1 /*
2 *******************************************************************************
3 *
4 *   Copyright (C) 2005-2014, International Business Machines
5 *   Corporation and others.  All Rights Reserved.
6 *
7 *******************************************************************************
8 *   file name:  utext.cpp
9 *   encoding:   US-ASCII
10 *   tab size:   8 (not used)
11 *   indentation:4
12 *
13 *   created on: 2005apr12
14 *   created by: Markus W. Scherer
15 */
16 
17 #include "unicode/utypes.h"
18 #include "unicode/ustring.h"
19 #include "unicode/unistr.h"
20 #include "unicode/chariter.h"
21 #include "unicode/utext.h"
22 #include "unicode/utf.h"
23 #include "unicode/utf8.h"
24 #include "unicode/utf16.h"
25 #include "ustr_imp.h"
26 #include "cmemory.h"
27 #include "cstring.h"
28 #include "uassert.h"
29 #include "putilimp.h"
30 
31 U_NAMESPACE_USE
32 
33 #define I32_FLAG(bitIndex) ((int32_t)1<<(bitIndex))
34 
35 
36 static UBool
utext_access(UText * ut,int64_t index,UBool forward)37 utext_access(UText *ut, int64_t index, UBool forward) {
38     return ut->pFuncs->access(ut, index, forward);
39 }
40 
41 
42 
43 U_CAPI UBool U_EXPORT2
utext_moveIndex32(UText * ut,int32_t delta)44 utext_moveIndex32(UText *ut, int32_t delta) {
45     UChar32  c;
46     if (delta > 0) {
47         do {
48             if(ut->chunkOffset>=ut->chunkLength && !utext_access(ut, ut->chunkNativeLimit, TRUE)) {
49                 return FALSE;
50             }
51             c = ut->chunkContents[ut->chunkOffset];
52             if (U16_IS_SURROGATE(c)) {
53                 c = utext_next32(ut);
54                 if (c == U_SENTINEL) {
55                     return FALSE;
56                 }
57             } else {
58                 ut->chunkOffset++;
59             }
60         } while(--delta>0);
61 
62     } else if (delta<0) {
63         do {
64             if(ut->chunkOffset<=0 && !utext_access(ut, ut->chunkNativeStart, FALSE)) {
65                 return FALSE;
66             }
67             c = ut->chunkContents[ut->chunkOffset-1];
68             if (U16_IS_SURROGATE(c)) {
69                 c = utext_previous32(ut);
70                 if (c == U_SENTINEL) {
71                     return FALSE;
72                 }
73             } else {
74                 ut->chunkOffset--;
75             }
76         } while(++delta<0);
77     }
78 
79     return TRUE;
80 }
81 
82 
83 U_CAPI int64_t U_EXPORT2
utext_nativeLength(UText * ut)84 utext_nativeLength(UText *ut) {
85     return ut->pFuncs->nativeLength(ut);
86 }
87 
88 
89 U_CAPI UBool U_EXPORT2
utext_isLengthExpensive(const UText * ut)90 utext_isLengthExpensive(const UText *ut) {
91     UBool r = (ut->providerProperties & I32_FLAG(UTEXT_PROVIDER_LENGTH_IS_EXPENSIVE)) != 0;
92     return r;
93 }
94 
95 
96 U_CAPI int64_t U_EXPORT2
utext_getNativeIndex(const UText * ut)97 utext_getNativeIndex(const UText *ut) {
98     if(ut->chunkOffset <= ut->nativeIndexingLimit) {
99         return ut->chunkNativeStart+ut->chunkOffset;
100     } else {
101         return ut->pFuncs->mapOffsetToNative(ut);
102     }
103 }
104 
105 
106 U_CAPI void U_EXPORT2
utext_setNativeIndex(UText * ut,int64_t index)107 utext_setNativeIndex(UText *ut, int64_t index) {
108     if(index<ut->chunkNativeStart || index>=ut->chunkNativeLimit) {
109         // The desired position is outside of the current chunk.
110         // Access the new position.  Assume a forward iteration from here,
111         // which will also be optimimum for a single random access.
112         // Reverse iterations may suffer slightly.
113         ut->pFuncs->access(ut, index, TRUE);
114     } else if((int32_t)(index - ut->chunkNativeStart) <= ut->nativeIndexingLimit) {
115         // utf-16 indexing.
116         ut->chunkOffset=(int32_t)(index-ut->chunkNativeStart);
117     } else {
118          ut->chunkOffset=ut->pFuncs->mapNativeIndexToUTF16(ut, index);
119     }
120     // The convention is that the index must always be on a code point boundary.
121     // Adjust the index position if it is in the middle of a surrogate pair.
122     if (ut->chunkOffset<ut->chunkLength) {
123         UChar c= ut->chunkContents[ut->chunkOffset];
124         if (U16_IS_TRAIL(c)) {
125             if (ut->chunkOffset==0) {
126                 ut->pFuncs->access(ut, ut->chunkNativeStart, FALSE);
127             }
128             if (ut->chunkOffset>0) {
129                 UChar lead = ut->chunkContents[ut->chunkOffset-1];
130                 if (U16_IS_LEAD(lead)) {
131                     ut->chunkOffset--;
132                 }
133             }
134         }
135     }
136 }
137 
138 
139 
140 U_CAPI int64_t U_EXPORT2
utext_getPreviousNativeIndex(UText * ut)141 utext_getPreviousNativeIndex(UText *ut) {
142     //
143     //  Fast-path the common case.
144     //     Common means current position is not at the beginning of a chunk
145     //     and the preceding character is not supplementary.
146     //
147     int32_t i = ut->chunkOffset - 1;
148     int64_t result;
149     if (i >= 0) {
150         UChar c = ut->chunkContents[i];
151         if (U16_IS_TRAIL(c) == FALSE) {
152             if (i <= ut->nativeIndexingLimit) {
153                 result = ut->chunkNativeStart + i;
154             } else {
155                 ut->chunkOffset = i;
156                 result = ut->pFuncs->mapOffsetToNative(ut);
157                 ut->chunkOffset++;
158             }
159             return result;
160         }
161     }
162 
163     // If at the start of text, simply return 0.
164     if (ut->chunkOffset==0 && ut->chunkNativeStart==0) {
165         return 0;
166     }
167 
168     // Harder, less common cases.  We are at a chunk boundary, or on a surrogate.
169     //    Keep it simple, use other functions to handle the edges.
170     //
171     utext_previous32(ut);
172     result = UTEXT_GETNATIVEINDEX(ut);
173     utext_next32(ut);
174     return result;
175 }
176 
177 
178 //
179 //  utext_current32.  Get the UChar32 at the current position.
180 //                    UText iteration position is always on a code point boundary,
181 //                    never on the trail half of a surrogate pair.
182 //
183 U_CAPI UChar32 U_EXPORT2
utext_current32(UText * ut)184 utext_current32(UText *ut) {
185     UChar32  c;
186     if (ut->chunkOffset==ut->chunkLength) {
187         // Current position is just off the end of the chunk.
188         if (ut->pFuncs->access(ut, ut->chunkNativeLimit, TRUE) == FALSE) {
189             // Off the end of the text.
190             return U_SENTINEL;
191         }
192     }
193 
194     c = ut->chunkContents[ut->chunkOffset];
195     if (U16_IS_LEAD(c) == FALSE) {
196         // Normal, non-supplementary case.
197         return c;
198     }
199 
200     //
201     //  Possible supplementary char.
202     //
203     UChar32   trail = 0;
204     UChar32   supplementaryC = c;
205     if ((ut->chunkOffset+1) < ut->chunkLength) {
206         // The trail surrogate is in the same chunk.
207         trail = ut->chunkContents[ut->chunkOffset+1];
208     } else {
209         //  The trail surrogate is in a different chunk.
210         //     Because we must maintain the iteration position, we need to switch forward
211         //     into the new chunk, get the trail surrogate, then revert the chunk back to the
212         //     original one.
213         //     An edge case to be careful of:  the entire text may end with an unpaired
214         //        leading surrogate.  The attempt to access the trail will fail, but
215         //        the original position before the unpaired lead still needs to be restored.
216         int64_t  nativePosition = ut->chunkNativeLimit;
217         int32_t  originalOffset = ut->chunkOffset;
218         if (ut->pFuncs->access(ut, nativePosition, TRUE)) {
219             trail = ut->chunkContents[ut->chunkOffset];
220         }
221         UBool r = ut->pFuncs->access(ut, nativePosition, FALSE);  // reverse iteration flag loads preceding chunk
222         U_ASSERT(r==TRUE);
223         ut->chunkOffset = originalOffset;
224         if(!r) {
225             return U_SENTINEL;
226         }
227     }
228 
229     if (U16_IS_TRAIL(trail)) {
230         supplementaryC = U16_GET_SUPPLEMENTARY(c, trail);
231     }
232     return supplementaryC;
233 
234 }
235 
236 
237 U_CAPI UChar32 U_EXPORT2
utext_char32At(UText * ut,int64_t nativeIndex)238 utext_char32At(UText *ut, int64_t nativeIndex) {
239     UChar32 c = U_SENTINEL;
240 
241     // Fast path the common case.
242     if (nativeIndex>=ut->chunkNativeStart && nativeIndex < ut->chunkNativeStart + ut->nativeIndexingLimit) {
243         ut->chunkOffset = (int32_t)(nativeIndex - ut->chunkNativeStart);
244         c = ut->chunkContents[ut->chunkOffset];
245         if (U16_IS_SURROGATE(c) == FALSE) {
246             return c;
247         }
248     }
249 
250 
251     utext_setNativeIndex(ut, nativeIndex);
252     if (nativeIndex>=ut->chunkNativeStart && ut->chunkOffset<ut->chunkLength) {
253         c = ut->chunkContents[ut->chunkOffset];
254         if (U16_IS_SURROGATE(c)) {
255             // For surrogates, let current32() deal with the complications
256             //    of supplementaries that may span chunk boundaries.
257             c = utext_current32(ut);
258         }
259     }
260     return c;
261 }
262 
263 
264 U_CAPI UChar32 U_EXPORT2
utext_next32(UText * ut)265 utext_next32(UText *ut) {
266     UChar32       c;
267 
268     if (ut->chunkOffset >= ut->chunkLength) {
269         if (ut->pFuncs->access(ut, ut->chunkNativeLimit, TRUE) == FALSE) {
270             return U_SENTINEL;
271         }
272     }
273 
274     c = ut->chunkContents[ut->chunkOffset++];
275     if (U16_IS_LEAD(c) == FALSE) {
276         // Normal case, not supplementary.
277         //   (A trail surrogate seen here is just returned as is, as a surrogate value.
278         //    It cannot be part of a pair.)
279         return c;
280     }
281 
282     if (ut->chunkOffset >= ut->chunkLength) {
283         if (ut->pFuncs->access(ut, ut->chunkNativeLimit, TRUE) == FALSE) {
284             // c is an unpaired lead surrogate at the end of the text.
285             // return it as it is.
286             return c;
287         }
288     }
289     UChar32 trail = ut->chunkContents[ut->chunkOffset];
290     if (U16_IS_TRAIL(trail) == FALSE) {
291         // c was an unpaired lead surrogate, not at the end of the text.
292         // return it as it is (unpaired).  Iteration position is on the
293         // following character, possibly in the next chunk, where the
294         //  trail surrogate would have been if it had existed.
295         return c;
296     }
297 
298     UChar32 supplementary = U16_GET_SUPPLEMENTARY(c, trail);
299     ut->chunkOffset++;   // move iteration position over the trail surrogate.
300     return supplementary;
301     }
302 
303 
304 U_CAPI UChar32 U_EXPORT2
utext_previous32(UText * ut)305 utext_previous32(UText *ut) {
306     UChar32       c;
307 
308     if (ut->chunkOffset <= 0) {
309         if (ut->pFuncs->access(ut, ut->chunkNativeStart, FALSE) == FALSE) {
310             return U_SENTINEL;
311         }
312     }
313     ut->chunkOffset--;
314     c = ut->chunkContents[ut->chunkOffset];
315     if (U16_IS_TRAIL(c) == FALSE) {
316         // Normal case, not supplementary.
317         //   (A lead surrogate seen here is just returned as is, as a surrogate value.
318         //    It cannot be part of a pair.)
319         return c;
320     }
321 
322     if (ut->chunkOffset <= 0) {
323         if (ut->pFuncs->access(ut, ut->chunkNativeStart, FALSE) == FALSE) {
324             // c is an unpaired trail surrogate at the start of the text.
325             // return it as it is.
326             return c;
327         }
328     }
329 
330     UChar32 lead = ut->chunkContents[ut->chunkOffset-1];
331     if (U16_IS_LEAD(lead) == FALSE) {
332         // c was an unpaired trail surrogate, not at the end of the text.
333         // return it as it is (unpaired).  Iteration position is at c
334         return c;
335     }
336 
337     UChar32 supplementary = U16_GET_SUPPLEMENTARY(lead, c);
338     ut->chunkOffset--;   // move iteration position over the lead surrogate.
339     return supplementary;
340 }
341 
342 
343 
344 U_CAPI UChar32 U_EXPORT2
utext_next32From(UText * ut,int64_t index)345 utext_next32From(UText *ut, int64_t index) {
346     UChar32       c      = U_SENTINEL;
347 
348     if(index<ut->chunkNativeStart || index>=ut->chunkNativeLimit) {
349         // Desired position is outside of the current chunk.
350         if(!ut->pFuncs->access(ut, index, TRUE)) {
351             // no chunk available here
352             return U_SENTINEL;
353         }
354     } else if (index - ut->chunkNativeStart  <= (int64_t)ut->nativeIndexingLimit) {
355         // Desired position is in chunk, with direct 1:1 native to UTF16 indexing
356         ut->chunkOffset = (int32_t)(index - ut->chunkNativeStart);
357     } else {
358         // Desired position is in chunk, with non-UTF16 indexing.
359         ut->chunkOffset = ut->pFuncs->mapNativeIndexToUTF16(ut, index);
360     }
361 
362     c = ut->chunkContents[ut->chunkOffset++];
363     if (U16_IS_SURROGATE(c)) {
364         // Surrogates.  Many edge cases.  Use other functions that already
365         //              deal with the problems.
366         utext_setNativeIndex(ut, index);
367         c = utext_next32(ut);
368     }
369     return c;
370 }
371 
372 
373 U_CAPI UChar32 U_EXPORT2
utext_previous32From(UText * ut,int64_t index)374 utext_previous32From(UText *ut, int64_t index) {
375     //
376     //  Return the character preceding the specified index.
377     //  Leave the iteration position at the start of the character that was returned.
