1 /*
2 ******************************************************************************
3 *   Copyright (C) 1997-2014, International Business Machines
4 *   Corporation and others.  All Rights Reserved.
5 ******************************************************************************
6 *   file name:  nfrule.cpp
7 *   encoding:   US-ASCII
8 *   tab size:   8 (not used)
9 *   indentation:4
10 *
11 * Modification history
12 * Date        Name      Comments
13 * 10/11/2001  Doug      Ported from ICU4J
14 */
15 
16 #include "nfrule.h"
17 
18 #if U_HAVE_RBNF
19 
20 #include "unicode/localpointer.h"
21 #include "unicode/rbnf.h"
22 #include "unicode/tblcoll.h"
23 #include "unicode/plurfmt.h"
24 #include "unicode/upluralrules.h"
25 #include "unicode/coleitr.h"
26 #include "unicode/uchar.h"
27 #include "nfrs.h"
28 #include "nfrlist.h"
29 #include "nfsubs.h"
30 #include "patternprops.h"
31 
32 U_NAMESPACE_BEGIN
33 
NFRule(const RuleBasedNumberFormat * _rbnf)34 NFRule::NFRule(const RuleBasedNumberFormat* _rbnf)
35   : baseValue((int32_t)0)
36   , radix(0)
37   , exponent(0)
38   , ruleText()
39   , sub1(NULL)
40   , sub2(NULL)
41   , formatter(_rbnf)
42   , rulePatternFormat(NULL)
43 {
44 }
45 
~NFRule()46 NFRule::~NFRule()
47 {
48     if (sub1 != sub2) {
49         delete sub2;
50     }
51     delete sub1;
52     delete rulePatternFormat;
53 }
54 
55 static const UChar gLeftBracket = 0x005b;
56 static const UChar gRightBracket = 0x005d;
57 static const UChar gColon = 0x003a;
58 static const UChar gZero = 0x0030;
59 static const UChar gNine = 0x0039;
60 static const UChar gSpace = 0x0020;
61 static const UChar gSlash = 0x002f;
62 static const UChar gGreaterThan = 0x003e;
63 static const UChar gLessThan = 0x003c;
64 static const UChar gComma = 0x002c;
65 static const UChar gDot = 0x002e;
66 static const UChar gTick = 0x0027;
67 //static const UChar gMinus = 0x002d;
68 static const UChar gSemicolon = 0x003b;
69 
70 static const UChar gMinusX[] =                  {0x2D, 0x78, 0};    /* "-x" */
71 static const UChar gXDotX[] =                   {0x78, 0x2E, 0x78, 0}; /* "x.x" */
72 static const UChar gXDotZero[] =                {0x78, 0x2E, 0x30, 0}; /* "x.0" */
73 static const UChar gZeroDotX[] =                {0x30, 0x2E, 0x78, 0}; /* "0.x" */
74 
75 static const UChar gDollarOpenParenthesis[] =   {0x24, 0x28, 0}; /* "$(" */
76 static const UChar gClosedParenthesisDollar[] = {0x29, 0x24, 0}; /* ")$" */
77 
78 static const UChar gLessLess[] =                {0x3C, 0x3C, 0};    /* "<<" */
79 static const UChar gLessPercent[] =             {0x3C, 0x25, 0};    /* "<%" */
80 static const UChar gLessHash[] =                {0x3C, 0x23, 0};    /* "<#" */
81 static const UChar gLessZero[] =                {0x3C, 0x30, 0};    /* "<0" */
82 static const UChar gGreaterGreater[] =          {0x3E, 0x3E, 0};    /* ">>" */
83 static const UChar gGreaterPercent[] =          {0x3E, 0x25, 0};    /* ">%" */
84 static const UChar gGreaterHash[] =             {0x3E, 0x23, 0};    /* ">#" */
85 static const UChar gGreaterZero[] =             {0x3E, 0x30, 0};    /* ">0" */
86 static const UChar gEqualPercent[] =            {0x3D, 0x25, 0};    /* "=%" */
87 static const UChar gEqualHash[] =               {0x3D, 0x23, 0};    /* "=#" */
88 static const UChar gEqualZero[] =               {0x3D, 0x30, 0};    /* "=0" */
89 static const UChar gGreaterGreaterGreater[] =   {0x3E, 0x3E, 0x3E, 0}; /* ">>>" */
90 
91 static const UChar * const tokenStrings[] = {
92     gLessLess, gLessPercent, gLessHash, gLessZero,
93     gGreaterGreater, gGreaterPercent,gGreaterHash, gGreaterZero,
94     gEqualPercent, gEqualHash, gEqualZero, NULL
95 };
96 
97 void
makeRules(UnicodeString & description,const NFRuleSet * ruleSet,const NFRule * predecessor,const RuleBasedNumberFormat * rbnf,NFRuleList & rules,UErrorCode & status)98 NFRule::makeRules(UnicodeString& description,
99                   const NFRuleSet *ruleSet,
100                   const NFRule *predecessor,
101                   const RuleBasedNumberFormat *rbnf,
102                   NFRuleList& rules,
103                   UErrorCode& status)
104 {
105     // we know we're making at least one rule, so go ahead and
106     // new it up and initialize its basevalue and divisor
107     // (this also strips the rule descriptor, if any, off the
108     // descripton string)
109     NFRule* rule1 = new NFRule(rbnf);
110     /* test for NULL */
111     if (rule1 == 0) {
112         status = U_MEMORY_ALLOCATION_ERROR;
113         return;
114     }
115     rule1->parseRuleDescriptor(description, status);
116 
117     // check the description to see whether there's text enclosed
118     // in brackets
119     int32_t brack1 = description.indexOf(gLeftBracket);
120     int32_t brack2 = description.indexOf(gRightBracket);
121 
122     // if the description doesn't contain a matched pair of brackets,
123     // or if it's of a type that doesn't recognize bracketed text,
124     // then leave the description alone, initialize the rule's
125     // rule text and substitutions, and return that rule
126     if (brack1 == -1 || brack2 == -1 || brack1 > brack2
127         || rule1->getType() == kProperFractionRule
128         || rule1->getType() == kNegativeNumberRule) {
129         rule1->extractSubstitutions(ruleSet, description, predecessor, status);
130         rules.add(rule1);
131     } else {
132         // if the description does contain a matched pair of brackets,
133         // then it's really shorthand for two rules (with one exception)
134         NFRule* rule2 = NULL;
135         UnicodeString sbuf;
136 
137         // we'll actually only split the rule into two rules if its
138         // base value is an even multiple of its divisor (or it's one
139         // of the special rules)
140         if ((rule1->baseValue > 0
141             && (rule1->baseValue % util64_pow(rule1->radix, rule1->exponent)) == 0)
142             || rule1->getType() == kImproperFractionRule
143             || rule1->getType() == kMasterRule) {
144 
145             // if it passes that test, new up the second rule.  If the
146             // rule set both rules will belong to is a fraction rule
147             // set, they both have the same base value; otherwise,
148             // increment the original rule's base value ("rule1" actually
149             // goes SECOND in the rule set's rule list)
150             rule2 = new NFRule(rbnf);
151             /* test for NULL */
152             if (rule2 == 0) {
153                 status = U_MEMORY_ALLOCATION_ERROR;
154                 return;
155             }
156             if (rule1->baseValue >= 0) {
157                 rule2->baseValue = rule1->baseValue;
158                 if (!ruleSet->isFractionRuleSet()) {
159                     ++rule1->baseValue;
160                 }
161             }
162 
163             // if the description began with "x.x" and contains bracketed
164             // text, it describes both the improper fraction rule and
165             // the proper fraction rule
166             else if (rule1->getType() == kImproperFractionRule) {
167                 rule2->setType(kProperFractionRule);
168             }
169 
170             // if the description began with "x.0" and contains bracketed
171             // text, it describes both the master rule and the
172             // improper fraction rule
173             else if (rule1->getType() == kMasterRule) {
174                 rule2->baseValue = rule1->baseValue;
175                 rule1->setType(kImproperFractionRule);
176             }
177 
178             // both rules have the same radix and exponent (i.e., the
179             // same divisor)
180             rule2->radix = rule1->radix;
181             rule2->exponent = rule1->exponent;
182 
183             // rule2's rule text omits the stuff in brackets: initalize
184             // its rule text and substitutions accordingly
185             sbuf.append(description, 0, brack1);
186             if (brack2 + 1 < description.length()) {
187                 sbuf.append(description, brack2 + 1, description.length() - brack2 - 1);
188             }
189             rule2->extractSubstitutions(ruleSet, sbuf, predecessor, status);
190         }
191 
192         // rule1's text includes the text in the brackets but omits
193         // the brackets themselves: initialize _its_ rule text and
194         // substitutions accordingly
195         sbuf.setTo(description, 0, brack1);
196         sbuf.append(description, brack1 + 1, brack2 - brack1 - 1);
197         if (brack2 + 1 < description.length()) {
198             sbuf.append(description, brack2 + 1, description.length() - brack2 - 1);
199         }
200         rule1->extractSubstitutions(ruleSet, sbuf, predecessor, status);
201 
202         // if we only have one rule, return it; if we have two, return
203         // a two-element array containing them (notice that rule2 goes
204         // BEFORE rule1 in the list: in all cases, rule2 OMITS the
205         // material in the brackets and rule1 INCLUDES the material
206         // in the brackets)
207         if (rule2 != NULL) {
208             rules.add(rule2);
209         }
210         rules.add(rule1);
211     }
212 }
213 
214 /**
215  * This function parses the rule's rule descriptor (i.e., the base
216  * value and/or other tokens that precede the rule's rule text
217  * in the description) and sets the rule's base value, radix, and
218  * exponent according to the descriptor.  (If the description doesn't
219  * include a rule descriptor, then this function sets everything to
220  * default values and the rule set sets the rule's real base value).
