1 /* ztbmv.f -- translated by f2c (version 20100827).
2 You must link the resulting object file with libf2c:
3 on Microsoft Windows system, link with libf2c.lib;
4 on Linux or Unix systems, link with .../path/to/libf2c.a -lm
5 or, if you install libf2c.a in a standard place, with -lf2c -lm
6 -- in that order, at the end of the command line, as in
7 cc *.o -lf2c -lm
8 Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
9
10 http://www.netlib.org/f2c/libf2c.zip
11 */
12
13 #include "datatypes.h"
14
ztbmv_(char * uplo,char * trans,char * diag,integer * n,integer * k,doublecomplex * a,integer * lda,doublecomplex * x,integer * incx,ftnlen uplo_len,ftnlen trans_len,ftnlen diag_len)15 /* Subroutine */ int ztbmv_(char *uplo, char *trans, char *diag, integer *n,
16 integer *k, doublecomplex *a, integer *lda, doublecomplex *x, integer
17 *incx, ftnlen uplo_len, ftnlen trans_len, ftnlen diag_len)
18 {
19 /* System generated locals */
20 integer a_dim1, a_offset, i__1, i__2, i__3, i__4, i__5;
21 doublecomplex z__1, z__2, z__3;
22
23 /* Builtin functions */
24 void d_cnjg(doublecomplex *, doublecomplex *);
25
26 /* Local variables */
27 integer i__, j, l, ix, jx, kx, info;
28 doublecomplex temp;
29 extern logical lsame_(char *, char *, ftnlen, ftnlen);
30 integer kplus1;
31 extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen);
32 logical noconj, nounit;
33
34 /* .. Scalar Arguments .. */
35 /* .. */
36 /* .. Array Arguments .. */
37 /* .. */
38
39 /* Purpose */
40 /* ======= */
41
42 /* ZTBMV performs one of the matrix-vector operations */
43
44 /* x := A*x, or x := A'*x, or x := conjg( A' )*x, */
45
46 /* where x is an n element vector and A is an n by n unit, or non-unit, */
47 /* upper or lower triangular band matrix, with ( k + 1 ) diagonals. */
48
49 /* Arguments */
50 /* ========== */
51
52 /* UPLO - CHARACTER*1. */
53 /* On entry, UPLO specifies whether the matrix is an upper or */
54 /* lower triangular matrix as follows: */
55
56 /* UPLO = 'U' or 'u' A is an upper triangular matrix. */
57
58 /* UPLO = 'L' or 'l' A is a lower triangular matrix. */
59
60 /* Unchanged on exit. */
61
62 /* TRANS - CHARACTER*1. */
63 /* On entry, TRANS specifies the operation to be performed as */
64 /* follows: */
65
66 /* TRANS = 'N' or 'n' x := A*x. */
67
68 /* TRANS = 'T' or 't' x := A'*x. */
69
70 /* TRANS = 'C' or 'c' x := conjg( A' )*x. */
71
72 /* Unchanged on exit. */
73
74 /* DIAG - CHARACTER*1. */
75 /* On entry, DIAG specifies whether or not A is unit */
76 /* triangular as follows: */
77
78 /* DIAG = 'U' or 'u' A is assumed to be unit triangular. */
79
80 /* DIAG = 'N' or 'n' A is not assumed to be unit */
81 /* triangular. */
82
83 /* Unchanged on exit. */
84
85 /* N - INTEGER. */
86 /* On entry, N specifies the order of the matrix A. */
87 /* N must be at least zero. */
88 /* Unchanged on exit. */
89
90 /* K - INTEGER. */
91 /* On entry with UPLO = 'U' or 'u', K specifies the number of */
92 /* super-diagonals of the matrix A. */
93 /* On entry with UPLO = 'L' or 'l', K specifies the number of */