378     //
379     UChar32     cPrev;    // The character preceding cCurr, which is what we will return.
380 
381     // Address the chunk containg the position preceding the incoming index
382     // A tricky edge case:
383     //   We try to test the requested native index against the chunkNativeStart to determine
384     //    whether the character preceding the one at the index is in the current chunk.
385     //    BUT, this test can fail with UTF-8 (or any other multibyte encoding), when the
386     //    requested index is on something other than the first position of the first char.
387     //
388     if(index<=ut->chunkNativeStart || index>ut->chunkNativeLimit) {
389         // Requested native index is outside of the current chunk.
390         if(!ut->pFuncs->access(ut, index, FALSE)) {
391             // no chunk available here
392             return U_SENTINEL;
393         }
394     } else if(index - ut->chunkNativeStart <= (int64_t)ut->nativeIndexingLimit) {
395         // Direct UTF-16 indexing.
396         ut->chunkOffset = (int32_t)(index - ut->chunkNativeStart);
397     } else {
398         ut->chunkOffset=ut->pFuncs->mapNativeIndexToUTF16(ut, index);
399         if (ut->chunkOffset==0 && !ut->pFuncs->access(ut, index, FALSE)) {
400             // no chunk available here
401             return U_SENTINEL;
402         }
403     }
404 
405     //
406     // Simple case with no surrogates.
407     //
408     ut->chunkOffset--;
409     cPrev = ut->chunkContents[ut->chunkOffset];
410 
411     if (U16_IS_SURROGATE(cPrev)) {
412         // Possible supplementary.  Many edge cases.
413         // Let other functions do the heavy lifting.
414         utext_setNativeIndex(ut, index);
415         cPrev = utext_previous32(ut);
416     }
417     return cPrev;
418 }
419 
420 
421 U_CAPI int32_t U_EXPORT2
utext_extract(UText * ut,int64_t start,int64_t limit,UChar * dest,int32_t destCapacity,UErrorCode * status)422 utext_extract(UText *ut,
423              int64_t start, int64_t limit,
424              UChar *dest, int32_t destCapacity,
425              UErrorCode *status) {
426                  return ut->pFuncs->extract(ut, start, limit, dest, destCapacity, status);
427              }
428 
429 
430 
431 U_CAPI UBool U_EXPORT2
utext_equals(const UText * a,const UText * b)432 utext_equals(const UText *a, const UText *b) {
433     if (a==NULL || b==NULL ||
434         a->magic != UTEXT_MAGIC ||
435         b->magic != UTEXT_MAGIC) {
436             // Null or invalid arguments don't compare equal to anything.
437             return FALSE;
438     }
439 
440     if (a->pFuncs != b->pFuncs) {
441         // Different types of text providers.
442         return FALSE;
443     }
444 
445     if (a->context != b->context) {
446         // Different sources (different strings)
447         return FALSE;
448     }
449     if (utext_getNativeIndex(a) != utext_getNativeIndex(b)) {
450         // Different current position in the string.
451         return FALSE;
452     }
453 
454     return TRUE;
455 }
456 
457 U_CAPI UBool U_EXPORT2
utext_isWritable(const UText * ut)458 utext_isWritable(const UText *ut)
459 {
460     UBool b = (ut->providerProperties & I32_FLAG(UTEXT_PROVIDER_WRITABLE)) != 0;
461     return b;
462 }
463 
464 
465 U_CAPI void U_EXPORT2
utext_freeze(UText * ut)466 utext_freeze(UText *ut) {
467     // Zero out the WRITABLE flag.
468     ut->providerProperties &= ~(I32_FLAG(UTEXT_PROVIDER_WRITABLE));
469 }
470 
471 
472 U_CAPI UBool U_EXPORT2
utext_hasMetaData(const UText * ut)473 utext_hasMetaData(const UText *ut)
474 {
475     UBool b = (ut->providerProperties & I32_FLAG(UTEXT_PROVIDER_HAS_META_DATA)) != 0;
476     return b;
477 }
478 
479 
480 
481 U_CAPI int32_t U_EXPORT2
utext_replace(UText * ut,int64_t nativeStart,int64_t nativeLimit,const UChar * replacementText,int32_t replacementLength,UErrorCode * status)482 utext_replace(UText *ut,
483              int64_t nativeStart, int64_t nativeLimit,
484              const UChar *replacementText, int32_t replacementLength,
485              UErrorCode *status)
486 {
487     if (U_FAILURE(*status)) {
488         return 0;
489     }
490     if ((ut->providerProperties & I32_FLAG(UTEXT_PROVIDER_WRITABLE)) == 0) {
491         *status = U_NO_WRITE_PERMISSION;
492         return 0;
493     }
494     int32_t i = ut->pFuncs->replace(ut, nativeStart, nativeLimit, replacementText, replacementLength, status);
495     return i;
496 }
497 
498 U_CAPI void U_EXPORT2
utext_copy(UText * ut,int64_t nativeStart,int64_t nativeLimit,int64_t destIndex,UBool move,UErrorCode * status)499 utext_copy(UText *ut,
500           int64_t nativeStart, int64_t nativeLimit,
501           int64_t destIndex,
502           UBool move,
503           UErrorCode *status)
504 {
505     if (U_FAILURE(*status)) {
506         return;
507     }
508     if ((ut->providerProperties & I32_FLAG(UTEXT_PROVIDER_WRITABLE)) == 0) {
509         *status = U_NO_WRITE_PERMISSION;
510         return;
511     }
512     ut->pFuncs->copy(ut, nativeStart, nativeLimit, destIndex, move, status);
513 }
514 
515 
516 
517 U_CAPI UText * U_EXPORT2
utext_clone(UText * dest,const UText * src,UBool deep,UBool readOnly,UErrorCode * status)518 utext_clone(UText *dest, const UText *src, UBool deep, UBool readOnly, UErrorCode *status) {
519     if (U_FAILURE(*status)) {
520         return dest;
521     }
522     UText *result = src->pFuncs->clone(dest, src, deep, status);
523     if (U_FAILURE(*status)) {
524         return result;
525     }
526     if (result == NULL) {
527         *status = U_MEMORY_ALLOCATION_ERROR;
528         return result;
529     }
530     if (readOnly) {
531         utext_freeze(result);
532     }
533     return result;
534 }
535 
536 
537 
538 //------------------------------------------------------------------------------
539 //
540 //   UText common functions implementation
541 //
542 //------------------------------------------------------------------------------
543 
544 //
545 //  UText.flags bit definitions
546 //
547 enum {
548     UTEXT_HEAP_ALLOCATED  = 1,      //  1 if ICU has allocated this UText struct on the heap.
549                                     //  0 if caller provided storage for the UText.
550 
551     UTEXT_EXTRA_HEAP_ALLOCATED = 2, //  1 if ICU has allocated extra storage as a separate
552                                     //     heap block.
553                                     //  0 if there is no separate allocation.  Either no extra
554                                     //     storage was requested, or it is appended to the end
555                                     //     of the main UText storage.
556 
557     UTEXT_OPEN = 4                  //  1 if this UText is currently open
558                                     //  0 if this UText is not open.
559 };
560 
561 
562 //
563 //  Extended form of a UText.  The purpose is to aid in computing the total size required
564 //    when a provider asks for a UText to be allocated with extra storage.
565 
566 struct ExtendedUText {
567     UText          ut;
568     UAlignedMemory extension;
569 };
570 
571 static const UText emptyText = UTEXT_INITIALIZER;
572 
573 U_CAPI UText * U_EXPORT2
utext_setup(UText * ut,int32_t extraSpace,UErrorCode * status)574 utext_setup(UText *ut, int32_t extraSpace, UErrorCode *status) {
575     if (U_FAILURE(*status)) {
576         return ut;
577     }
578 
579     if (ut == NULL) {
580         // We need to heap-allocate storage for the new UText
581         int32_t spaceRequired = sizeof(UText);
582         if (extraSpace > 0) {
583             spaceRequired = sizeof(ExtendedUText) + extraSpace - sizeof(UAlignedMemory);
584         }
585         ut = (UText *)uprv_malloc(spaceRequired);
586         if (ut == NULL) {
587             *status = U_MEMORY_ALLOCATION_ERROR;
588             return NULL;
589         } else {
590             *ut = emptyText;
591             ut->flags |= UTEXT_HEAP_ALLOCATED;
592             if (spaceRequired>0) {
593                 ut->extraSize = extraSpace;
594                 ut->pExtra    = &((ExtendedUText *)ut)->extension;
595             }
596         }
597     } else {
598         // We have been supplied with an already existing UText.
599         // Verify that it really appears to be a UText.
600         if (ut->magic != UTEXT_MAGIC) {
601             *status = U_ILLEGAL_ARGUMENT_ERROR;
602             return ut;
603         }
604         // If the ut is already open and there's a provider supplied close
605         //   function, call it.
606         if ((ut->flags & UTEXT_OPEN) && ut->pFuncs->close != NULL)  {
607             ut->pFuncs->close(ut);
608         }
609         ut->flags &= ~UTEXT_OPEN;
610 
611         // If extra space was requested by our caller, check whether
612         //   sufficient already exists, and allocate new if needed.
613         if (extraSpace > ut->extraSize) {
614             // Need more space.  If there is existing separately allocated space,
615             //   delete it first, then allocate new space.
616             if (ut->flags & UTEXT_EXTRA_HEAP_ALLOCATED) {
617                 uprv_free(ut->pExtra);
618                 ut->extraSize = 0;
619             }
620             ut->pExtra = uprv_malloc(extraSpace);
621             if (ut->pExtra == NULL) {
622                 *status = U_MEMORY_ALLOCATION_ERROR;
623             } else {
624                 ut->extraSize = extraSpace;
625                 ut->flags |= UTEXT_EXTRA_HEAP_ALLOCATED;
626             }
627         }
628     }
629     if (U_SUCCESS(*status)) {
630         ut->flags |= UTEXT_OPEN;
631 
632         // Initialize all remaining fields of the UText.
633         //
634         ut->context             = NULL;
635         ut->chunkContents       = NULL;
636         ut->p                   = NULL;
637         ut->q                   = NULL;
638         ut->r                   = NULL;
639         ut->a                   = 0;
640         ut->b                   = 0;
641         ut->c                   = 0;
642         ut->chunkOffset         = 0;
643         ut->chunkLength         = 0;
644         ut->chunkNativeStart    = 0;
645         ut->chunkNativeLimit    = 0;
646         ut->nativeIndexingLimit = 0;
647         ut->providerProperties  = 0;
648         ut->privA               = 0;
649         ut->privB               = 0;
650         ut->privC               = 0;
651         ut->privP               = NULL;
652         if (ut->pExtra!=NULL && ut->extraSize>0)
653             uprv_memset(ut->pExtra, 0, ut->extraSize);
654 
655     }
656     return ut;
657 }
658 
659 
660 U_CAPI UText * U_EXPORT2
utext_close(UText * ut)661 utext_close(UText *ut) {
662     if (ut==NULL ||
663         ut->magic != UTEXT_MAGIC ||
664         (ut->flags & UTEXT_OPEN) == 0)
665     {
666         // The supplied ut is not an open UText.
667         // Do nothing.
668         return ut;
669     }
670 
671     // If the provider gave us a close function, call it now.
672     // This will clean up anything allocated specifically by the provider.
673     if (ut->pFuncs->close != NULL) {
674         ut->pFuncs->close(ut);
675     }
676     ut->flags &= ~UTEXT_OPEN;
677 
678     // If we (the framework) allocated the UText or subsidiary storage,
679     //   delete it.
680     if (ut->flags & UTEXT_EXTRA_HEAP_ALLOCATED) {
681         uprv_free(ut->pExtra);
682         ut->pExtra = NULL;
683         ut->flags &= ~UTEXT_EXTRA_HEAP_ALLOCATED;
684         ut->extraSize = 0;
685     }
686 
687     // Zero out function table of the closed UText.  This is a defensive move,
688     //   inteded to cause applications that inadvertantly use a closed
689     //   utext to crash with null pointer errors.
690     ut->pFuncs        = NULL;
691 
692     if (ut->flags & UTEXT_HEAP_ALLOCATED) {
693         // This UText was allocated by UText setup.  We need to free it.
694         // Clear magic, so we can detect if the user messes up and immediately
695         //  tries to reopen another UText using the deleted storage.
696         ut->magic = 0;
697         uprv_free(ut);
698         ut = NULL;
699     }
700     return ut;
701 }
702 
703 
704 
705 
706 //
707 // invalidateChunk   Reset a chunk to have no contents, so that the next call
708 //                   to access will cause new data to load.
709 //                   This is needed when copy/move/replace operate directly on the
710 //                   backing text, potentially putting it out of sync with the
711 //                   contents in the chunk.
712 //
713 static void
invalidateChunk(UText * ut)714 invalidateChunk(UText *ut) {
715     ut->chunkLength = 0;
716     ut->chunkNativeLimit = 0;
717     ut->chunkNativeStart = 0;
718     ut->chunkOffset = 0;
719     ut->nativeIndexingLimit = 0;
720 }
721 
722 //
723 // pinIndex        Do range pinning on a native index parameter.
724 //                 64 bit pinning is done in place.
725 //                 32 bit truncated result is returned as a convenience for
726 //                        use in providers that don't need 64 bits.
727 static int32_t
pinIndex(int64_t & index,int64_t limit)728 pinIndex(int64_t &index, int64_t limit) {
729     if (index<0) {
730         index = 0;
731     } else if (index > limit) {
732         index = limit;
733     }
734     return (int32_t)index;
735 }
736 
737 
738 U_CDECL_BEGIN
739 
740 //
741 // Pointer relocation function,
742 //   a utility used by shallow clone.
743 //   Adjust a pointer that refers to something within one UText (the source)
744 //   to refer to the same relative offset within a another UText (the target)
745 //
adjustPointer(UText * dest,const void ** destPtr,const UText * src)746 static void adjustPointer(UText *dest, const void **destPtr, const UText *src) {
747     // convert all pointers to (char *) so that byte address arithmetic will work.
748     char  *dptr = (char *)*destPtr;
749     char  *dUText = (char *)dest;
750     char  *sUText = (char *)src;
751 
752     if (dptr >= (char *)src->pExtra && dptr < ((char*)src->pExtra)+src->extraSize) {
753         // target ptr was to something within the src UText's pExtra storage.
754         //   relocate it into the target UText's pExtra region.
755         *destPtr = ((char *)dest->pExtra) + (dptr - (char *)src->pExtra);
756     } else if (dptr>=sUText && dptr < sUText+src->sizeOfStruct) {
757         // target ptr was pointing to somewhere within the source UText itself.
758         //   Move it to the same offset within the target UText.