221  * @param description The rule's description
222  * @return If "description" included a rule descriptor, this is
223  * "description" with the descriptor and any trailing whitespace
224  * stripped off.  Otherwise; it's "descriptor" unchangd.
225  */
226 void
parseRuleDescriptor(UnicodeString & description,UErrorCode & status)227 NFRule::parseRuleDescriptor(UnicodeString& description, UErrorCode& status)
228 {
229     // the description consists of a rule descriptor and a rule body,
230     // separated by a colon.  The rule descriptor is optional.  If
231     // it's omitted, just set the base value to 0.
232     int32_t p = description.indexOf(gColon);
233     if (p == -1) {
234         setBaseValue((int32_t)0, status);
235     } else {
236         // copy the descriptor out into its own string and strip it,
237         // along with any trailing whitespace, out of the original
238         // description
239         UnicodeString descriptor;
240         descriptor.setTo(description, 0, p);
241 
242         ++p;
243         while (p < description.length() && PatternProps::isWhiteSpace(description.charAt(p))) {
244             ++p;
245         }
246         description.removeBetween(0, p);
247 
248         // check first to see if the rule descriptor matches the token
249         // for one of the special rules.  If it does, set the base
250         // value to the correct identfier value
251         if (0 == descriptor.compare(gMinusX, 2)) {
252             setType(kNegativeNumberRule);
253         }
254         else if (0 == descriptor.compare(gXDotX, 3)) {
255             setType(kImproperFractionRule);
256         }
257         else if (0 == descriptor.compare(gZeroDotX, 3)) {
258             setType(kProperFractionRule);
259         }
260         else if (0 == descriptor.compare(gXDotZero, 3)) {
261             setType(kMasterRule);
262         }
263 
264         // if the rule descriptor begins with a digit, it's a descriptor
265         // for a normal rule
266         // since we don't have Long.parseLong, and this isn't much work anyway,
267         // just build up the value as we encounter the digits.
268         else if (descriptor.charAt(0) >= gZero && descriptor.charAt(0) <= gNine) {
269             int64_t val = 0;
270             p = 0;
271             UChar c = gSpace;
272 
273             // begin parsing the descriptor: copy digits
274             // into "tempValue", skip periods, commas, and spaces,
275             // stop on a slash or > sign (or at the end of the string),
276             // and throw an exception on any other character
277             int64_t ll_10 = 10;
278             while (p < descriptor.length()) {
279                 c = descriptor.charAt(p);
280                 if (c >= gZero && c <= gNine) {
281                     val = val * ll_10 + (int32_t)(c - gZero);
282                 }
283                 else if (c == gSlash || c == gGreaterThan) {
284                     break;
285                 }
286                 else if (PatternProps::isWhiteSpace(c) || c == gComma || c == gDot) {
287                 }
288                 else {
289                     // throw new IllegalArgumentException("Illegal character in rule descriptor");
290                     status = U_PARSE_ERROR;
291                     return;
292                 }
293                 ++p;
294             }
295 
296             // we have the base value, so set it
297             setBaseValue(val, status);
298 
299             // if we stopped the previous loop on a slash, we're
300             // now parsing the rule's radix.  Again, accumulate digits
301             // in tempValue, skip punctuation, stop on a > mark, and
302             // throw an exception on anything else
303             if (c == gSlash) {
304                 val = 0;
305                 ++p;
306                 int64_t ll_10 = 10;
307                 while (p < descriptor.length()) {
308                     c = descriptor.charAt(p);
309                     if (c >= gZero && c <= gNine) {
310                         val = val * ll_10 + (int32_t)(c - gZero);
311                     }
312                     else if (c == gGreaterThan) {
313                         break;
314                     }
315                     else if (PatternProps::isWhiteSpace(c) || c == gComma || c == gDot) {
316                     }
317                     else {
318                         // throw new IllegalArgumentException("Illegal character is rule descriptor");
319                         status = U_PARSE_ERROR;
320                         return;
321                     }
322                     ++p;
323                 }
324 
325                 // tempValue now contain's the rule's radix.  Set it
326                 // accordingly, and recalculate the rule's exponent
327                 radix = (int32_t)val;
328                 if (radix == 0) {
329                     // throw new IllegalArgumentException("Rule can't have radix of 0");
330                     status = U_PARSE_ERROR;
331                 }
332 
333                 exponent = expectedExponent();
334             }
335 
336             // if we stopped the previous loop on a > sign, then continue
337             // for as long as we still see > signs.  For each one,
338             // decrement the exponent (unless the exponent is already 0).
339             // If we see another character before reaching the end of
340             // the descriptor, that's also a syntax error.
341             if (c == gGreaterThan) {
342                 while (p < descriptor.length()) {
343                     c = descriptor.charAt(p);
344                     if (c == gGreaterThan && exponent > 0) {
345                         --exponent;
346                     } else {
347                         // throw new IllegalArgumentException("Illegal character in rule descriptor");
348                         status = U_PARSE_ERROR;
349                         return;
350                     }
351                     ++p;
352                 }
353             }
354         }
355     }
356 
357     // finally, if the rule body begins with an apostrophe, strip it off
358     // (this is generally used to put whitespace at the beginning of
359     // a rule's rule text)
360     if (description.length() > 0 && description.charAt(0) == gTick) {
361         description.removeBetween(0, 1);
362     }
363 
364     // return the description with all the stuff we've just waded through
365     // stripped off the front.  It now contains just the rule body.
366     // return description;
367 }
368 
369 /**
370 * Searches the rule's rule text for the substitution tokens,
371 * creates the substitutions, and removes the substitution tokens
372 * from the rule's rule text.
373 * @param owner The rule set containing this rule
374 * @param predecessor The rule preseding this one in "owners" rule list
375 * @param ownersOwner The RuleBasedFormat that owns this rule
376 */
377 void
extractSubstitutions(const NFRuleSet * ruleSet,const UnicodeString & ruleText,const NFRule * predecessor,UErrorCode & status)378 NFRule::extractSubstitutions(const NFRuleSet* ruleSet,
379                              const UnicodeString &ruleText,
380                              const NFRule* predecessor,
381                              UErrorCode& status)
382 {
383     if (U_FAILURE(status)) {
384         return;
385     }
386     this->ruleText = ruleText;
387     this->rulePatternFormat = NULL;
388     sub1 = extractSubstitution(ruleSet, predecessor, status);
389     if (sub1 == NULL || sub1->isNullSubstitution()) {
390         // Small optimization. There is no need to create a redundant NullSubstitution.
