1 /*
2 ******************************************************************************
3 * Copyright (C) 1997-2014, International Business Machines
4 * Corporation and others. All Rights Reserved.
5 ******************************************************************************
6 * file name: nfrule.cpp
7 * encoding: US-ASCII
8 * tab size: 8 (not used)
9 * indentation:4
10 *
11 * Modification history
12 * Date Name Comments
13 * 10/11/2001 Doug Ported from ICU4J
14 */
15
16 #include "nfrule.h"
17
18 #if U_HAVE_RBNF
19
20 #include "unicode/localpointer.h"
21 #include "unicode/rbnf.h"
22 #include "unicode/tblcoll.h"
23 #include "unicode/plurfmt.h"
24 #include "unicode/upluralrules.h"
25 #include "unicode/coleitr.h"
26 #include "unicode/uchar.h"
27 #include "nfrs.h"
28 #include "nfrlist.h"
29 #include "nfsubs.h"
30 #include "patternprops.h"
31
32 U_NAMESPACE_BEGIN
33
NFRule(const RuleBasedNumberFormat * _rbnf)34 NFRule::NFRule(const RuleBasedNumberFormat* _rbnf)
35 : baseValue((int32_t)0)
36 , radix(0)
37 , exponent(0)
38 , ruleText()
39 , sub1(NULL)
40 , sub2(NULL)
41 , formatter(_rbnf)
42 , rulePatternFormat(NULL)
43 {
44 }
45
~NFRule()46 NFRule::~NFRule()
47 {
48 if (sub1 != sub2) {
49 delete sub2;
50 }
51 delete sub1;
52 delete rulePatternFormat;
53 }
54
55 static const UChar gLeftBracket = 0x005b;
56 static const UChar gRightBracket = 0x005d;
57 static const UChar gColon = 0x003a;
58 static const UChar gZero = 0x0030;
59 static const UChar gNine = 0x0039;
60 static const UChar gSpace = 0x0020;
61 static const UChar gSlash = 0x002f;
62 static const UChar gGreaterThan = 0x003e;
63 static const UChar gLessThan = 0x003c;
64 static const UChar gComma = 0x002c;
65 static const UChar gDot = 0x002e;
66 static const UChar gTick = 0x0027;
67 //static const UChar gMinus = 0x002d;
68 static const UChar gSemicolon = 0x003b;
69
70 static const UChar gMinusX[] = {0x2D, 0x78, 0}; /* "-x" */
71 static const UChar gXDotX[] = {0x78, 0x2E, 0x78, 0}; /* "x.x" */
72 static const UChar gXDotZero[] = {0x78, 0x2E, 0x30, 0}; /* "x.0" */
73 static const UChar gZeroDotX[] = {0x30, 0x2E, 0x78, 0}; /* "0.x" */
74
75 static const UChar gDollarOpenParenthesis[] = {0x24, 0x28, 0}; /* "$(" */
76 static const UChar gClosedParenthesisDollar[] = {0x29, 0x24, 0}; /* ")$" */
77
78 static const UChar gLessLess[] = {0x3C, 0x3C, 0}; /* "<<" */
79 static const UChar gLessPercent[] = {0x3C, 0x25, 0}; /* "<%" */
80 static const UChar gLessHash[] = {0x3C, 0x23, 0}; /* "<#" */
81 static const UChar gLessZero[] = {0x3C, 0x30, 0}; /* "<0" */
82 static const UChar gGreaterGreater[] = {0x3E, 0x3E, 0}; /* ">>" */
83 static const UChar gGreaterPercent[] = {0x3E, 0x25, 0}; /* ">%" */
84 static const UChar gGreaterHash[] = {0x3E, 0x23, 0}; /* ">#" */
85 static const UChar gGreaterZero[] = {0x3E, 0x30, 0}; /* ">0" */
86 static const UChar gEqualPercent[] = {0x3D, 0x25, 0}; /* "=%" */
87 static const UChar gEqualHash[] = {0x3D, 0x23, 0}; /* "=#" */
88 static const UChar gEqualZero[] = {0x3D, 0x30, 0}; /* "=0" */
89 static const UChar gGreaterGreaterGreater[] = {0x3E, 0x3E, 0x3E, 0}; /* ">>>" */
90
91 static const UChar * const tokenStrings[] = {
92 gLessLess, gLessPercent, gLessHash, gLessZero,
93 gGreaterGreater, gGreaterPercent,gGreaterHash, gGreaterZero,
94 gEqualPercent, gEqualHash, gEqualZero, NULL
95 };
96
97 void
makeRules(UnicodeString & description,const NFRuleSet * ruleSet,const NFRule * predecessor,const RuleBasedNumberFormat * rbnf,NFRuleList & rules,UErrorCode & status)98 NFRule::makeRules(UnicodeString& description,
99 const NFRuleSet *ruleSet,
100 const NFRule *predecessor,
101 const RuleBasedNumberFormat *rbnf,
102 NFRuleList& rules,
103 UErrorCode& status)
104 {
105 // we know we're making at least one rule, so go ahead and
106 // new it up and initialize its basevalue and divisor
107 // (this also strips the rule descriptor, if any, off the
108 // descripton string)
109 NFRule* rule1 = new NFRule(rbnf);
110 /* test for NULL */
111 if (rule1 == 0) {
112 status = U_MEMORY_ALLOCATION_ERROR;
113 return;
114 }
115 rule1->parseRuleDescriptor(description, status);
116
117 // check the description to see whether there's text enclosed
