar, int Dim>
488 template<typename RotationType>
489 Transform<Scalar,Dim>&
490 Transform<Scalar,Dim>::prerotate(const RotationType& rotation)
491 {
492   m_matrix.template block<Dim,HDim>(0,0) = ei_toRotationMatrix<Scalar,Dim>(rotation)
493                                          * m_matrix.template block<Dim,HDim>(0,0);
494   return *this;
495 }
496 
497 /** Applies on the right the shear transformation represented
498   * by the vector \a other to \c *this and returns a reference to \c *this.
499   * \warning 2D only.
500   * \sa preshear()
501   */
502 template<typename Scalar, int Dim>
503 Transform<Scalar,Dim>&
504 Transform<Scalar,Dim>::shear(Scalar sx, Scalar sy)
505 {
506   EIGEN_STATIC_ASSERT(int(Dim)==2, YOU_MADE_A_PROGRAMMING_MISTAKE)
507   VectorType tmp = linear().col(0)*sy + linear().col(1);
508   linear() << linear().col(0) + linear().col(1)*sx, tmp;
509   return *this;
510 }
511 
512 /** Applies on the left the shear transformation represented
513   * by the vector \a other to \c *this and returns a reference to \c *this.
514   * \warning 2D only.
515   * \sa shear()
516   */
517 template<typename Scalar, int Dim>
518 Transform<Scalar,Dim>&
519 Transform<Scalar,Dim>::preshear(Scalar sx, Scalar sy)
520 {
521   EIGEN_STATIC_ASSERT(int(Dim)==2, YOU_MADE_A_PROGRAMMING_MISTAKE)
522   m_matrix.template block<Dim,HDim>(0,0) = LinearMatrixType(1, sx, sy, 1) * m_matrix.template block<Dim,HDim>(0,0);
523   return *this;
524 }
525 
526 /******************************************************
527 *** Scaling, Translation and Rotation compatibility ***
528 ******************************************************/
529 
530 template<typename Scalar, int Dim>
531 inline Transform<Scalar,Dim>& Transform<Scalar,Dim>::operator=(const TranslationType& t)
532 {
533   linear().setIdentity();
534   translation() = t.vector();
535   m_matrix.template block<1,Dim>(Dim,0).setZero();
536   m_matrix(Dim,Dim) = Scalar(1);
537   return *this;
538 }
539 
540 template<typename Scalar, int Dim>
541 inline Transform<Scalar,Dim> Transform<Scalar,Dim>::operator*(const TranslationType& t) const
542 {
543   Transform res = *this;
544   res.translate(t.vector());
545   return res;
546 }
547 
548 template<typename Scalar, int Dim>
549 inline Transform<Scalar,Dim>& Transform<Scalar,Dim>::operator=(const ScalingType& s)
550 {
551   m_matrix.setZero();
552   linear().diagonal() = s.coeffs();
553   m_matrix.coeffRef(Dim,Dim) = Scalar(1);
554   return *this;
555 }
556 
557 template<typename Scalar, int Dim>
558 inline Transform<Scalar,Dim> Transform<Scalar,Dim>::operator*(const ScalingType& s) const
559 {
560   Transform res = *this;
561   res.scale(s.coeffs());
562   return res;
563 }
564 
565 template<typename Scalar, int Dim>
566 template<typename Derived>
567 inline Transform<Scalar,Dim>& Transform<Scalar,Dim>::operator=(const RotationBase<Derived,Dim>& r)
568 {
569   linear() = ei_toRotationMatrix<Scalar,Dim>(r);
570   translation().setZero();
571   m_matrix.template block<1,Dim>(Dim,0).setZero();
572   m_matrix.coeffRef(Dim,Dim) = Scalar(1);
573   return *this;
574 }
575 
576 template<typename Scalar, int Dim>
577 template<typename Derived>
578 inline Transform<Scalar,Dim> Transform<Scalar,Dim>::operator*(const RotationBase<Derived,Dim>& r) const
579 {
580   Transform res = *this;
581   res.rotate(r.derived());
582   return res;
583 }
584 
585 /************************
586 *** Special functions ***
587 ************************/
588 
589 /** \returns the rotation part of the transformation
590   * \nonstableyet
591   *
592   * \svd_module
593   *
594   * \sa computeRotationScaling(), computeScalingRotation(), class SVD
595   */
596 template<typename Scalar, int Dim>
597 typename Transform<Scalar,Dim>::LinearMatrixType
598 Transform<Scalar,Dim>::rotation() const
599 {
600   LinearMatrixType result;
601   computeRotationScaling(&result, (LinearMatrixType*)0);
602   return result;
603 }
604 
605 
606 /** decomposes the linear part of the transformation as a product rotation x scaling, the scaling being
607   * not necessarily positive.