391         sub2 = sub1;
392     }
393     else {
394         sub2 = extractSubstitution(ruleSet, predecessor, status);
395     }
396     int32_t pluralRuleStart = this->ruleText.indexOf(gDollarOpenParenthesis, -1, 0);
397     int32_t pluralRuleEnd = (pluralRuleStart >= 0 ? this->ruleText.indexOf(gClosedParenthesisDollar, -1, pluralRuleStart) : -1);
398     if (pluralRuleEnd >= 0) {
399         int32_t endType = this->ruleText.indexOf(gComma, pluralRuleStart);
400         if (endType < 0) {
401             status = U_PARSE_ERROR;
402             return;
403         }
404         UnicodeString type(this->ruleText.tempSubString(pluralRuleStart + 2, endType - pluralRuleStart - 2));
405         UPluralType pluralType;
406         if (type.startsWith(UNICODE_STRING_SIMPLE("cardinal"))) {
407             pluralType = UPLURAL_TYPE_CARDINAL;
408         }
409         else if (type.startsWith(UNICODE_STRING_SIMPLE("ordinal"))) {
410             pluralType = UPLURAL_TYPE_ORDINAL;
411         }
412         else {
413             status = U_ILLEGAL_ARGUMENT_ERROR;
414             return;
415         }
416         rulePatternFormat = formatter->createPluralFormat(pluralType,
417                 this->ruleText.tempSubString(endType + 1, pluralRuleEnd - endType - 1), status);
418     }
419 }
420 
421 /**
422 * Searches the rule's rule text for the first substitution token,
423 * creates a substitution based on it, and removes the token from
424 * the rule's rule text.
425 * @param owner The rule set containing this rule
426 * @param predecessor The rule preceding this one in the rule set's
427 * rule list
428 * @param ownersOwner The RuleBasedNumberFormat that owns this rule
429 * @return The newly-created substitution.  This is never null; if
430 * the rule text doesn't contain any substitution tokens, this will
431 * be a NullSubstitution.
432 */
433 NFSubstitution *
extractSubstitution(const NFRuleSet * ruleSet,const NFRule * predecessor,UErrorCode & status)434 NFRule::extractSubstitution(const NFRuleSet* ruleSet,
435                             const NFRule* predecessor,
436                             UErrorCode& status)
437 {
438     NFSubstitution* result = NULL;
439 
440     // search the rule's rule text for the first two characters of
441     // a substitution token
442     int32_t subStart = indexOfAny(tokenStrings);
443     int32_t subEnd = subStart;
444 
445     // if we didn't find one, create a null substitution positioned
446     // at the end of the rule text
447     if (subStart == -1) {
448         return NFSubstitution::makeSubstitution(ruleText.length(), this, predecessor,
449             ruleSet, this->formatter, UnicodeString(), status);
450     }
451 
452     // special-case the ">>>" token, since searching for the > at the
453     // end will actually find the > in the middle
454     if (ruleText.indexOf(gGreaterGreaterGreater, 3, 0) == subStart) {
455         subEnd = subStart + 2;
456 
457         // otherwise the substitution token ends with the same character
458         // it began with
459     } else {
460         UChar c = ruleText.charAt(subStart);
461         subEnd = ruleText.indexOf(c, subStart + 1);
462         // special case for '<%foo<<'
463         if (c == gLessThan && subEnd != -1 && subEnd < ruleText.length() - 1 && ruleText.charAt(subEnd+1) == c) {
464             // ordinals use "=#,##0==%abbrev=" as their rule.  Notice that the '==' in the middle
465             // occurs because of the juxtaposition of two different rules.  The check for '<' is a hack
466             // to get around this.  Having the duplicate at the front would cause problems with
467             // rules like "<<%" to format, say, percents...
468             ++subEnd;
469         }
470    }
471 
472     // if we don't find the end of the token (i.e., if we're on a single,
473     // unmatched token character), create a null substitution positioned
474     // at the end of the rule
475     if (subEnd == -1) {
476         return NFSubstitution::makeSubstitution(ruleText.length(), this, predecessor,
477             ruleSet, this->formatter, UnicodeString(), status);
478     }
479 
480     // if we get here, we have a real substitution token (or at least
481     // some text bounded by substitution token characters).  Use
482     // makeSubstitution() to create the right kind of substitution
483     UnicodeString subToken;
484     subToken.setTo(ruleText, subStart, subEnd + 1 - subStart);
485     result = NFSubstitution::makeSubstitution(subStart, this, predecessor, ruleSet,
486         this->formatter, subToken, status);
487 
488     // remove the substitution from the rule text
489     ruleText.removeBetween(subStart, subEnd+1);
490 
491     return result;
492 }
493 
494 /**
495  * Sets the rule's base value, and causes the radix and exponent
496  * to be recalculated.  This is used during construction when we
497  * don't know the rule's base value until after it's been
498  * constructed.  It should be used at any other time.
499  * @param The new base value for the rule.
500  */
501 void
setBaseValue(int64_t newBaseValue,UErrorCode & status)502 NFRule::setBaseValue(int64_t newBaseValue, UErrorCode& status)
503 {
504     // set the base value
505     baseValue = newBaseValue;
506 
507     // if this isn't a special rule, recalculate the radix and exponent
508     // (the radix always defaults to 10; if it's supposed to be something
509     // else, it's cleaned up by the caller and the exponent is
510     // recalculated again-- the only function that does this is
511     // NFRule.parseRuleDescriptor() )
512     if (baseValue >= 1) {
513         radix = 10;
514         exponent = expectedExponent();
515 
516         // this function gets called on a fully-constructed rule whose
517         // description didn't specify a base value.  This means it
518         // has substitutions, and some substitutions hold on to copies
519         // of the rule's divisor.  Fix their copies of the divisor.
520         if (sub1 != NULL) {
521             sub1->setDivisor(radix, exponent, status);
522         }
523         if (sub2 != NULL) {
524             sub2->setDivisor(radix, exponent, status);
525         }
526 
527         // if this is a special rule, its radix and exponent are basically
528         // ignored.  Set them to "safe" default values
529     } else {
530         radix = 10;
531         exponent = 0;
532     }
533 }
534 
535 /**
536 * This calculates the rule's exponent based on its radix and base
537 * value.  This will be the highest power the radix can be raised to
538 * and still produce a result less than or equal to the base value.
539 */
540 int16_t
expectedExponent() const541 NFRule::expectedExponent() const
542 {
543     // since the log of 0, or the log base 0 of something, causes an
544     // error, declare the exponent in these cases to be 0 (we also
545     // deal with the special-rule identifiers here)
546     if (radix == 0 || baseValue < 1) {
547         return 0;
548     }
549 
550     // we get rounding error in some cases-- for example, log 1000 / log 10
551     // gives us 1.9999999996 instead of 2.  The extra logic here is to take
552     // that into account
553     int16_t tempResult = (int16_t)(uprv_log((double)baseValue) / uprv_log((double)radix));
554     int64_t temp = util64_pow(radix, tempResult + 1);
555     if (temp <= baseValue) {
556         tempResult += 1;
557     }
558     return tempResult;
559 }
560 
561 /**
562  * Searches the rule's rule text for any of the specified strings.
563  * @param strings An array of strings to search the rule's rule
564  * text for
565  * @return The index of the first match in the rule's rule text
566  * (i.e., the first substring in the rule's rule text that matches
567  * _any_ of the strings in "strings").  If none of the strings in
568  * "strings" is found in the rule's rule text, returns -1.
