1 // This file is part of Eigen, a lightweight C++ template library
2 // for linear algebra. Eigen itself is part of the KDE project.
3 //
4 // Copyright (C) 2008 Gael Guennebaud <g.gael@free.fr>
5 //
6 // This Source Code Form is subject to the terms of the Mozilla
7 // Public License v. 2.0. If a copy of the MPL was not distributed
8 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
9
10 #include "main.h"
11 #include <Eigen/QR>
12
qr(const MatrixType & m)13 template<typename MatrixType> void qr(const MatrixType& m)
14 {
15 /* this test covers the following files:
16 QR.h
17 */
18 int rows = m.rows();
19 int cols = m.cols();
20
21 typedef typename MatrixType::Scalar Scalar;
22 typedef Matrix<Scalar, MatrixType::ColsAtCompileTime, MatrixType::ColsAtCompileTime> SquareMatrixType;
23 typedef Matrix<Scalar, MatrixType::ColsAtCompileTime, 1> VectorType;
24
25 MatrixType a = MatrixType::Random(rows,cols);
26 QR<MatrixType> qrOfA(a);
27 VERIFY_IS_APPROX(a, qrOfA.matrixQ() * qrOfA.matrixR());
28 VERIFY_IS_NOT_APPROX(a+MatrixType::Identity(rows, cols), qrOfA.matrixQ() * qrOfA.matrixR());
29
30 #if 0 // eigenvalues module not yet ready
31 SquareMatrixType b = a.adjoint() * a;
32
33 // check tridiagonalization
34 Tridiagonalization<SquareMatrixType> tridiag(b);
35 VERIFY_IS_APPROX(b, tridiag.matrixQ() * tridiag.matrixT() * tridiag.matrixQ().adjoint());
36
37 // check hessenberg decomposition
38 HessenbergDecomposition<SquareMatrixType> hess(b);
39 VERIFY_IS_APPROX(b, hess.matrixQ() * hess.matrixH() * hess.matrixQ().adjoint());
40 VERIFY_IS_APPROX(tridiag.matrixT(), hess.matrixH());
41 b = SquareMatrixType::Random(cols,cols);
42 hess.compute(b);
43 VERIFY_IS_APPROX(b, hess.matrixQ() * hess.matrixH() * hess.matrixQ().adjoint());
44 #endif
45 }
46
test_eigen2_qr()47 void test_eigen2_qr()
48 {
49 for(int i = 0; i < 1; i++) {
50 CALL_SUBTEST_1( qr(Matrix2f()) );
51 CALL_SUBTEST_2( qr(Matrix4d()) );
52 CALL_SUBTEST_3( qr(MatrixXf(12,8)) );
53 CALL_SUBTEST_4( qr(MatrixXcd(5,5)) );
54 CALL_SUBTEST_4( qr(MatrixXcd(7,3)) );
55 }
56
57 #ifdef EIGEN_TEST_PART_5
58 // small isFullRank test
59 {
60 Matrix3d mat;
61 mat << 1, 45, 1, 2, 2, 2, 1, 2, 3;
62 VERIFY(mat.qr().isFullRank());
63 mat << 1, 1, 1, 2, 2, 2, 1, 2, 3;
64 //always returns true in eigen2support
65 //VERIFY(!mat.qr().isFullRank());
66 }
67
68 #endif
69 }
70