1 /* ssbmv.f -- translated by f2c (version 20100827).
2    You must link the resulting object file with libf2c:
3 	on Microsoft Windows system, link with libf2c.lib;
4 	on Linux or Unix systems, link with .../path/to/libf2c.a -lm
5 	or, if you install libf2c.a in a standard place, with -lf2c -lm
6 	-- in that order, at the end of the command line, as in
7 		cc *.o -lf2c -lm
8 	Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
9 
10 		http://www.netlib.org/f2c/libf2c.zip
11 */
12 
13 #include "datatypes.h"
14 
ssbmv_(char * uplo,integer * n,integer * k,real * alpha,real * a,integer * lda,real * x,integer * incx,real * beta,real * y,integer * incy,ftnlen uplo_len)15 /* Subroutine */ int ssbmv_(char *uplo, integer *n, integer *k, real *alpha,
16 	real *a, integer *lda, real *x, integer *incx, real *beta, real *y,
17 	integer *incy, ftnlen uplo_len)
18 {
19     /* System generated locals */
20     integer a_dim1, a_offset, i__1, i__2, i__3, i__4;
21 
22     /* Local variables */
23     integer i__, j, l, ix, iy, jx, jy, kx, ky, info;
24     real temp1, temp2;
25     extern logical lsame_(char *, char *, ftnlen, ftnlen);
26     integer kplus1;
27     extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen);
28 
29 /*     .. Scalar Arguments .. */
30 /*     .. */
31 /*     .. Array Arguments .. */
32 /*     .. */
33 
34 /*  Purpose */
35 /*  ======= */
36 
37 /*  SSBMV  performs the matrix-vector  operation */
38 
39 /*     y := alpha*A*x + beta*y, */
40 
41 /*  where alpha and beta are scalars, x and y are n element vectors and */
42 /*  A is an n by n symmetric band matrix, with k super-diagonals. */
43 
44 /*  Arguments */
45 /*  ========== */
46 
47 /*  UPLO   - CHARACTER*1. */
48 /*           On entry, UPLO specifies whether the upper or lower */
49 /*           triangular part of the band matrix A is being supplied as */
50 /*           follows: */
51 
52 /*              UPLO = 'U' or 'u'   The upper triangular part of A is */
53 /*                                  being supplied. */
54 
55 /*              UPLO = 'L' or 'l'   The lower triangular part of A is */
56 /*                                  being supplied. */
57 
58 /*           Unchanged on exit. */
59 
60 /*  N      - INTEGER. */
61 /*           On entry, N specifies the order of the matrix A. */
62 /*           N must be at least zero. */
63 /*           Unchanged on exit. */
64 
65 /*  K      - INTEGER. */
66 /*           On entry, K specifies the number of super-diagonals of the */
67 /*           matrix A. K must satisfy  0 .le. K. */
68 /*           Unchanged on exit. */
69 
70 /*  ALPHA  - REAL            . */
71 /*           On entry, ALPHA specifies the scalar alpha. */
72 /*           Unchanged on exit. */
73 
74 /*  A      - REAL             array of DIMENSION ( LDA, n ). */
75 /*           Before entry with UPLO = 'U' or 'u', the leading ( k + 1 ) */
76 /*           by n part of the array A must contain the upper triangular */
77 /*           band part of the symmetric matrix, supplied column by */
78 /*           column, with the leading diagonal of the matrix in row */
79 /*           ( k + 1 ) of the array, the first super-diagonal starting at */
80 /*           position 2 in row k, and so on. The top left k by k triangle */
81 /*           of the array A is not referenced. */
82 /*           The following program segment will transfer the upper */
83 /*           triangular part of a symmetric band matrix from conventional */
84 /*           full matrix storage to band storage: */
85 
86 /*                 DO 20, J = 1, N */
87 /*                    M = K + 1 - J */
88 /*                    DO 10, I = MAX( 1, J - K ), J */
89 /*                       A( M + I, J ) = matrix( I, J ) */
90 /*              10    CONTINUE */
91 /*              20 CONTINUE */
92 
93 /*           Before entry with UPLO = 'L' or 'l', the leading ( k + 1 ) */