94 /* sub-diagonals of the matrix A. */
95 /* K must satisfy 0 .le. K. */
96 /* Unchanged on exit. */
97
98 /* A - COMPLEX*16 array of DIMENSION ( LDA, n ). */
99 /* Before entry with UPLO = 'U' or 'u', the leading ( k + 1 ) */
100 /* by n part of the array A must contain the upper triangular */
101 /* band part of the matrix of coefficients, supplied column by */
102 /* column, with the leading diagonal of the matrix in row */
103 /* ( k + 1 ) of the array, the first super-diagonal starting at */
104 /* position 2 in row k, and so on. The top left k by k triangle */
105 /* of the array A is not referenced. */
106 /* The following program segment will transfer an upper */
107 /* triangular band matrix from conventional full matrix storage */
108 /* to band storage: */
109
110 /* DO 20, J = 1, N */
111 /* M = K + 1 - J */
112 /* DO 10, I = MAX( 1, J - K ), J */
113 /* A( M + I, J ) = matrix( I, J ) */
114 /* 10 CONTINUE */
115 /* 20 CONTINUE */
116
117 /* Before entry with UPLO = 'L' or 'l', the leading ( k + 1 ) */
118 /* by n part of the array A must contain the lower triangular */
119 /* band part of the matrix of coefficients, supplied column by */
120 /* column, with the leading diagonal of the matrix in row 1 of */
121 /* the array, the first sub-diagonal starting at position 1 in */
122 /* row 2, and so on. The bottom right k by k triangle of the */
123 /* array A is not referenced. */
124 /* The following program segment will transfer a lower */
125 /* triangular band matrix from conventional full matrix storage */
126 /* to band storage: */
127
128 /* DO 20, J = 1, N */
129 /* M = 1 - J */
130 /* DO 10, I = J, MIN( N, J + K ) */
131 /* A( M + I, J ) = matrix( I, J ) */
132 /* 10 CONTINUE */
133 /* 20 CONTINUE */
134
135 /* Note that when DIAG = 'U' or 'u' the elements of the array A */
136 /* corresponding to the diagonal elements of the matrix are not */
137 /* referenced, but are assumed to be unity. */
138 /* Unchanged on exit. */
139
140 /* LDA - INTEGER. */
141 /* On entry, LDA specifies the first dimension of A as declared */
142 /* in the calling (sub) program. LDA must be at least */
143 /* ( k + 1 ). */
144 /* Unchanged on exit. */
145
146 /* X - COMPLEX*16 array of dimension at least */
147 /* ( 1 + ( n - 1 )*abs( INCX ) ). */
148 /* Before entry, the incremented array X must contain the n */
149 /* element vector x. On exit, X is overwritten with the */
150 /* tranformed vector x. */
151
152 /* INCX - INTEGER. */
153 /* On entry, INCX specifies the increment for the elements of */
154 /* X. INCX must not be zero. */
155 /* Unchanged on exit. */
156
157 /* Further Details */
158 /* =============== */
159
160 /* Level 2 Blas routine. */
161
162 /* -- Written on 22-October-1986. */
163 /* Jack Dongarra, Argonne National Lab. */
164 /* Jeremy Du Croz, Nag Central Office. */
165 /* Sven Hammarling, Nag Central Office. */
166 /* Richard Hanson, Sandia National Labs. */
167
168 /* ===================================================================== */
169
