1 // This file is part of Eigen, a lightweight C++ template library
2 // for linear algebra.
3 //
4 // Copyright (C) 2009 Thomas Capricelli <orzel@freehackers.org>
5 // Copyright (C) 2012 Desire Nuentsa <desire.nuentsa_wakam@inria.fr>
6 //
7 // This code initially comes from MINPACK whose original authors are:
8 // Copyright Jorge More - Argonne National Laboratory
9 // Copyright Burt Garbow - Argonne National Laboratory
10 // Copyright Ken Hillstrom - Argonne National Laboratory
11 //
12 // This Source Code Form is subject to the terms of the Minpack license
13 // (a BSD-like license) described in the campaigned CopyrightMINPACK.txt file.
14
15 #ifndef EIGEN_LMQRSOLV_H
16 #define EIGEN_LMQRSOLV_H
17
18 namespace Eigen {
19
20 namespace internal {
21
22 template <typename Scalar,int Rows, int Cols, typename Index>
lmqrsolv(Matrix<Scalar,Rows,Cols> & s,const PermutationMatrix<Dynamic,Dynamic,Index> & iPerm,const Matrix<Scalar,Dynamic,1> & diag,const Matrix<Scalar,Dynamic,1> & qtb,Matrix<Scalar,Dynamic,1> & x,Matrix<Scalar,Dynamic,1> & sdiag)23 void lmqrsolv(
24 Matrix<Scalar,Rows,Cols> &s,
25 const PermutationMatrix<Dynamic,Dynamic,Index> &iPerm,
26 const Matrix<Scalar,Dynamic,1> &diag,
27 const Matrix<Scalar,Dynamic,1> &qtb,
28 Matrix<Scalar,Dynamic,1> &x,
29 Matrix<Scalar,Dynamic,1> &sdiag)
30 {
31
32 /* Local variables */
33 Index i, j, k, l;
34 Scalar temp;
35 Index n = s.cols();
36 Matrix<Scalar,Dynamic,1> wa(n);
37 JacobiRotation<Scalar> givens;
38
39 /* Function Body */
40 // the following will only change the lower triangular part of s, including
41 // the diagonal, though the diagonal is restored afterward
42
43 /* copy r and (q transpose)*b to preserve input and initialize s. */
44 /* in particular, save the diagonal elements of r in x. */
45 x = s.diagonal();
46 wa = qtb;
47
48
49 s.topLeftCorner(n,n).template triangularView<StrictlyLower>() = s.topLeftCorner(n,n).transpose();
50 /* eliminate the diagonal matrix d using a givens rotation. */
51 for (j = 0; j < n; ++j) {
52
53 /* prepare the row of d to be eliminated, locating the */
54 /* diagonal element using p from the qr factorization. */
55 l = iPerm.indices()(j);
56 if (diag[l] == 0.)
57 break;
58 sdiag.tail(n-j).setZero();
59 sdiag[j] = diag[l];
60
61 /* the transformations to eliminate the row of d */
62 /* modify only a single element of (q transpose)*b */
63 /* beyond the first n, which is initially zero. */
64 Scalar qtbpj = 0.;
65 for (k = j; k < n; ++k) {
66 /* determine a givens rotation which eliminates the */
67 /* appropriate element in the current row of d. */
68 givens.makeGivens(-s(k,k), sdiag[k]);
69
70 /* compute the modified diagonal element of r and */
71 /* the modified element of ((q transpose)*b,0). */
72 s(k,k) = givens.c() * s(k,k) + givens.s() * sdiag[k];
73 temp = givens.c() * wa[k] + givens.s() * qtbpj;
74 qtbpj = -givens.s() * wa[k] + givens.c() * qtbpj;
75 wa[k] = temp;
76
77 /* accumulate the tranformation in the row of s. */
78 for (i = k+1; i<n; ++i) {
79 temp = givens.c() * s(i,k) + givens.s() * sdiag[i];
80 sdiag[i] = -givens.s() * s(i,k) + givens.c() * sdiag[i];
81 s(i,k) = temp;
82 }
83 }
84 }
85
86 /* solve the triangular system for z. if the system is */
87 /* singular, then obtain a least squares solution. */
88 Index nsing;
89 for(nsing=0; nsing<n && sdiag[nsing]!=0; nsing++) {}
90
91 wa.tail(n-nsing).setZero();
92 s.topLeftCorner(nsing, nsing).transpose().template triangularView<Upper>().solveInPlace(wa.head(nsing));