759         *destPtr = dUText + (dptr-sUText);
760     }
761 }
762 
763 
764 //
765 //  Clone.  This is a generic copy-the-utext-by-value clone function that can be
766 //          used as-is with some utext types, and as a helper by other clones.
767 //
768 static UText * U_CALLCONV
shallowTextClone(UText * dest,const UText * src,UErrorCode * status)769 shallowTextClone(UText * dest, const UText * src, UErrorCode * status) {
770     if (U_FAILURE(*status)) {
771         return NULL;
772     }
773     int32_t  srcExtraSize = src->extraSize;
774 
775     //
776     // Use the generic text_setup to allocate storage if required.
777     //
778     dest = utext_setup(dest, srcExtraSize, status);
779     if (U_FAILURE(*status)) {
780         return dest;
781     }
782 
783     //
784     //  flags (how the UText was allocated) and the pointer to the
785     //   extra storage must retain the values in the cloned utext that
786     //   were set up by utext_setup.  Save them separately before
787     //   copying the whole struct.
788     //
789     void *destExtra = dest->pExtra;
790     int32_t flags   = dest->flags;
791 
792 
793     //
794     //  Copy the whole UText struct by value.
795     //  Any "Extra" storage is copied also.
796     //
797     int sizeToCopy = src->sizeOfStruct;
798     if (sizeToCopy > dest->sizeOfStruct) {
799         sizeToCopy = dest->sizeOfStruct;
800     }
801     uprv_memcpy(dest, src, sizeToCopy);
802     dest->pExtra = destExtra;
803     dest->flags  = flags;
804     if (srcExtraSize > 0) {
805         uprv_memcpy(dest->pExtra, src->pExtra, srcExtraSize);
806     }
807 
808     //
809     // Relocate any pointers in the target that refer to the UText itself
810     //   to point to the cloned copy rather than the original source.
811     //
812     adjustPointer(dest, &dest->context, src);
813     adjustPointer(dest, &dest->p, src);
814     adjustPointer(dest, &dest->q, src);
815     adjustPointer(dest, &dest->r, src);
816     adjustPointer(dest, (const void **)&dest->chunkContents, src);
817 
818     // The newly shallow-cloned UText does _not_ own the underlying storage for the text.
819     // (The source for the clone may or may not have owned the text.)
820 
821     dest->providerProperties &= ~I32_FLAG(UTEXT_PROVIDER_OWNS_TEXT);
822 
823     return dest;
824 }
825 
826 
827 U_CDECL_END
828 
829 
830 
831 //------------------------------------------------------------------------------
832 //
833 //     UText implementation for UTF-8 char * strings (read-only)
834 //     Limitation:  string length must be <= 0x7fffffff in length.
835 //                  (length must for in an int32_t variable)
836 //
837 //         Use of UText data members:
838 //              context    pointer to UTF-8 string
839 //              utext.b    is the input string length (bytes).
840 //              utext.c    Length scanned so far in string
841 //                           (for optimizing finding length of zero terminated strings.)
842 //              utext.p    pointer to the current buffer
843 //              utext.q    pointer to the other buffer.
844 //
845 //------------------------------------------------------------------------------
846 
847 // Chunk size.
848 //     Must be less than 85, because of byte mapping from UChar indexes to native indexes.
849 //     Worst case is three native bytes to one UChar.  (Supplemenaries are 4 native bytes
850 //     to two UChars.)
851 //
852 enum { UTF8_TEXT_CHUNK_SIZE=32 };
853 
854 //
855 // UTF8Buf  Two of these structs will be set up in the UText's extra allocated space.
856 //          Each contains the UChar chunk buffer, the to and from native maps, and
857 //          header info.
858 //
859 //     because backwards iteration fills the buffers starting at the end and
860 //     working towards the front, the filled part of the buffers may not begin
861 //     at the start of the available storage for the buffers.
862 //
863 //     Buffer size is one bigger than the specified UTF8_TEXT_CHUNK_SIZE to allow for
864 //     the last character added being a supplementary, and thus requiring a surrogate
865 //     pair.  Doing this is simpler than checking for the edge case.
866 //
867 
868 struct UTF8Buf {
869     int32_t   bufNativeStart;                        // Native index of first char in UChar buf
870     int32_t   bufNativeLimit;                        // Native index following last char in buf.
871     int32_t   bufStartIdx;                           // First filled position in buf.
872     int32_t   bufLimitIdx;                           // Limit of filled range in buf.
873     int32_t   bufNILimit;                            // Limit of native indexing part of buf
874     int32_t   toUCharsMapStart;                      // Native index corresponding to
875                                                      //   mapToUChars[0].
876                                                      //   Set to bufNativeStart when filling forwards.
877                                                      //   Set to computed value when filling backwards.
878 
879     UChar     buf[UTF8_TEXT_CHUNK_SIZE+4];           // The UChar buffer.  Requires one extra position beyond the
880                                                      //   the chunk size, to allow for surrogate at the end.
881                                                      //   Length must be identical to mapToNative array, below,
882                                                      //   because of the way indexing works when the array is
883                                                      //   filled backwards during a reverse iteration.  Thus,
884                                                      //   the additional extra size.
885     uint8_t   mapToNative[UTF8_TEXT_CHUNK_SIZE+4];   // map UChar index in buf to
886                                                      //  native offset from bufNativeStart.
887                                                      //  Requires two extra slots,
888                                                      //    one for a supplementary starting in the last normal position,
889                                                      //    and one for an entry for the buffer limit position.
890     uint8_t   mapToUChars[UTF8_TEXT_CHUNK_SIZE*3+6]; // Map native offset from bufNativeStart to
891                                                      //   correspoding offset in filled part of buf.
892     int32_t   align;
893 };
894 
895 U_CDECL_BEGIN
896 
897 //
898 //   utf8TextLength
899 //
900 //        Get the length of the string.  If we don't already know it,
901 //              we'll need to scan for the trailing  nul.
902 //
903 static int64_t U_CALLCONV
utf8TextLength(UText * ut)904 utf8TextLength(UText *ut) {
905     if (ut->b < 0) {
906         // Zero terminated string, and we haven't scanned to the end yet.
907         // Scan it now.
908         const char *r = (const char *)ut->context + ut->c;
909         while (*r != 0) {
910             r++;
911         }
912         if ((r - (const char *)ut->context) < 0x7fffffff) {
913             ut->b = (int32_t)(r - (const char *)ut->context);
914         } else {
915             // Actual string was bigger (more than 2 gig) than we
916             //   can handle.  Clip it to 2 GB.
917             ut->b = 0x7fffffff;
918         }
919         ut->providerProperties &= ~I32_FLAG(UTEXT_PROVIDER_LENGTH_IS_EXPENSIVE);
920     }
921     return ut->b;
922 }
923 
924 
925 
926 
927 
928 
929 static UBool U_CALLCONV
utf8TextAccess(UText * ut,int64_t index,UBool forward)930 utf8TextAccess(UText *ut, int64_t index, UBool forward) {
931     //
932     //  Apologies to those who are allergic to goto statements.
933     //    Consider each goto to a labelled block to be the equivalent of
934     //         call the named block as if it were a function();
935     //         return;
936     //
937     const uint8_t *s8=(const uint8_t *)ut->context;
938     UTF8Buf *u8b = NULL;
939     int32_t  length = ut->b;         // Length of original utf-8
940     int32_t  ix= (int32_t)index;     // Requested index, trimmed to 32 bits.
941     int32_t  mapIndex = 0;
942     if (index<0) {
943         ix=0;
944     } else if (index > 0x7fffffff) {
945         // Strings with 64 bit lengths not supported by this UTF-8 provider.
946         ix = 0x7fffffff;
947     }
948 
949     // Pin requested index to the string length.
950     if (ix>length) {
951         if (length>=0) {
952             ix=length;
953         } else if (ix>=ut->c) {
954             // Zero terminated string, and requested index is beyond
955             //   the region that has already been scanned.
956             //   Scan up to either the end of the string or to the
957             //   requested position, whichever comes first.
958             while (ut->c<ix && s8[ut->c]!=0) {
959                 ut->c++;
960             }
961             //  TODO:  support for null terminated string length > 32 bits.
962             if (s8[ut->c] == 0) {
963                 // We just found the actual length of the string.
964                 //  Trim the requested index back to that.
965                 ix     = ut->c;
966                 ut->b  = ut->c;
967                 length = ut->c;
968                 ut->providerProperties &= ~I32_FLAG(UTEXT_PROVIDER_LENGTH_IS_EXPENSIVE);
969             }
970         }
971     }
972 
973     //
974     // Dispatch to the appropriate action for a forward iteration request.
975     //
976     if (forward) {
977         if (ix==ut->chunkNativeLimit) {
978             // Check for normal sequential iteration cases first.
979             if (ix==length) {
980                 // Just reached end of string
981                 // Don't swap buffers, but do set the
982                 //   current buffer position.
983                 ut->chunkOffset = ut->chunkLength;
984                 return FALSE;
985             } else {
986                 // End of current buffer.
987                 //   check whether other buffer already has what we need.
988                 UTF8Buf *altB = (UTF8Buf *)ut->q;
989                 if (ix>=altB->bufNativeStart && ix<altB->bufNativeLimit) {
990                     goto swapBuffers;
991                 }
992             }
993         }
994 
995         // A random access.  Desired index could be in either or niether buf.
996         // For optimizing the order of testing, first check for the index
997         //    being in the other buffer.  This will be the case for uses that
998         //    move back and forth over a fairly limited range
999         {
1000             u8b = (UTF8Buf *)ut->q;   // the alternate buffer
1001             if (ix>=u8b->bufNativeStart && ix<u8b->bufNativeLimit) {
1002                 // Requested index is in the other buffer.
1003                 goto swapBuffers;
1004             }
1005             if (ix == length) {
1006                 // Requested index is end-of-string.
1007                 //   (this is the case of randomly seeking to the end.
1008                 //    The case of iterating off the end is handled earlier.)
1009                 if (ix == ut->chunkNativeLimit) {
1010                     // Current buffer extends up to the end of the string.
1011                     //   Leave it as the current buffer.
1012                     ut->chunkOffset = ut->chunkLength;
1013                     return FALSE;
1014                 }
1015                 if (ix == u8b->bufNativeLimit) {
1016                     // Alternate buffer extends to the end of string.
1017                     //   Swap it in as the current buffer.
1018                     goto swapBuffersAndFail;
1019                 }
1020 
1021                 // Neither existing buffer extends to the end of the string.
1022                 goto makeStubBuffer;
1023             }
1024 
1025             if (ix<ut->chunkNativeStart || ix>=ut->chunkNativeLimit) {
1026                 // Requested index is in neither buffer.
1027                 goto fillForward;
1028             }
1029 
1030             // Requested index is in this buffer.
1031             u8b = (UTF8Buf *)ut->p;   // the current buffer
1032             mapIndex = ix - u8b->toUCharsMapStart;
1033             ut->chunkOffset = u8b->mapToUChars[mapIndex] - u8b->bufStartIdx;
1034             return TRUE;
1035 
1036         }
1037     }
1038 
1039 
1040     //
1041     // Dispatch to the appropriate action for a
1042     //   Backwards Diretion iteration request.
1043     //
1044     if (ix==ut->chunkNativeStart) {
1045         // Check for normal sequential iteration cases first.
1046         if (ix==0) {
1047             // Just reached the start of string
1048             // Don't swap buffers, but do set the
1049             //   current buffer position.
1050             ut->chunkOffset = 0;
1051             return FALSE;
1052         } else {
1053             // Start of current buffer.
1054             //   check whether other buffer already has what we need.
1055             UTF8Buf *altB = (UTF8Buf *)ut->q;
1056             if (ix>altB->bufNativeStart && ix<=altB->bufNativeLimit) {
1057                 goto swapBuffers;
1058             }
1059         }
1060     }
1061 
1062     // A random access.  Desired index could be in either or niether buf.
1063     // For optimizing the order of testing,
1064     //    Most likely case:  in the other buffer.
1065     //    Second most likely: in neither buffer.
1066     //    Unlikely, but must work:  in the current buffer.
1067     u8b = (UTF8Buf *)ut->q;   // the alternate buffer
1068     if (ix>u8b->bufNativeStart && ix<=u8b->bufNativeLimit) {
1069         // Requested index is in the other buffer.
1070         goto swapBuffers;
1071     }
1072     // Requested index is start-of-string.
1073     //   (this is the case of randomly seeking to the start.
1074     //    The case of iterating off the start is handled earlier.)
1075     if (ix==0) {
1076         if (u8b->bufNativeStart==0) {
1077             // Alternate buffer contains the data for the start string.
1078             // Make it be the current buffer.
1079             goto swapBuffersAndFail;
1080         } else {
1081             // Request for data before the start of string,
1082             //   neither buffer is usable.
1083             //   set up a zero-length buffer.
1084             goto makeStubBuffer;
1085         }
1086     }
1087 
1088     if (ix<=ut->chunkNativeStart || ix>ut->chunkNativeLimit) {
1089         // Requested index is in neither buffer.
1090         goto fillReverse;
1091     }
1092 
1093     // Requested index is in this buffer.
1094     //   Set the utf16 buffer index.
1095     u8b = (UTF8Buf *)ut->p;
1096     mapIndex = ix - u8b->toUCharsMapStart;
1097     ut->chunkOffset = u8b->mapToUChars[mapIndex] - u8b->bufStartIdx;
1098     if (ut->chunkOffset==0) {
1099         // This occurs when the first character in the text is
1100         //   a multi-byte UTF-8 char, and the requested index is to
1101         //   one of the trailing bytes.  Because there is no preceding ,
1102         //   character, this access fails.  We can't pick up on the
1103         //   situation sooner because the requested index is not zero.
1104         return FALSE;
1105     } else {
1106         return TRUE;
1107     }
1108 
1109 
1110 
1111 swapBuffers:
1112     //  The alternate buffer (ut->q) has the string data that was requested.
1113     //  Swap the primary and alternate buffers, and set the
1114     //   chunk index into the new primary buffer.
1115     {
1116         u8b   = (UTF8Buf *)ut->q;
1117         ut->q = ut->p;
1118         ut->p = u8b;
1119         ut->chunkContents       = &u8b->buf[u8b->bufStartIdx];
1120         ut->chunkLength         = u8b->bufLimitIdx - u8b->bufStartIdx;
1121         ut->chunkNativeStart    = u8b->bufNativeStart;
1122         ut->chunkNativeLimit    = u8b->bufNativeLimit;
1123         ut->nativeIndexingLimit = u8b->bufNILimit;
1124 
1125         // Index into the (now current) chunk
1126         // Use the map to set the chunk index.  It's more trouble than it's worth
1127         //    to check whether native indexing can be used.
