1 // This file is part of Eigen, a lightweight C++ template library
2 // for linear algebra.
3 //
4 // Copyright (C) 2011 Kolja Brix <brix@igpm.rwth-aachen.de>
5 // Copyright (C) 2011 Andreas Platen <andiplaten@gmx.de>
6 // Copyright (C) 2012 Chen-Pang He <jdh8@ms63.hinet.net>
7 //
8 // This Source Code Form is subject to the terms of the Mozilla
9 // Public License v. 2.0. If a copy of the MPL was not distributed
10 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
11
12 #ifndef KRONECKER_TENSOR_PRODUCT_H
13 #define KRONECKER_TENSOR_PRODUCT_H
14
15 namespace Eigen {
16
17 template<typename Scalar, int Options, typename Index> class SparseMatrix;
18
19 /*!
20 * \brief Kronecker tensor product helper class for dense matrices
21 *
22 * This class is the return value of kroneckerProduct(MatrixBase,
23 * MatrixBase). Use the function rather than construct this class
24 * directly to avoid specifying template prarameters.
25 *
26 * \tparam Lhs Type of the left-hand side, a matrix expression.
27 * \tparam Rhs Type of the rignt-hand side, a matrix expression.
28 */
29 template<typename Lhs, typename Rhs>
30 class KroneckerProduct : public ReturnByValue<KroneckerProduct<Lhs,Rhs> >
31 {
32 private:
33 typedef ReturnByValue<KroneckerProduct> Base;
34 typedef typename Base::Scalar Scalar;
35 typedef typename Base::Index Index;
36
37 public:
38 /*! \brief Constructor. */
KroneckerProduct(const Lhs & A,const Rhs & B)39 KroneckerProduct(const Lhs& A, const Rhs& B)
40 : m_A(A), m_B(B)
41 {}
42
43 /*! \brief Evaluate the Kronecker tensor product. */
44 template<typename Dest> void evalTo(Dest& dst) const;
45
rows()46 inline Index rows() const { return m_A.rows() * m_B.rows(); }
cols()47 inline Index cols() const { return m_A.cols() * m_B.cols(); }
48
coeff(Index row,Index col)49 Scalar coeff(Index row, Index col) const
50 {
51 return m_A.coeff(row / m_B.rows(), col / m_B.cols()) *
52 m_B.coeff(row % m_B.rows(), col % m_B.cols());
53 }
54
coeff(Index i)55 Scalar coeff(Index i) const
56 {
57 EIGEN_STATIC_ASSERT_VECTOR_ONLY(KroneckerProduct);
58 return m_A.coeff(i / m_A.size()) * m_B.coeff(i % m_A.size());
59 }
60
61 private:
62 typename Lhs::Nested m_A;
63 typename Rhs::Nested m_B;
64 };
65
66 /*!
67 * \brief Kronecker tensor product helper class for sparse matrices
68 *
69 * If at least one of the operands is a sparse matrix expression,
70 * then this class is returned and evaluates into a sparse matrix.
71 *
72 * This class is the return value of kroneckerProduct(EigenBase,
73 * EigenBase). Use the function rather than construct this class
74 * directly to avoid specifying template prarameters.
75 *
76 * \tparam Lhs Type of the left-hand side, a matrix expression.
77 * \tparam Rhs Type of the rignt-hand side, a matrix expression.
78 */
79 template<typename Lhs, typename Rhs>
80 class KroneckerProductSparse : public EigenBase<KroneckerProductSparse<Lhs,Rhs> >
81 {
82 private:
83 typedef typename internal::traits<KroneckerProductSparse>::Index Index;
84
85 public:
86 /*! \brief Constructor. */
KroneckerProductSparse(const Lhs & A,const Rhs & B)87 KroneckerProductSparse(const Lhs& A, const Rhs& B)
88 : m_A(A), m_B(B)
89 {}
90
91 /*! \brief Evaluate the Kronecker tensor product. */
92 template<typename Dest> void evalTo(Dest& dst) const;
93
rows()94 inline Index rows() const { return m_A.rows() * m_B.rows(); }
cols()95 inline Index cols() const { return m_A.cols() * m_B.cols(); }
96
97 template<typename Scalar, int Options, typename Index>
98 operator SparseMatrix<Scalar, Options, Index>()
99 {
100 SparseMatrix<Scalar, Options, Index> result;
101 evalTo(result.derived());
102 return result;
103 }
104
105 private:
106 typename Lhs::Nested m_A;
107 typename Rhs::Nested m_B;
108 };
109
110 template<typename Lhs, typename Rhs>
111 template<typename Dest>
evalTo(Dest & dst)112 void KroneckerProduct<Lhs,Rhs>::evalTo(Dest& dst) const
113 {
114 const int BlockRows = Rhs::RowsAtCompileTime,
115 BlockCols = Rhs::ColsAtCompileTime;
116 const Index Br = m_B.rows(),
117 Bc = m_B.cols();
118 for (Index i=0; i < m_A.rows(); ++i)
119 for (Index j=0; j < m_A.cols(); ++j)
120 Block<Dest,BlockRows,BlockCols>(dst,i*Br,j*Bc,Br,Bc) = m_A.coeff(i,j) * m_B;
121 }
122
123 template<typename Lhs, typename Rhs>
124 template<typename Dest>
evalTo(Dest & dst)125 void KroneckerProductSparse<Lhs,Rhs>::evalTo(Dest& dst) const