170 /* .. Parameters .. */
171 /* .. */
172 /* .. Local Scalars .. */
173 /* .. */
174 /* .. External Functions .. */
175 /* .. */
176 /* .. External Subroutines .. */
177 /* .. */
178 /* .. Intrinsic Functions .. */
179 /* .. */
180
181 /* Test the input parameters. */
182
183 /* Parameter adjustments */
184 a_dim1 = *lda;
185 a_offset = 1 + a_dim1;
186 a -= a_offset;
187 --x;
188
189 /* Function Body */
190 info = 0;
191 if (! lsame_(uplo, "U", (ftnlen)1, (ftnlen)1) && ! lsame_(uplo, "L", (
192 ftnlen)1, (ftnlen)1)) {
193 info = 1;
194 } else if (! lsame_(trans, "N", (ftnlen)1, (ftnlen)1) && ! lsame_(trans,
195 "T", (ftnlen)1, (ftnlen)1) && ! lsame_(trans, "C", (ftnlen)1, (
196 ftnlen)1)) {
197 info = 2;
198 } else if (! lsame_(diag, "U", (ftnlen)1, (ftnlen)1) && ! lsame_(diag,
199 "N", (ftnlen)1, (ftnlen)1)) {
200 info = 3;
201 } else if (*n < 0) {
202 info = 4;
203 } else if (*k < 0) {
204 info = 5;
205 } else if (*lda < *k + 1) {
206 info = 7;
207 } else if (*incx == 0) {
208 info = 9;
209 }
210 if (info != 0) {
211 xerbla_("ZTBMV ", &info, (ftnlen)6);
212 return 0;
213 }
214
215 /* Quick return if possible. */
216
217 if (*n == 0) {
218 return 0;
219 }
220
221 noconj = lsame_(trans, "T", (ftnlen)1, (ftnlen)1);
222 nounit = lsame_(diag, "N", (ftnlen)1, (ftnlen)1);
223
224 /* Set up the start point in X if the increment is not unity. This */
225 /* will be ( N - 1 )*INCX too small for descending loops. */
226
227 if (*incx <= 0) {
228 kx = 1 - (*n - 1) * *incx;
229 } else if (*incx != 1) {
230 kx = 1;
231 }
232
233 /* Start the operations. In this version the elements of A are */
234 /* accessed sequentially with one pass through A. */
235
236 if (lsame_(trans, "N", (ftnlen)1, (ftnlen)1)) {
237
238 /* Form x := A*x. */
239
240 if (lsame_(uplo, "U", (ftnlen)1, (ftnlen)1)) {
241 kplus1 = *k + 1;
242 if (*incx == 1) {
243 i__1 = *n;
244 for (j = 1; j <= i__1; ++j) {
245 i__2 = j;
246 if (x[i__2].r != 0. || x[i__2].i != 0.) {
247 i__2 = j;
248 temp.r = x[i__2].r, temp.i = x[i__2].i;
249 l = kplus1 - j;
250 /* Computing MAX */
251 i__2 = 1, i__3 = j - *k;
252 i__4 = j - 1;
253 for (i__ = max(i__2,i__3); i__ <= i__4; ++i__) {
254 i__2 = i__;
255 i__3 = i__;
256 i__5 = l + i__ + j * a_dim1;
257 z__2.r = temp.r * a[i__5].r - temp.i * a[i__5].i,
258 z__2.i = temp.r * a[i__5].i + temp.i * a[
259 i__5].r;
260 z__1.r = x[i__3].r + z__2.r, z__1.i = x[i__3].i +
261 z__2.i;
262 x[i__2].r = z__1.r, x[i__2].i = z__1.i;
263 /* L10: */
264 }
265 if (nounit) {
266 i__4 = j;
267 i__2 = j;
268 i__3 = kplus1 + j * a_dim1;
269 z__1.r = x[i__2].r * a[i__3].r - x[i__2].i * a[
270 i__3].i, z__1.i = x[i__2].r * a[i__3].i +
271 x[i__2].i * a[i__3].r;
272 x[i__4].r = z__1.r, x[i__4].i = z__1.i;
273 }
274 }
275 /* L20: */
276 }
277 } else {
278 jx = kx;
279 i__1 = *n;
280 for (j = 1; j <= i__1; ++j) {
281 i__4 = jx;
282 if (x[i__4].r != 0. || x[i__4].i != 0.) {
283 i__4 = jx;
284 temp.r = x[i__4].r, temp.i = x[i__4].i;
285 ix = kx;
286 l = kplus1 - j;
287 /* Computing MAX */
288 i__4 = 1, i__2 = j - *k;
289 i__3 = j - 1;
