1 // This file is part of Eigen, a lightweight C++ template library
2 // for linear algebra.
3 //
4 // Copyright (C) 2009 Thomas Capricelli <orzel@freehackers.org>
5 // Copyright (C) 2012 Desire Nuentsa <desire.nuentsa_wakam@inria.fr>
6 //
7 // This code initially comes from MINPACK whose original authors are:
8 // Copyright Jorge More - Argonne National Laboratory
9 // Copyright Burt Garbow - Argonne National Laboratory
10 // Copyright Ken Hillstrom - Argonne National Laboratory
11 //
12 // This Source Code Form is subject to the terms of the Minpack license
13 // (a BSD-like license) described in the campaigned CopyrightMINPACK.txt file.
14 
15 #ifndef EIGEN_LMQRSOLV_H
16 #define EIGEN_LMQRSOLV_H
17 
18 namespace Eigen {
19 
20 namespace internal {
21 
22 template <typename Scalar,int Rows, int Cols, typename Index>
lmqrsolv(Matrix<Scalar,Rows,Cols> & s,const PermutationMatrix<Dynamic,Dynamic,Index> & iPerm,const Matrix<Scalar,Dynamic,1> & diag,const Matrix<Scalar,Dynamic,1> & qtb,Matrix<Scalar,Dynamic,1> & x,Matrix<Scalar,Dynamic,1> & sdiag)23 void lmqrsolv(
24   Matrix<Scalar,Rows,Cols> &s,
25   const PermutationMatrix<Dynamic,Dynamic,Index> &iPerm,
26   const Matrix<Scalar,Dynamic,1> &diag,
27   const Matrix<Scalar,Dynamic,1> &qtb,
28   Matrix<Scalar,Dynamic,1> &x,
29   Matrix<Scalar,Dynamic,1> &sdiag)
30 {
31 
32     /* Local variables */
33     Index i, j, k, l;
34     Scalar temp;
35     Index n = s.cols();
36     Matrix<Scalar,Dynamic,1>  wa(n);
37     JacobiRotation<Scalar> givens;
38 
39     /* Function Body */
40     // the following will only change the lower triangular part of s, including
41     // the diagonal, though the diagonal is restored afterward
42 
43     /*     copy r and (q transpose)*b to preserve input and initialize s. */
44     /*     in particular, save the diagonal elements of r in x. */
45     x = s.diagonal();
46     wa = qtb;
47 
48 
49     s.topLeftCorner(n,n).template triangularView<StrictlyLower>() = s.topLeftCorner(n,n).transpose();
50     /*     eliminate the diagonal matrix d using a givens rotation. */
51     for (j = 0; j < n; ++j) {
52 
53         /*        prepare the row of d to be eliminated, locating the */
54         /*        diagonal element using p from the qr factorization. */
55         l = iPerm.indices()(j);
56         if (diag[l] == 0.)
57             break;
58         sdiag.tail(n-j).setZero();
59         sdiag[j] = diag[l];
60 
61         /*        the transformations to eliminate the row of d */
62         /*        modify only a single element of (q transpose)*b */
63         /*        beyond the first n, which is initially zero. */
64         Scalar qtbpj = 0.;
65         for (k = j; k < n; ++k) {
66             /*           determine a givens rotation which eliminates the */
67             /*           appropriate element in the current row of d. */
68             givens.makeGivens(-s(k,k), sdiag[k]);
69 
70             /*           compute the modified diagonal element of r and */
71             /*           the modified element of ((q transpose)*b,0). */
72             s(k,k) = givens.c() * s(k,k) + givens.s() * sdiag[k];
73             temp = givens.c() * wa[k] + givens.s() * qtbpj;
74             qtbpj = -givens.s() * wa[k] + givens.c() * qtbpj;
75             wa[k] = temp;
76 
77             /*           accumulate the tranformation in the row of s. */
78             for (i = k+1; i<n; ++i) {
79                 temp = givens.c() * s(i,k) + givens.s() * sdiag[i];
80                 sdiag[i] = -givens.s() * s(i,k) + givens.c() * sdiag[i];
81                 s(i,k) = temp;
82             }
83         }
84     }
85 
86     /*     solve the triangular system for z. if the system is */
87     /*     singular, then obtain a least squares solution. */
88     Index nsing;
89     for(nsing=0; nsing<n && sdiag[nsing]!=0; nsing++) {}
90 
91     wa.tail(n-nsing).setZero();