569  */
570 int32_t
indexOfAny(const UChar * const strings[]) const571 NFRule::indexOfAny(const UChar* const strings[]) const
572 {
573     int result = -1;
574     for (int i = 0; strings[i]; i++) {
575         int32_t pos = ruleText.indexOf(*strings[i]);
576         if (pos != -1 && (result == -1 || pos < result)) {
577             result = pos;
578         }
579     }
580     return result;
581 }
582 
583 //-----------------------------------------------------------------------
584 // boilerplate
585 //-----------------------------------------------------------------------
586 
587 /**
588 * Tests two rules for equality.
589 * @param that The rule to compare this one against
590 * @return True is the two rules are functionally equivalent
591 */
592 UBool
operator ==(const NFRule & rhs) const593 NFRule::operator==(const NFRule& rhs) const
594 {
595     return baseValue == rhs.baseValue
596         && radix == rhs.radix
597         && exponent == rhs.exponent
598         && ruleText == rhs.ruleText
599         && *sub1 == *rhs.sub1
600         && *sub2 == *rhs.sub2;
601 }
602 
603 /**
604 * Returns a textual representation of the rule.  This won't
605 * necessarily be the same as the description that this rule
606 * was created with, but it will produce the same result.
607 * @return A textual description of the rule
608 */
util_append64(UnicodeString & result,int64_t n)609 static void util_append64(UnicodeString& result, int64_t n)
610 {
611     UChar buffer[256];
612     int32_t len = util64_tou(n, buffer, sizeof(buffer));
613     UnicodeString temp(buffer, len);
614     result.append(temp);
615 }
616 
617 void
_appendRuleText(UnicodeString & result) const618 NFRule::_appendRuleText(UnicodeString& result) const
619 {
620     switch (getType()) {
621     case kNegativeNumberRule: result.append(gMinusX, 2); break;
622     case kImproperFractionRule: result.append(gXDotX, 3); break;
623     case kProperFractionRule: result.append(gZeroDotX, 3); break;
624     case kMasterRule: result.append(gXDotZero, 3); break;
625     default:
626         // for a normal rule, write out its base value, and if the radix is
627         // something other than 10, write out the radix (with the preceding
628         // slash, of course).  Then calculate the expected exponent and if
629         // if isn't the same as the actual exponent, write an appropriate
630         // number of > signs.  Finally, terminate the whole thing with
631         // a colon.
632         util_append64(result, baseValue);
633         if (radix != 10) {
634             result.append(gSlash);
635             util_append64(result, radix);
636         }
637         int numCarets = expectedExponent() - exponent;
638         for (int i = 0; i < numCarets; i++) {
639             result.append(gGreaterThan);
640         }
641         break;
642     }
643     result.append(gColon);
644     result.append(gSpace);
645 
646     // if the rule text begins with a space, write an apostrophe
647     // (whitespace after the rule descriptor is ignored; the
648     // apostrophe is used to make the whitespace significant)
649     if (ruleText.charAt(0) == gSpace && sub1->getPos() != 0) {
650         result.append(gTick);
651     }
652 
653     // now, write the rule's rule text, inserting appropriate
654     // substitution tokens in the appropriate places
655     UnicodeString ruleTextCopy;
656     ruleTextCopy.setTo(ruleText);
657 
658     UnicodeString temp;
659     sub2->toString(temp);
660     ruleTextCopy.insert(sub2->getPos(), temp);
661     sub1->toString(temp);
662     ruleTextCopy.insert(sub1->getPos(), temp);
663 
664     result.append(ruleTextCopy);
665 
666     // and finally, top the whole thing off with a semicolon and
667     // return the result
668     result.append(gSemicolon);
669 }
670 
671 //-----------------------------------------------------------------------
672 // formatting
673 //-----------------------------------------------------------------------
674 
675 /**
676 * Formats the number, and inserts the resulting text into
677 * toInsertInto.
678 * @param number The number being formatted
679 * @param toInsertInto The string where the resultant text should
680 * be inserted
681 * @param pos The position in toInsertInto where the resultant text
682 * should be inserted
683 */
684 void
doFormat(int64_t number,UnicodeString & toInsertInto,int32_t pos,UErrorCode & status) const685 NFRule::doFormat(int64_t number, UnicodeString& toInsertInto, int32_t pos, UErrorCode& status) const
686 {
687     // first, insert the rule's rule text into toInsertInto at the
688     // specified position, then insert the results of the substitutions
689     // into the right places in toInsertInto (notice we do the
690     // substitutions in reverse order so that the offsets don't get
691     // messed up)
692     int32_t pluralRuleStart = ruleText.length();
693     int32_t lengthOffset = 0;
694     if (!rulePatternFormat) {
695         toInsertInto.insert(pos, ruleText);
696     }
697     else {
698         pluralRuleStart = ruleText.indexOf(gDollarOpenParenthesis, -1, 0);
699         int pluralRuleEnd = ruleText.indexOf(gClosedParenthesisDollar, -1, pluralRuleStart);
700         int initialLength = toInsertInto.length();
701         if (pluralRuleEnd < ruleText.length() - 1) {
702             toInsertInto.insert(pos, ruleText.tempSubString(pluralRuleEnd + 2));
703         }
704         toInsertInto.insert(pos,
705             rulePatternFormat->format((int32_t)(number/uprv_pow(radix, exponent)), status));
706         if (pluralRuleStart > 0) {
707             toInsertInto.insert(pos, ruleText.tempSubString(0, pluralRuleStart));
708         }
709         lengthOffset = ruleText.length() - (toInsertInto.length() - initialLength);
710     }
711 
712     if (!sub2->isNullSubstitution()) {
713         sub2->doSubstitution(number, toInsertInto, pos - (sub2->getPos() > pluralRuleStart ? lengthOffset : 0), status);
714     }
715     if (!sub1->isNullSubstitution()) {
716         sub1->doSubstitution(number, toInsertInto, pos - (sub1->getPos() > pluralRuleStart ? lengthOffset : 0), status);
717     }
718 }
719 
720 /**
721 * Formats the number, and inserts the resulting text into
722 * toInsertInto.
723 * @param number The number being formatted
724 * @param toInsertInto The string where the resultant text should
725 * be inserted
726 * @param pos The position in toInsertInto where the resultant text
727 * should be inserted
728 */
729 void
doFormat(double number,UnicodeString & toInsertInto,int32_t pos,UErrorCode & status) const730 NFRule::doFormat(double number, UnicodeString& toInsertInto, int32_t pos, UErrorCode& status) const
731 {
732     // first, insert the rule's rule text into toInsertInto at the
733     // specified position, then insert the results of the substitutions
734     // into the right places in toInsertInto
735     // [again, we have two copies of this routine that do the same thing
736     // so that we don't sacrifice precision in a long by casting it
737     // to a double]
738     int32_t pluralRuleStart = ruleText.length();
739     int32_t lengthOffset = 0;
740     if (!rulePatternFormat) {
741         toInsertInto.insert(pos, ruleText);
742     }
743     else {
744         pluralRuleStart = ruleText.indexOf(gDollarOpenParenthesis, -1, 0);
745         int pluralRuleEnd = ruleText.indexOf(gClosedParenthesisDollar, -1, pluralRuleStart);
746         int initialLength = toInsertInto.length();
747         if (pluralRuleEnd < ruleText.length() - 1) {
748             toInsertInto.insert(pos, ruleText.tempSubString(pluralRuleEnd + 2));
749         }
750         toInsertInto.insert(pos,
751             rulePatternFormat->format((int32_t)(number/uprv_pow(radix, exponent)), status));
752         if (pluralRuleStart > 0) {
753             toInsertInto.insert(pos, ruleText.tempSubString(0, pluralRuleStart));
754         }
755         lengthOffset = ruleText.length() - (toInsertInto.length() - initialLength);
756     }
757 
758     if (!sub2->isNullSubstitution()) {
759         sub2->doSubstitution(number, toInsertInto, pos - (sub2->getPos() > pluralRuleStart ? lengthOffset : 0), status);
760     }
761     if (!sub1->isNullSubstitution()) {
762         sub1->doSubstitution(number, toInsertInto, pos - (sub1->getPos() > pluralRuleStart ? lengthOffset : 0), status);
763     }
764 }
765 
766 /**
767 * Used by the owning rule set to determine whether to invoke the
768 * rollback rule (i.e., whether this rule or the one that precedes
769 * it in the rule set's list should be used to format the number)
770 * @param The number being formatted
771 * @return True if the rule set should use the rule that precedes
772 * this one in its list; false if it should use this rule
773 */
774 UBool
shouldRollBack(double number) const775 NFRule::shouldRollBack(double number) const
776 {
777     // we roll back if the rule contains a modulus substitution,
778     // the number being formatted is an even multiple of the rule's
779     // divisor, and the rule's base value is NOT an even multiple
780     // of its divisor
781     // In other words, if the original description had
782     //    100: << hundred[ >>];
783     // that expands into
784     //    100: << hundred;
785     //    101: << hundred >>;
786     // internally.  But when we're formatting 200, if we use the rule
787     // at 101, which would normally apply, we get "two hundred zero".