118 // in brackets
119 int32_t brack1 = description.indexOf(gLeftBracket);
120 int32_t brack2 = description.indexOf(gRightBracket);
121
122 // if the description doesn't contain a matched pair of brackets,
123 // or if it's of a type that doesn't recognize bracketed text,
124 // then leave the description alone, initialize the rule's
125 // rule text and substitutions, and return that rule
126 if (brack1 == -1 || brack2 == -1 || brack1 > brack2
127 || rule1->getType() == kProperFractionRule
128 || rule1->getType() == kNegativeNumberRule) {
129 rule1->extractSubstitutions(ruleSet, description, predecessor, status);
130 rules.add(rule1);
131 } else {
132 // if the description does contain a matched pair of brackets,
133 // then it's really shorthand for two rules (with one exception)
134 NFRule* rule2 = NULL;
135 UnicodeString sbuf;
136
137 // we'll actually only split the rule into two rules if its
138 // base value is an even multiple of its divisor (or it's one
139 // of the special rules)
140 if ((rule1->baseValue > 0
141 && (rule1->baseValue % util64_pow(rule1->radix, rule1->exponent)) == 0)
142 || rule1->getType() == kImproperFractionRule
143 || rule1->getType() == kMasterRule) {
144
145 // if it passes that test, new up the second rule. If the
146 // rule set both rules will belong to is a fraction rule
147 // set, they both have the same base value; otherwise,
148 // increment the original rule's base value ("rule1" actually
149 // goes SECOND in the rule set's rule list)
150 rule2 = new NFRule(rbnf);
151 /* test for NULL */
152 if (rule2 == 0) {
153 status = U_MEMORY_ALLOCATION_ERROR;
154 return;
155 }
156 if (rule1->baseValue >= 0) {
157 rule2->baseValue = rule1->baseValue;
158 if (!ruleSet->isFractionRuleSet()) {
159 ++rule1->baseValue;
160 }
161 }
162
163 // if the description began with "x.x" and contains bracketed
164 // text, it describes both the improper fraction rule and
165 // the proper fraction rule
166 else if (rule1->getType() == kImproperFractionRule) {
167 rule2->setType(kProperFractionRule);
168 }
169
170 // if the description began with "x.0" and contains bracketed
171 // text, it describes both the master rule and the
172 // improper fraction rule
173 else if (rule1->getType() == kMasterRule) {
174 rule2->baseValue = rule1->baseValue;
175 rule1->setType(kImproperFractionRule);
176 }
177
178 // both rules have the same radix and exponent (i.e., the
179 // same divisor)
180 rule2->radix = rule1->radix;
181 rule2->exponent = rule1->exponent;
182
183 // rule2's rule text omits the stuff in brackets: initalize
184 // its rule text and substitutions accordingly
185 sbuf.append(description, 0, brack1);
186 if (brack2 + 1 < description.length()) {
187 sbuf.append(description, brack2 + 1, description.length() - brack2 - 1);
188 }
189 rule2->extractSubstitutions(ruleSet, sbuf, predecessor, status);
190 }
191
192 // rule1's text includes the text in the brackets but omits
193 // the brackets themselves: initialize _its_ rule text and
194 // substitutions accordingly
195 sbuf.setTo(description, 0, brack1);
196 sbuf.append(description, brack1 + 1, brack2 - brack1 - 1);
197 if (brack2 + 1 < description.length()) {
198 sbuf.append(description, brack2 + 1, description.length() - brack2 - 1);
199 }
200 rule1->extractSubstitutions(ruleSet, sbuf, predecessor, status);
201
202 // if we only have one rule, return it; if we have two, return
203 // a two-element array containing them (notice that rule2 goes
204 // BEFORE rule1 in the list: in all cases, rule2 OMITS the
205 // material in the brackets and rule1 INCLUDES the material
206 // in the brackets)
207 if (rule2 != NULL) {
208 rules.add(rule2);
209 }
210 rules.add(rule1);
211 }
212 }
213
214 /**
215 * This function parses the rule's rule descriptor (i.e., the base
216 * value and/or other tokens that precede the rule's rule text
217 * in the description) and sets the rule's base value, radix, and
218 * exponent according to the descriptor. (If the description doesn't
219 * include a rule descriptor, then this function sets everything to
220 * default values and the rule set sets the rule's real base value).
