1 // -*- mode: C++ -*-
2 
3 // Copyright (c) 2010 Google Inc. All Rights Reserved.
4 //
5 // Redistribution and use in source and binary forms, with or without
6 // modification, are permitted provided that the following conditions are
7 // met:
8 //
9 //     * Redistributions of source code must retain the above copyright
10 // notice, this list of conditions and the following disclaimer.
11 //     * Redistributions in binary form must reproduce the above
12 // copyright notice, this list of conditions and the following disclaimer
13 // in the documentation and/or other materials provided with the
14 // distribution.
15 //     * Neither the name of Google Inc. nor the names of its
16 // contributors may be used to endorse or promote products derived from
17 // this software without specific prior written permission.
18 //
19 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
20 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
21 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 
31 #ifndef COMMON_DWARF_BYTEREADER_H__
32 #define COMMON_DWARF_BYTEREADER_H__
33 
34 #include <string>
35 #include "common/dwarf/types.h"
36 #include "common/dwarf/dwarf2enums.h"
37 
38 namespace dwarf2reader {
39 
40 // We can't use the obvious name of LITTLE_ENDIAN and BIG_ENDIAN
41 // because it conflicts with a macro
42 enum Endianness {
43   ENDIANNESS_BIG,
44   ENDIANNESS_LITTLE
45 };
46 
47 // A ByteReader knows how to read single- and multi-byte values of
48 // various endiannesses, sizes, and encodings, as used in DWARF
49 // debugging information and Linux C++ exception handling data.
50 class ByteReader {
51  public:
52   // Construct a ByteReader capable of reading one-, two-, four-, and
53   // eight-byte values according to ENDIANNESS, absolute machine-sized
54   // addresses, DWARF-style "initial length" values, signed and
55   // unsigned LEB128 numbers, and Linux C++ exception handling data's
56   // encoded pointers.
57   explicit ByteReader(enum Endianness endianness);
58   virtual ~ByteReader();
59 
60   // Read a single byte from BUFFER and return it as an unsigned 8 bit
61   // number.
62   uint8 ReadOneByte(const char* buffer) const;
63 
64   // Read two bytes from BUFFER and return them as an unsigned 16 bit
65   // number, using this ByteReader's endianness.
66   uint16 ReadTwoBytes(const char* buffer) const;
67 
68   // Read four bytes from BUFFER and return them as an unsigned 32 bit
69   // number, using this ByteReader's endianness. This function returns
70   // a uint64 so that it is compatible with ReadAddress and
71   // ReadOffset. The number it returns will never be outside the range
72   // of an unsigned 32 bit integer.
73   uint64 ReadFourBytes(const char* buffer) const;
74 
75   // Read eight bytes from BUFFER and return them as an unsigned 64
76   // bit number, using this ByteReader's endianness.
77   uint64 ReadEightBytes(const char* buffer) const;
78 
79   // Read an unsigned LEB128 (Little Endian Base 128) number from
80   // BUFFER and return it as an unsigned 64 bit integer. Set LEN to
81   // the number of bytes read.
82   //
83   // The unsigned LEB128 representation of an integer N is a variable
84   // number of bytes:
85   //
86   // - If N is between 0 and 0x7f, then its unsigned LEB128
87   //   representation is a single byte whose value is N.
88   //
89   // - Otherwise, its unsigned LEB128 representation is (N & 0x7f) |
90   //   0x80, followed by the unsigned LEB128 representation of N /
91   //   128, rounded towards negative infinity.
92   //
93   // In other words, we break VALUE into groups of seven bits, put
94   // them in little-endian order, and then write them as eight-bit
95   // bytes with the high bit on all but the last.
96   uint64 ReadUnsignedLEB128(const char* buffer, size_t* len) const;
97 
98   // Read a signed LEB128 number from BUFFER and return it as an
99   // signed 64 bit integer. Set LEN to the number of bytes read.
100   //
101   // The signed LEB128 representation of an integer N is a variable
102   // number of bytes:
103   //
104   // - If N is between -0x40 and 0x3f, then its signed LEB128
105   //   representation is a single byte whose value is N in two's
106   //   complement.
107   //
108   // - Otherwise, its signed LEB128 representation is (N & 0x7f) |
109   //   0x80, followed by the signed LEB128 representation of N / 128,
110   //   rounded towards negative infinity.
111   //
112   // In other words, we break VALUE into groups of seven bits, put
113   // them in little-endian order, and then write them as eight-bit
114   // bytes with the high bit on all but the last.
115   int64 ReadSignedLEB128(const char* buffer, size_t* len) const;
116 
117   // Indicate that addresses on this architecture are SIZE bytes long. SIZE
118   // must be either 4 or 8. (DWARF allows addresses to be any number of
119   // bytes in length from 1 to 255, but we only support 32- and 64-bit
120   // addresses at the moment.) You must call this before using the
121   // ReadAddress member function.