788     // To prevent this, we roll back and use the rule at 100 instead.
789     // This is the logic that makes this happen: the rule at 101 has
790     // a modulus substitution, its base value isn't an even multiple
791     // of 100, and the value we're trying to format _is_ an even
792     // multiple of 100.  This is called the "rollback rule."
793     if ((sub1->isModulusSubstitution()) || (sub2->isModulusSubstitution())) {
794         int64_t re = util64_pow(radix, exponent);
795         return uprv_fmod(number, (double)re) == 0 && (baseValue % re) != 0;
796     }
797     return FALSE;
798 }
799 
800 //-----------------------------------------------------------------------
801 // parsing
802 //-----------------------------------------------------------------------
803 
804 /**
805 * Attempts to parse the string with this rule.
806 * @param text The string being parsed
807 * @param parsePosition On entry, the value is ignored and assumed to
808 * be 0. On exit, this has been updated with the position of the first
809 * character not consumed by matching the text against this rule
810 * (if this rule doesn't match the text at all, the parse position
811 * if left unchanged (presumably at 0) and the function returns
812 * new Long(0)).
813 * @param isFractionRule True if this rule is contained within a
814 * fraction rule set.  This is only used if the rule has no
815 * substitutions.
816 * @return If this rule matched the text, this is the rule's base value
817 * combined appropriately with the results of parsing the substitutions.
818 * If nothing matched, this is new Long(0) and the parse position is
819 * left unchanged.  The result will be an instance of Long if the
820 * result is an integer and Double otherwise.  The result is never null.
821 */
822 #ifdef RBNF_DEBUG
823 #include <stdio.h>
824 
dumpUS(FILE * f,const UnicodeString & us)825 static void dumpUS(FILE* f, const UnicodeString& us) {
826   int len = us.length();
827   char* buf = (char *)uprv_malloc((len+1)*sizeof(char)); //new char[len+1];
828   if (buf != NULL) {
829 	  us.extract(0, len, buf);
830 	  buf[len] = 0;
831 	  fprintf(f, "%s", buf);
832 	  uprv_free(buf); //delete[] buf;
833   }
834 }
835 #endif
836 
837 UBool
doParse(const UnicodeString & text,ParsePosition & parsePosition,UBool isFractionRule,double upperBound,Formattable & resVal) const838 NFRule::doParse(const UnicodeString& text,
839                 ParsePosition& parsePosition,
840                 UBool isFractionRule,
841                 double upperBound,
842                 Formattable& resVal) const
843 {
844     // internally we operate on a copy of the string being parsed
845     // (because we're going to change it) and use our own ParsePosition
846     ParsePosition pp;
847     UnicodeString workText(text);
848 
849     // check to see whether the text before the first substitution
850     // matches the text at the beginning of the string being
851     // parsed.  If it does, strip that off the front of workText;
852     // otherwise, dump out with a mismatch
853     UnicodeString prefix;
854     prefix.setTo(ruleText, 0, sub1->getPos());
855 
856 #ifdef RBNF_DEBUG
857     fprintf(stderr, "doParse %x ", this);
858     {
859         UnicodeString rt;
860         _appendRuleText(rt);
861         dumpUS(stderr, rt);
862     }
863 
864     fprintf(stderr, " text: '", this);
865     dumpUS(stderr, text);
866     fprintf(stderr, "' prefix: '");
867     dumpUS(stderr, prefix);
868 #endif
869     stripPrefix(workText, prefix, pp);
870     int32_t prefixLength = text.length() - workText.length();
871 
872 #ifdef RBNF_DEBUG
873     fprintf(stderr, "' pl: %d ppi: %d s1p: %d\n", prefixLength, pp.getIndex(), sub1->getPos());
874 #endif
875 
876     if (pp.getIndex() == 0 && sub1->getPos() != 0) {
877         // commented out because ParsePosition doesn't have error index in 1.1.x
878         // restored for ICU4C port
879         parsePosition.setErrorIndex(pp.getErrorIndex());
880         resVal.setLong(0);
881         return TRUE;
882     }
883 
884     // this is the fun part.  The basic guts of the rule-matching
885     // logic is matchToDelimiter(), which is called twice.  The first
886     // time it searches the input string for the rule text BETWEEN
887     // the substitutions and tries to match the intervening text
888     // in the input string with the first substitution.  If that
889     // succeeds, it then calls it again, this time to look for the
890     // rule text after the second substitution and to match the
891     // intervening input text against the second substitution.
892     //
893     // For example, say we have a rule that looks like this:
894     //    first << middle >> last;
895     // and input text that looks like this:
896     //    first one middle two last
897     // First we use stripPrefix() to match "first " in both places and
898     // strip it off the front, leaving
899     //    one middle two last
900     // Then we use matchToDelimiter() to match " middle " and try to
901     // match "one" against a substitution.  If it's successful, we now
902     // have
903     //    two last
904     // We use matchToDelimiter() a second time to match " last" and
905     // try to match "two" against a substitution.  If "two" matches
906     // the substitution, we have a successful parse.
907     //
908     // Since it's possible in many cases to find multiple instances
909     // of each of these pieces of rule text in the input string,
910     // we need to try all the possible combinations of these
911     // locations.  This prevents us from prematurely declaring a mismatch,
912     // and makes sure we match as much input text as we can.