221 * @param description The rule's description
222 * @return If "description" included a rule descriptor, this is
223 * "description" with the descriptor and any trailing whitespace
224 * stripped off. Otherwise; it's "descriptor" unchangd.
225 */
226 void
parseRuleDescriptor(UnicodeString & description,UErrorCode & status)227 NFRule::parseRuleDescriptor(UnicodeString& description, UErrorCode& status)
228 {
229 // the description consists of a rule descriptor and a rule body,
230 // separated by a colon. The rule descriptor is optional. If
231 // it's omitted, just set the base value to 0.
232 int32_t p = description.indexOf(gColon);
233 if (p == -1) {
234 setBaseValue((int32_t)0, status);
235 } else {
236 // copy the descriptor out into its own string and strip it,
237 // along with any trailing whitespace, out of the original
238 // description
239 UnicodeString descriptor;
240 descriptor.setTo(description, 0, p);
241
242 ++p;
243 while (p < description.length() && PatternProps::isWhiteSpace(description.charAt(p))) {
244 ++p;
245 }
246 description.removeBetween(0, p);
247
248 // check first to see if the rule descriptor matches the token
249 // for one of the special rules. If it does, set the base
250 // value to the correct identfier value
251 if (0 == descriptor.compare(gMinusX, 2)) {
252 setType(kNegativeNumberRule);
253 }
254 else if (0 == descriptor.compare(gXDotX, 3)) {
255 setType(kImproperFractionRule);
256 }
257 else if (0 == descriptor.compare(gZeroDotX, 3)) {
258 setType(kProperFractionRule);
259 }
260 else if (0 == descriptor.compare(gXDotZero, 3)) {
261 setType(kMasterRule);
262 }
263
264 // if the rule descriptor begins with a digit, it's a descriptor
265 // for a normal rule
266 // since we don't have Long.parseLong, and this isn't much work anyway,
267 // just build up the value as we encounter the digits.
268 else if (descriptor.charAt(0) >= gZero && descriptor.charAt(0) <= gNine) {
269 int64_t val = 0;
270 p = 0;
271 UChar c = gSpace;
272
273 // begin parsing the descriptor: copy digits
274 // into "tempValue", skip periods, commas, and spaces,
275 // stop on a slash or > sign (or at the end of the string),
276 // and throw an exception on any other character
277 int64_t ll_10 = 10;
278 while (p < descriptor.length()) {
279 c = descriptor.charAt(p);
280 if (c >= gZero && c <= gNine) {
281 val = val * ll_10 + (int32_t)(c - gZero);
282 }
283 else if (c == gSlash || c == gGreaterThan) {
284 break;
285 }
286 else if (PatternProps::isWhiteSpace(c) || c == gComma || c == gDot) {
287 }
288 else {
289 // throw new IllegalArgumentException("Illegal character in rule descriptor");
290 status = U_PARSE_ERROR;
291 return;
292 }
293 ++p;
294 }
295
296 // we have the base value, so set it
297 setBaseValue(val, status);
298
299 // if we stopped the previous loop on a slash, we're
300 // now parsing the rule's radix. Again, accumulate digits
301 // in tempValue, skip punctuation, stop on a > mark, and
302 // throw an exception on anything else
303 if (c == gSlash) {
304 val = 0;
305 ++p;
306 int64_t ll_10 = 10;
307 while (p < descriptor.length()) {
308 c = descriptor.charAt(p);
309 if (c >= gZero && c <= gNine) {
310 val = val * ll_10 + (int32_t)(c - gZero);
311 }
312 else if (c == gGreaterThan) {
313 break;
314 }
315 else if (PatternProps::isWhiteSpace(c) || c == gComma || c == gDot) {
316 }
317 else {
318 // throw new IllegalArgumentException("Illegal character is rule descriptor");
319 status = U_PARSE_ERROR;
320 return;
321 }
322 ++p;
323 }
324
325 // tempValue now contain's the rule's radix. Set it
326 // accordingly, and recalculate the rule's exponent
327 radix = (int32_t)val;
328 if (radix == 0) {
329 // throw new IllegalArgumentException("Rule can't have radix of 0");
330 status = U_PARSE_ERROR;
331 }
332
333 exponent = expectedExponent();
334 }
335
336 // if we stopped the previous loop on a > sign, then continue
337 // for as long as we still see > signs. For each one,
338 // decrement the exponent (unless the exponent is already 0).