122   //
123   // For data in a .debug_info section, or something that .debug_info
124   // refers to like line number or macro data, the compilation unit
125   // header's address_size field indicates the address size to use. Call
126   // frame information doesn't indicate its address size (a shortcoming of
127   // the spec); you must supply the appropriate size based on the
128   // architecture of the target machine.
129   void SetAddressSize(uint8 size);
130 
131   // Return the current address size, in bytes. This is either 4,
132   // indicating 32-bit addresses, or 8, indicating 64-bit addresses.
AddressSize()133   uint8 AddressSize() const { return address_size_; }
134 
135   // Read an address from BUFFER and return it as an unsigned 64 bit
136   // integer, respecting this ByteReader's endianness and address size. You
137   // must call SetAddressSize before calling this function.
138   uint64 ReadAddress(const char* buffer) const;
139 
140   // DWARF actually defines two slightly different formats: 32-bit DWARF
141   // and 64-bit DWARF. This is *not* related to the size of registers or
142   // addresses on the target machine; it refers only to the size of section
143   // offsets and data lengths appearing in the DWARF data. One only needs
144   // 64-bit DWARF when the debugging data itself is larger than 4GiB.
145   // 32-bit DWARF can handle x86_64 or PPC64 code just fine, unless the
146   // debugging data itself is very large.
147   //
148   // DWARF information identifies itself as 32-bit or 64-bit DWARF: each
149   // compilation unit and call frame information entry begins with an
150   // "initial length" field, which, in addition to giving the length of the
151   // data, also indicates the size of section offsets and lengths appearing
152   // in that data. The ReadInitialLength member function, below, reads an
153   // initial length and sets the ByteReader's offset size as a side effect.
154   // Thus, in the normal process of reading DWARF data, the appropriate
155   // offset size is set automatically. So, you should only need to call
156   // SetOffsetSize if you are using the same ByteReader to jump from the
157   // midst of one block of DWARF data into another.
158 
159   // Read a DWARF "initial length" field from START, and return it as
160   // an unsigned 64 bit integer, respecting this ByteReader's
161   // endianness. Set *LEN to the length of the initial length in
162   // bytes, either four or twelve. As a side effect, set this
163   // ByteReader's offset size to either 4 (if we see a 32-bit DWARF
164   // initial length) or 8 (if we see a 64-bit DWARF initial length).
165   //
166   // A DWARF initial length is either:
167   //
168   // - a byte count stored as an unsigned 32-bit value less than
169   //   0xffffff00, indicating that the data whose length is being
170   //   measured uses the 32-bit DWARF format, or
171   //
172   // - The 32-bit value 0xffffffff, followed by a 64-bit byte count,
173   //   indicating that the data whose length is being measured uses
174   //   the 64-bit DWARF format.
175   uint64 ReadInitialLength(const char* start, size_t* len);
176 
177   // Read an offset from BUFFER and return it as an unsigned 64 bit
178   // integer, respecting the ByteReader's endianness. In 32-bit DWARF, the
179   // offset is 4 bytes long; in 64-bit DWARF, the offset is eight bytes
180   // long. You must call ReadInitialLength or SetOffsetSize before calling
181   // this function; see the comments above for details.
182   uint64 ReadOffset(const char* buffer) const;
183 
184   // Return the current offset size, in bytes.
185   // A return value of 4 indicates that we are reading 32-bit DWARF.
186   // A return value of 8 indicates that we are reading 64-bit DWARF.
OffsetSize()187   uint8 OffsetSize() const { return offset_size_; }
188 
189   // Indicate that section offsets and lengths are SIZE bytes long. SIZE
190   // must be either 4 (meaning 32-bit DWARF) or 8 (meaning 64-bit DWARF).
191   // Usually, you should not call this function yourself; instead, let a
192   // call to ReadInitialLength establish the data's offset size
193   // automatically.
194   void SetOffsetSize(uint8 size);
195 
196   // The Linux C++ ABI uses a variant of DWARF call frame information
197   // for exception handling. This data is included in the program's
198   // address space as the ".eh_frame" section, and intepreted at
199   // runtime to walk the stack, find exception handlers, and run
200   // cleanup code. The format is mostly the same as DWARF CFI, with
201   // some adjustments made to provide the additional
202   // exception-handling data, and to make the data easier to work with
203   // in memory --- for example, to allow it to be placed in read-only
204   // memory even when describing position-independent code.