290 for (i__ = max(i__4,i__2); i__ <= i__3; ++i__) {
291 i__4 = ix;
292 i__2 = ix;
293 i__5 = l + i__ + j * a_dim1;
294 z__2.r = temp.r * a[i__5].r - temp.i * a[i__5].i,
295 z__2.i = temp.r * a[i__5].i + temp.i * a[
296 i__5].r;
297 z__1.r = x[i__2].r + z__2.r, z__1.i = x[i__2].i +
298 z__2.i;
299 x[i__4].r = z__1.r, x[i__4].i = z__1.i;
300 ix += *incx;
301 /* L30: */
302 }
303 if (nounit) {
304 i__3 = jx;
305 i__4 = jx;
306 i__2 = kplus1 + j * a_dim1;
307 z__1.r = x[i__4].r * a[i__2].r - x[i__4].i * a[
308 i__2].i, z__1.i = x[i__4].r * a[i__2].i +
309 x[i__4].i * a[i__2].r;
310 x[i__3].r = z__1.r, x[i__3].i = z__1.i;
311 }
312 }
313 jx += *incx;
314 if (j > *k) {
315 kx += *incx;
316 }
317 /* L40: */
318 }
319 }
320 } else {
321 if (*incx == 1) {
322 for (j = *n; j >= 1; --j) {
323 i__1 = j;
324 if (x[i__1].r != 0. || x[i__1].i != 0.) {
325 i__1 = j;
326 temp.r = x[i__1].r, temp.i = x[i__1].i;
327 l = 1 - j;
328 /* Computing MIN */
329 i__1 = *n, i__3 = j + *k;
330 i__4 = j + 1;
331 for (i__ = min(i__1,i__3); i__ >= i__4; --i__) {
332 i__1 = i__;
333 i__3 = i__;
334 i__2 = l + i__ + j * a_dim1;
335 z__2.r = temp.r * a[i__2].r - temp.i * a[i__2].i,
336 z__2.i = temp.r * a[i__2].i + temp.i * a[
337 i__2].r;
338 z__1.r = x[i__3].r + z__2.r, z__1.i = x[i__3].i +
339 z__2.i;
340 x[i__1].r = z__1.r, x[i__1].i = z__1.i;
341 /* L50: */
342 }
343 if (nounit) {
344 i__4 = j;
345 i__1 = j;
346 i__3 = j * a_dim1 + 1;
347 z__1.r = x[i__1].r * a[i__3].r - x[i__1].i * a[
348 i__3].i, z__1.i = x[i__1].r * a[i__3].i +
349 x[i__1].i * a[i__3].r;
350 x[i__4].r = z__1.r, x[i__4].i = z__1.i;
351 }
352 }
353 /* L60: */
354 }
355 } else {
356 kx += (*n - 1) * *incx;
357 jx = kx;
358 for (j = *n; j >= 1; --j) {
359 i__4 = jx;
360 if (x[i__4].r != 0. || x[i__4].i != 0.) {
361 i__4 = jx;
362 temp.r = x[i__4].r, temp.i = x[i__4].i;
363 ix = kx;
364 l = 1 - j;
365 /* Computing MIN */
366 i__4 = *n, i__1 = j + *k;
367 i__3 = j + 1;
368 for (i__ = min(i__4,i__1); i__ >= i__3; --i__) {
369 i__4 = ix;
370 i__1 = ix;
371 i__2 = l + i__ + j * a_dim1;
372 z__2.r = temp.r * a[i__2].r - temp.i * a[i__2].i,
373 z__2.i = temp.r * a[i__2].i + temp.i * a[
374 i__2].r;
375 z__1.r = x[i__1].r + z__2.r, z__1.i = x[i__1].i +
376 z__2.i;
377 x[i__4].r = z__1.r, x[i__4].i = z__1.i;
378 ix -= *incx;
379 /* L70: */
380 }
381 if (nounit) {
382 i__3 = jx;
383 i__4 = jx;
384 i__1 = j * a_dim1 + 1;
385 z__1.r = x[i__4].r * a[i__1].r - x[i__4].i * a[
386 i__1].i, z__1.i = x[i__4].r * a[i__1].i +
387 x[i__4].i * a[i__1].r;
388 x[i__3].r = z__1.r, x[i__3].i = z__1.i;
389 }
390 }
391 jx -= *incx;
392 if (*n - j >= *k) {
393 kx -= *incx;
394 }
395 /* L80: */
396 }
397 }
398 }
399 } else {
400
401 /* Form x := A'*x or x := conjg( A' )*x. */
402
403 if (lsame_(uplo, "U", (ftnlen)1, (ftnlen)1)) {
404 kplus1 = *k + 1;
405 if (*incx == 1) {
406 for (j = *n; j >= 1; --j) {
407 i__3 = j;
408 temp.r = x[i__3].r, temp.i = x[i__3].i;
409 l = kplus1 - j;
410 if (noconj) {
411 if (nounit) {
412 i__3 = kplus1 + j * a_dim1;
413 z__1.r = temp.r * a[i__3].r - temp.i * a[i__3].i,