92     s.topLeftCorner(nsing, nsing).transpose().template triangularView<Upper>().solveInPlace(wa.head(nsing));
93 
94     // restore
95     sdiag = s.diagonal();
96     s.diagonal() = x;
97 
98     /* permute the components of z back to components of x. */
99     x = iPerm * wa;
100 }
101 
102 template <typename Scalar, int _Options, typename Index>
lmqrsolv(SparseMatrix<Scalar,_Options,Index> & s,const PermutationMatrix<Dynamic,Dynamic> & iPerm,const Matrix<Scalar,Dynamic,1> & diag,const Matrix<Scalar,Dynamic,1> & qtb,Matrix<Scalar,Dynamic,1> & x,Matrix<Scalar,Dynamic,1> & sdiag)103 void lmqrsolv(
104   SparseMatrix<Scalar,_Options,Index> &s,
105   const PermutationMatrix<Dynamic,Dynamic> &iPerm,
106   const Matrix<Scalar,Dynamic,1> &diag,
107   const Matrix<Scalar,Dynamic,1> &qtb,
108   Matrix<Scalar,Dynamic,1> &x,
109   Matrix<Scalar,Dynamic,1> &sdiag)
110 {
111   /* Local variables */
112   typedef SparseMatrix<Scalar,RowMajor,Index> FactorType;
113     Index i, j, k, l;
114     Scalar temp;
115     Index n = s.cols();
116     Matrix<Scalar,Dynamic,1>  wa(n);
117     JacobiRotation<Scalar> givens;
118 
119     /* Function Body */
120     // the following will only change the lower triangular part of s, including
121     // the diagonal, though the diagonal is restored afterward
122 
123     /*     copy r and (q transpose)*b to preserve input and initialize R. */
124     wa = qtb;
125     FactorType R(s);
126     // Eliminate the diagonal matrix d using a givens rotation
127     for (j = 0; j < n; ++j)
128     {
129       // Prepare the row of d to be eliminated, locating the
130       // diagonal element using p from the qr factorization
131       l = iPerm.indices()(j);
132       if (diag(l) == Scalar(0))
133         break;
134       sdiag.tail(n-j).setZero();
135       sdiag[j] = diag[l];
136       // the transformations to eliminate the row of d
137       // modify only a single element of (q transpose)*b
138       // beyond the first n, which is initially zero.
139 
140       Scalar qtbpj = 0;
141       // Browse the nonzero elements of row j of the upper triangular s
142       for (k = j; k < n; ++k)
143       {
144         typename FactorType::InnerIterator itk(R,k);
145         for (; itk; ++itk){
146           if (itk.index() < k) continue;
147           else break;
148         }
149         //At this point, we have the diagonal element R(k,k)
150         // Determine a givens rotation which eliminates
151         // the appropriate element in the current row of d
152         givens.makeGivens(-itk.value(), sdiag(k));
153 
154         // Compute the modified diagonal element of r and
155         // the modified element of ((q transpose)*b,0).
156         itk.valueRef() = givens.c() * itk.value() + givens.s() * sdiag(k);
157         temp = givens.c() * wa(k) + givens.s() * qtbpj;
158         qtbpj = -givens.s() * wa(k) + givens.c() * qtbpj;
159         wa(k) = temp;
160 
161         // Accumulate the transformation in the remaining k row/column of R
162         for (++itk; itk; ++itk)
163         {
164           i = itk.index();
165           temp = givens.c() *  itk.value() + givens.s() * sdiag(i);
166           sdiag(i) = -givens.s() * itk.value() + givens.c() * sdiag(i);
167           itk.valueRef() = temp;
168         }
169       }
170     }
171 
172     // Solve the triangular system for z. If the system is
173     // singular, then obtain a least squares solution
174     Index nsing;
175     for(nsing = 0; nsing<n && sdiag(nsing) !=0; nsing++) {}
176 
177     wa.tail(n-nsing).setZero();
178 //     x = wa;
179     wa.head(nsing) = R.topLeftCorner(nsing,nsing).template triangularView<Upper>().solve/*InPlace*/(wa.head(nsing));
180 
181     sdiag = R.diagonal();
182     // Permute the components of z back to components of x
183     x = iPerm * wa;
184 }
185 } // end namespace internal
186 
187 } // end namespace Eigen
188 
189 #endif // EIGEN_LMQRSOLV_H
190