126 {
127 const Index Br = m_B.rows(),
128 Bc = m_B.cols();
129 dst.resize(rows(),cols());
130 dst.resizeNonZeros(0);
131 dst.reserve(m_A.nonZeros() * m_B.nonZeros());
132
133 for (Index kA=0; kA < m_A.outerSize(); ++kA)
134 {
135 for (Index kB=0; kB < m_B.outerSize(); ++kB)
136 {
137 for (typename Lhs::InnerIterator itA(m_A,kA); itA; ++itA)
138 {
139 for (typename Rhs::InnerIterator itB(m_B,kB); itB; ++itB)
140 {
141 const Index i = itA.row() * Br + itB.row(),
142 j = itA.col() * Bc + itB.col();
143 dst.insert(i,j) = itA.value() * itB.value();
144 }
145 }
146 }
147 }
148 }
149
150 namespace internal {
151
152 template<typename _Lhs, typename _Rhs>
153 struct traits<KroneckerProduct<_Lhs,_Rhs> >
154 {
155 typedef typename remove_all<_Lhs>::type Lhs;
156 typedef typename remove_all<_Rhs>::type Rhs;
157 typedef typename scalar_product_traits<typename Lhs::Scalar, typename Rhs::Scalar>::ReturnType Scalar;
158
159 enum {
160 Rows = size_at_compile_time<traits<Lhs>::RowsAtCompileTime, traits<Rhs>::RowsAtCompileTime>::ret,
161 Cols = size_at_compile_time<traits<Lhs>::ColsAtCompileTime, traits<Rhs>::ColsAtCompileTime>::ret,
162 MaxRows = size_at_compile_time<traits<Lhs>::MaxRowsAtCompileTime, traits<Rhs>::MaxRowsAtCompileTime>::ret,
163 MaxCols = size_at_compile_time<traits<Lhs>::MaxColsAtCompileTime, traits<Rhs>::MaxColsAtCompileTime>::ret,
164 CoeffReadCost = Lhs::CoeffReadCost + Rhs::CoeffReadCost + NumTraits<Scalar>::MulCost
165 };
166
167 typedef Matrix<Scalar,Rows,Cols> ReturnType;
168 };
169
170 template<typename _Lhs, typename _Rhs>
171 struct traits<KroneckerProductSparse<_Lhs,_Rhs> >
172 {
173 typedef MatrixXpr XprKind;
174 typedef typename remove_all<_Lhs>::type Lhs;
175 typedef typename remove_all<_Rhs>::type Rhs;
176 typedef typename scalar_product_traits<typename Lhs::Scalar, typename Rhs::Scalar>::ReturnType Scalar;
177 typedef typename promote_storage_type<typename traits<Lhs>::StorageKind, typename traits<Rhs>::StorageKind>::ret StorageKind;
178 typedef typename promote_index_type<typename Lhs::Index, typename Rhs::Index>::type Index;
179
180 enum {
181 LhsFlags = Lhs::Flags,
182 RhsFlags = Rhs::Flags,
183
184 RowsAtCompileTime = size_at_compile_time<traits<Lhs>::RowsAtCompileTime, traits<Rhs>::RowsAtCompileTime>::ret,
185 ColsAtCompileTime = size_at_compile_time<traits<Lhs>::ColsAtCompileTime, traits<Rhs>::ColsAtCompileTime>::ret,
186 MaxRowsAtCompileTime = size_at_compile_time<traits<Lhs>::MaxRowsAtCompileTime, traits<Rhs>::MaxRowsAtCompileTime>::ret,
187 MaxColsAtCompileTime = size_at_compile_time<traits<Lhs>::MaxColsAtCompileTime, traits<Rhs>::MaxColsAtCompileTime>::ret,
188
189 EvalToRowMajor = (LhsFlags & RhsFlags & RowMajorBit),
190 RemovedBits = ~(EvalToRowMajor ? 0 : RowMajorBit),
191
192 Flags = ((LhsFlags | RhsFlags) & HereditaryBits & RemovedBits)
193 | EvalBeforeNestingBit | EvalBeforeAssigningBit,
194 CoeffReadCost = Dynamic
195 };
196 };
197
198 } // end namespace internal
199
200 /*!
201 * \ingroup KroneckerProduct_Module
202 *
203 * Computes Kronecker tensor product of two dense matrices
204 *
205 * \warning If you want to replace a matrix by its Kronecker product
206 * with some matrix, do \b NOT do this:
207 * \code
208 * A = kroneckerProduct(A,B); // bug!!! caused by aliasing effect
209 * \endcode
210 * instead, use eval() to work around this:
211 * \code
212 * A = kroneckerProduct(A,B).eval();
213 * \endcode
214 *
215 * \param a Dense matrix a
216 * \param b Dense matrix b
217 * \return Kronecker tensor product of a and b
218 */
219 template<typename A, typename B>
220 KroneckerProduct<A,B> kroneckerProduct(const MatrixBase<A>& a, const MatrixBase<B>& b)
221 {
222 return KroneckerProduct<A, B>(a.derived(), b.derived());
223 }
224
225 /*!
226 * \ingroup KroneckerProduct_Module
227 *
228 * Computes Kronecker tensor product of two matrices, at least one of
229 * which is sparse
230 *
231 * \param a Dense/sparse matrix a
232 * \param b Dense/sparse matrix b
233 * \return Kronecker tensor product of a and b, stored in a sparse
234 * matrix
235 */
236 template<typename A, typename B>
237 KroneckerProductSparse<A,B> kroneckerProduct(const EigenBase<A>& a, const EigenBase<B>& b)
238 {
239 return KroneckerProductSparse<A,B>(a.derived(), b.derived());
240 }
241
242 } // end namespace Eigen
243
244 #endif // KRONECKER_TENSOR_PRODUCT_H
245