414 z__1.i = temp.r * a[i__3].i + temp.i * a[
415 i__3].r;
416 temp.r = z__1.r, temp.i = z__1.i;
417 }
418 /* Computing MAX */
419 i__4 = 1, i__1 = j - *k;
420 i__3 = max(i__4,i__1);
421 for (i__ = j - 1; i__ >= i__3; --i__) {
422 i__4 = l + i__ + j * a_dim1;
423 i__1 = i__;
424 z__2.r = a[i__4].r * x[i__1].r - a[i__4].i * x[
425 i__1].i, z__2.i = a[i__4].r * x[i__1].i +
426 a[i__4].i * x[i__1].r;
427 z__1.r = temp.r + z__2.r, z__1.i = temp.i +
428 z__2.i;
429 temp.r = z__1.r, temp.i = z__1.i;
430 /* L90: */
431 }
432 } else {
433 if (nounit) {
434 d_cnjg(&z__2, &a[kplus1 + j * a_dim1]);
435 z__1.r = temp.r * z__2.r - temp.i * z__2.i,
436 z__1.i = temp.r * z__2.i + temp.i *
437 z__2.r;
438 temp.r = z__1.r, temp.i = z__1.i;
439 }
440 /* Computing MAX */
441 i__4 = 1, i__1 = j - *k;
442 i__3 = max(i__4,i__1);
443 for (i__ = j - 1; i__ >= i__3; --i__) {
444 d_cnjg(&z__3, &a[l + i__ + j * a_dim1]);
445 i__4 = i__;
446 z__2.r = z__3.r * x[i__4].r - z__3.i * x[i__4].i,
447 z__2.i = z__3.r * x[i__4].i + z__3.i * x[
448 i__4].r;
449 z__1.r = temp.r + z__2.r, z__1.i = temp.i +
450 z__2.i;
451 temp.r = z__1.r, temp.i = z__1.i;
452 /* L100: */
453 }
454 }
455 i__3 = j;
456 x[i__3].r = temp.r, x[i__3].i = temp.i;
457 /* L110: */
458 }
459 } else {
460 kx += (*n - 1) * *incx;
461 jx = kx;
462 for (j = *n; j >= 1; --j) {
463 i__3 = jx;
464 temp.r = x[i__3].r, temp.i = x[i__3].i;
465 kx -= *incx;
466 ix = kx;
467 l = kplus1 - j;
468 if (noconj) {
469 if (nounit) {
470 i__3 = kplus1 + j * a_dim1;
471 z__1.r = temp.r * a[i__3].r - temp.i * a[i__3].i,
472 z__1.i = temp.r * a[i__3].i + temp.i * a[
473 i__3].r;
474 temp.r = z__1.r, temp.i = z__1.i;
475 }
476 /* Computing MAX */
477 i__4 = 1, i__1 = j - *k;
478 i__3 = max(i__4,i__1);
479 for (i__ = j - 1; i__ >= i__3; --i__) {
480 i__4 = l + i__ + j * a_dim1;
481 i__1 = ix;
482 z__2.r = a[i__4].r * x[i__1].r - a[i__4].i * x[
483 i__1].i, z__2.i = a[i__4].r * x[i__1].i +
484 a[i__4].i * x[i__1].r;
485 z__1.r = temp.r + z__2.r, z__1.i = temp.i +
486 z__2.i;
487 temp.r = z__1.r, temp.i = z__1.i;
488 ix -= *incx;
489 /* L120: */
490 }
491 } else {
492 if (nounit) {
493 d_cnjg(&z__2, &a[kplus1 + j * a_dim1]);
494 z__1.r = temp.r * z__2.r - temp.i * z__2.i,
495 z__1.i = temp.r * z__2.i + temp.i *
496 z__2.r;
497 temp.r = z__1.r, temp.i = z__1.i;
498 }
499 /* Computing MAX */
500 i__4 = 1, i__1 = j - *k;
501 i__3 = max(i__4,i__1);
502 for (i__ = j - 1; i__ >= i__3; --i__) {
503 d_cnjg(&z__3, &a[l + i__ + j * a_dim1]);
504 i__4 = ix;
505 z__2.r = z__3.r * x[i__4].r - z__3.i * x[i__4].i,
506 z__2.i = z__3.r * x[i__4].i + z__3.i * x[
507 i__4].r;
508 z__1.r = temp.r + z__2.r, z__1.i = temp.i +
509 z__2.i;
510 temp.r = z__1.r, temp.i = z__1.i;
511 ix -= *incx;
512 /* L130: */
513 }
514 }
515 i__3 = jx;
516 x[i__3].r = temp.r, x[i__3].i = temp.i;
517 jx -= *incx;
518 /* L140: */
519 }
520 }
521 } else {
522 if (*incx == 1) {
523 i__3 = *n;
524 for (j = 1; j <= i__3; ++j) {
525 i__4 = j;
526 temp.r = x[i__4].r, temp.i = x[i__4].i;
527 l = 1 - j;