1128         U_ASSERT(ix>=u8b->bufNativeStart);
1129         U_ASSERT(ix<=u8b->bufNativeLimit);
1130         mapIndex = ix - u8b->toUCharsMapStart;
1131         U_ASSERT(mapIndex>=0);
1132         U_ASSERT(mapIndex<(int32_t)sizeof(u8b->mapToUChars));
1133         ut->chunkOffset = u8b->mapToUChars[mapIndex] - u8b->bufStartIdx;
1134 
1135         return TRUE;
1136     }
1137 
1138 
1139  swapBuffersAndFail:
1140     // We got a request for either the start or end of the string,
1141     //  with iteration continuing in the out-of-bounds direction.
1142     // The alternate buffer already contains the data up to the
1143     //  start/end.
1144     // Swap the buffers, then return failure, indicating that we couldn't
1145     //  make things correct for continuing the iteration in the requested
1146     //  direction.  The position & buffer are correct should the
1147     //  user decide to iterate in the opposite direction.
1148     u8b   = (UTF8Buf *)ut->q;
1149     ut->q = ut->p;
1150     ut->p = u8b;
1151     ut->chunkContents       = &u8b->buf[u8b->bufStartIdx];
1152     ut->chunkLength         = u8b->bufLimitIdx - u8b->bufStartIdx;
1153     ut->chunkNativeStart    = u8b->bufNativeStart;
1154     ut->chunkNativeLimit    = u8b->bufNativeLimit;
1155     ut->nativeIndexingLimit = u8b->bufNILimit;
1156 
1157     // Index into the (now current) chunk
1158     //  For this function  (swapBuffersAndFail), the requested index
1159     //    will always be at either the start or end of the chunk.
1160     if (ix==u8b->bufNativeLimit) {
1161         ut->chunkOffset = ut->chunkLength;
1162     } else  {
1163         ut->chunkOffset = 0;
1164         U_ASSERT(ix == u8b->bufNativeStart);
1165     }
1166     return FALSE;
1167 
1168 makeStubBuffer:
1169     //   The user has done a seek/access past the start or end
1170     //   of the string.  Rather than loading data that is likely
1171     //   to never be used, just set up a zero-length buffer at
1172     //   the position.
1173     u8b = (UTF8Buf *)ut->q;
1174     u8b->bufNativeStart   = ix;
1175     u8b->bufNativeLimit   = ix;
1176     u8b->bufStartIdx      = 0;
1177     u8b->bufLimitIdx      = 0;
1178     u8b->bufNILimit       = 0;
1179     u8b->toUCharsMapStart = ix;
1180     u8b->mapToNative[0]   = 0;
1181     u8b->mapToUChars[0]   = 0;
1182     goto swapBuffersAndFail;
1183 
1184 
1185 
1186 fillForward:
1187     {
1188         // Move the incoming index to a code point boundary.
1189         U8_SET_CP_START(s8, 0, ix);
1190 
1191         // Swap the UText buffers.
1192         //  We want to fill what was previously the alternate buffer,
1193         //  and make what was the current buffer be the new alternate.
1194         UTF8Buf *u8b = (UTF8Buf *)ut->q;
1195         ut->q = ut->p;
1196         ut->p = u8b;
1197 
1198         int32_t strLen = ut->b;
1199         UBool   nulTerminated = FALSE;
1200         if (strLen < 0) {
1201             strLen = 0x7fffffff;
1202             nulTerminated = TRUE;
1203         }
1204 
1205         UChar   *buf = u8b->buf;
1206         uint8_t *mapToNative  = u8b->mapToNative;
1207         uint8_t *mapToUChars  = u8b->mapToUChars;
1208         int32_t  destIx       = 0;
1209         int32_t  srcIx        = ix;
1210         UBool    seenNonAscii = FALSE;
1211         UChar32  c = 0;
1212 
1213         // Fill the chunk buffer and mapping arrays.
1214         while (destIx<UTF8_TEXT_CHUNK_SIZE) {
1215             c = s8[srcIx];
1216             if (c>0 && c<0x80) {
1217                 // Special case ASCII range for speed.
1218                 //   zero is excluded to simplify bounds checking.
1219                 buf[destIx] = (UChar)c;
1220                 mapToNative[destIx]    = (uint8_t)(srcIx - ix);
1221                 mapToUChars[srcIx-ix]  = (uint8_t)destIx;
1222                 srcIx++;
1223                 destIx++;
1224             } else {
1225                 // General case, handle everything.
1226                 if (seenNonAscii == FALSE) {
1227                     seenNonAscii = TRUE;
1228                     u8b->bufNILimit = destIx;
1229                 }
1230 
1231                 int32_t  cIx      = srcIx;
1232                 int32_t  dIx      = destIx;
1233                 int32_t  dIxSaved = destIx;
1234                 U8_NEXT_OR_FFFD(s8, srcIx, strLen, c);
1235                 if (c==0 && nulTerminated) {
1236                     srcIx--;
1237                     break;
1238                 }
1239 
1240                 U16_APPEND_UNSAFE(buf, destIx, c);
1241                 do {
1242                     mapToNative[dIx++] = (uint8_t)(cIx - ix);
1243                 } while (dIx < destIx);
1244 
1245                 do {
1246                     mapToUChars[cIx++ - ix] = (uint8_t)dIxSaved;
1247                 } while (cIx < srcIx);
1248             }
1249             if (srcIx>=strLen) {
1250                 break;
1251             }
1252 
1253         }
1254 
1255         //  store Native <--> Chunk Map entries for the end of the buffer.
1256         //    There is no actual character here, but the index position is valid.
1257         mapToNative[destIx]     = (uint8_t)(srcIx - ix);
1258         mapToUChars[srcIx - ix] = (uint8_t)destIx;
1259 
1260         //  fill in Buffer descriptor
1261         u8b->bufNativeStart     = ix;
1262         u8b->bufNativeLimit     = srcIx;
1263         u8b->bufStartIdx        = 0;
1264         u8b->bufLimitIdx        = destIx;
1265         if (seenNonAscii == FALSE) {
1266             u8b->bufNILimit     = destIx;
1267         }
1268         u8b->toUCharsMapStart   = u8b->bufNativeStart;
1269 
1270         // Set UText chunk to refer to this buffer.
1271         ut->chunkContents       = buf;
1272         ut->chunkOffset         = 0;
1273         ut->chunkLength         = u8b->bufLimitIdx;
1274         ut->chunkNativeStart    = u8b->bufNativeStart;
1275         ut->chunkNativeLimit    = u8b->bufNativeLimit;
1276         ut->nativeIndexingLimit = u8b->bufNILimit;
1277 
1278         // For zero terminated strings, keep track of the maximum point
1279         //   scanned so far.
1280         if (nulTerminated && srcIx>ut->c) {
1281             ut->c = srcIx;
1282             if (c==0) {
1283                 // We scanned to the end.
1284                 //   Remember the actual length.
1285                 ut->b = srcIx;
1286                 ut->providerProperties &= ~I32_FLAG(UTEXT_PROVIDER_LENGTH_IS_EXPENSIVE);
1287             }
1288         }
1289         return TRUE;
1290     }
1291 
1292 
1293 fillReverse:
1294     {
1295         // Move the incoming index to a code point boundary.
1296         // Can only do this if the incoming index is somewhere in the interior of the string.
1297         //   If index is at the end, there is no character there to look at.
1298         if (ix != ut->b) {
1299             U8_SET_CP_START(s8, 0, ix);
1300         }
1301 
1302         // Swap the UText buffers.
1303         //  We want to fill what was previously the alternate buffer,
1304         //  and make what was the current buffer be the new alternate.
1305         UTF8Buf *u8b = (UTF8Buf *)ut->q;
1306         ut->q = ut->p;
1307         ut->p = u8b;
1308 
1309         UChar   *buf = u8b->buf;
1310         uint8_t *mapToNative = u8b->mapToNative;
1311         uint8_t *mapToUChars = u8b->mapToUChars;
1312         int32_t  toUCharsMapStart = ix - (UTF8_TEXT_CHUNK_SIZE*3 + 1);
1313         int32_t  destIx = UTF8_TEXT_CHUNK_SIZE+2;   // Start in the overflow region
1314                                                     //   at end of buffer to leave room
1315                                                     //   for a surrogate pair at the
1316                                                     //   buffer start.
1317         int32_t  srcIx  = ix;
1318         int32_t  bufNILimit = destIx;
1319         UChar32   c;
1320 
1321         // Map to/from Native Indexes, fill in for the position at the end of
1322         //   the buffer.
1323         //
1324         mapToNative[destIx] = (uint8_t)(srcIx - toUCharsMapStart);
1325         mapToUChars[srcIx - toUCharsMapStart] = (uint8_t)destIx;
1326 
1327         // Fill the chunk buffer
1328         // Work backwards, filling from the end of the buffer towards the front.
1329         //
1330         while (destIx>2 && (srcIx - toUCharsMapStart > 5) && (srcIx > 0)) {
1331             srcIx--;
1332             destIx--;
1333 
1334             // Get last byte of the UTF-8 character
1335             c = s8[srcIx];
1336             if (c<0x80) {
1337                 // Special case ASCII range for speed.
1338                 buf[destIx] = (UChar)c;
1339                 mapToUChars[srcIx - toUCharsMapStart] = (uint8_t)destIx;
1340                 mapToNative[destIx] = (uint8_t)(srcIx - toUCharsMapStart);
1341             } else {
1342                 // General case, handle everything non-ASCII.
1343 
1344                 int32_t  sIx      = srcIx;  // ix of last byte of multi-byte u8 char
1345 
1346                 // Get the full character from the UTF8 string.
1347                 //   use code derived from tbe macros in utf8.h
1348                 //   Leaves srcIx pointing at the first byte of the UTF-8 char.
1349                 //
1350                 c=utf8_prevCharSafeBody(s8, 0, &srcIx, c, -3);
1351                 // leaves srcIx at first byte of the multi-byte char.
1352 
1353                 // Store the character in UTF-16 buffer.
1354                 if (c<0x10000) {
1355                     buf[destIx] = (UChar)c;
1356                     mapToNative[destIx] = (uint8_t)(srcIx - toUCharsMapStart);
1357                 } else {
1358                     buf[destIx]         = U16_TRAIL(c);
1359                     mapToNative[destIx] = (uint8_t)(srcIx - toUCharsMapStart);
1360                     buf[--destIx]       = U16_LEAD(c);
1361                     mapToNative[destIx] = (uint8_t)(srcIx - toUCharsMapStart);
1362                 }
1363 
1364                 // Fill in the map from native indexes to UChars buf index.
1365                 do {
1366                     mapToUChars[sIx-- - toUCharsMapStart] = (uint8_t)destIx;
1367                 } while (sIx >= srcIx);
1368 
1369                 // Set native indexing limit to be the current position.
1370                 //   We are processing a non-ascii, non-native-indexing char now;
1371                 //     the limit will be here if the rest of the chars to be
1372                 //     added to this buffer are ascii.
1373                 bufNILimit = destIx;
1374             }
1375         }
1376         u8b->bufNativeStart     = srcIx;
1377         u8b->bufNativeLimit     = ix;
1378         u8b->bufStartIdx        = destIx;
1379         u8b->bufLimitIdx        = UTF8_TEXT_CHUNK_SIZE+2;
1380         u8b->bufNILimit         = bufNILimit - u8b->bufStartIdx;
1381         u8b->toUCharsMapStart   = toUCharsMapStart;
1382 
1383         ut->chunkContents       = &buf[u8b->bufStartIdx];
1384         ut->chunkLength         = u8b->bufLimitIdx - u8b->bufStartIdx;
1385         ut->chunkOffset         = ut->chunkLength;
1386         ut->chunkNativeStart    = u8b->bufNativeStart;
1387         ut->chunkNativeLimit    = u8b->bufNativeLimit;
1388         ut->nativeIndexingLimit = u8b->bufNILimit;
1389         return TRUE;
1390     }
1391 
1392 }
1393 
1394 
1395 
1396 //
1397 //  This is a slightly modified copy of u_strFromUTF8,
1398 //     Inserts a Replacement Char rather than failing on invalid UTF-8
1399 //     Removes unnecessary features.
1400 //
1401 static UChar*
utext_strFromUTF8(UChar * dest,int32_t destCapacity,int32_t * pDestLength,const char * src,int32_t srcLength,UErrorCode * pErrorCode)1402 utext_strFromUTF8(UChar *dest,
1403               int32_t destCapacity,
1404               int32_t *pDestLength,
1405               const char* src,
1406               int32_t srcLength,        // required.  NUL terminated not supported.
1407               UErrorCode *pErrorCode
1408               )
1409 {
1410 
1411     UChar *pDest = dest;
1412     UChar *pDestLimit = (dest!=NULL)?(dest+destCapacity):NULL;
1413     UChar32 ch=0;
1414     int32_t index = 0;
1415     int32_t reqLength = 0;
1416     uint8_t* pSrc = (uint8_t*) src;
1417 
1418 
1419     while((index < srcLength)&&(pDest<pDestLimit)){
1420         ch = pSrc[index++];
1421         if(ch <=0x7f){
1422             *pDest++=(UChar)ch;
1423         }else{
1424             ch=utf8_nextCharSafeBody(pSrc, &index, srcLength, ch, -3);
1425             if(U_IS_BMP(ch)){
1426                 *(pDest++)=(UChar)ch;
1427             }else{
1428                 *(pDest++)=U16_LEAD(ch);
1429                 if(pDest<pDestLimit){
1430                     *(pDest++)=U16_TRAIL(ch);
1431                 }else{
1432                     reqLength++;
1433                     break;
1434                 }
1435             }
1436         }
1437     }
1438     /* donot fill the dest buffer just count the UChars needed */
1439     while(index < srcLength){
1440         ch = pSrc[index++];
1441         if(ch <= 0x7f){
1442             reqLength++;
1443         }else{
1444             ch=utf8_nextCharSafeBody(pSrc, &index, srcLength, ch, -3);
1445             reqLength+=U16_LENGTH(ch);
1446         }
1447     }
1448 
1449     reqLength+=(int32_t)(pDest - dest);
1450 
1451     if(pDestLength){
1452         *pDestLength = reqLength;
1453     }
1454 
1455     /* Terminate the buffer */
1456     u_terminateUChars(dest,destCapacity,reqLength,pErrorCode);
1457 
1458     return dest;
1459 }
1460 
1461 
1462 
1463 static int32_t U_CALLCONV
utf8TextExtract(UText * ut,int64_t start,int64_t limit,UChar * dest,int32_t destCapacity,UErrorCode * pErrorCode)1464 utf8TextExtract(UText *ut,
1465                 int64_t start, int64_t limit,
1466                 UChar *dest, int32_t destCapacity,
1467                 UErrorCode *pErrorCode) {
1468     if(U_FAILURE(*pErrorCode)) {
1469         return 0;
1470     }
1471     if(destCapacity<0 || (dest==NULL && destCapacity>0)) {
1472         *pErrorCode=U_ILLEGAL_ARGUMENT_ERROR;
1473         return 0;
1474     }
1475     int32_t  length  = ut->b;
1476     int32_t  start32 = pinIndex(start, length);
1477     int32_t  limit32 = pinIndex(limit, length);
1478 
1479     if(start32>limit32) {
1480         *pErrorCode=U_INDEX_OUTOFBOUNDS_ERROR;
1481         return 0;
1482     }
1483 
1484 
1485     // adjust the incoming indexes to land on code point boundaries if needed.
