1 // This file is part of Eigen, a lightweight C++ template library
2 // for linear algebra.
3 //
4 // Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr>
5 // Copyright (C) 2010,2012 Jitse Niesen <jitse@maths.leeds.ac.uk>
6 //
7 // This Source Code Form is subject to the terms of the Mozilla
8 // Public License v. 2.0. If a copy of the MPL was not distributed
9 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
10 
11 #include "main.h"
12 #include <limits>
13 #include <Eigen/Eigenvalues>
14 
eigensolver(const MatrixType & m)15 template<typename MatrixType> void eigensolver(const MatrixType& m)
16 {
17   typedef typename MatrixType::Index Index;
18   /* this test covers the following files:
19      EigenSolver.h
20   */
21   Index rows = m.rows();
22   Index cols = m.cols();
23 
24   typedef typename MatrixType::Scalar Scalar;
25   typedef typename NumTraits<Scalar>::Real RealScalar;
26   typedef Matrix<RealScalar, MatrixType::RowsAtCompileTime, 1> RealVectorType;
27   typedef typename std::complex<typename NumTraits<typename MatrixType::Scalar>::Real> Complex;
28 
29   MatrixType a = MatrixType::Random(rows,cols);
30   MatrixType a1 = MatrixType::Random(rows,cols);
31   MatrixType symmA =  a.adjoint() * a + a1.adjoint() * a1;
32 
33   EigenSolver<MatrixType> ei0(symmA);
34   VERIFY_IS_EQUAL(ei0.info(), Success);
35   VERIFY_IS_APPROX(symmA * ei0.pseudoEigenvectors(), ei0.pseudoEigenvectors() * ei0.pseudoEigenvalueMatrix());
36   VERIFY_IS_APPROX((symmA.template cast<Complex>()) * (ei0.pseudoEigenvectors().template cast<Complex>()),
37     (ei0.pseudoEigenvectors().template cast<Complex>()) * (ei0.eigenvalues().asDiagonal()));
38 
39   EigenSolver<MatrixType> ei1(a);
40   VERIFY_IS_EQUAL(ei1.info(), Success);
41   VERIFY_IS_APPROX(a * ei1.pseudoEigenvectors(), ei1.pseudoEigenvectors() * ei1.pseudoEigenvalueMatrix());
42   VERIFY_IS_APPROX(a.template cast<Complex>() * ei1.eigenvectors(),
43                    ei1.eigenvectors() * ei1.eigenvalues().asDiagonal());
44   VERIFY_IS_APPROX(ei1.eigenvectors().colwise().norm(), RealVectorType::Ones(rows).transpose());
45   VERIFY_IS_APPROX(a.eigenvalues(), ei1.eigenvalues());
46 
47   EigenSolver<MatrixType> ei2;
48   ei2.setMaxIterations(RealSchur<MatrixType>::m_maxIterationsPerRow * rows).compute(a);
49   VERIFY_IS_EQUAL(ei2.info(), Success);
50   VERIFY_IS_EQUAL(ei2.eigenvectors(), ei1.eigenvectors());
51   VERIFY_IS_EQUAL(ei2.eigenvalues(), ei1.eigenvalues());
52   if (rows > 2) {
53     ei2.setMaxIterations(1).compute(a);
54     VERIFY_IS_EQUAL(ei2.info(), NoConvergence);
55     VERIFY_IS_EQUAL(ei2.getMaxIterations(), 1);
56   }
57 
58   EigenSolver<MatrixType> eiNoEivecs(a, false);
59   VERIFY_IS_EQUAL(eiNoEivecs.info(), Success);
60   VERIFY_IS_APPROX(ei1.eigenvalues(), eiNoEivecs.eigenvalues());
61   VERIFY_IS_APPROX(ei1.pseudoEigenvalueMatrix(), eiNoEivecs.pseudoEigenvalueMatrix());
62 
63   MatrixType id = MatrixType::Identity(rows, cols);
64   VERIFY_IS_APPROX(id.operatorNorm(), RealScalar(1));
65 
66   if (rows > 2)
67   {
68     // Test matrix with NaN
69     a(0,0) = std::numeric_limits<typename MatrixType::RealScalar>::quiet_NaN();
70     EigenSolver<MatrixType> eiNaN(a);
71     VERIFY_IS_EQUAL(eiNaN.info(), NoConvergence);
72   }
73 }
74 
eigensolver_verify_assert(const MatrixType & m)75 template<typename MatrixType> void eigensolver_verify_assert(const MatrixType& m)
76 {
77   EigenSolver<MatrixType> eig;
78   VERIFY_RAISES_ASSERT(eig.eigenvectors());
79   VERIFY_RAISES_ASSERT(eig.pseudoEigenvectors());
80   VERIFY_RAISES_ASSERT(eig.pseudoEigenvalueMatrix());
81   VERIFY_RAISES_ASSERT(eig.eigenvalues());
82 
83   MatrixType a = MatrixType::Random(m.rows(),m.cols());
84   eig.compute(a, false);
85   VERIFY_RAISES_ASSERT(eig.eigenvectors());
86   VERIFY_RAISES_ASSERT(eig.pseudoEigenvectors());
87 }
88 
test_eigensolver_generic()89 void test_eigensolver_generic()
90 {
91   int s = 0;
92   for(int i = 0; i < g_repeat; i++) {
93     CALL_SUBTEST_1( eigensolver(Matrix4f()) );
94     s = internal::random<int>(1,EIGEN_TEST_MAX_SIZE/4);
95     CALL_SUBTEST_2( eigensolver(MatrixXd(s,s)) );
96 
97     // some trivial but implementation-wise tricky cases
98     CALL_SUBTEST_2( eigensolver(MatrixXd(1,1)) );
99     CALL_SUBTEST_2( eigensolver(MatrixXd(2,2)) );
100     CALL_SUBTEST_3( eigensolver(Matrix<double,1,1>()) );
101     CALL_SUBTEST_4( eigensolver(Matrix2d()) );
102   }
103 
104   CALL_SUBTEST_1( eigensolver_verify_assert(Matrix4f()) );
105   s = internal::random<int>(1,EIGEN_TEST_MAX_SIZE/4);
106   CALL_SUBTEST_2( eigensolver_verify_assert(MatrixXd(s,s)) );
107   CALL_SUBTEST_3( eigensolver_verify_assert(Matrix<double,1,1>()) );
108   CALL_SUBTEST_4( eigensolver_verify_assert(Matrix2d()) );
109 
110   // Test problem size constructors
111   CALL_SUBTEST_5(EigenSolver<MatrixXf> tmp(s));
112 
113   // regression test for bug 410
114   CALL_SUBTEST_2(
115   {
116      MatrixXd A(1,1);
117      A(0,0) = std::sqrt(-1.);
118      Eigen::EigenSolver<MatrixXd> solver(A);
119      MatrixXd V(1, 1);
120      V(0,0) = solver.eigenvectors()(0,0).real();
121   }
122   );
123 
124   TEST_SET_BUT_UNUSED_VARIABLE(s)
125 }
126