608   *
609   * If either pointer is zero, the corresponding computation is skipped.
610   *
611   * \nonstableyet
612   *
613   * \svd_module
614   *
615   * \sa computeScalingRotation(), rotation(), class SVD
616   */
617 template<typename Scalar, int Dim>
618 template<typename RotationMatrixType, typename ScalingMatrixType>
619 void Transform<Scalar,Dim>::computeRotationScaling(RotationMatrixType *rotation, ScalingMatrixType *scaling) const
620 {
621   JacobiSVD<LinearMatrixType> svd(linear(), ComputeFullU|ComputeFullV);
622   Scalar x = (svd.matrixU() * svd.matrixV().adjoint()).determinant(); // so x has absolute value 1
623   Matrix<Scalar, Dim, 1> sv(svd.singularValues());
624   sv.coeffRef(0) *= x;
625   if(scaling)
626   {
627     scaling->noalias() = svd.matrixV() * sv.asDiagonal() * svd.matrixV().adjoint();
628   }
629   if(rotation)
630   {
631     LinearMatrixType m(svd.matrixU());
632     m.col(0) /= x;
633     rotation->noalias() = m * svd.matrixV().adjoint();
634   }
635 }
636 
637 /** decomposes the linear part of the transformation as a product rotation x scaling, the scaling being
638   * not necessarily positive.
639   *
640   * If either pointer is zero, the corresponding computation is skipped.
641   *
642   * \nonstableyet
643   *
644   * \svd_module
645   *
646   * \sa computeRotationScaling(), rotation(), class SVD
647   */
648 template<typename Scalar, int Dim>
649 template<typename ScalingMatrixType, typename RotationMatrixType>
650 void Transform<Scalar,Dim>::computeScalingRotation(ScalingMatrixType *scaling, RotationMatrixType *rotation) const
651 {
652   JacobiSVD<LinearMatrixType> svd(linear(), ComputeFullU|ComputeFullV);
653   Scalar x = (svd.matrixU() * svd.matrixV().adjoint()).determinant(); // so x has absolute value 1
654   Matrix<Scalar, Dim, 1> sv(svd.singularValues());
655   sv.coeffRef(0) *= x;
656   if(scaling)
657   {
658     scaling->noalias() = svd.matrixU() * sv.asDiagonal() * svd.matrixU().adjoint();
659   }
660   if(rotation)
661   {
662     LinearMatrixType m(svd.matrixU());
663     m.col(0) /= x;
664     rotation->noalias() = m * svd.matrixV().adjoint();
665   }
666 }
667 
668 /** Convenient method to set \c *this from a position, orientation and scale
669   * of a 3D object.
670   */
671 template<typename Scalar, int Dim>
672 template<typename PositionDerived, typename OrientationType, typename ScaleDerived>
673 Transform<Scalar,Dim>&
674 Transform<Scalar,Dim>::fromPositionOrientationScale(const MatrixBase<PositionDerived> &position,
675   const OrientationType& orientation, const MatrixBase<ScaleDerived> &scale)
676 {
677   linear() = ei_toRotationMatrix<Scalar,Dim>(orientation);
678   linear() *= scale.asDiagonal();
679   translation() = position;
680   m_matrix.template block<1,Dim>(Dim,0).setZero();
681   m_matrix(Dim,Dim) = Scalar(1);
682   return *this;
683 }
684 
685 /** \nonstableyet
686   *
687   * \returns the inverse transformation matrix according to some given knowledge
688   * on \c *this.