94 /*           by n part of the array A must contain the lower triangular */
95 /*           band part of the symmetric matrix, supplied column by */
96 /*           column, with the leading diagonal of the matrix in row 1 of */
97 /*           the array, the first sub-diagonal starting at position 1 in */
98 /*           row 2, and so on. The bottom right k by k triangle of the */
99 /*           array A is not referenced. */
100 /*           The following program segment will transfer the lower */
101 /*           triangular part of a symmetric band matrix from conventional */
102 /*           full matrix storage to band storage: */
103 
104 /*                 DO 20, J = 1, N */
105 /*                    M = 1 - J */
106 /*                    DO 10, I = J, MIN( N, J + K ) */
107 /*                       A( M + I, J ) = matrix( I, J ) */
108 /*              10    CONTINUE */
109 /*              20 CONTINUE */
110 
111 /*           Unchanged on exit. */
112 
113 /*  LDA    - INTEGER. */
114 /*           On entry, LDA specifies the first dimension of A as declared */
115 /*           in the calling (sub) program. LDA must be at least */
116 /*           ( k + 1 ). */
117 /*           Unchanged on exit. */
118 
119 /*  X      - REAL             array of DIMENSION at least */
120 /*           ( 1 + ( n - 1 )*abs( INCX ) ). */
121 /*           Before entry, the incremented array X must contain the */
122 /*           vector x. */
123 /*           Unchanged on exit. */
124 
125 /*  INCX   - INTEGER. */
126 /*           On entry, INCX specifies the increment for the elements of */
127 /*           X. INCX must not be zero. */
128 /*           Unchanged on exit. */
129 
130 /*  BETA   - REAL            . */
131 /*           On entry, BETA specifies the scalar beta. */
132 /*           Unchanged on exit. */
133 
134 /*  Y      - REAL             array of DIMENSION at least */
135 /*           ( 1 + ( n - 1 )*abs( INCY ) ). */
136 /*           Before entry, the incremented array Y must contain the */
137 /*           vector y. On exit, Y is overwritten by the updated vector y. */
138 
139 /*  INCY   - INTEGER. */
140 /*           On entry, INCY specifies the increment for the elements of */
141 /*           Y. INCY must not be zero. */
142 /*           Unchanged on exit. */
143 
144 /*  Further Details */
145 /*  =============== */
146 
147 /*  Level 2 Blas routine. */
148 
149 /*  -- Written on 22-October-1986. */
150 /*     Jack Dongarra, Argonne National Lab. */
151 /*     Jeremy Du Croz, Nag Central Office. */
152 /*     Sven Hammarling, Nag Central Office. */
153 /*     Richard Hanson, Sandia National Labs. */
154 
155 /*  ===================================================================== */
156 
157 /*     .. Parameters .. */
158 /*     .. */
159 /*     .. Local Scalars .. */
160 /*     .. */
161 /*     .. External Functions .. */
162 /*     .. */
163 /*     .. External Subroutines .. */
164 /*     .. */
165 /*     .. Intrinsic Functions .. */
166 /*     .. */
167 
168 /*     Test the input parameters. */
169 
170     /* Parameter adjustments */
171     a_dim1 = *lda;
172     a_offset = 1 + a_dim1;
173     a -= a_offset;
174     --x;
175     --y;
176 
177     /* Function Body */
178     info = 0;
179     if (! lsame_(uplo, "U", (ftnlen)1, (ftnlen)1) && ! lsame_(uplo, "L", (
180 	    ftnlen)1, (ftnlen)1)) {
181 	info = 1;
182     } else if (*n < 0) {
183 	info = 2;
184     } else if (*k < 0) {
185 	info = 3;
186     } else if (*lda < *k + 1) {
187 	info = 6;
188     } else if (*incx == 0) {
189 	info = 8;
190     } else if (*incy == 0) {
191 	info = 11;
192     }
193     if (info != 0) {
194 	xerbla_("SSBMV ", &info, (ftnlen)6);
195 	return 0;
196     }
197 
198 /*     Quick return if possible. */
199 
200     if (*n == 0 || (*alpha == 0.f && *beta == 1.f)) {
201 	return 0;
202     }
203 
204 /*     Set up the start points in  X  and  Y. */
205 
