1 // This file is part of Eigen, a lightweight C++ template library
2 // for linear algebra.
3 //
4 // Copyright (C) 2009-2010 Gael Guennebaud <gael.guennebaud@inria.fr>
5 //
6 // This Source Code Form is subject to the terms of the Mozilla
7 // Public License v. 2.0. If a copy of the MPL was not distributed
8 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
9 
10 #include "common.h"
11 
12 // computes the sum of magnitudes of all vector elements or, for a complex vector x, the sum
13 // res = |Rex1| + |Imx1| + |Rex2| + |Imx2| + ... + |Rexn| + |Imxn|, where x is a vector of order n
EIGEN_BLAS_FUNC(asum)14 RealScalar EIGEN_BLAS_FUNC(asum)(int *n, RealScalar *px, int *incx)
15 {
16 //   std::cerr << "_asum " << *n << " " << *incx << "\n";
17 
18   Scalar* x = reinterpret_cast<Scalar*>(px);
19 
20   if(*n<=0) return 0;
21 
22   if(*incx==1)  return vector(x,*n).cwiseAbs().sum();
23   else          return vector(x,*n,std::abs(*incx)).cwiseAbs().sum();
24 }
25 
26 // computes a vector-vector dot product.
EIGEN_BLAS_FUNC(dot)27 Scalar EIGEN_BLAS_FUNC(dot)(int *n, RealScalar *px, int *incx, RealScalar *py, int *incy)
28 {
29 //   std::cerr << "_dot " << *n << " " << *incx << " " << *incy << "\n";
30 
31   if(*n<=0) return 0;
32 
33   Scalar* x = reinterpret_cast<Scalar*>(px);
34   Scalar* y = reinterpret_cast<Scalar*>(py);
35 
36   if(*incx==1 && *incy==1)    return (vector(x,*n).cwiseProduct(vector(y,*n))).sum();
37   else if(*incx>0 && *incy>0) return (vector(x,*n,*incx).cwiseProduct(vector(y,*n,*incy))).sum();
38   else if(*incx<0 && *incy>0) return (vector(x,*n,-*incx).reverse().cwiseProduct(vector(y,*n,*incy))).sum();
39   else if(*incx>0 && *incy<0) return (vector(x,*n,*incx).cwiseProduct(vector(y,*n,-*incy).reverse())).sum();
40   else if(*incx<0 && *incy<0) return (vector(x,*n,-*incx).reverse().cwiseProduct(vector(y,*n,-*incy).reverse())).sum();
41   else return 0;
42 }
43 
44 // computes the Euclidean norm of a vector.
45 // FIXME
EIGEN_BLAS_FUNC(nrm2)46 Scalar EIGEN_BLAS_FUNC(nrm2)(int *n, RealScalar *px, int *incx)
47 {
48 //   std::cerr << "_nrm2 " << *n << " " << *incx << "\n";
49   if(*n<=0) return 0;
50 
51   Scalar* x = reinterpret_cast<Scalar*>(px);
52 
53   if(*incx==1)  return vector(x,*n).stableNorm();
54   else          return vector(x,*n,std::abs(*incx)).stableNorm();
55 }
56 
EIGEN_BLAS_FUNC(rot)57 int EIGEN_BLAS_FUNC(rot)(int *n, RealScalar *px, int *incx, RealScalar *py, int *incy, RealScalar *pc, RealScalar *ps)
58 {
59 //   std::cerr << "_rot " << *n << " " << *incx << " " << *incy << "\n";
60   if(*n<=0) return 0;
61 
62   Scalar* x = reinterpret_cast<Scalar*>(px);
63   Scalar* y = reinterpret_cast<Scalar*>(py);
64   Scalar c = *reinterpret_cast<Scalar*>(pc);
65   Scalar s = *reinterpret_cast<Scalar*>(ps);
66 
67   StridedVectorType vx(vector(x,*n,std::abs(*incx)));
68   StridedVectorType vy(vector(y,*n,std::abs(*incy)));
69 
70   Reverse<StridedVectorType> rvx(vx);
71   Reverse<StridedVectorType> rvy(vy);
72 
73        if(*incx<0 && *incy>0) internal::apply_rotation_in_the_plane(rvx, vy, JacobiRotation<Scalar>(c,s));
74   else if(*incx>0 && *incy<0) internal::apply_rotation_in_the_plane(vx, rvy, JacobiRotation<Scalar>(c,s));
75   else                        internal::apply_rotation_in_the_plane(vx, vy,  JacobiRotation<Scalar>(c,s));
76 
77 
78   return 0;
79 }
80 
81 /*
82 // performs rotation of points in the modified plane.
83 int EIGEN_BLAS_FUNC(rotm)(int *n, RealScalar *px, int *incx, RealScalar *py, int *incy, RealScalar *param)
84 {
85   Scalar* x = reinterpret_cast<Scalar*>(px);
86   Scalar* y = reinterpret_cast<Scalar*>(py);
87 
88   // TODO
89 
90   return 0;
91 }
92 
93 // computes the modified parameters for a Givens rotation.
94 int EIGEN_BLAS_FUNC(rotmg)(RealScalar *d1, RealScalar *d2, RealScalar *x1, RealScalar *x2, RealScalar *param)
95 {
96   // TODO
97 
98   return 0;
99 }
100 */
101