689   *
690   * \param traits allows to optimize the inversion process when the transformion
691   * is known to be not a general transformation. The possible values are:
692   *  - Projective if the transformation is not necessarily affine, i.e., if the
693   *    last row is not guaranteed to be [0 ... 0 1]
694   *  - Affine is the default, the last row is assumed to be [0 ... 0 1]
695   *  - Isometry if the transformation is only a concatenations of translations
696   *    and rotations.
697   *
698   * \warning unless \a traits is always set to NoShear or NoScaling, this function
699   * requires the generic inverse method of MatrixBase defined in the LU module. If
700   * you forget to include this module, then you will get hard to debug linking errors.
701   *
702   * \sa MatrixBase::inverse()
703   */
704 template<typename Scalar, int Dim>
705 inline const typename Transform<Scalar,Dim>::MatrixType
706 Transform<Scalar,Dim>::inverse(TransformTraits traits) const
707 {
708   if (traits == Projective)
709   {
710     return m_matrix.inverse();
711   }
712   else
713   {
714     MatrixType res;
715     if (traits == Affine)
716     {
717       res.template corner<Dim,Dim>(TopLeft) = linear().inverse();
718     }
719     else if (traits == Isometry)
720     {
721       res.template corner<Dim,Dim>(TopLeft) = linear().transpose();
722     }
723     else
724     {
725       ei_assert("invalid traits value in Transform::inverse()");
726     }
727     // translation and remaining parts
728     res.template corner<Dim,1>(TopRight) = - res.template corner<Dim,Dim>(TopLeft) * translation();
729     res.template corner<1,Dim>(BottomLeft).setZero();
730     res.coeffRef(Dim,Dim) = Scalar(1);
731     return res;
732   }
733 }
734 
735 /*****************************************************
736 *** Specializations of operator* with a MatrixBase ***
737 *****************************************************/
738 
739 template<typename Other, int Dim, int HDim>
740 struct ei_transform_product_impl<Other,Dim,HDim, HDim,HDim>
741 {
742   typedef Transform<typename Other::Scalar,Dim> TransformType;
743   typedef typename TransformType::MatrixType MatrixType;
744   typedef typename ProductReturnType<MatrixType,Other>::Type ResultType;
745   static ResultType run(const TransformType& tr, const Other& other)
746   { return tr.matrix() * other; }
747 };
748 
749 template<typename Other, int Dim, int HDim>
750 struct ei_transform_product_impl<Other,Dim,HDim, Dim,Dim>
751 {
752   typedef Transform<typename Other::Scalar,Dim> TransformType;
753   typedef typename TransformType::MatrixType MatrixType;
754   typedef TransformType ResultType;
755   static ResultType run(const TransformType& tr, const Other& other)
756   {
757     TransformType res;
758     res.translation() = tr.translation();
759     res.matrix().row(Dim) = tr.matrix().row(Dim);
760     res.linear() = (tr.linear() * other).lazy();
761     return res;
762   }
763 };
764 
765 template<typename Other, int Dim, int HDim>
766 struct ei_transform_product_impl<Other,Dim,HDim, HDim,1>
767 {
768   typedef Transform<typename Other::Scalar,Dim> TransformType;
769   typedef typename TransformType::MatrixType MatrixType;
770   typedef typename ProductReturnType<MatrixType,Other>::Type ResultType;
771   static ResultType run(const TransformType& tr, const Other& other)
772   { return tr.matrix() * other; }
773 };
774 
775 template<typename Other, int Dim, int HDim>
776 struct ei_transform_product_impl<Other,Dim,HDim, Dim,1>
777 {
778   typedef typename Other::Scalar Scalar;
779   typedef Transform<Scalar,Dim> TransformType;
780   typedef Matrix<Scalar,Dim,1> ResultType;
781   static ResultType run(const TransformType& tr, const Other& other)
782   { return ((tr.linear() * other) + tr.translation())
783           * (Scalar(1) / ( (tr.matrix().template block<1,Dim>(Dim,0) * other).coeff(0) + tr.matrix().coeff(Dim,Dim))); }
784 };
785 
786 } // end namespace Eigen
787