1 // This file is part of Eigen, a lightweight C++ template library
2 // for linear algebra.
3 //
4 // Copyright (C) 2009-2011 Jitse Niesen <jitse@maths.leeds.ac.uk>
5 //
6 // This Source Code Form is subject to the terms of the Mozilla
7 // Public License v. 2.0. If a copy of the MPL was not distributed
8 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
9 
10 #include "main.h"
11 #include <unsupported/Eigen/MatrixFunctions>
12 
13 template <typename MatrixType, int IsComplex = NumTraits<typename internal::traits<MatrixType>::Scalar>::IsComplex>
14 struct generateTestMatrix;
15 
16 // for real matrices, make sure none of the eigenvalues are negative
17 template <typename MatrixType>
18 struct generateTestMatrix<MatrixType,0>
19 {
20   static void run(MatrixType& result, typename MatrixType::Index size)
21   {
22     MatrixType mat = MatrixType::Random(size, size);
23     EigenSolver<MatrixType> es(mat);
24     typename EigenSolver<MatrixType>::EigenvalueType eivals = es.eigenvalues();
25     for (typename MatrixType::Index i = 0; i < size; ++i) {
26       if (eivals(i).imag() == 0 && eivals(i).real() < 0)
27 	eivals(i) = -eivals(i);
28     }
29     result = (es.eigenvectors() * eivals.asDiagonal() * es.eigenvectors().inverse()).real();
30   }
31 };
32 
33 // for complex matrices, any matrix is fine
34 template <typename MatrixType>
35 struct generateTestMatrix<MatrixType,1>
36 {
37   static void run(MatrixType& result, typename MatrixType::Index size)
38   {
39     result = MatrixType::Random(size, size);
40   }
41 };
42 
43 template <typename Derived, typename OtherDerived>
44 double relerr(const MatrixBase<Derived>& A, const MatrixBase<OtherDerived>& B)
45 {
46   return std::sqrt((A - B).cwiseAbs2().sum() / (std::min)(A.cwiseAbs2().sum(), B.cwiseAbs2().sum()));
47 }
48