206     if (*incx > 0) {
207 	kx = 1;
208     } else {
209 	kx = 1 - (*n - 1) * *incx;
210     }
211     if (*incy > 0) {
212 	ky = 1;
213     } else {
214 	ky = 1 - (*n - 1) * *incy;
215     }
216 
217 /*     Start the operations. In this version the elements of the array A */
218 /*     are accessed sequentially with one pass through A. */
219 
220 /*     First form  y := beta*y. */
221 
222     if (*beta != 1.f) {
223 	if (*incy == 1) {
224 	    if (*beta == 0.f) {
225 		i__1 = *n;
226 		for (i__ = 1; i__ <= i__1; ++i__) {
227 		    y[i__] = 0.f;
228 /* L10: */
229 		}
230 	    } else {
231 		i__1 = *n;
232 		for (i__ = 1; i__ <= i__1; ++i__) {
233 		    y[i__] = *beta * y[i__];
234 /* L20: */
235 		}
236 	    }
237 	} else {
238 	    iy = ky;
239 	    if (*beta == 0.f) {
240 		i__1 = *n;
241 		for (i__ = 1; i__ <= i__1; ++i__) {
242 		    y[iy] = 0.f;
243 		    iy += *incy;
244 /* L30: */
245 		}
246 	    } else {
247 		i__1 = *n;
248 		for (i__ = 1; i__ <= i__1; ++i__) {
249 		    y[iy] = *beta * y[iy];
250 		    iy += *incy;
251 /* L40: */
252 		}
253 	    }
254 	}
255     }
256     if (*alpha == 0.f) {
257 	return 0;
258     }
259     if (lsame_(uplo, "U", (ftnlen)1, (ftnlen)1)) {
260 
261 /*        Form  y  when upper triangle of A is stored. */
262 
263 	kplus1 = *k + 1;
264 	if (*incx == 1 && *incy == 1) {
265 	    i__1 = *n;
266 	    for (j = 1; j <= i__1; ++j) {
267 		temp1 = *alpha * x[j];
268 		temp2 = 0.f;
269 		l = kplus1 - j;
270 /* Computing MAX */
271 		i__2 = 1, i__3 = j - *k;
272 		i__4 = j - 1;
273 		for (i__ = max(i__2,i__3); i__ <= i__4; ++i__) {
274 		    y[i__] += temp1 * a[l + i__ + j * a_dim1];
275 		    temp2 += a[l + i__ + j * a_dim1] * x[i__];
276 /* L50: */
277 		}
278 		y[j] = y[j] + temp1 * a[kplus1 + j * a_dim1] + *alpha * temp2;
279 /* L60: */
280 	    }
281 	} else {
282 	    jx = kx;
283 	    jy = ky;
284 	    i__1 = *n;
285 	    for (j = 1; j <= i__1; ++j) {
286 		temp1 = *alpha * x[jx];
287 		temp2 = 0.f;
288 		ix = kx;
289 		iy = ky;
290 		l = kplus1 - j;
291 /* Computing MAX */
292 		i__4 = 1, i__2 = j - *k;
293 		i__3 = j - 1;
294 		for (i__ = max(i__4,i__2); i__ <= i__3; ++i__) {
295 		    y[iy] += temp1 * a[l + i__ + j * a_dim1];
296 		    temp2 += a[l + i__ + j * a_dim1] * x[ix];
297 		    ix += *incx;
298 		    iy += *incy;
299 /* L70: */
300 		}
301 		y[jy] = y[jy] + temp1 * a[kplus1 + j * a_dim1] + *alpha *
302 			temp2;
303 		jx += *incx;
304 		jy += *incy;
305 		if (j > *k) {
306 		    kx += *incx;
307 		    ky += *incy;
308 		}
309 /* L80: */
310 	    }
311 	}
312     } else {
313 
314 /*        Form  y  when lower triangle of A is stored. */
315 
316 	if (*incx == 1 && *incy == 1) {
317 	    i__1 = *n;
318 	    for (j = 1; j <= i__1; ++j) {
319 		temp1 = *alpha * x[j];
320 		temp2 = 0.f;
321 		y[j] += temp1 * a[j * a_dim1 + 1];
322 		l = 1 - j;
323 /* Computing MIN */
324 		i__4 = *n, i__2 = j + *k;
325 		i__3 = min(i__4,i__2);
326 		for (i__ = j + 1; i__ <= i__3; ++i__) {
327 		    y[i__] += temp1 * a[l + i__ + j * a_dim1];
328 		    temp2 += a[l + i__ + j * a_dim1] * x[i__];
329 /* L90: */
330 		}
331 		y[j] += *alpha * temp2;
332 /* L100: */
333 	    }
334 	} else {
335 	    jx = kx;
336 	    jy = ky;
337 	    i__1 = *n;
338 	    for (j = 1; j <= i__1; ++j) {
339 		temp1 = *alpha * x[jx];
340 		temp2 = 0.f;
341 		y[jy] += temp1 * a[j * a_dim1 + 1];
342 		l = 1 - j;
343 		ix = jx;
344 		iy = jy;
345 /* Computing MIN */
346 		i__4 = *n, i__2 = j + *k;
347 		i__3 = min(i__4,i__2);
348 		for (i__ = j + 1; i__ <= i__3; ++i__) {
349 		    ix += *incx;
350 		    iy += *incy;
351 		    y[iy] += temp1 * a[l + i__ + j * a_dim1];
352 		    temp2 += a[l + i__ + j * a_dim1] * x[ix];
353 /* L110: */
354 		}
355 		y[jy] += *alpha * temp2;
356 		jx += *incx;
357 		jy += *incy;
358 /* L120: */
359 	    }
360 	}
361     }
362 
363     return 0;
364 
365 /*     End of SSBMV . */
366 
367 } /* ssbmv_ */
368 
369