1486     //    adjust by no more than three, because that is the largest number of trail bytes
1487     //    in a well formed UTF8 character.
1488     const uint8_t *buf = (const uint8_t *)ut->context;
1489     int i;
1490     if (start32 < ut->chunkNativeLimit) {
1491         for (i=0; i<3; i++) {
1492             if (U8_IS_SINGLE(buf[start32]) || U8_IS_LEAD(buf[start32]) || start32==0) {
1493                 break;
1494             }
1495             start32--;
1496         }
1497     }
1498 
1499     if (limit32 < ut->chunkNativeLimit) {
1500         for (i=0; i<3; i++) {
1501             if (U8_IS_SINGLE(buf[limit32]) || U8_IS_LEAD(buf[limit32]) || limit32==0) {
1502                 break;
1503             }
1504             limit32--;
1505         }
1506     }
1507 
1508     // Do the actual extract.
1509     int32_t destLength=0;
1510     utext_strFromUTF8(dest, destCapacity, &destLength,
1511                     (const char *)ut->context+start32, limit32-start32,
1512                     pErrorCode);
1513     utf8TextAccess(ut, limit32, TRUE);
1514     return destLength;
1515 }
1516 
1517 //
1518 // utf8TextMapOffsetToNative
1519 //
1520 // Map a chunk (UTF-16) offset to a native index.
1521 static int64_t U_CALLCONV
utf8TextMapOffsetToNative(const UText * ut)1522 utf8TextMapOffsetToNative(const UText *ut) {
1523     //
1524     UTF8Buf *u8b = (UTF8Buf *)ut->p;
1525     U_ASSERT(ut->chunkOffset>ut->nativeIndexingLimit && ut->chunkOffset<=ut->chunkLength);
1526     int32_t nativeOffset = u8b->mapToNative[ut->chunkOffset + u8b->bufStartIdx] + u8b->toUCharsMapStart;
1527     U_ASSERT(nativeOffset >= ut->chunkNativeStart && nativeOffset <= ut->chunkNativeLimit);
1528     return nativeOffset;
1529 }
1530 
1531 //
1532 // Map a native index to the corrsponding chunk offset
1533 //
1534 static int32_t U_CALLCONV
utf8TextMapIndexToUTF16(const UText * ut,int64_t index64)1535 utf8TextMapIndexToUTF16(const UText *ut, int64_t index64) {
1536     U_ASSERT(index64 <= 0x7fffffff);
1537     int32_t index = (int32_t)index64;
1538     UTF8Buf *u8b = (UTF8Buf *)ut->p;
1539     U_ASSERT(index>=ut->chunkNativeStart+ut->nativeIndexingLimit);
1540     U_ASSERT(index<=ut->chunkNativeLimit);
1541     int32_t mapIndex = index - u8b->toUCharsMapStart;
1542     int32_t offset = u8b->mapToUChars[mapIndex] - u8b->bufStartIdx;
1543     U_ASSERT(offset>=0 && offset<=ut->chunkLength);
1544     return offset;
1545 }
1546 
1547 static UText * U_CALLCONV
utf8TextClone(UText * dest,const UText * src,UBool deep,UErrorCode * status)1548 utf8TextClone(UText *dest, const UText *src, UBool deep, UErrorCode *status)
1549 {
1550     // First do a generic shallow clone.  Does everything needed for the UText struct itself.
1551     dest = shallowTextClone(dest, src, status);
1552 
1553     // For deep clones, make a copy of the string.
1554     //  The copied storage is owned by the newly created clone.
1555     //
1556     // TODO:  There is an isssue with using utext_nativeLength().
1557     //        That function is non-const in cases where the input was NUL terminated
1558     //          and the length has not yet been determined.
1559     //        This function (clone()) is const.
1560     //        There potentially a thread safety issue lurking here.
1561     //
1562     if (deep && U_SUCCESS(*status)) {
1563         int32_t  len = (int32_t)utext_nativeLength((UText *)src);
1564         char *copyStr = (char *)uprv_malloc(len+1);
1565         if (copyStr == NULL) {
1566             *status = U_MEMORY_ALLOCATION_ERROR;
1567         } else {
1568             uprv_memcpy(copyStr, src->context, len+1);
1569             dest->context = copyStr;
1570             dest->providerProperties |= I32_FLAG(UTEXT_PROVIDER_OWNS_TEXT);
1571         }
1572     }
1573     return dest;
1574 }
1575 
1576 
1577 static void U_CALLCONV
utf8TextClose(UText * ut)1578 utf8TextClose(UText *ut) {
1579     // Most of the work of close is done by the generic UText framework close.
1580     // All that needs to be done here is to delete the UTF8 string if the UText
1581     //  owns it.  This occurs if the UText was created by cloning.
1582     if (ut->providerProperties & I32_FLAG(UTEXT_PROVIDER_OWNS_TEXT)) {
1583         char *s = (char *)ut->context;
1584         uprv_free(s);
1585         ut->context = NULL;
1586     }
1587 }
1588 
1589 U_CDECL_END
1590 
1591 
1592 static const struct UTextFuncs utf8Funcs =
1593 {
1594     sizeof(UTextFuncs),
1595     0, 0, 0,             // Reserved alignment padding
1596     utf8TextClone,
1597     utf8TextLength,
1598     utf8TextAccess,
1599     utf8TextExtract,
1600     NULL,                /* replace*/
1601     NULL,                /* copy   */
1602     utf8TextMapOffsetToNative,
1603     utf8TextMapIndexToUTF16,
1604     utf8TextClose,
1605     NULL,                // spare 1
1606     NULL,                // spare 2
1607     NULL                 // spare 3
1608 };
1609 
1610 
1611 static const char gEmptyString[] = {0};
1612 
1613 U_CAPI UText * U_EXPORT2
utext_openUTF8(UText * ut,const char * s,int64_t length,UErrorCode * status)1614 utext_openUTF8(UText *ut, const char *s, int64_t length, UErrorCode *status) {
1615     if(U_FAILURE(*status)) {
1616         return NULL;
1617     }
1618     if(s==NULL && length==0) {
1619         s = gEmptyString;
1620     }
1621 
1622     if(s==NULL || length<-1 || length>INT32_MAX) {
1623         *status=U_ILLEGAL_ARGUMENT_ERROR;
1624         return NULL;
1625     }
1626 
1627     ut = utext_setup(ut, sizeof(UTF8Buf) * 2, status);
1628     if (U_FAILURE(*status)) {
1629         return ut;
1630     }
1631 
1632     ut->pFuncs  = &utf8Funcs;
1633     ut->context = s;
1634     ut->b       = (int32_t)length;
1635     ut->c       = (int32_t)length;
1636     if (ut->c < 0) {
1637         ut->c = 0;
1638         ut->providerProperties |= I32_FLAG(UTEXT_PROVIDER_LENGTH_IS_EXPENSIVE);
1639     }
1640     ut->p = ut->pExtra;
1641     ut->q = (char *)ut->pExtra + sizeof(UTF8Buf);
1642     return ut;
1643 
1644 }
1645 
1646 
1647 
1648 
1649 
1650 
1651 
1652 
1653 //------------------------------------------------------------------------------
1654 //
1655 //     UText implementation wrapper for Replaceable (read/write)
1656 //
1657 //         Use of UText data members:
1658 //            context    pointer to Replaceable.
1659 //            p          pointer to Replaceable if it is owned by the UText.
1660 //
1661 //------------------------------------------------------------------------------
1662 
1663 
1664 
1665 // minimum chunk size for this implementation: 3
1666 // to allow for possible trimming for code point boundaries
1667 enum { REP_TEXT_CHUNK_SIZE=10 };
1668 
1669 struct ReplExtra {
1670     /*
1671      * Chunk UChars.
1672      * +1 to simplify filling with surrogate pair at the end.
1673      */
1674     UChar s[REP_TEXT_CHUNK_SIZE+1];
1675 };
1676 
1677 
1678 U_CDECL_BEGIN
1679 
1680 static UText * U_CALLCONV
repTextClone(UText * dest,const UText * src,UBool deep,UErrorCode * status)1681 repTextClone(UText *dest, const UText *src, UBool deep, UErrorCode *status) {
1682     // First do a generic shallow clone.  Does everything needed for the UText struct itself.
1683     dest = shallowTextClone(dest, src, status);
1684 
1685     // For deep clones, make a copy of the Replaceable.
1686     //  The copied Replaceable storage is owned by the newly created UText clone.
1687     //  A non-NULL pointer in UText.p is the signal to the close() function to delete
1688     //    it.
1689     //
1690     if (deep && U_SUCCESS(*status)) {
1691         const Replaceable *replSrc = (const Replaceable *)src->context;
1692         dest->context = replSrc->clone();
1693         dest->providerProperties |= I32_FLAG(UTEXT_PROVIDER_OWNS_TEXT);
1694 
1695         // with deep clone, the copy is writable, even when the source is not.
1696         dest->providerProperties |= I32_FLAG(UTEXT_PROVIDER_WRITABLE);
1697     }
1698     return dest;
1699 }
1700 
1701 
1702 static void U_CALLCONV
repTextClose(UText * ut)1703 repTextClose(UText *ut) {
1704     // Most of the work of close is done by the generic UText framework close.
1705     // All that needs to be done here is delete the Replaceable if the UText
1706     //  owns it.  This occurs if the UText was created by cloning.
1707     if (ut->providerProperties & I32_FLAG(UTEXT_PROVIDER_OWNS_TEXT)) {
1708         Replaceable *rep = (Replaceable *)ut->context;
1709         delete rep;
1710         ut->context = NULL;
1711     }
1712 }
1713 
1714 
1715 static int64_t U_CALLCONV
repTextLength(UText * ut)1716 repTextLength(UText *ut) {
1717     const Replaceable *replSrc = (const Replaceable *)ut->context;
1718     int32_t  len = replSrc->length();
1719     return len;
1720 }
1721 
1722 
1723 static UBool U_CALLCONV
repTextAccess(UText * ut,int64_t index,UBool forward)1724 repTextAccess(UText *ut, int64_t index, UBool forward) {
1725     const Replaceable *rep=(const Replaceable *)ut->context;
1726     int32_t length=rep->length();   // Full length of the input text (bigger than a chunk)
1727 
1728     // clip the requested index to the limits of the text.
1729     int32_t index32 = pinIndex(index, length);
1730     U_ASSERT(index<=INT32_MAX);
1731 
1732 
1733     /*
1734      * Compute start/limit boundaries around index, for a segment of text
1735      * to be extracted.
1736      * To allow for the possibility that our user gave an index to the trailing
1737      * half of a surrogate pair, we must request one extra preceding UChar when
1738      * going in the forward direction.  This will ensure that the buffer has the
1739      * entire code point at the specified index.
1740      */
1741     if(forward) {
1742 
1743         if (index32>=ut->chunkNativeStart && index32<ut->chunkNativeLimit) {
1744             // Buffer already contains the requested position.
1745             ut->chunkOffset = (int32_t)(index - ut->chunkNativeStart);
1746             return TRUE;
1747         }
1748         if (index32>=length && ut->chunkNativeLimit==length) {
1749             // Request for end of string, and buffer already extends up to it.
1750             // Can't get the data, but don't change the buffer.
1751             ut->chunkOffset = length - (int32_t)ut->chunkNativeStart;
1752             return FALSE;
1753         }
1754 
1755         ut->chunkNativeLimit = index + REP_TEXT_CHUNK_SIZE - 1;
1756         // Going forward, so we want to have the buffer with stuff at and beyond
1757         //   the requested index.  The -1 gets us one code point before the
1758         //   requested index also, to handle the case of the index being on
1759         //   a trail surrogate of a surrogate pair.
1760         if(ut->chunkNativeLimit > length) {
1761             ut->chunkNativeLimit = length;
1762         }
1763         // unless buffer ran off end, start is index-1.
1764         ut->chunkNativeStart = ut->chunkNativeLimit - REP_TEXT_CHUNK_SIZE;
1765         if(ut->chunkNativeStart < 0) {
1766             ut->chunkNativeStart = 0;
1767         }
1768     } else {
1769         // Reverse iteration.  Fill buffer with data preceding the requested index.
1770         if (index32>ut->chunkNativeStart && index32<=ut->chunkNativeLimit) {
1771             // Requested position already in buffer.
1772             ut->chunkOffset = index32 - (int32_t)ut->chunkNativeStart;
1773             return TRUE;
1774         }
1775         if (index32==0 && ut->chunkNativeStart==0) {
1776             // Request for start, buffer already begins at start.
1777             //  No data, but keep the buffer as is.
1778             ut->chunkOffset = 0;
1779             return FALSE;
1780         }
1781 
1782         // Figure out the bounds of the chunk to extract for reverse iteration.
1783         // Need to worry about chunk not splitting surrogate pairs, and while still
1784         // containing the data we need.
1785         // Fix by requesting a chunk that includes an extra UChar at the end.
1786         // If this turns out to be a lead surrogate, we can lop it off and still have
1787         //   the data we wanted.
1788         ut->chunkNativeStart = index32 + 1 - REP_TEXT_CHUNK_SIZE;
1789         if (ut->chunkNativeStart < 0) {
1790             ut->chunkNativeStart = 0;
1791         }
1792 
1793         ut->chunkNativeLimit = index32 + 1;
1794         if (ut->chunkNativeLimit > length) {
1795             ut->chunkNativeLimit = length;
1796         }
1797     }
1798 
1799     // Extract the new chunk of text from the Replaceable source.
1800     ReplExtra *ex = (ReplExtra *)ut->pExtra;
1801     // UnicodeString with its buffer a writable alias to the chunk buffer
1802     UnicodeString buffer(ex->s, 0 /*buffer length*/, REP_TEXT_CHUNK_SIZE /*buffer capacity*/);
1803     rep->extractBetween((int32_t)ut->chunkNativeStart, (int32_t)ut->chunkNativeLimit, buffer);
1804 
1805     ut->chunkContents  = ex->s;
1806     ut->chunkLength    = (int32_t)(ut->chunkNativeLimit - ut->chunkNativeStart);
1807     ut->chunkOffset    = (int32_t)(index32 - ut->chunkNativeStart);
1808 
1809     // Surrogate pairs from the input text must not span chunk boundaries.