339 // If we see another character before reaching the end of
340 // the descriptor, that's also a syntax error.
341 if (c == gGreaterThan) {
342 while (p < descriptor.length()) {
343 c = descriptor.charAt(p);
344 if (c == gGreaterThan && exponent > 0) {
345 --exponent;
346 } else {
347 // throw new IllegalArgumentException("Illegal character in rule descriptor");
348 status = U_PARSE_ERROR;
349 return;
350 }
351 ++p;
352 }
353 }
354 }
355 }
356
357 // finally, if the rule body begins with an apostrophe, strip it off
358 // (this is generally used to put whitespace at the beginning of
359 // a rule's rule text)
360 if (description.length() > 0 && description.charAt(0) == gTick) {
361 description.removeBetween(0, 1);
362 }
363
364 // return the description with all the stuff we've just waded through
365 // stripped off the front. It now contains just the rule body.
366 // return description;
367 }
368
369 /**
370 * Searches the rule's rule text for the substitution tokens,
371 * creates the substitutions, and removes the substitution tokens
372 * from the rule's rule text.
373 * @param owner The rule set containing this rule
374 * @param predecessor The rule preseding this one in "owners" rule list
375 * @param ownersOwner The RuleBasedFormat that owns this rule
376 */
377 void
extractSubstitutions(const NFRuleSet * ruleSet,const UnicodeString & ruleText,const NFRule * predecessor,UErrorCode & status)378 NFRule::extractSubstitutions(const NFRuleSet* ruleSet,
379 const UnicodeString &ruleText,
380 const NFRule* predecessor,
381 UErrorCode& status)
382 {
383 if (U_FAILURE(status)) {
384 return;
385 }
386 this->ruleText = ruleText;
387 this->rulePatternFormat = NULL;
388 sub1 = extractSubstitution(ruleSet, predecessor, status);
389 if (sub1 == NULL || sub1->isNullSubstitution()) {
390 // Small optimization. There is no need to create a redundant NullSubstitution.
391 sub2 = sub1;
392 }
393 else {
394 sub2 = extractSubstitution(ruleSet, predecessor, status);
395 }
396 int32_t pluralRuleStart = this->ruleText.indexOf(gDollarOpenParenthesis, -1, 0);
397 int32_t pluralRuleEnd = (pluralRuleStart >= 0 ? this->ruleText.indexOf(gClosedParenthesisDollar, -1, pluralRuleStart) : -1);
398 if (pluralRuleEnd >= 0) {
399 int32_t endType = this->ruleText.indexOf(gComma, pluralRuleStart);
400 if (endType < 0) {
401 status = U_PARSE_ERROR;
402 return;
403 }
404 UnicodeString type(this->ruleText.tempSubString(pluralRuleStart + 2, endType - pluralRuleStart - 2));
405 UPluralType pluralType;
406 if (type.startsWith(UNICODE_STRING_SIMPLE("cardinal"))) {
407 pluralType = UPLURAL_TYPE_CARDINAL;
408 }
409 else if (type.startsWith(UNICODE_STRING_SIMPLE("ordinal"))) {
410 pluralType = UPLURAL_TYPE_ORDINAL;
411 }
412 else {
413 status = U_ILLEGAL_ARGUMENT_ERROR;
414 return;
415 }
416 rulePatternFormat = formatter->createPluralFormat(pluralType,
417 this->ruleText.tempSubString(endType + 1, pluralRuleEnd - endType - 1), status);
418 }
419 }
420
421 /**
422 * Searches the rule's rule text for the first substitution token,
423 * creates a substitution based on it, and removes the token from
424 * the rule's rule text.