93
94 // restore
95 sdiag = s.diagonal();
96 s.diagonal() = x;
97
98 /* permute the components of z back to components of x. */
99 x = iPerm * wa;
100 }
101
102 template <typename Scalar, int _Options, typename Index>
lmqrsolv(SparseMatrix<Scalar,_Options,Index> & s,const PermutationMatrix<Dynamic,Dynamic> & iPerm,const Matrix<Scalar,Dynamic,1> & diag,const Matrix<Scalar,Dynamic,1> & qtb,Matrix<Scalar,Dynamic,1> & x,Matrix<Scalar,Dynamic,1> & sdiag)103 void lmqrsolv(
104 SparseMatrix<Scalar,_Options,Index> &s,
105 const PermutationMatrix<Dynamic,Dynamic> &iPerm,
106 const Matrix<Scalar,Dynamic,1> &diag,
107 const Matrix<Scalar,Dynamic,1> &qtb,
108 Matrix<Scalar,Dynamic,1> &x,
109 Matrix<Scalar,Dynamic,1> &sdiag)
110 {
111 /* Local variables */
112 typedef SparseMatrix<Scalar,RowMajor,Index> FactorType;
113 Index i, j, k, l;
114 Scalar temp;
115 Index n = s.cols();
116 Matrix<Scalar,Dynamic,1> wa(n);
117 JacobiRotation<Scalar> givens;
118
119 /* Function Body */
120 // the following will only change the lower triangular part of s, including
121 // the diagonal, though the diagonal is restored afterward
122
123 /* copy r and (q transpose)*b to preserve input and initialize R. */
124 wa = qtb;
125 FactorType R(s);
126 // Eliminate the diagonal matrix d using a givens rotation
127 for (j = 0; j < n; ++j)
128 {
129 // Prepare the row of d to be eliminated, locating the
130 // diagonal element using p from the qr factorization
131 l = iPerm.indices()(j);
132 if (diag(l) == Scalar(0))
133 break;
134 sdiag.tail(n-j).setZero();
135 sdiag[j] = diag[l];
136 // the transformations to eliminate the row of d
137 // modify only a single element of (q transpose)*b
138 // beyond the first n, which is initially zero.
139
140 Scalar qtbpj = 0;
141 // Browse the nonzero elements of row j of the upper triangular s
142 for (k = j; k < n; ++k)
143 {
144 typename FactorType::InnerIterator itk(R,k);
145 for (; itk; ++itk){
146 if (itk.index() < k) continue;
147 else break;
148 }
149 //At this point, we have the diagonal element R(k,k)
150 // Determine a givens rotation which eliminates
151 // the appropriate element in the current row of d
152 givens.makeGivens(-itk.value(), sdiag(k));
153
154 // Compute the modified diagonal element of r and
155 // the modified element of ((q transpose)*b,0).
156 itk.valueRef() = givens.c() * itk.value() + givens.s() * sdiag(k);
157 temp = givens.c() * wa(k) + givens.s() * qtbpj;
158 qtbpj = -givens.s() * wa(k) + givens.c() * qtbpj;
159 wa(k) = temp;
160
161 // Accumulate the transformation in the remaining k row/column of R
162 for (++itk; itk; ++itk)
163 {
164 i = itk.index();
165 temp = givens.c() * itk.value() + givens.s() * sdiag(i);
166 sdiag(i) = -givens.s() * itk.value() + givens.c() * sdiag(i);
167 itk.valueRef() = temp;
168 }
169 }
170 }
171
172 // Solve the triangular system for z. If the system is
173 // singular, then obtain a least squares solution
174 Index nsing;
175 for(nsing = 0; nsing<n && sdiag(nsing) !=0; nsing++) {}
176
177 wa.tail(n-nsing).setZero();
178 // x = wa;
179 wa.head(nsing) = R.topLeftCorner(nsing,nsing).template triangularView<Upper>().solve/*InPlace*/(wa.head(nsing));
180
181 sdiag = R.diagonal();
182 // Permute the components of z back to components of x
183 x = iPerm * wa;
184 }
185 } // end namespace internal
186
187 } // end namespace Eigen
188
189 #endif // EIGEN_LMQRSOLV_H
190