1810     // If end of chunk could be the start of a surrogate, trim it off.
1811     if (ut->chunkNativeLimit < length &&
1812         U16_IS_LEAD(ex->s[ut->chunkLength-1])) {
1813             ut->chunkLength--;
1814             ut->chunkNativeLimit--;
1815             if (ut->chunkOffset > ut->chunkLength) {
1816                 ut->chunkOffset = ut->chunkLength;
1817             }
1818         }
1819 
1820     // if the first UChar in the chunk could be the trailing half of a surrogate pair,
1821     // trim it off.
1822     if(ut->chunkNativeStart>0 && U16_IS_TRAIL(ex->s[0])) {
1823         ++(ut->chunkContents);
1824         ++(ut->chunkNativeStart);
1825         --(ut->chunkLength);
1826         --(ut->chunkOffset);
1827     }
1828 
1829     // adjust the index/chunkOffset to a code point boundary
1830     U16_SET_CP_START(ut->chunkContents, 0, ut->chunkOffset);
1831 
1832     // Use fast indexing for get/setNativeIndex()
1833     ut->nativeIndexingLimit = ut->chunkLength;
1834 
1835     return TRUE;
1836 }
1837 
1838 
1839 
1840 static int32_t U_CALLCONV
repTextExtract(UText * ut,int64_t start,int64_t limit,UChar * dest,int32_t destCapacity,UErrorCode * status)1841 repTextExtract(UText *ut,
1842                int64_t start, int64_t limit,
1843                UChar *dest, int32_t destCapacity,
1844                UErrorCode *status) {
1845     const Replaceable *rep=(const Replaceable *)ut->context;
1846     int32_t  length=rep->length();
1847 
1848     if(U_FAILURE(*status)) {
1849         return 0;
1850     }
1851     if(destCapacity<0 || (dest==NULL && destCapacity>0)) {
1852         *status=U_ILLEGAL_ARGUMENT_ERROR;
1853     }
1854     if(start>limit) {
1855         *status=U_INDEX_OUTOFBOUNDS_ERROR;
1856         return 0;
1857     }
1858 
1859     int32_t  start32 = pinIndex(start, length);
1860     int32_t  limit32 = pinIndex(limit, length);
1861 
1862     // adjust start, limit if they point to trail half of surrogates
1863     if (start32<length && U16_IS_TRAIL(rep->charAt(start32)) &&
1864         U_IS_SUPPLEMENTARY(rep->char32At(start32))){
1865             start32--;
1866     }
1867     if (limit32<length && U16_IS_TRAIL(rep->charAt(limit32)) &&
1868         U_IS_SUPPLEMENTARY(rep->char32At(limit32))){
1869             limit32--;
1870     }
1871 
1872     length=limit32-start32;
1873     if(length>destCapacity) {
1874         limit32 = start32 + destCapacity;
1875     }
1876     UnicodeString buffer(dest, 0, destCapacity); // writable alias
1877     rep->extractBetween(start32, limit32, buffer);
1878     repTextAccess(ut, limit32, TRUE);
1879 
1880     return u_terminateUChars(dest, destCapacity, length, status);
1881 }
1882 
1883 static int32_t U_CALLCONV
repTextReplace(UText * ut,int64_t start,int64_t limit,const UChar * src,int32_t length,UErrorCode * status)1884 repTextReplace(UText *ut,
1885                int64_t start, int64_t limit,
1886                const UChar *src, int32_t length,
1887                UErrorCode *status) {
1888     Replaceable *rep=(Replaceable *)ut->context;
1889     int32_t oldLength;
1890 
1891     if(U_FAILURE(*status)) {
1892         return 0;
1893     }
1894     if(src==NULL && length!=0) {
1895         *status=U_ILLEGAL_ARGUMENT_ERROR;
1896         return 0;
1897     }
1898     oldLength=rep->length(); // will subtract from new length
1899     if(start>limit ) {
1900         *status=U_INDEX_OUTOFBOUNDS_ERROR;
1901         return 0;
1902     }
1903 
1904     int32_t start32 = pinIndex(start, oldLength);
1905     int32_t limit32 = pinIndex(limit, oldLength);
1906 
1907     // Snap start & limit to code point boundaries.
1908     if (start32<oldLength && U16_IS_TRAIL(rep->charAt(start32)) &&
1909         start32>0 && U16_IS_LEAD(rep->charAt(start32-1)))
1910     {
1911             start32--;
1912     }
1913     if (limit32<oldLength && U16_IS_LEAD(rep->charAt(limit32-1)) &&
1914         U16_IS_TRAIL(rep->charAt(limit32)))
1915     {
1916             limit32++;
1917     }
1918 
1919     // Do the actual replace operation using methods of the Replaceable class
1920     UnicodeString replStr((UBool)(length<0), src, length); // read-only alias
1921     rep->handleReplaceBetween(start32, limit32, replStr);
1922     int32_t newLength = rep->length();
1923     int32_t lengthDelta = newLength - oldLength;
1924 
1925     // Is the UText chunk buffer OK?
1926     if (ut->chunkNativeLimit > start32) {
1927         // this replace operation may have impacted the current chunk.
1928         // invalidate it, which will force a reload on the next access.
1929         invalidateChunk(ut);
1930     }
1931 
1932     // set the iteration position to the end of the newly inserted replacement text.
1933     int32_t newIndexPos = limit32 + lengthDelta;
1934     repTextAccess(ut, newIndexPos, TRUE);
1935 
1936     return lengthDelta;
1937 }
1938 
1939 
1940 static void U_CALLCONV
repTextCopy(UText * ut,int64_t start,int64_t limit,int64_t destIndex,UBool move,UErrorCode * status)1941 repTextCopy(UText *ut,
1942                 int64_t start, int64_t limit,
1943                 int64_t destIndex,
1944                 UBool move,
1945                 UErrorCode *status)
1946 {
1947     Replaceable *rep=(Replaceable *)ut->context;
1948     int32_t length=rep->length();
1949 
1950     if(U_FAILURE(*status)) {
1951         return;
1952     }
1953     if (start>limit || (start<destIndex && destIndex<limit))
1954     {
1955         *status=U_INDEX_OUTOFBOUNDS_ERROR;
1956         return;
1957     }
1958 
1959     int32_t start32     = pinIndex(start, length);
1960     int32_t limit32     = pinIndex(limit, length);
1961     int32_t destIndex32 = pinIndex(destIndex, length);
1962 
1963     // TODO:  snap input parameters to code point boundaries.
1964 
1965     if(move) {
1966         // move: copy to destIndex, then replace original with nothing
1967         int32_t segLength=limit32-start32;
1968         rep->copy(start32, limit32, destIndex32);
1969         if(destIndex32<start32) {
1970             start32+=segLength;
1971             limit32+=segLength;
1972         }
1973         rep->handleReplaceBetween(start32, limit32, UnicodeString());
1974     } else {
1975         // copy
1976         rep->copy(start32, limit32, destIndex32);
1977     }
1978 
1979     // If the change to the text touched the region in the chunk buffer,
1980     //  invalidate the buffer.
1981     int32_t firstAffectedIndex = destIndex32;
1982     if (move && start32<firstAffectedIndex) {
1983         firstAffectedIndex = start32;
1984     }
1985     if (firstAffectedIndex < ut->chunkNativeLimit) {
1986         // changes may have affected range covered by the chunk
1987         invalidateChunk(ut);
1988     }
1989 
1990     // Put iteration position at the newly inserted (moved) block,
1991     int32_t  nativeIterIndex = destIndex32 + limit32 - start32;
1992     if (move && destIndex32>start32) {
1993         // moved a block of text towards the end of the string.
1994         nativeIterIndex = destIndex32;
1995     }
1996 
1997     // Set position, reload chunk if needed.
1998     repTextAccess(ut, nativeIterIndex, TRUE);
1999 }
2000 
2001 static const struct UTextFuncs repFuncs =
2002 {
2003     sizeof(UTextFuncs),
2004     0, 0, 0,           // Reserved alignment padding
2005     repTextClone,
2006     repTextLength,
2007     repTextAccess,
2008     repTextExtract,
2009     repTextReplace,
2010     repTextCopy,
2011     NULL,              // MapOffsetToNative,
2012     NULL,              // MapIndexToUTF16,
2013     repTextClose,
2014     NULL,              // spare 1
2015     NULL,              // spare 2
2016     NULL               // spare 3
2017 };
2018 
2019 
2020 U_CAPI UText * U_EXPORT2
utext_openReplaceable(UText * ut,Replaceable * rep,UErrorCode * status)2021 utext_openReplaceable(UText *ut, Replaceable *rep, UErrorCode *status)
2022 {
2023     if(U_FAILURE(*status)) {
2024         return NULL;
2025     }
2026     if(rep==NULL) {
2027         *status=U_ILLEGAL_ARGUMENT_ERROR;
2028         return NULL;
2029     }
2030     ut = utext_setup(ut, sizeof(ReplExtra), status);
2031 
2032     ut->providerProperties = I32_FLAG(UTEXT_PROVIDER_WRITABLE);
2033     if(rep->hasMetaData()) {
2034         ut->providerProperties |=I32_FLAG(UTEXT_PROVIDER_HAS_META_DATA);
2035     }
2036 
2037     ut->pFuncs  = &repFuncs;
2038     ut->context =  rep;
2039     return ut;
2040 }
2041 
2042 U_CDECL_END
2043 
2044 
2045 
2046 
2047 
2048 
2049 
2050 
2051 //------------------------------------------------------------------------------
2052 //
2053 //     UText implementation for UnicodeString (read/write)  and
2054 //                    for const UnicodeString (read only)
2055 //             (same implementation, only the flags are different)
2056 //
2057 //         Use of UText data members:
2058 //            context    pointer to UnicodeString
2059 //            p          pointer to UnicodeString IF this UText owns the string
2060 //                       and it must be deleted on close().  NULL otherwise.
2061 //
2062 //------------------------------------------------------------------------------
2063 
2064 U_CDECL_BEGIN
2065 
2066 
2067 static UText * U_CALLCONV
unistrTextClone(UText * dest,const UText * src,UBool deep,UErrorCode * status)2068 unistrTextClone(UText *dest, const UText *src, UBool deep, UErrorCode *status) {
2069     // First do a generic shallow clone.  Does everything needed for the UText struct itself.
2070     dest = shallowTextClone(dest, src, status);
2071 
2072     // For deep clones, make a copy of the UnicodeSring.
2073     //  The copied UnicodeString storage is owned by the newly created UText clone.
2074     //  A non-NULL pointer in UText.p is the signal to the close() function to delete
2075     //    the UText.
2076     //
2077     if (deep && U_SUCCESS(*status)) {
2078         const UnicodeString *srcString = (const UnicodeString *)src->context;
2079         dest->context = new UnicodeString(*srcString);
2080         dest->providerProperties |= I32_FLAG(UTEXT_PROVIDER_OWNS_TEXT);
2081 
2082         // with deep clone, the copy is writable, even when the source is not.
2083         dest->providerProperties |= I32_FLAG(UTEXT_PROVIDER_WRITABLE);
2084     }
2085     return dest;
2086 }
2087 
2088 static void U_CALLCONV
unistrTextClose(UText * ut)2089 unistrTextClose(UText *ut) {
2090     // Most of the work of close is done by the generic UText framework close.
2091     // All that needs to be done here is delete the UnicodeString if the UText
2092     //  owns it.  This occurs if the UText was created by cloning.
2093     if (ut->providerProperties & I32_FLAG(UTEXT_PROVIDER_OWNS_TEXT)) {
2094         UnicodeString *str = (UnicodeString *)ut->context;
2095         delete str;
2096         ut->context = NULL;
2097     }
2098 }
2099 
2100 
2101 static int64_t U_CALLCONV
unistrTextLength(UText * t)2102 unistrTextLength(UText *t) {
2103     return ((const UnicodeString *)t->context)->length();
2104 }
2105 
2106 
2107 static UBool U_CALLCONV
unistrTextAccess(UText * ut,int64_t index,UBool forward)2108 unistrTextAccess(UText *ut, int64_t index, UBool  forward) {
2109     int32_t length  = ut->chunkLength;
2110     ut->chunkOffset = pinIndex(index, length);
2111 
2112     // Check whether request is at the start or end
2113     UBool retVal = (forward && index<length) || (!forward && index>0);
2114     return retVal;
2115 }
2116 
2117 
2118 
2119 static int32_t U_CALLCONV
unistrTextExtract(UText * t,int64_t start,int64_t limit,UChar * dest,int32_t destCapacity,UErrorCode * pErrorCode)2120 unistrTextExtract(UText *t,
2121                   int64_t start, int64_t limit,
2122                   UChar *dest, int32_t destCapacity,
2123                   UErrorCode *pErrorCode) {
2124     const UnicodeString *us=(const UnicodeString *)t->context;
2125     int32_t length=us->length();
2126 
2127     if(U_FAILURE(*pErrorCode)) {
2128         return 0;
2129     }
2130     if(destCapacity<0 || (dest==NULL && destCapacity>0)) {
2131         *pErrorCode=U_ILLEGAL_ARGUMENT_ERROR;
2132     }
2133     if(start<0 || start>limit) {
2134         *pErrorCode=U_INDEX_OUTOFBOUNDS_ERROR;
2135         return 0;
2136     }
2137 
2138     int32_t start32 = start<length ? us->getChar32Start((int32_t)start) : length;
2139     int32_t limit32 = limit<length ? us->getChar32Start((int32_t)limit) : length;
2140 
2141     length=limit32-start32;
2142     if (destCapacity>0 && dest!=NULL) {
2143         int32_t trimmedLength = length;
2144         if(trimmedLength>destCapacity) {
2145             trimmedLength=destCapacity;
2146         }
2147         us->extract(start32, trimmedLength, dest);
2148         t->chunkOffset = start32+trimmedLength;
2149     } else {
2150         t->chunkOffset = start32;
2151     }
2152     u_terminateUChars(dest, destCapacity, length, pErrorCode);
2153     return length;
2154 }
2155 
2156 static int32_t U_CALLCONV
unistrTextReplace(UText * ut,int64_t start,int64_t limit,const UChar * src,int32_t length,UErrorCode * pErrorCode)2157 unistrTextReplace(UText *ut,
2158                   int64_t start, int64_t limit,
2159                   const UChar *src, int32_t length,
2160                   UErrorCode *pErrorCode) {
2161     UnicodeString *us=(UnicodeString *)ut->context;
2162     int32_t oldLength;
2163 
2164     if(U_FAILURE(*pErrorCode)) {
2165         return 0;
2166     }
2167     if(src==NULL && length!=0) {
2168         *pErrorCode=U_ILLEGAL_ARGUMENT_ERROR;
2169     }
2170     if(start>limit) {
2171         *pErrorCode=U_INDEX_OUTOFBOUNDS_ERROR;
2172         return 0;
2173     }
2174     oldLength=us->length();
2175     int32_t start32 = pinIndex(start, oldLength);
2176     int32_t limit32 = pinIndex(limit, oldLength);
2177     if (start32 < oldLength) {
2178         start32 = us->getChar32Start(start32);
2179     }
2180     if (limit32 < oldLength) {
2181         limit32 = us->getChar32Start(limit32);
2182     }
2183 
2184     // replace
2185     us->replace(start32, limit32-start32, src, length);
2186     int32_t newLength = us->length();
2187 
2188     // Update the chunk description.