425 * @param owner The rule set containing this rule
426 * @param predecessor The rule preceding this one in the rule set's
427 * rule list
428 * @param ownersOwner The RuleBasedNumberFormat that owns this rule
429 * @return The newly-created substitution. This is never null; if
430 * the rule text doesn't contain any substitution tokens, this will
431 * be a NullSubstitution.
432 */
433 NFSubstitution *
extractSubstitution(const NFRuleSet * ruleSet,const NFRule * predecessor,UErrorCode & status)434 NFRule::extractSubstitution(const NFRuleSet* ruleSet,
435 const NFRule* predecessor,
436 UErrorCode& status)
437 {
438 NFSubstitution* result = NULL;
439
440 // search the rule's rule text for the first two characters of
441 // a substitution token
442 int32_t subStart = indexOfAny(tokenStrings);
443 int32_t subEnd = subStart;
444
445 // if we didn't find one, create a null substitution positioned
446 // at the end of the rule text
447 if (subStart == -1) {
448 return NFSubstitution::makeSubstitution(ruleText.length(), this, predecessor,
449 ruleSet, this->formatter, UnicodeString(), status);
450 }
451
452 // special-case the ">>>" token, since searching for the > at the
453 // end will actually find the > in the middle
454 if (ruleText.indexOf(gGreaterGreaterGreater, 3, 0) == subStart) {
455 subEnd = subStart + 2;
456
457 // otherwise the substitution token ends with the same character
458 // it began with
459 } else {
460 UChar c = ruleText.charAt(subStart);
461 subEnd = ruleText.indexOf(c, subStart + 1);
462 // special case for '<%foo<<'
463 if (c == gLessThan && subEnd != -1 && subEnd < ruleText.length() - 1 && ruleText.charAt(subEnd+1) == c) {
464 // ordinals use "=#,##0==%abbrev=" as their rule. Notice that the '==' in the middle
465 // occurs because of the juxtaposition of two different rules. The check for '<' is a hack
466 // to get around this. Having the duplicate at the front would cause problems with
467 // rules like "<<%" to format, say, percents...
468 ++subEnd;
469 }
470 }
471
472 // if we don't find the end of the token (i.e., if we're on a single,
473 // unmatched token character), create a null substitution positioned
474 // at the end of the rule
475 if (subEnd == -1) {
476 return NFSubstitution::makeSubstitution(ruleText.length(), this, predecessor,
477 ruleSet, this->formatter, UnicodeString(), status);
478 }
479
480 // if we get here, we have a real substitution token (or at least
481 // some text bounded by substitution token characters). Use
482 // makeSubstitution() to create the right kind of substitution
483 UnicodeString subToken;
484 subToken.setTo(ruleText, subStart, subEnd + 1 - subStart);
485 result = NFSubstitution::makeSubstitution(subStart, this, predecessor, ruleSet,
486 this->formatter, subToken, status);
487
488 // remove the substitution from the rule text
489 ruleText.removeBetween(subStart, subEnd+1);
490
491 return result;
492 }
493
494 /**
495 * Sets the rule's base value, and causes the radix and exponent
496 * to be recalculated. This is used during construction when we
497 * don't know the rule's base value until after it's been
498 * constructed. It should be used at any other time.
499 * @param The new base value for the rule.
500 */
501 void
setBaseValue(int64_t newBaseValue,UErrorCode & status)502 NFRule::setBaseValue(int64_t newBaseValue, UErrorCode& status)
503 {
504 // set the base value
505 baseValue = newBaseValue;
506
507 // if this isn't a special rule, recalculate the radix and exponent
508 // (the radix always defaults to 10; if it's supposed to be something
509 // else, it's cleaned up by the caller and the exponent is
510 // recalculated again-- the only function that does this is
511 // NFRule.parseRuleDescriptor() )
512 if (baseValue >= 1) {
513 radix = 10;
514 exponent = expectedExponent();
515
516 // this function gets called on a fully-constructed rule whose
517 // description didn't specify a base value. This means it
518 // has substitutions, and some substitutions hold on to copies
519 // of the rule's divisor. Fix their copies of the divisor.