205   //
206   // In particular, exception handling data can select a number of
207   // different encodings for pointers that appear in the data, as
208   // described by the DwarfPointerEncoding enum. There are actually
209   // four axes(!) to the encoding:
210   //
211   // - The pointer size: pointers can be 2, 4, or 8 bytes long, or use
212   //   the DWARF LEB128 encoding.
213   //
214   // - The pointer's signedness: pointers can be signed or unsigned.
215   //
216   // - The pointer's base address: the data stored in the exception
217   //   handling data can be the actual address (that is, an absolute
218   //   pointer), or relative to one of a number of different base
219   //   addreses --- including that of the encoded pointer itself, for
220   //   a form of "pc-relative" addressing.
221   //
222   // - The pointer may be indirect: it may be the address where the
223   //   true pointer is stored. (This is used to refer to things via
224   //   global offset table entries, program linkage table entries, or
225   //   other tricks used in position-independent code.)
226   //
227   // There are also two options that fall outside that matrix
228   // altogether: the pointer may be omitted, or it may have padding to
229   // align it on an appropriate address boundary. (That last option
230   // may seem like it should be just another axis, but it is not.)
231 
232   // Indicate that the exception handling data is loaded starting at
233   // SECTION_BASE, and that the start of its buffer in our own memory
234   // is BUFFER_BASE. This allows us to find the address that a given
235   // byte in our buffer would have when loaded into the program the
236   // data describes. We need this to resolve DW_EH_PE_pcrel pointers.
237   void SetCFIDataBase(uint64 section_base, const char *buffer_base);
238 
239   // Indicate that the base address of the program's ".text" section
240   // is TEXT_BASE. We need this to resolve DW_EH_PE_textrel pointers.
241   void SetTextBase(uint64 text_base);
242 
243   // Indicate that the base address for DW_EH_PE_datarel pointers is
244   // DATA_BASE. The proper value depends on the ABI; it is usually the
245   // address of the global offset table, held in a designated register in
246   // position-independent code. You will need to look at the startup code
247   // for the target system to be sure. I tried; my eyes bled.
248   void SetDataBase(uint64 data_base);
249 
250   // Indicate that the base address for the FDE we are processing is
251   // FUNCTION_BASE. This is the start address of DW_EH_PE_funcrel
252   // pointers. (This encoding does not seem to be used by the GNU
253   // toolchain.)
254   void SetFunctionBase(uint64 function_base);
255 
256   // Indicate that we are no longer processing any FDE, so any use of
257   // a DW_EH_PE_funcrel encoding is an error.
258   void ClearFunctionBase();
259 
260   // Return true if ENCODING is a valid pointer encoding.
261   bool ValidEncoding(DwarfPointerEncoding encoding) const;
262 
263   // Return true if we have all the information we need to read a
264   // pointer that uses ENCODING. This checks that the appropriate
265   // SetFooBase function for ENCODING has been called.
266   bool UsableEncoding(DwarfPointerEncoding encoding) const;
267 
268   // Read an encoded pointer from BUFFER using ENCODING; return the
269   // absolute address it represents, and set *LEN to the pointer's
270   // length in bytes, including any padding for aligned pointers.
271   //
272   // This function calls 'abort' if ENCODING is invalid or refers to a
273   // base address this reader hasn't been given, so you should check
274   // with ValidEncoding and UsableEncoding first if you would rather
275   // die in a more helpful way.
276   uint64 ReadEncodedPointer(const char *buffer, DwarfPointerEncoding encoding,
277                             size_t *len) const;
278 
279  private:
280 
281   // Function pointer type for our address and offset readers.
282   typedef uint64 (ByteReader::*AddressReader)(const char*) const;
283 
284   // Read an offset from BUFFER and return it as an unsigned 64 bit
285   // integer.  DWARF2/3 define offsets as either 4 or 8 bytes,
286   // generally depending on the amount of DWARF2/3 info present.
287   // This function pointer gets set by SetOffsetSize.
288   AddressReader offset_reader_;
289 
290   // Read an address from BUFFER and return it as an unsigned 64 bit
291   // integer.  DWARF2/3 allow addresses to be any size from 0-255
292   // bytes currently.  Internally we support 4 and 8 byte addresses,
293   // and will CHECK on anything else.
294   // This function pointer gets set by SetAddressSize.
295   AddressReader address_reader_;
296 
297   Endianness endian_;
298   uint8 address_size_;
299   uint8 offset_size_;
300 
301   // Base addresses for Linux C++ exception handling data's encoded pointers.
302   bool have_section_base_, have_text_base_, have_data_base_;
303   bool have_function_base_;
304   uint64 section_base_, text_base_, data_base_, function_base_;
305   const char *buffer_base_;
306 };
307 
308 }  // namespace dwarf2reader
309 
310 #endif  // COMMON_DWARF_BYTEREADER_H__
311