1 
2 #include <iostream>
3 #include <Eigen/Core>
4 #include <bench/BenchUtil.h>
5 using namespace Eigen;
6 
7 #ifndef REPEAT
8 #define REPEAT 100000
9 #endif
10 
11 #ifndef TRIES
12 #define TRIES 20
13 #endif
14 
15 typedef double Scalar;
16 
17 template <typename MatrixType>
bench_reverse(const MatrixType & m)18 __attribute__ ((noinline)) void bench_reverse(const MatrixType& m)
19 {
20   int rows = m.rows();
21   int cols = m.cols();
22   int size = m.size();
23 
24   int repeats = (REPEAT*1000)/size;
25   MatrixType a = MatrixType::Random(rows,cols);
26   MatrixType b = MatrixType::Random(rows,cols);
27 
28   BenchTimer timerB, timerH, timerV;
29 
30   Scalar acc = 0;
31   int r = internal::random<int>(0,rows-1);
32   int c = internal::random<int>(0,cols-1);
33   for (int t=0; t<TRIES; ++t)
34   {
35     timerB.start();
36     for (int k=0; k<repeats; ++k)
37     {
38       asm("#begin foo");
39       b = a.reverse();
40       asm("#end foo");
41       acc += b.coeff(r,c);
42     }
43     timerB.stop();
44   }
45 
46   if (MatrixType::RowsAtCompileTime==Dynamic)
47     std::cout << "dyn   ";
48   else
49     std::cout << "fixed ";
50   std::cout << rows << " x " << cols << " \t"
51             << (timerB.value() * REPEAT) / repeats << "s "
52             << "(" << 1e-6 * size*repeats/timerB.value() << " MFLOPS)\t";
53 
54   std::cout << "\n";
55   // make sure the compiler does not optimize too much
56   if (acc==123)
57     std::cout << acc;
58 }
59 
main(int argc,char * argv[])60 int main(int argc, char* argv[])
61 {
62   const int dynsizes[] = {4,6,8,16,24,32,49,64,128,256,512,900,0};
63   std::cout << "size            no sqrt                           standard";
64 //   #ifdef BENCH_GSL
65 //   std::cout << "       GSL (standard + double + ATLAS)  ";
66 //   #endif
67   std::cout << "\n";
68   for (uint i=0; dynsizes[i]>0; ++i)
69   {
70     bench_reverse(Matrix<Scalar,Dynamic,Dynamic>(dynsizes[i],dynsizes[i]));
71     bench_reverse(Matrix<Scalar,Dynamic,1>(dynsizes[i]*dynsizes[i]));
72   }
73 //   bench_reverse(Matrix<Scalar,2,2>());
74 //   bench_reverse(Matrix<Scalar,3,3>());
75 //   bench_reverse(Matrix<Scalar,4,4>());
76 //   bench_reverse(Matrix<Scalar,5,5>());
77 //   bench_reverse(Matrix<Scalar,6,6>());
78 //   bench_reverse(Matrix<Scalar,7,7>());
79 //   bench_reverse(Matrix<Scalar,8,8>());
80 //   bench_reverse(Matrix<Scalar,12,12>());
81 //   bench_reverse(Matrix<Scalar,16,16>());
82   return 0;
83 }
84 
85