520 if (sub1 != NULL) {
521 sub1->setDivisor(radix, exponent, status);
522 }
523 if (sub2 != NULL) {
524 sub2->setDivisor(radix, exponent, status);
525 }
526
527 // if this is a special rule, its radix and exponent are basically
528 // ignored. Set them to "safe" default values
529 } else {
530 radix = 10;
531 exponent = 0;
532 }
533 }
534
535 /**
536 * This calculates the rule's exponent based on its radix and base
537 * value. This will be the highest power the radix can be raised to
538 * and still produce a result less than or equal to the base value.
539 */
540 int16_t
expectedExponent() const541 NFRule::expectedExponent() const
542 {
543 // since the log of 0, or the log base 0 of something, causes an
544 // error, declare the exponent in these cases to be 0 (we also
545 // deal with the special-rule identifiers here)
546 if (radix == 0 || baseValue < 1) {
547 return 0;
548 }
549
550 // we get rounding error in some cases-- for example, log 1000 / log 10
551 // gives us 1.9999999996 instead of 2. The extra logic here is to take
552 // that into account
553 int16_t tempResult = (int16_t)(uprv_log((double)baseValue) / uprv_log((double)radix));
554 int64_t temp = util64_pow(radix, tempResult + 1);
555 if (temp <= baseValue) {
556 tempResult += 1;
557 }
558 return tempResult;
559 }
560
561 /**
562 * Searches the rule's rule text for any of the specified strings.
563 * @param strings An array of strings to search the rule's rule
564 * text for
565 * @return The index of the first match in the rule's rule text
566 * (i.e., the first substring in the rule's rule text that matches
567 * _any_ of the strings in "strings"). If none of the strings in
568 * "strings" is found in the rule's rule text, returns -1.
569 */
570 int32_t
indexOfAny(const UChar * const strings[]) const571 NFRule::indexOfAny(const UChar* const strings[]) const
572 {
573 int result = -1;
574 for (int i = 0; strings[i]; i++) {
575 int32_t pos = ruleText.indexOf(*strings[i]);
576 if (pos != -1 && (result == -1 || pos < result)) {
577 result = pos;
578 }
579 }
580 return result;
581 }
582
583 //-----------------------------------------------------------------------
584 // boilerplate
585 //-----------------------------------------------------------------------
586
587 /**
588 * Tests two rules for equality.
589 * @param that The rule to compare this one against
590 * @return True is the two rules are functionally equivalent
591 */
592 UBool
operator ==(const NFRule & rhs) const593 NFRule::operator==(const NFRule& rhs) const
594 {
595 return baseValue == rhs.baseValue
596 && radix == rhs.radix
597 && exponent == rhs.exponent
598 && ruleText == rhs.ruleText
599 && *sub1 == *rhs.sub1
600 && *sub2 == *rhs.sub2;
601 }
602
603 /**
604 * Returns a textual representation of the rule. This won't
605 * necessarily be the same as the description that this rule
606 * was created with, but it will produce the same result.
607 * @return A textual description of the rule
608 */
util_append64(UnicodeString & result,int64_t n)609 static void util_append64(UnicodeString& result, int64_t n)
610 {
611 UChar buffer[256];
612 int32_t len = util64_tou(n, buffer, sizeof(buffer));
613 UnicodeString temp(buffer, len);
614 result.append(temp);
615 }
616
617 void
_appendRuleText(UnicodeString & result) const618 NFRule::_appendRuleText(UnicodeString& result) const
619 {
620 switch (getType()) {
621 case kNegativeNumberRule: result.append(gMinusX, 2); break;
622 case kImproperFractionRule: result.append(gXDotX, 3); break;
623 case kProperFractionRule: result.append(gZeroDotX, 3); break;
624 case kMasterRule: result.append(gXDotZero, 3); break;
625 default:
626 // for a normal rule, write out its base value, and if the radix is
627 // something other than 10, write out the radix (with the preceding
628 // slash, of course). Then calculate the expected exponent and if
629 // if isn't the same as the actual exponent, write an appropriate
630 // number of > signs. Finally, terminate the whole thing with
631 // a colon.