913     int highWaterMark = 0;
914     double result = 0;
915     int start = 0;
916     double tempBaseValue = (double)(baseValue <= 0 ? 0 : baseValue);
917 
918     UnicodeString temp;
919     do {
920         // our partial parse result starts out as this rule's base
921         // value.  If it finds a successful match, matchToDelimiter()
922         // will compose this in some way with what it gets back from
923         // the substitution, giving us a new partial parse result
924         pp.setIndex(0);
925 
926         temp.setTo(ruleText, sub1->getPos(), sub2->getPos() - sub1->getPos());
927         double partialResult = matchToDelimiter(workText, start, tempBaseValue,
928             temp, pp, sub1,
929             upperBound);
930 
931         // if we got a successful match (or were trying to match a
932         // null substitution), pp is now pointing at the first unmatched
933         // character.  Take note of that, and try matchToDelimiter()
934         // on the input text again
935         if (pp.getIndex() != 0 || sub1->isNullSubstitution()) {
936             start = pp.getIndex();
937 
938             UnicodeString workText2;
939             workText2.setTo(workText, pp.getIndex(), workText.length() - pp.getIndex());
940             ParsePosition pp2;
941 
942             // the second matchToDelimiter() will compose our previous
943             // partial result with whatever it gets back from its
944             // substitution if there's a successful match, giving us
945             // a real result
946             temp.setTo(ruleText, sub2->getPos(), ruleText.length() - sub2->getPos());
947             partialResult = matchToDelimiter(workText2, 0, partialResult,
948                 temp, pp2, sub2,
949                 upperBound);
950 
951             // if we got a successful match on this second
952             // matchToDelimiter() call, update the high-water mark
953             // and result (if necessary)
954             if (pp2.getIndex() != 0 || sub2->isNullSubstitution()) {
955                 if (prefixLength + pp.getIndex() + pp2.getIndex() > highWaterMark) {
956                     highWaterMark = prefixLength + pp.getIndex() + pp2.getIndex();
957                     result = partialResult;
958                 }
959             }
960             // commented out because ParsePosition doesn't have error index in 1.1.x
961             // restored for ICU4C port
962             else {
963                 int32_t temp = pp2.getErrorIndex() + sub1->getPos() + pp.getIndex();
964                 if (temp> parsePosition.getErrorIndex()) {
965                     parsePosition.setErrorIndex(temp);
966                 }
967             }
968         }
969         // commented out because ParsePosition doesn't have error index in 1.1.x
970         // restored for ICU4C port
971         else {
972             int32_t temp = sub1->getPos() + pp.getErrorIndex();
973             if (temp > parsePosition.getErrorIndex()) {
974                 parsePosition.setErrorIndex(temp);
975             }
976         }
977         // keep trying to match things until the outer matchToDelimiter()
978         // call fails to make a match (each time, it picks up where it
979         // left off the previous time)
980     } while (sub1->getPos() != sub2->getPos()
981         && pp.getIndex() > 0
982         && pp.getIndex() < workText.length()
983         && pp.getIndex() != start);
984 
985     // update the caller's ParsePosition with our high-water mark
986     // (i.e., it now points at the first character this function
987     // didn't match-- the ParsePosition is therefore unchanged if
988     // we didn't match anything)
989     parsePosition.setIndex(highWaterMark);
990     // commented out because ParsePosition doesn't have error index in 1.1.x
991     // restored for ICU4C port
992     if (highWaterMark > 0) {
993         parsePosition.setErrorIndex(0);
994     }
995 
996     // this is a hack for one unusual condition: Normally, whether this
997     // rule belong to a fraction rule set or not is handled by its
998     // substitutions.  But if that rule HAS NO substitutions, then
999     // we have to account for it here.  By definition, if the matching
1000     // rule in a fraction rule set has no substitutions, its numerator
1001     // is 1, and so the result is the reciprocal of its base value.
1002     if (isFractionRule &&
1003         highWaterMark > 0 &&
1004         sub1->isNullSubstitution()) {
1005         result = 1 / result;
1006     }
1007 
1008     resVal.setDouble(result);
1009     return TRUE; // ??? do we need to worry if it is a long or a double?
1010 }
1011 
1012 /**
1013 * This function is used by parse() to match the text being parsed
1014 * against a possible prefix string.  This function
1015 * matches characters from the beginning of the string being parsed
1016 * to characters from the prospective prefix.  If they match, pp is
1017 * updated to the first character not matched, and the result is
1018 * the unparsed part of the string.  If they don't match, the whole
1019 * string is returned, and pp is left unchanged.
1020 * @param text The string being parsed
1021 * @param prefix The text to match against
1022 * @param pp On entry, ignored and assumed to be 0.  On exit, points
1023 * to the first unmatched character (assuming the whole prefix matched),
1024 * or is unchanged (if the whole prefix didn't match).
1025 * @return If things match, this is the unparsed part of "text";
1026 * if they didn't match, this is "text".
1027 */
1028 void
stripPrefix(UnicodeString & text,const UnicodeString & prefix,ParsePosition & pp) const1029 NFRule::stripPrefix(UnicodeString& text, const UnicodeString& prefix, ParsePosition& pp) const
1030 {
1031     // if the prefix text is empty, dump out without doing anything
1032     if (prefix.length() != 0) {
1033     	UErrorCode status = U_ZERO_ERROR;
1034         // use prefixLength() to match the beginning of
1035         // "text" against "prefix".  This function returns the
1036         // number of characters from "text" that matched (or 0 if
1037         // we didn't match the whole prefix)
1038         int32_t pfl = prefixLength(text, prefix, status);
1039         if (U_FAILURE(status)) { // Memory allocation error.
1040         	return;
1041         }
1042         if (pfl != 0) {
1043             // if we got a successful match, update the parse position
1044             // and strip the prefix off of "text"
1045             pp.setIndex(pp.getIndex() + pfl);
1046             text.remove(0, pfl);
1047         }
1048     }
1049 }
1050 
1051 /**
1052 * Used by parse() to match a substitution and any following text.
1053 * "text" is searched for instances of "delimiter".  For each instance
1054 * of delimiter, the intervening text is tested to see whether it
1055 * matches the substitution.  The longest match wins.
1056 * @param text The string being parsed
1057 * @param startPos The position in "text" where we should start looking
1058 * for "delimiter".
1059 * @param baseValue A partial parse result (often the rule's base value),
1060 * which is combined with the result from matching the substitution
1061 * @param delimiter The string to search "text" for.
1062 * @param pp Ignored and presumed to be 0 on entry.  If there's a match,
1063 * on exit this will point to the first unmatched character.
1064 * @param sub If we find "delimiter" in "text", this substitution is used
1065 * to match the text between the beginning of the string and the
1066 * position of "delimiter."  (If "delimiter" is the empty string, then
1067 * this function just matches against this substitution and updates
1068 * everything accordingly.)
1069 * @param upperBound When matching the substitution, it will only
1070 * consider rules with base values lower than this value.
1071 * @return If there's a match, this is the result of composing
1072 * baseValue with the result of matching the substitution.  Otherwise,
1073 * this is new Long(0).  It's never null.  If the result is an integer,
1074 * this will be an instance of Long; otherwise, it's an instance of
1075 * Double.
1076 *
1077 * !!! note {dlf} in point of fact, in the java code the caller always converts
1078 * the result to a double, so we might as well return one.
1079 */
1080 double
matchToDelimiter(const UnicodeString & text,int32_t startPos,double _baseValue,const UnicodeString & delimiter,ParsePosition & pp,const NFSubstitution * sub,double upperBound) const1081 NFRule::matchToDelimiter(const UnicodeString& text,
1082                          int32_t startPos,
1083                          double _baseValue,
1084                          const UnicodeString& delimiter,
1085                          ParsePosition& pp,
1086                          const NFSubstitution* sub,
1087                          double upperBound) const
1088 {
1089 	UErrorCode status = U_ZERO_ERROR;
1090     // if "delimiter" contains real (i.e., non-ignorable) text, search
1091     // it for "delimiter" beginning at "start".  If that succeeds, then
1092     // use "sub"'s doParse() method to match the text before the
1093     // instance of "delimiter" we just found.
1094     if (!allIgnorable(delimiter, status)) {
1095     	if (U_FAILURE(status)) { //Memory allocation error.
1096     		return 0;
1097     	}
1098         ParsePosition tempPP;
1099         Formattable result;
1100 
1101         // use findText() to search for "delimiter".  It returns a two-
1102         // element array: element 0 is the position of the match, and
1103         // element 1 is the number of characters that matched
1104         // "delimiter".
1105         int32_t dLen;
1106         int32_t dPos = findText(text, delimiter, startPos, &dLen);
1107 
1108         // if findText() succeeded, isolate the text preceding the
1109         // match, and use "sub" to match that text
1110         while (dPos >= 0) {
1111             UnicodeString subText;
1112             subText.setTo(text, 0, dPos);
1113             if (subText.length() > 0) {
1114                 UBool success = sub->doParse(subText, tempPP, _baseValue, upperBound,
1115 #if UCONFIG_NO_COLLATION
1116                     FALSE,
1117 #else
1118                     formatter->isLenient(),
1119 #endif
1120                     result);
1121 
1122                 // if the substitution could match all the text up to
1123                 // where we found "delimiter", then this function has
1124                 // a successful match.  Bump the caller's parse position
1125                 // to point to the first character after the text
1126                 // that matches "delimiter", and return the result
1127                 // we got from parsing the substitution.