2189     ut->chunkContents    = us->getBuffer();
2190     ut->chunkLength      = newLength;
2191     ut->chunkNativeLimit = newLength;
2192     ut->nativeIndexingLimit = newLength;
2193 
2194     // Set iteration position to the point just following the newly inserted text.
2195     int32_t lengthDelta = newLength - oldLength;
2196     ut->chunkOffset = limit32 + lengthDelta;
2197 
2198     return lengthDelta;
2199 }
2200 
2201 static void U_CALLCONV
unistrTextCopy(UText * ut,int64_t start,int64_t limit,int64_t destIndex,UBool move,UErrorCode * pErrorCode)2202 unistrTextCopy(UText *ut,
2203                int64_t start, int64_t limit,
2204                int64_t destIndex,
2205                UBool move,
2206                UErrorCode *pErrorCode) {
2207     UnicodeString *us=(UnicodeString *)ut->context;
2208     int32_t length=us->length();
2209 
2210     if(U_FAILURE(*pErrorCode)) {
2211         return;
2212     }
2213     int32_t start32 = pinIndex(start, length);
2214     int32_t limit32 = pinIndex(limit, length);
2215     int32_t destIndex32 = pinIndex(destIndex, length);
2216 
2217     if( start32>limit32 || (start32<destIndex32 && destIndex32<limit32)) {
2218         *pErrorCode=U_INDEX_OUTOFBOUNDS_ERROR;
2219         return;
2220     }
2221 
2222     if(move) {
2223         // move: copy to destIndex, then replace original with nothing
2224         int32_t segLength=limit32-start32;
2225         us->copy(start32, limit32, destIndex32);
2226         if(destIndex32<start32) {
2227             start32+=segLength;
2228         }
2229         us->replace(start32, segLength, NULL, 0);
2230     } else {
2231         // copy
2232         us->copy(start32, limit32, destIndex32);
2233     }
2234 
2235     // update chunk description, set iteration position.
2236     ut->chunkContents = us->getBuffer();
2237     if (move==FALSE) {
2238         // copy operation, string length grows
2239         ut->chunkLength += limit32-start32;
2240         ut->chunkNativeLimit = ut->chunkLength;
2241         ut->nativeIndexingLimit = ut->chunkLength;
2242     }
2243 
2244     // Iteration position to end of the newly inserted text.
2245     ut->chunkOffset = destIndex32+limit32-start32;
2246     if (move && destIndex32>start32) {
2247         ut->chunkOffset = destIndex32;
2248     }
2249 
2250 }
2251 
2252 static const struct UTextFuncs unistrFuncs =
2253 {
2254     sizeof(UTextFuncs),
2255     0, 0, 0,             // Reserved alignment padding
2256     unistrTextClone,
2257     unistrTextLength,
2258     unistrTextAccess,
2259     unistrTextExtract,
2260     unistrTextReplace,
2261     unistrTextCopy,
2262     NULL,                // MapOffsetToNative,
2263     NULL,                // MapIndexToUTF16,
2264     unistrTextClose,
2265     NULL,                // spare 1
2266     NULL,                // spare 2
2267     NULL                 // spare 3
2268 };
2269 
2270 
2271 
2272 U_CDECL_END
2273 
2274 
2275 U_CAPI UText * U_EXPORT2
utext_openUnicodeString(UText * ut,UnicodeString * s,UErrorCode * status)2276 utext_openUnicodeString(UText *ut, UnicodeString *s, UErrorCode *status) {
2277     ut = utext_openConstUnicodeString(ut, s, status);
2278     if (U_SUCCESS(*status)) {
2279         ut->providerProperties |= I32_FLAG(UTEXT_PROVIDER_WRITABLE);
2280     }
2281     return ut;
2282 }
2283 
2284 
2285 
2286 U_CAPI UText * U_EXPORT2
utext_openConstUnicodeString(UText * ut,const UnicodeString * s,UErrorCode * status)2287 utext_openConstUnicodeString(UText *ut, const UnicodeString *s, UErrorCode *status) {
2288     if (U_SUCCESS(*status) && s->isBogus()) {
2289         // The UnicodeString is bogus, but we still need to detach the UText
2290         //   from whatever it was hooked to before, if anything.
2291         utext_openUChars(ut, NULL, 0, status);
2292         *status = U_ILLEGAL_ARGUMENT_ERROR;
2293         return ut;
2294     }
2295     ut = utext_setup(ut, 0, status);
2296     //    note:  use the standard (writable) function table for UnicodeString.
2297     //           The flag settings disable writing, so having the functions in
2298     //           the table is harmless.
2299     if (U_SUCCESS(*status)) {
2300         ut->pFuncs              = &unistrFuncs;
2301         ut->context             = s;
2302         ut->providerProperties  = I32_FLAG(UTEXT_PROVIDER_STABLE_CHUNKS);
2303         ut->chunkContents       = s->getBuffer();
2304         ut->chunkLength         = s->length();
2305         ut->chunkNativeStart    = 0;
2306         ut->chunkNativeLimit    = ut->chunkLength;
2307         ut->nativeIndexingLimit = ut->chunkLength;
2308     }
2309     return ut;
2310 }
2311 
2312 //------------------------------------------------------------------------------
2313 //
2314 //     UText implementation for const UChar * strings
2315 //
2316 //         Use of UText data members:
2317 //            context    pointer to UnicodeString
2318 //            a          length.  -1 if not yet known.
2319 //
2320 //         TODO:  support 64 bit lengths.
2321 //
2322 //------------------------------------------------------------------------------
2323 
2324 U_CDECL_BEGIN
2325 
2326 
2327 static UText * U_CALLCONV
ucstrTextClone(UText * dest,const UText * src,UBool deep,UErrorCode * status)2328 ucstrTextClone(UText *dest, const UText * src, UBool deep, UErrorCode * status) {
2329     // First do a generic shallow clone.
2330     dest = shallowTextClone(dest, src, status);
2331 
2332     // For deep clones, make a copy of the string.
2333     //  The copied storage is owned by the newly created clone.
2334     //  A non-NULL pointer in UText.p is the signal to the close() function to delete
2335     //    it.
2336     //
2337     if (deep && U_SUCCESS(*status)) {
2338         U_ASSERT(utext_nativeLength(dest) < INT32_MAX);
2339         int32_t  len = (int32_t)utext_nativeLength(dest);
2340 
2341         // The cloned string IS going to be NUL terminated, whether or not the original was.
2342         const UChar *srcStr = (const UChar *)src->context;
2343         UChar *copyStr = (UChar *)uprv_malloc((len+1) * sizeof(UChar));
2344         if (copyStr == NULL) {
2345             *status = U_MEMORY_ALLOCATION_ERROR;
2346         } else {
2347             int64_t i;
2348             for (i=0; i<len; i++) {
2349                 copyStr[i] = srcStr[i];
2350             }
2351             copyStr[len] = 0;
2352             dest->context = copyStr;
2353             dest->providerProperties |= I32_FLAG(UTEXT_PROVIDER_OWNS_TEXT);
2354         }
2355     }
2356     return dest;
2357 }
2358 
2359 
2360 static void U_CALLCONV
ucstrTextClose(UText * ut)2361 ucstrTextClose(UText *ut) {
2362     // Most of the work of close is done by the generic UText framework close.
2363     // All that needs to be done here is delete the string if the UText
2364     //  owns it.  This occurs if the UText was created by cloning.
2365     if (ut->providerProperties & I32_FLAG(UTEXT_PROVIDER_OWNS_TEXT)) {
2366         UChar *s = (UChar *)ut->context;
2367         uprv_free(s);
2368         ut->context = NULL;
2369     }
2370 }
2371 
2372 
2373 
2374 static int64_t U_CALLCONV
ucstrTextLength(UText * ut)2375 ucstrTextLength(UText *ut) {
2376     if (ut->a < 0) {
2377         // null terminated, we don't yet know the length.  Scan for it.
2378         //    Access is not convenient for doing this
2379         //    because the current interation postion can't be changed.
2380         const UChar  *str = (const UChar *)ut->context;
2381         for (;;) {
2382             if (str[ut->chunkNativeLimit] == 0) {
2383                 break;
2384             }
2385             ut->chunkNativeLimit++;
2386         }
2387         ut->a = ut->chunkNativeLimit;
2388         ut->chunkLength = (int32_t)ut->chunkNativeLimit;
2389         ut->nativeIndexingLimit = ut->chunkLength;
2390         ut->providerProperties &= ~I32_FLAG(UTEXT_PROVIDER_LENGTH_IS_EXPENSIVE);
2391     }
2392     return ut->a;
2393 }
2394 
2395 
2396 static UBool U_CALLCONV
ucstrTextAccess(UText * ut,int64_t index,UBool forward)2397 ucstrTextAccess(UText *ut, int64_t index, UBool  forward) {
2398     const UChar *str   = (const UChar *)ut->context;
2399 
2400     // pin the requested index to the bounds of the string,
2401     //  and set current iteration position.
2402     if (index<0) {
2403         index = 0;
2404     } else if (index < ut->chunkNativeLimit) {
2405         // The request data is within the chunk as it is known so far.
2406         // Put index on a code point boundary.
2407         U16_SET_CP_START(str, 0, index);
2408     } else if (ut->a >= 0) {
2409         // We know the length of this string, and the user is requesting something
2410         // at or beyond the length.  Pin the requested index to the length.
2411         index = ut->a;
2412     } else {
2413         // Null terminated string, length not yet known, and the requested index
2414         //  is beyond where we have scanned so far.
2415         //  Scan to 32 UChars beyond the requested index.  The strategy here is
2416         //  to avoid fully scanning a long string when the caller only wants to
2417         //  see a few characters at its beginning.
2418         int32_t scanLimit = (int32_t)index + 32;
2419         if ((index + 32)>INT32_MAX || (index + 32)<0 ) {   // note: int64 expression
2420             scanLimit = INT32_MAX;
2421         }
2422 
2423         int32_t chunkLimit = (int32_t)ut->chunkNativeLimit;
2424         for (; chunkLimit<scanLimit; chunkLimit++) {
2425             if (str[chunkLimit] == 0) {
2426                 // We found the end of the string.  Remember it, pin the requested index to it,
2427                 //  and bail out of here.
2428                 ut->a = chunkLimit;
2429                 ut->chunkLength = chunkLimit;
2430                 ut->nativeIndexingLimit = chunkLimit;
2431                 if (index >= chunkLimit) {
2432                     index = chunkLimit;
2433                 } else {
2434                     U16_SET_CP_START(str, 0, index);
2435                 }
2436 
2437                 ut->chunkNativeLimit = chunkLimit;
2438                 ut->providerProperties &= ~I32_FLAG(UTEXT_PROVIDER_LENGTH_IS_EXPENSIVE);
2439                 goto breakout;
2440             }
2441         }
2442         // We scanned through the next batch of UChars without finding the end.
2443         U16_SET_CP_START(str, 0, index);
2444         if (chunkLimit == INT32_MAX) {
2445             // Scanned to the limit of a 32 bit length.
2446             // Forceably trim the overlength string back so length fits in int32
2447             //  TODO:  add support for 64 bit strings.
2448             ut->a = chunkLimit;
2449             ut->chunkLength = chunkLimit;
2450             ut->nativeIndexingLimit = chunkLimit;
2451             if (index > chunkLimit) {
2452                 index = chunkLimit;
2453             }
2454             ut->chunkNativeLimit = chunkLimit;
2455             ut->providerProperties &= ~I32_FLAG(UTEXT_PROVIDER_LENGTH_IS_EXPENSIVE);
2456         } else {
2457             // The endpoint of a chunk must not be left in the middle of a surrogate pair.
2458             // If the current end is on a lead surrogate, back the end up by one.
2459             // It doesn't matter if the end char happens to be an unpaired surrogate,
2460             //    and it's simpler not to worry about it.
2461             if (U16_IS_LEAD(str[chunkLimit-1])) {
2462                 --chunkLimit;
2463             }
2464             // Null-terminated chunk with end still unknown.
2465             // Update the chunk length to reflect what has been scanned thus far.
2466             // That the full length is still unknown is (still) flagged by
2467             //    ut->a being < 0.
2468             ut->chunkNativeLimit = chunkLimit;
2469             ut->nativeIndexingLimit = chunkLimit;
2470             ut->chunkLength = chunkLimit;
2471         }
2472 
2473     }
2474 breakout:
2475     U_ASSERT(index<=INT32_MAX);
2476     ut->chunkOffset = (int32_t)index;
2477 
2478     // Check whether request is at the start or end
2479     UBool retVal = (forward && index<ut->chunkNativeLimit) || (!forward && index>0);
2480     return retVal;
2481 }
2482 
2483 
2484 
2485 static int32_t U_CALLCONV
ucstrTextExtract(UText * ut,int64_t start,int64_t limit,UChar * dest,int32_t destCapacity,UErrorCode * pErrorCode)2486 ucstrTextExtract(UText *ut,
2487                   int64_t start, int64_t limit,
2488                   UChar *dest, int32_t destCapacity,
2489                   UErrorCode *pErrorCode)
2490 {
2491     if(U_FAILURE(*pErrorCode)) {
2492         return 0;
2493     }
2494     if(destCapacity<0 || (dest==NULL && destCapacity>0) || start>limit) {
2495         *pErrorCode=U_ILLEGAL_ARGUMENT_ERROR;
2496         return 0;
2497     }
2498 
2499     //const UChar *s=(const UChar *)ut->context;
2500     int32_t si, di;
2501 
2502     int32_t start32;
2503     int32_t limit32;
2504 
2505     // Access the start.  Does two things we need:
2506     //   Pins 'start' to the length of the string, if it came in out-of-bounds.