632 util_append64(result, baseValue);
633 if (radix != 10) {
634 result.append(gSlash);
635 util_append64(result, radix);
636 }
637 int numCarets = expectedExponent() - exponent;
638 for (int i = 0; i < numCarets; i++) {
639 result.append(gGreaterThan);
640 }
641 break;
642 }
643 result.append(gColon);
644 result.append(gSpace);
645
646 // if the rule text begins with a space, write an apostrophe
647 // (whitespace after the rule descriptor is ignored; the
648 // apostrophe is used to make the whitespace significant)
649 if (ruleText.charAt(0) == gSpace && sub1->getPos() != 0) {
650 result.append(gTick);
651 }
652
653 // now, write the rule's rule text, inserting appropriate
654 // substitution tokens in the appropriate places
655 UnicodeString ruleTextCopy;
656 ruleTextCopy.setTo(ruleText);
657
658 UnicodeString temp;
659 sub2->toString(temp);
660 ruleTextCopy.insert(sub2->getPos(), temp);
661 sub1->toString(temp);
662 ruleTextCopy.insert(sub1->getPos(), temp);
663
664 result.append(ruleTextCopy);
665
666 // and finally, top the whole thing off with a semicolon and
667 // return the result
668 result.append(gSemicolon);
669 }
670
671 //-----------------------------------------------------------------------
672 // formatting
673 //-----------------------------------------------------------------------
674
675 /**
676 * Formats the number, and inserts the resulting text into
677 * toInsertInto.
678 * @param number The number being formatted
679 * @param toInsertInto The string where the resultant text should
680 * be inserted
681 * @param pos The position in toInsertInto where the resultant text
682 * should be inserted
683 */
684 void
doFormat(int64_t number,UnicodeString & toInsertInto,int32_t pos,UErrorCode & status) const685 NFRule::doFormat(int64_t number, UnicodeString& toInsertInto, int32_t pos, UErrorCode& status) const
686 {
687 // first, insert the rule's rule text into toInsertInto at the
688 // specified position, then insert the results of the substitutions
689 // into the right places in toInsertInto (notice we do the
690 // substitutions in reverse order so that the offsets don't get
691 // messed up)
692 int32_t pluralRuleStart = ruleText.length();
693 int32_t lengthOffset = 0;
694 if (!rulePatternFormat) {
695 toInsertInto.insert(pos, ruleText);
696 }
697 else {
698 pluralRuleStart = ruleText.indexOf(gDollarOpenParenthesis, -1, 0);
699 int pluralRuleEnd = ruleText.indexOf(gClosedParenthesisDollar, -1, pluralRuleStart);
700 int initialLength = toInsertInto.length();
701 if (pluralRuleEnd < ruleText.length() - 1) {
702 toInsertInto.insert(pos, ruleText.tempSubString(pluralRuleEnd + 2));
703 }
704 toInsertInto.insert(pos,
705 rulePatternFormat->format((int32_t)(number/uprv_pow(radix, exponent)), status));
706 if (pluralRuleStart > 0) {
707 toInsertInto.insert(pos, ruleText.tempSubString(0, pluralRuleStart));
708 }
709 lengthOffset = ruleText.length() - (toInsertInto.length() - initialLength);
710 }
711
712 if (!sub2->isNullSubstitution()) {
713 sub2->doSubstitution(number, toInsertInto, pos - (sub2->getPos() > pluralRuleStart ? lengthOffset : 0), status);
714 }
715 if (!sub1->isNullSubstitution()) {
716 sub1->doSubstitution(number, toInsertInto, pos - (sub1->getPos() > pluralRuleStart ? lengthOffset : 0), status);
717 }
718 }
719
720 /**
721 * Formats the number, and inserts the resulting text into
722 * toInsertInto.