1128                 if (success && tempPP.getIndex() == dPos) {
1129                     pp.setIndex(dPos + dLen);
1130                     return result.getDouble();
1131                 }
1132                 // commented out because ParsePosition doesn't have error index in 1.1.x
1133                 // restored for ICU4C port
1134                 else {
1135                     if (tempPP.getErrorIndex() > 0) {
1136                         pp.setErrorIndex(tempPP.getErrorIndex());
1137                     } else {
1138                         pp.setErrorIndex(tempPP.getIndex());
1139                     }
1140                 }
1141             }
1142 
1143             // if we didn't match the substitution, search for another
1144             // copy of "delimiter" in "text" and repeat the loop if
1145             // we find it
1146             tempPP.setIndex(0);
1147             dPos = findText(text, delimiter, dPos + dLen, &dLen);
1148         }
1149         // if we make it here, this was an unsuccessful match, and we
1150         // leave pp unchanged and return 0
1151         pp.setIndex(0);
1152         return 0;
1153 
1154         // if "delimiter" is empty, or consists only of ignorable characters
1155         // (i.e., is semantically empty), thwe we obviously can't search
1156         // for "delimiter".  Instead, just use "sub" to parse as much of
1157         // "text" as possible.
1158     } else {
1159         ParsePosition tempPP;
1160         Formattable result;
1161 
1162         // try to match the whole string against the substitution
1163         UBool success = sub->doParse(text, tempPP, _baseValue, upperBound,
1164 #if UCONFIG_NO_COLLATION
1165             FALSE,
1166 #else
1167             formatter->isLenient(),
1168 #endif
1169             result);
1170         if (success && (tempPP.getIndex() != 0 || sub->isNullSubstitution())) {
1171             // if there's a successful match (or it's a null
1172             // substitution), update pp to point to the first
1173             // character we didn't match, and pass the result from
1174             // sub.doParse() on through to the caller
1175             pp.setIndex(tempPP.getIndex());
1176             return result.getDouble();
1177         }
1178         // commented out because ParsePosition doesn't have error index in 1.1.x
1179         // restored for ICU4C port
1180         else {
1181             pp.setErrorIndex(tempPP.getErrorIndex());
1182         }
1183 
1184         // and if we get to here, then nothing matched, so we return
1185         // 0 and leave pp alone
1186         return 0;
1187     }
1188 }
1189 
1190 /**
1191 * Used by stripPrefix() to match characters.  If lenient parse mode
1192 * is off, this just calls startsWith().  If lenient parse mode is on,
1193 * this function uses CollationElementIterators to match characters in
1194 * the strings (only primary-order differences are significant in
1195 * determining whether there's a match).
1196 * @param str The string being tested
1197 * @param prefix The text we're hoping to see at the beginning
1198 * of "str"
1199 * @return If "prefix" is found at the beginning of "str", this
1200 * is the number of characters in "str" that were matched (this
1201 * isn't necessarily the same as the length of "prefix" when matching
1202 * text with a collator).  If there's no match, this is 0.
1203 */
1204 int32_t
prefixLength(const UnicodeString & str,const UnicodeString & prefix,UErrorCode & status) const1205 NFRule::prefixLength(const UnicodeString& str, const UnicodeString& prefix, UErrorCode& status) const
1206 {
1207     // if we're looking for an empty prefix, it obviously matches
1208     // zero characters.  Just go ahead and return 0.
1209     if (prefix.length() == 0) {
1210         return 0;
1211     }
1212 
1213 #if !UCONFIG_NO_COLLATION
1214     // go through all this grief if we're in lenient-parse mode
1215     if (formatter->isLenient()) {
1216         // get the formatter's collator and use it to create two
1217         // collation element iterators, one over the target string
1218         // and another over the prefix (right now, we'll throw an
1219         // exception if the collator we get back from the formatter
1220         // isn't a RuleBasedCollator, because RuleBasedCollator defines
1221         // the CollationElementIterator protocol.  Hopefully, this
1222         // will change someday.)
1223         const RuleBasedCollator* collator = formatter->getCollator();
1224         if (collator == NULL) {
1225             status = U_MEMORY_ALLOCATION_ERROR;
1226             return 0;
1227         }
1228         LocalPointer<CollationElementIterator> strIter(collator->createCollationElementIterator(str));
1229         LocalPointer<CollationElementIterator> prefixIter(collator->createCollationElementIterator(prefix));
1230         // Check for memory allocation error.
1231         if (strIter.isNull() || prefixIter.isNull()) {
1232             status = U_MEMORY_ALLOCATION_ERROR;
1233             return 0;
1234         }
1235 
1236         UErrorCode err = U_ZERO_ERROR;
1237 
1238         // The original code was problematic.  Consider this match:
1239         // prefix = "fifty-"
1240         // string = " fifty-7"
1241         // The intent is to match string up to the '7', by matching 'fifty-' at position 1
1242         // in the string.  Unfortunately, we were getting a match, and then computing where
1243         // the match terminated by rematching the string.  The rematch code was using as an
1244         // initial guess the substring of string between 0 and prefix.length.  Because of
1245         // the leading space and trailing hyphen (both ignorable) this was succeeding, leaving
1246         // the position before the hyphen in the string.  Recursing down, we then parsed the
1247         // remaining string '-7' as numeric.  The resulting number turned out as 43 (50 - 7).
1248         // This was not pretty, especially since the string "fifty-7" parsed just fine.
1249         //
1250         // We have newer APIs now, so we can use calls on the iterator to determine what we
1251         // matched up to.  If we terminate because we hit the last element in the string,
1252         // our match terminates at this length.  If we terminate because we hit the last element
1253         // in the target, our match terminates at one before the element iterator position.
1254 
1255         // match collation elements between the strings
1256         int32_t oStr = strIter->next(err);
1257         int32_t oPrefix = prefixIter->next(err);
1258 
1259         while (oPrefix != CollationElementIterator::NULLORDER) {
1260             // skip over ignorable characters in the target string
1261             while (CollationElementIterator::primaryOrder(oStr) == 0
1262                 && oStr != CollationElementIterator::NULLORDER) {
1263                 oStr = strIter->next(err);
1264             }
1265 
1266             // skip over ignorable characters in the prefix
1267             while (CollationElementIterator::primaryOrder(oPrefix) == 0
1268                 && oPrefix != CollationElementIterator::NULLORDER) {
1269                 oPrefix = prefixIter->next(err);
1270             }
1271 
1272             // dlf: move this above following test, if we consume the
1273             // entire target, aren't we ok even if the source was also
1274             // entirely consumed?
1275 
1276             // if skipping over ignorables brought to the end of
1277             // the prefix, we DID match: drop out of the loop
1278             if (oPrefix == CollationElementIterator::NULLORDER) {
1279                 break;
1280             }
1281 
1282             // if skipping over ignorables brought us to the end
1283             // of the target string, we didn't match and return 0
1284             if (oStr == CollationElementIterator::NULLORDER) {
1285                 return 0;
1286             }
1287 
1288             // match collation elements from the two strings
1289             // (considering only primary differences).  If we
1290             // get a mismatch, dump out and return 0
1291             if (CollationElementIterator::primaryOrder(oStr)
1292                 != CollationElementIterator::primaryOrder(oPrefix)) {
1293                 return 0;
1294 
1295                 // otherwise, advance to the next character in each string
1296                 // and loop (we drop out of the loop when we exhaust
1297                 // collation elements in the prefix)
1298             } else {
1299                 oStr = strIter->next(err);
1300                 oPrefix = prefixIter->next(err);
1301             }
1302         }
1303 
1304         int32_t result = strIter->getOffset();
1305         if (oStr != CollationElementIterator::NULLORDER) {
1306             --result; // back over character that we don't want to consume;
1307         }
1308 
1309 #ifdef RBNF_DEBUG
1310         fprintf(stderr, "prefix length: %d\n", result);
1311 #endif
1312         return result;
1313 #if 0
1314         //----------------------------------------------------------------
1315         // JDK 1.2-specific API call
1316         // return strIter.getOffset();
1317         //----------------------------------------------------------------
1318         // JDK 1.1 HACK (take out for 1.2-specific code)
1319 
1320         // if we make it to here, we have a successful match.  Now we
1321         // have to find out HOW MANY characters from the target string
1322         // matched the prefix (there isn't necessarily a one-to-one
1323         // mapping between collation elements and characters).
1324         // In JDK 1.2, there's a simple getOffset() call we can use.