2507     //   Snaps 'start' to the beginning of a code point.
2508     ucstrTextAccess(ut, start, TRUE);
2509     const UChar *s=ut->chunkContents;
2510     start32 = ut->chunkOffset;
2511 
2512     int32_t strLength=(int32_t)ut->a;
2513     if (strLength >= 0) {
2514         limit32 = pinIndex(limit, strLength);
2515     } else {
2516         limit32 = pinIndex(limit, INT32_MAX);
2517     }
2518     di = 0;
2519     for (si=start32; si<limit32; si++) {
2520         if (strLength<0 && s[si]==0) {
2521             // Just hit the end of a null-terminated string.
2522             ut->a = si;               // set string length for this UText
2523             ut->chunkNativeLimit    = si;
2524             ut->chunkLength         = si;
2525             ut->nativeIndexingLimit = si;
2526             strLength               = si;
2527             break;
2528         }
2529         U_ASSERT(di>=0); /* to ensure di never exceeds INT32_MAX, which must not happen logically */
2530         if (di<destCapacity) {
2531             // only store if there is space.
2532             dest[di] = s[si];
2533         } else {
2534             if (strLength>=0) {
2535                 // We have filled the destination buffer, and the string length is known.
2536                 //  Cut the loop short.  There is no need to scan string termination.
2537                 di = limit32 - start32;
2538                 si = limit32;
2539                 break;
2540             }
2541         }
2542         di++;
2543     }
2544 
2545     // If the limit index points to a lead surrogate of a pair,
2546     //   add the corresponding trail surrogate to the destination.
2547     if (si>0 && U16_IS_LEAD(s[si-1]) &&
2548         ((si<strLength || strLength<0)  && U16_IS_TRAIL(s[si])))
2549     {
2550         if (di<destCapacity) {
2551             // store only if there is space in the output buffer.
2552             dest[di++] = s[si++];
2553         }
2554     }
2555 
2556     // Put iteration position at the point just following the extracted text
2557     ut->chunkOffset = uprv_min(strLength, start32 + destCapacity);
2558 
2559     // Add a terminating NUL if space in the buffer permits,
2560     // and set the error status as required.
2561     u_terminateUChars(dest, destCapacity, di, pErrorCode);
2562     return di;
2563 }
2564 
2565 static const struct UTextFuncs ucstrFuncs =
2566 {
2567     sizeof(UTextFuncs),
2568     0, 0, 0,           // Reserved alignment padding
2569     ucstrTextClone,
2570     ucstrTextLength,
2571     ucstrTextAccess,
2572     ucstrTextExtract,
2573     NULL,              // Replace
2574     NULL,              // Copy
2575     NULL,              // MapOffsetToNative,
2576     NULL,              // MapIndexToUTF16,
2577     ucstrTextClose,
2578     NULL,              // spare 1
2579     NULL,              // spare 2
2580     NULL,              // spare 3
2581 };
2582 
2583 U_CDECL_END
2584 
2585 static const UChar gEmptyUString[] = {0};
2586 
2587 U_CAPI UText * U_EXPORT2
utext_openUChars(UText * ut,const UChar * s,int64_t length,UErrorCode * status)2588 utext_openUChars(UText *ut, const UChar *s, int64_t length, UErrorCode *status) {
2589     if (U_FAILURE(*status)) {
2590         return NULL;
2591     }
2592     if(s==NULL && length==0) {
2593         s = gEmptyUString;
2594     }
2595     if (s==NULL || length < -1 || length>INT32_MAX) {
2596         *status = U_ILLEGAL_ARGUMENT_ERROR;
2597         return NULL;
2598     }
2599     ut = utext_setup(ut, 0, status);
2600     if (U_SUCCESS(*status)) {
2601         ut->pFuncs               = &ucstrFuncs;
2602         ut->context              = s;
2603         ut->providerProperties   = I32_FLAG(UTEXT_PROVIDER_STABLE_CHUNKS);
2604         if (length==-1) {
2605             ut->providerProperties |= I32_FLAG(UTEXT_PROVIDER_LENGTH_IS_EXPENSIVE);
2606         }
2607         ut->a                    = length;
2608         ut->chunkContents        = s;
2609         ut->chunkNativeStart     = 0;
2610         ut->chunkNativeLimit     = length>=0? length : 0;
2611         ut->chunkLength          = (int32_t)ut->chunkNativeLimit;
2612         ut->chunkOffset          = 0;
2613         ut->nativeIndexingLimit  = ut->chunkLength;
2614     }
2615     return ut;
2616 }
2617 
2618 
2619 //------------------------------------------------------------------------------
2620 //
2621 //     UText implementation for text from ICU CharacterIterators
2622 //
2623 //         Use of UText data members:
2624 //            context    pointer to the CharacterIterator
2625 //            a          length of the full text.
2626 //            p          pointer to  buffer 1
2627 //            b          start index of local buffer 1 contents
2628 //            q          pointer to buffer 2
2629 //            c          start index of local buffer 2 contents
2630 //            r          pointer to the character iterator if the UText owns it.
2631 //                       Null otherwise.
2632 //
2633 //------------------------------------------------------------------------------
2634 #define CIBufSize 16
2635 
2636 U_CDECL_BEGIN
2637 static void U_CALLCONV
charIterTextClose(UText * ut)2638 charIterTextClose(UText *ut) {
2639     // Most of the work of close is done by the generic UText framework close.
2640     // All that needs to be done here is delete the CharacterIterator if the UText
2641     //  owns it.  This occurs if the UText was created by cloning.
2642     CharacterIterator *ci = (CharacterIterator *)ut->r;
2643     delete ci;
2644     ut->r = NULL;
2645 }
2646 
2647 static int64_t U_CALLCONV
charIterTextLength(UText * ut)2648 charIterTextLength(UText *ut) {
2649     return (int32_t)ut->a;
2650 }
2651 
2652 static UBool U_CALLCONV
charIterTextAccess(UText * ut,int64_t index,UBool forward)2653 charIterTextAccess(UText *ut, int64_t index, UBool  forward) {
2654     CharacterIterator *ci   = (CharacterIterator *)ut->context;
2655 
2656     int32_t clippedIndex = (int32_t)index;
2657     if (clippedIndex<0) {
2658         clippedIndex=0;
2659     } else if (clippedIndex>=ut->a) {
2660         clippedIndex=(int32_t)ut->a;
2661     }
2662     int32_t neededIndex = clippedIndex;
2663     if (!forward && neededIndex>0) {
2664         // reverse iteration, want the position just before what was asked for.
2665         neededIndex--;
2666     } else if (forward && neededIndex==ut->a && neededIndex>0) {
2667         // Forward iteration, don't ask for something past the end of the text.
2668         neededIndex--;
2669     }
2670 
2671     // Find the native index of the start of the buffer containing what we want.
2672     neededIndex -= neededIndex % CIBufSize;
2673 
2674     UChar *buf = NULL;
2675     UBool  needChunkSetup = TRUE;
2676     int    i;
2677     if (ut->chunkNativeStart == neededIndex) {
2678         // The buffer we want is already the current chunk.
2679         needChunkSetup = FALSE;
2680     } else if (ut->b == neededIndex) {
2681         // The first buffer (buffer p) has what we need.
2682         buf = (UChar *)ut->p;
2683     } else if (ut->c == neededIndex) {
2684         // The second buffer (buffer q) has what we need.
2685         buf = (UChar *)ut->q;
2686     } else {
2687         // Neither buffer already has what we need.
2688         // Load new data from the character iterator.
2689         // Use the buf that is not the current buffer.
2690         buf = (UChar *)ut->p;
2691         if (ut->p == ut->chunkContents) {
2692             buf = (UChar *)ut->q;
2693         }
2694         ci->setIndex(neededIndex);
2695         for (i=0; i<CIBufSize; i++) {
2696             buf[i] = ci->nextPostInc();
2697             if (i+neededIndex > ut->a) {
2698                 break;
2699             }
2700         }
2701     }
2702 
2703     // We have a buffer with the data we need.
2704     // Set it up as the current chunk, if it wasn't already.
2705     if (needChunkSetup) {
2706         ut->chunkContents = buf;
2707         ut->chunkLength   = CIBufSize;
2708         ut->chunkNativeStart = neededIndex;
2709         ut->chunkNativeLimit = neededIndex + CIBufSize;
2710         if (ut->chunkNativeLimit > ut->a) {
2711             ut->chunkNativeLimit = ut->a;
2712             ut->chunkLength  = (int32_t)(ut->chunkNativeLimit)-(int32_t)(ut->chunkNativeStart);
2713         }
2714         ut->nativeIndexingLimit = ut->chunkLength;
2715         U_ASSERT(ut->chunkOffset>=0 && ut->chunkOffset<=CIBufSize);
2716     }
2717     ut->chunkOffset = clippedIndex - (int32_t)ut->chunkNativeStart;
2718     UBool success = (forward? ut->chunkOffset<ut->chunkLength : ut->chunkOffset>0);
2719     return success;
2720 }
2721 
2722 static UText * U_CALLCONV
charIterTextClone(UText * dest,const UText * src,UBool deep,UErrorCode * status)2723 charIterTextClone(UText *dest, const UText *src, UBool deep, UErrorCode * status) {
2724     if (U_FAILURE(*status)) {
2725         return NULL;
2726     }
2727 
2728     if (deep) {
2729         // There is no CharacterIterator API for cloning the underlying text storage.
2730         *status = U_UNSUPPORTED_ERROR;
2731         return NULL;
2732     } else {
2733         CharacterIterator *srcCI =(CharacterIterator *)src->context;
2734         srcCI = srcCI->clone();
2735         dest = utext_openCharacterIterator(dest, srcCI, status);
2736         // cast off const on getNativeIndex.
2737         //   For CharacterIterator based UTexts, this is safe, the operation is const.
2738         int64_t  ix = utext_getNativeIndex((UText *)src);
2739         utext_setNativeIndex(dest, ix);
2740         dest->r = srcCI;    // flags that this UText owns the CharacterIterator
2741     }
2742     return dest;
2743 }
2744 
2745 static int32_t U_CALLCONV
charIterTextExtract(UText * ut,int64_t start,int64_t limit,UChar * dest,int32_t destCapacity,UErrorCode * status)2746 charIterTextExtract(UText *ut,
2747                   int64_t start, int64_t limit,
2748                   UChar *dest, int32_t destCapacity,
2749                   UErrorCode *status)
2750 {
2751     if(U_FAILURE(*status)) {
2752         return 0;
2753     }
2754     if(destCapacity<0 || (dest==NULL && destCapacity>0) || start>limit) {
2755         *status=U_ILLEGAL_ARGUMENT_ERROR;
2756         return 0;
2757     }
2758     int32_t  length  = (int32_t)ut->a;
2759     int32_t  start32 = pinIndex(start, length);
2760     int32_t  limit32 = pinIndex(limit, length);
2761     int32_t  desti   = 0;
2762     int32_t  srci;
2763     int32_t  copyLimit;
2764 
2765     CharacterIterator *ci = (CharacterIterator *)ut->context;
2766     ci->setIndex32(start32);   // Moves ix to lead of surrogate pair, if needed.
2767     srci = ci->getIndex();
2768     copyLimit = srci;
2769     while (srci<limit32) {
2770         UChar32 c = ci->next32PostInc();
2771         int32_t  len = U16_LENGTH(c);
2772         U_ASSERT(desti+len>0); /* to ensure desti+len never exceeds MAX_INT32, which must not happen logically */
2773         if (desti+len <= destCapacity) {
2774             U16_APPEND_UNSAFE(dest, desti, c);
2775             copyLimit = srci+len;
2776         } else {
2777             desti += len;
2778             *status = U_BUFFER_OVERFLOW_ERROR;
2779         }
2780         srci += len;
2781     }
2782 
2783     charIterTextAccess(ut, copyLimit, TRUE);
2784 
2785     u_terminateUChars(dest, destCapacity, desti, status);
2786     return desti;
2787 }
2788 
2789 static const struct UTextFuncs charIterFuncs =
2790 {
2791     sizeof(UTextFuncs),
2792     0, 0, 0,             // Reserved alignment padding
2793     charIterTextClone,
2794     charIterTextLength,
2795     charIterTextAccess,
2796     charIterTextExtract,
2797     NULL,                // Replace
2798     NULL,                // Copy
2799     NULL,                // MapOffsetToNative,
2800     NULL,                // MapIndexToUTF16,
2801     charIterTextClose,
2802     NULL,                // spare 1
2803     NULL,                // spare 2
2804     NULL                 // spare 3
2805 };
2806 U_CDECL_END
2807 
2808 
2809 U_CAPI UText * U_EXPORT2
utext_openCharacterIterator(UText * ut,CharacterIterator * ci,UErrorCode * status)2810 utext_openCharacterIterator(UText *ut, CharacterIterator *ci, UErrorCode *status) {
2811     if (U_FAILURE(*status)) {
2812         return NULL;
2813     }
2814 
2815     if (ci->startIndex() > 0) {
2816         // No support for CharacterIterators that do not start indexing from zero.
2817         *status = U_UNSUPPORTED_ERROR;
2818         return NULL;
2819     }
2820 
2821     // Extra space in UText for 2 buffers of CIBufSize UChars each.
2822     int32_t  extraSpace = 2 * CIBufSize * sizeof(UChar);
2823     ut = utext_setup(ut, extraSpace, status);
2824     if (U_SUCCESS(*status)) {
2825         ut->pFuncs                = &charIterFuncs;
2826         ut->context              = ci;
2827         ut->providerProperties   = 0;
2828         ut->a                    = ci->endIndex();        // Length of text
2829         ut->p                    = ut->pExtra;            // First buffer
2830         ut->b                    = -1;                    // Native index of first buffer contents
2831         ut->q                    = (UChar*)ut->pExtra+CIBufSize;  // Second buffer
2832         ut->c                    = -1;                    // Native index of second buffer contents
2833 
2834         // Initialize current chunk contents to be empty.
2835         //   First access will fault something in.
2836         //   Note:  The initial nativeStart and chunkOffset must sum to zero
2837         //          so that getNativeIndex() will correctly compute to zero
2838         //          if no call to Access() has ever been made.  They can't be both
2839         //          zero without Access() thinking that the chunk is valid.
2840         ut->chunkContents        = (UChar *)ut->p;
2841         ut->chunkNativeStart     = -1;
2842         ut->chunkOffset          = 1;
2843         ut->chunkNativeLimit     = 0;
2844         ut->chunkLength          = 0;
2845         ut->nativeIndexingLimit  = ut->chunkOffset;  // enables native indexing
2846     }
2847     return ut;
2848 }
2849