• Home
  • History
  • Annotate
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1  // This file is part of Eigen, a lightweight C++ template library
2  // for linear algebra.
3  //
4  // Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr>
5  //
6  // This Source Code Form is subject to the terms of the Mozilla
7  // Public License v. 2.0. If a copy of the MPL was not distributed
8  // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
9  
10  #include "main.h"
11  #include <Eigen/QR>
12  
qr(const MatrixType & m)13  template<typename MatrixType> void qr(const MatrixType& m)
14  {
15    typedef typename MatrixType::Index Index;
16  
17    Index rows = m.rows();
18    Index cols = m.cols();
19  
20    typedef typename MatrixType::Scalar Scalar;
21    typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, MatrixType::RowsAtCompileTime> MatrixQType;
22  
23    MatrixType a = MatrixType::Random(rows,cols);
24    HouseholderQR<MatrixType> qrOfA(a);
25  
26    MatrixQType q = qrOfA.householderQ();
27    VERIFY_IS_UNITARY(q);
28  
29    MatrixType r = qrOfA.matrixQR().template triangularView<Upper>();
30    VERIFY_IS_APPROX(a, qrOfA.householderQ() * r);
31  }
32  
qr_fixedsize()33  template<typename MatrixType, int Cols2> void qr_fixedsize()
34  {
35    enum { Rows = MatrixType::RowsAtCompileTime, Cols = MatrixType::ColsAtCompileTime };
36    typedef typename MatrixType::Scalar Scalar;
37    Matrix<Scalar,Rows,Cols> m1 = Matrix<Scalar,Rows,Cols>::Random();
38    HouseholderQR<Matrix<Scalar,Rows,Cols> > qr(m1);
39  
40    Matrix<Scalar,Rows,Cols> r = qr.matrixQR();
41    // FIXME need better way to construct trapezoid
42    for(int i = 0; i < Rows; i++) for(int j = 0; j < Cols; j++) if(i>j) r(i,j) = Scalar(0);
43  
44    VERIFY_IS_APPROX(m1, qr.householderQ() * r);
45  
46    Matrix<Scalar,Cols,Cols2> m2 = Matrix<Scalar,Cols,Cols2>::Random(Cols,Cols2);
47    Matrix<Scalar,Rows,Cols2> m3 = m1*m2;
48    m2 = Matrix<Scalar,Cols,Cols2>::Random(Cols,Cols2);
49    m2 = qr.solve(m3);
50    VERIFY_IS_APPROX(m3, m1*m2);
51  }
52  
qr_invertible()53  template<typename MatrixType> void qr_invertible()
54  {
55    using std::log;
56    using std::abs;
57    typedef typename NumTraits<typename MatrixType::Scalar>::Real RealScalar;
58    typedef typename MatrixType::Scalar Scalar;
59  
60    int size = internal::random<int>(10,50);
61  
62    MatrixType m1(size, size), m2(size, size), m3(size, size);
63    m1 = MatrixType::Random(size,size);
64  
65    if (internal::is_same<RealScalar,float>::value)
66    {
67      // let's build a matrix more stable to inverse
68      MatrixType a = MatrixType::Random(size,size*2);
69      m1 += a * a.adjoint();
70    }
71  
72    HouseholderQR<MatrixType> qr(m1);
73    m3 = MatrixType::Random(size,size);
74    m2 = qr.solve(m3);
75    VERIFY_IS_APPROX(m3, m1*m2);
76  
77    // now construct a matrix with prescribed determinant
78    m1.setZero();
79    for(int i = 0; i < size; i++) m1(i,i) = internal::random<Scalar>();
80    RealScalar absdet = abs(m1.diagonal().prod());
81    m3 = qr.householderQ(); // get a unitary
82    m1 = m3 * m1 * m3;
83    qr.compute(m1);
84    VERIFY_IS_APPROX(absdet, qr.absDeterminant());
85    VERIFY_IS_APPROX(log(absdet), qr.logAbsDeterminant());
86  }
87  
qr_verify_assert()88  template<typename MatrixType> void qr_verify_assert()
89  {
90    MatrixType tmp;
91  
92    HouseholderQR<MatrixType> qr;
93    VERIFY_RAISES_ASSERT(qr.matrixQR())
94    VERIFY_RAISES_ASSERT(qr.solve(tmp))
95    VERIFY_RAISES_ASSERT(qr.householderQ())
96    VERIFY_RAISES_ASSERT(qr.absDeterminant())
97    VERIFY_RAISES_ASSERT(qr.logAbsDeterminant())
98  }
99  
test_qr()100  void test_qr()
101  {
102    for(int i = 0; i < g_repeat; i++) {
103     CALL_SUBTEST_1( qr(MatrixXf(internal::random<int>(1,EIGEN_TEST_MAX_SIZE),internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) );
104     CALL_SUBTEST_2( qr(MatrixXcd(internal::random<int>(1,EIGEN_TEST_MAX_SIZE/2),internal::random<int>(1,EIGEN_TEST_MAX_SIZE/2))) );
105     CALL_SUBTEST_3(( qr_fixedsize<Matrix<float,3,4>, 2 >() ));
106     CALL_SUBTEST_4(( qr_fixedsize<Matrix<double,6,2>, 4 >() ));
107     CALL_SUBTEST_5(( qr_fixedsize<Matrix<double,2,5>, 7 >() ));
108     CALL_SUBTEST_11( qr(Matrix<float,1,1>()) );
109    }
110  
111    for(int i = 0; i < g_repeat; i++) {
112      CALL_SUBTEST_1( qr_invertible<MatrixXf>() );
113      CALL_SUBTEST_6( qr_invertible<MatrixXd>() );
114      CALL_SUBTEST_7( qr_invertible<MatrixXcf>() );
115      CALL_SUBTEST_8( qr_invertible<MatrixXcd>() );
116    }
117  
118    CALL_SUBTEST_9(qr_verify_assert<Matrix3f>());
119    CALL_SUBTEST_10(qr_verify_assert<Matrix3d>());
120    CALL_SUBTEST_1(qr_verify_assert<MatrixXf>());
121    CALL_SUBTEST_6(qr_verify_assert<MatrixXd>());
122    CALL_SUBTEST_7(qr_verify_assert<MatrixXcf>());
123    CALL_SUBTEST_8(qr_verify_assert<MatrixXcd>());
124  
125    // Test problem size constructors
126    CALL_SUBTEST_12(HouseholderQR<MatrixXf>(10, 20));
127  }
128