1 // This file is part of Eigen, a lightweight C++ template library
2 // for linear algebra. Eigen itself is part of the KDE project.
3 //
4 // Copyright (C) 2008 Gael Guennebaud <g.gael@free.fr>
5 //
6 // This Source Code Form is subject to the terms of the Mozilla
7 // Public License v. 2.0. If a copy of the MPL was not distributed
8 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
9 
10 #include "main.h"
11 #include <Eigen/QR>
12 
qr(const MatrixType & m)13 template<typename MatrixType> void qr(const MatrixType& m)
14 {
15   /* this test covers the following files:
16      QR.h
17   */
18   int rows = m.rows();
19   int cols = m.cols();
20 
21   typedef typename MatrixType::Scalar Scalar;
22   typedef Matrix<Scalar, MatrixType::ColsAtCompileTime, MatrixType::ColsAtCompileTime> SquareMatrixType;
23   typedef Matrix<Scalar, MatrixType::ColsAtCompileTime, 1> VectorType;
24 
25   MatrixType a = MatrixType::Random(rows,cols);
26   QR<MatrixType> qrOfA(a);
27   VERIFY_IS_APPROX(a, qrOfA.matrixQ() * qrOfA.matrixR());
28   VERIFY_IS_NOT_APPROX(a+MatrixType::Identity(rows, cols), qrOfA.matrixQ() * qrOfA.matrixR());
29 
30   #if 0 // eigenvalues module not yet ready
31   SquareMatrixType b = a.adjoint() * a;
32 
33   // check tridiagonalization
34   Tridiagonalization<SquareMatrixType> tridiag(b);
35   VERIFY_IS_APPROX(b, tridiag.matrixQ() * tridiag.matrixT() * tridiag.matrixQ().adjoint());
36 
37   // check hessenberg decomposition
38   HessenbergDecomposition<SquareMatrixType> hess(b);
39   VERIFY_IS_APPROX(b, hess.matrixQ() * hess.matrixH() * hess.matrixQ().adjoint());
40   VERIFY_IS_APPROX(tridiag.matrixT(), hess.matrixH());
41   b = SquareMatrixType::Random(cols,cols);
42   hess.compute(b);
43   VERIFY_IS_APPROX(b, hess.matrixQ() * hess.matrixH() * hess.matrixQ().adjoint());
44   #endif
45 }
46 
test_eigen2_qr()47 void test_eigen2_qr()
48 {
49   for(int i = 0; i < 1; i++) {
50     CALL_SUBTEST_1( qr(Matrix2f()) );
51     CALL_SUBTEST_2( qr(Matrix4d()) );
52     CALL_SUBTEST_3( qr(MatrixXf(12,8)) );
53     CALL_SUBTEST_4( qr(MatrixXcd(5,5)) );
54     CALL_SUBTEST_4( qr(MatrixXcd(7,3)) );
55   }
56 
57 #ifdef EIGEN_TEST_PART_5
58   // small isFullRank test
59   {
60     Matrix3d mat;
61     mat << 1, 45, 1, 2, 2, 2, 1, 2, 3;
62     VERIFY(mat.qr().isFullRank());
63     mat << 1, 1, 1, 2, 2, 2, 1, 2, 3;
64     //always returns true in eigen2support
65     //VERIFY(!mat.qr().isFullRank());
66   }
67 
68 #endif
69 }
70