528 if (noconj) {
529 if (nounit) {
530 i__4 = j * a_dim1 + 1;
531 z__1.r = temp.r * a[i__4].r - temp.i * a[i__4].i,
532 z__1.i = temp.r * a[i__4].i + temp.i * a[
533 i__4].r;
534 temp.r = z__1.r, temp.i = z__1.i;
535 }
536 /* Computing MIN */
537 i__1 = *n, i__2 = j + *k;
538 i__4 = min(i__1,i__2);
539 for (i__ = j + 1; i__ <= i__4; ++i__) {
540 i__1 = l + i__ + j * a_dim1;
541 i__2 = i__;
542 z__2.r = a[i__1].r * x[i__2].r - a[i__1].i * x[
543 i__2].i, z__2.i = a[i__1].r * x[i__2].i +
544 a[i__1].i * x[i__2].r;
545 z__1.r = temp.r + z__2.r, z__1.i = temp.i +
546 z__2.i;
547 temp.r = z__1.r, temp.i = z__1.i;
548 /* L150: */
549 }
550 } else {
551 if (nounit) {
552 d_cnjg(&z__2, &a[j * a_dim1 + 1]);
553 z__1.r = temp.r * z__2.r - temp.i * z__2.i,
554 z__1.i = temp.r * z__2.i + temp.i *
555 z__2.r;
556 temp.r = z__1.r, temp.i = z__1.i;
557 }
558 /* Computing MIN */
559 i__1 = *n, i__2 = j + *k;
560 i__4 = min(i__1,i__2);
561 for (i__ = j + 1; i__ <= i__4; ++i__) {
562 d_cnjg(&z__3, &a[l + i__ + j * a_dim1]);
563 i__1 = i__;
564 z__2.r = z__3.r * x[i__1].r - z__3.i * x[i__1].i,
565 z__2.i = z__3.r * x[i__1].i + z__3.i * x[
566 i__1].r;
567 z__1.r = temp.r + z__2.r, z__1.i = temp.i +
568 z__2.i;
569 temp.r = z__1.r, temp.i = z__1.i;
570 /* L160: */
571 }
572 }
573 i__4 = j;
574 x[i__4].r = temp.r, x[i__4].i = temp.i;
575 /* L170: */
576 }
577 } else {
578 jx = kx;
579 i__3 = *n;
580 for (j = 1; j <= i__3; ++j) {
581 i__4 = jx;
582 temp.r = x[i__4].r, temp.i = x[i__4].i;
583 kx += *incx;
584 ix = kx;
585 l = 1 - j;
586 if (noconj) {
587 if (nounit) {
588 i__4 = j * a_dim1 + 1;
589 z__1.r = temp.r * a[i__4].r - temp.i * a[i__4].i,
590 z__1.i = temp.r * a[i__4].i + temp.i * a[
591 i__4].r;
592 temp.r = z__1.r, temp.i = z__1.i;
593 }
594 /* Computing MIN */
595 i__1 = *n, i__2 = j + *k;
596 i__4 = min(i__1,i__2);
597 for (i__ = j + 1; i__ <= i__4; ++i__) {
598 i__1 = l + i__ + j * a_dim1;
599 i__2 = ix;
600 z__2.r = a[i__1].r * x[i__2].r - a[i__1].i * x[
601 i__2].i, z__2.i = a[i__1].r * x[i__2].i +
602 a[i__1].i * x[i__2].r;
603 z__1.r = temp.r + z__2.r, z__1.i = temp.i +
604 z__2.i;
605 temp.r = z__1.r, temp.i = z__1.i;
606 ix += *incx;
607 /* L180: */
608 }
609 } else {
610 if (nounit) {
611 d_cnjg(&z__2, &a[j * a_dim1 + 1]);
612 z__1.r = temp.r * z__2.r - temp.i * z__2.i,
613 z__1.i = temp.r * z__2.i + temp.i *
614 z__2.r;
615 temp.r = z__1.r, temp.i = z__1.i;
616 }
617 /* Computing MIN */
618 i__1 = *n, i__2 = j + *k;
619 i__4 = min(i__1,i__2);
620 for (i__ = j + 1; i__ <= i__4; ++i__) {
621 d_cnjg(&z__3, &a[l + i__ + j * a_dim1]);
622 i__1 = ix;
623 z__2.r = z__3.r * x[i__1].r - z__3.i * x[i__1].i,
624 z__2.i = z__3.r * x[i__1].i + z__3.i * x[
625 i__1].r;
626 z__1.r = temp.r + z__2.r, z__1.i = temp.i +
627 z__2.i;
628 temp.r = z__1.r, temp.i = z__1.i;
629 ix += *incx;
630 /* L190: */
631 }
632 }
633 i__4 = jx;
634 x[i__4].r = temp.r, x[i__4].i = temp.i;
635 jx += *incx;
636 /* L200: */
637 }
638 }
639 }
640 }
641
642 return 0;
643
644 /* End of ZTBMV . */
645
646 } /* ztbmv_ */
647
648