1325         // In JDK 1.1, on the other hand, we have to go through some
1326         // ugly contortions.  First, use the collator to compare the
1327         // same number of characters from the prefix and target string.
1328         // If they're equal, we're done.
1329         collator->setStrength(Collator::PRIMARY);
1330         if (str.length() >= prefix.length()) {
1331             UnicodeString temp;
1332             temp.setTo(str, 0, prefix.length());
1333             if (collator->equals(temp, prefix)) {
1334 #ifdef RBNF_DEBUG
1335                 fprintf(stderr, "returning: %d\n", prefix.length());
1336 #endif
1337                 return prefix.length();
1338             }
1339         }
1340 
1341         // if they're not equal, then we have to compare successively
1342         // larger and larger substrings of the target string until we
1343         // get to one that matches the prefix.  At that point, we know
1344         // how many characters matched the prefix, and we can return.
1345         int32_t p = 1;
1346         while (p <= str.length()) {
1347             UnicodeString temp;
1348             temp.setTo(str, 0, p);
1349             if (collator->equals(temp, prefix)) {
1350                 return p;
1351             } else {
1352                 ++p;
1353             }
1354         }
1355 
1356         // SHOULD NEVER GET HERE!!!
1357         return 0;
1358         //----------------------------------------------------------------
1359 #endif
1360 
1361         // If lenient parsing is turned off, forget all that crap above.
1362         // Just use String.startsWith() and be done with it.
1363   } else
1364 #endif
1365   {
1366       if (str.startsWith(prefix)) {
1367           return prefix.length();
1368       } else {
1369           return 0;
1370       }
1371   }
1372 }
1373 
1374 /**
1375 * Searches a string for another string.  If lenient parsing is off,
1376 * this just calls indexOf().  If lenient parsing is on, this function
1377 * uses CollationElementIterator to match characters, and only
1378 * primary-order differences are significant in determining whether
1379 * there's a match.
1380 * @param str The string to search
1381 * @param key The string to search "str" for
1382 * @param startingAt The index into "str" where the search is to
1383 * begin
1384 * @return A two-element array of ints.  Element 0 is the position
1385 * of the match, or -1 if there was no match.  Element 1 is the
1386 * number of characters in "str" that matched (which isn't necessarily
1387 * the same as the length of "key")
1388 */
1389 int32_t
findText(const UnicodeString & str,const UnicodeString & key,int32_t startingAt,int32_t * length) const1390 NFRule::findText(const UnicodeString& str,
1391                  const UnicodeString& key,
1392                  int32_t startingAt,
1393                  int32_t* length) const
1394 {
1395     if (rulePatternFormat) {
1396         Formattable result;
1397         FieldPosition position(UNUM_INTEGER_FIELD);
1398         position.setBeginIndex(startingAt);
1399         rulePatternFormat->parseType(str, this, result, position);
1400         int start = position.getBeginIndex();
1401         if (start >= 0) {
1402             int32_t pluralRuleStart = ruleText.indexOf(gDollarOpenParenthesis, -1, 0);
1403             int32_t pluralRuleSuffix = ruleText.indexOf(gClosedParenthesisDollar, -1, pluralRuleStart) + 2;
1404             int32_t matchLen = position.getEndIndex() - start;
1405             UnicodeString prefix(ruleText.tempSubString(0, pluralRuleStart));
1406             UnicodeString suffix(ruleText.tempSubString(pluralRuleSuffix));
1407             if (str.compare(start - prefix.length(), prefix.length(), prefix, 0, prefix.length()) == 0
1408                     && str.compare(start + matchLen, suffix.length(), suffix, 0, suffix.length()) == 0)
1409             {
1410                 *length = matchLen + prefix.length() + suffix.length();
1411                 return start - prefix.length();
1412             }
1413         }
1414         *length = 0;
1415         return -1;
1416     }
1417     if (!formatter->isLenient()) {
1418         // if lenient parsing is turned off, this is easy: just call
1419         // String.indexOf() and we're done
1420         *length = key.length();
1421         return str.indexOf(key, startingAt);
1422     }
1423     else {
1424         // but if lenient parsing is turned ON, we've got some work
1425         // ahead of us
1426         return findTextLenient(str, key, startingAt, length);
1427     }
1428 }
1429 
1430 int32_t
findTextLenient(const UnicodeString & str,const UnicodeString & key,int32_t startingAt,int32_t * length) const1431 NFRule::findTextLenient(const UnicodeString& str,
1432                  const UnicodeString& key,
1433                  int32_t startingAt,
1434                  int32_t* length) const
1435 {
1436     //----------------------------------------------------------------
1437     // JDK 1.1 HACK (take out of 1.2-specific code)
1438 
1439     // in JDK 1.2, CollationElementIterator provides us with an
1440     // API to map between character offsets and collation elements
1441     // and we can do this by marching through the string comparing
1442     // collation elements.  We can't do that in JDK 1.1.  Insted,
1443     // we have to go through this horrible slow mess:
1444     int32_t p = startingAt;
1445     int32_t keyLen = 0;
1446 
1447     // basically just isolate smaller and smaller substrings of
1448     // the target string (each running to the end of the string,
1449     // and with the first one running from startingAt to the end)
1450     // and then use prefixLength() to see if the search key is at
1451     // the beginning of each substring.  This is excruciatingly
1452     // slow, but it will locate the key and tell use how long the
1453     // matching text was.
1454     UnicodeString temp;
1455     UErrorCode status = U_ZERO_ERROR;
1456     while (p < str.length() && keyLen == 0) {
1457         temp.setTo(str, p, str.length() - p);
1458         keyLen = prefixLength(temp, key, status);
1459         if (U_FAILURE(status)) {
1460             break;
1461         }
1462         if (keyLen != 0) {
1463             *length = keyLen;
1464             return p;
1465         }
1466         ++p;
1467     }
1468     // if we make it to here, we didn't find it.  Return -1 for the
1469     // location.  The length should be ignored, but set it to 0,
1470     // which should be "safe"
1471     *length = 0;
1472     return -1;
1473 }
1474 
1475 /**
1476 * Checks to see whether a string consists entirely of ignorable
1477 * characters.
1478 * @param str The string to test.
1479 * @return true if the string is empty of consists entirely of
1480 * characters that the number formatter's collator says are
1481 * ignorable at the primary-order level.  false otherwise.
1482 */
1483 UBool
allIgnorable(const UnicodeString & str,UErrorCode & status) const1484 NFRule::allIgnorable(const UnicodeString& str, UErrorCode& status) const
1485 {
1486     // if the string is empty, we can just return true
1487     if (str.length() == 0) {
1488         return TRUE;
1489     }
1490 
1491 #if !UCONFIG_NO_COLLATION
1492     // if lenient parsing is turned on, walk through the string with
1493     // a collation element iterator and make sure each collation
1494     // element is 0 (ignorable) at the primary level
1495     if (formatter->isLenient()) {
1496         const RuleBasedCollator* collator = formatter->getCollator();
1497         if (collator == NULL) {
1498             status = U_MEMORY_ALLOCATION_ERROR;
1499             return FALSE;
1500         }
1501         LocalPointer<CollationElementIterator> iter(collator->createCollationElementIterator(str));
1502 
1503         // Memory allocation error check.
1504         if (iter.isNull()) {
1505             status = U_MEMORY_ALLOCATION_ERROR;
1506             return FALSE;
1507         }
1508 
1509         UErrorCode err = U_ZERO_ERROR;
1510         int32_t o = iter->next(err);
1511         while (o != CollationElementIterator::NULLORDER
1512             && CollationElementIterator::primaryOrder(o) == 0) {
1513             o = iter->next(err);
1514         }
1515 
1516         return o == CollationElementIterator::NULLORDER;
1517     }
1518 #endif
1519 
1520     // if lenient parsing is turned off, there is no such thing as
1521     // an ignorable character: return true only if the string is empty
1522     return FALSE;
1523 }
1524 
1525 U_NAMESPACE_END
1526 
1527 /* U_HAVE_RBNF */
1528 #endif
1529