723 * @param number The number being formatted
724 * @param toInsertInto The string where the resultant text should
725 * be inserted
726 * @param pos The position in toInsertInto where the resultant text
727 * should be inserted
728 */
729 void
doFormat(double number,UnicodeString & toInsertInto,int32_t pos,UErrorCode & status) const730 NFRule::doFormat(double number, UnicodeString& toInsertInto, int32_t pos, UErrorCode& status) const
731 {
732 // first, insert the rule's rule text into toInsertInto at the
733 // specified position, then insert the results of the substitutions
734 // into the right places in toInsertInto
735 // [again, we have two copies of this routine that do the same thing
736 // so that we don't sacrifice precision in a long by casting it
737 // to a double]
738 int32_t pluralRuleStart = ruleText.length();
739 int32_t lengthOffset = 0;
740 if (!rulePatternFormat) {
741 toInsertInto.insert(pos, ruleText);
742 }
743 else {
744 pluralRuleStart = ruleText.indexOf(gDollarOpenParenthesis, -1, 0);
745 int pluralRuleEnd = ruleText.indexOf(gClosedParenthesisDollar, -1, pluralRuleStart);
746 int initialLength = toInsertInto.length();
747 if (pluralRuleEnd < ruleText.length() - 1) {
748 toInsertInto.insert(pos, ruleText.tempSubString(pluralRuleEnd + 2));
749 }
750 toInsertInto.insert(pos,
751 rulePatternFormat->format((int32_t)(number/uprv_pow(radix, exponent)), status));
752 if (pluralRuleStart > 0) {
753 toInsertInto.insert(pos, ruleText.tempSubString(0, pluralRuleStart));
754 }
755 lengthOffset = ruleText.length() - (toInsertInto.length() - initialLength);
756 }
757
758 if (!sub2->isNullSubstitution()) {
759 sub2->doSubstitution(number, toInsertInto, pos - (sub2->getPos() > pluralRuleStart ? lengthOffset : 0), status);
760 }
761 if (!sub1->isNullSubstitution()) {
762 sub1->doSubstitution(number, toInsertInto, pos - (sub1->getPos() > pluralRuleStart ? lengthOffset : 0), status);
763 }
764 }
765
766 /**
767 * Used by the owning rule set to determine whether to invoke the
768 * rollback rule (i.e., whether this rule or the one that precedes
769 * it in the rule set's list should be used to format the number)
770 * @param The number being formatted
771 * @return True if the rule set should use the rule that precedes
772 * this one in its list; false if it should use this rule
773 */
774 UBool
shouldRollBack(double number) const775 NFRule::shouldRollBack(double number) const
776 {
777 // we roll back if the rule contains a modulus substitution,
778 // the number being formatted is an even multiple of the rule's
779 // divisor, and the rule's base value is NOT an even multiple
780 // of its divisor
781 // In other words, if the original description had
782 // 100: << hundred[ >>];
783 // that expands into
784 // 100: << hundred;
785 // 101: << hundred >>;
786 // internally. But when we're formatting 200, if we use the rule
787 // at 101, which would normally apply, we get "two hundred zero".
788 // To prevent this, we roll back and use the rule at 100 instead.
789 // This is the logic that makes this happen: the rule at 101 has
790 // a modulus substitution, its base value isn't an even multiple
791 // of 100, and the value we're trying to format _is_ an even
792 // multiple of 100. This is called the "rollback rule."
793 if ((sub1->isModulusSubstitution()) || (sub2->isModulusSubstitution())) {
794 int64_t re = util64_pow(radix, exponent);
795 return uprv_fmod(number, (double)re) == 0 && (baseValue % re) != 0;
796 }
797 return FALSE;
798 }
799
800 //-----------------------------------------------------------------------
801 // parsing
802 //-----------------------------------------------------------------------
803
804 /**
805 * Attempts to parse the string with this rule.
806 * @param text The string being parsed
807 * @param parsePosition On entry, the value is ignored and assumed to
808 * be 0. On exit, this has been updated with the position of the first
809 * character not consumed by matching the text against this rule
810 * (if this rule doesn't match the text at all, the parse position
811 * if left unchanged (presumably at 0) and the function returns
812 * new Long(0)).
813 * @param isFractionRule True if this rule is contained within a
814 * fraction rule set. This is only used if the rule has no
815 * substitutions.
816 * @return If this rule matched the text, this is the rule's base value
817 * combined appropriately with the results of parsing the substitutions.
818 * If nothing matched, this is new Long(0) and the parse position is
819 * left unchanged. The result will be an instance of Long if the
820 * result is an integer and Double otherwise. The result is never null.
821 */
822 #ifdef RBNF_DEBUG
823 #include <stdio.h>
824
dumpUS(FILE * f,const UnicodeString & us)825 static void dumpUS(FILE* f, const UnicodeString& us) {
826 int len = us.length();
827 char* buf = (char *)uprv_malloc((len+1)*sizeof(char)); //new char[len+1];
828 if (buf != NULL) {
829 us.extract(0, len, buf);
830 buf[len] = 0;
831 fprintf(f, "%s", buf);
832 uprv_free(buf); //delete[] buf;
833 }
834 }
835 #endif
836
837 UBool
doParse(const UnicodeString & text,ParsePosition & parsePosition,UBool isFractionRule,double upperBound,Formattable & resVal) const838 NFRule::doParse(const UnicodeString& text,
839 ParsePosition& parsePosition,
840 UBool isFractionRule,
841 double upperBound,
842 Formattable& resVal) const
843 {
844 // internally we operate on a copy of the string being parsed
845 // (because we're going to change it) and use our own ParsePosition
846 ParsePosition pp;
847 UnicodeString workText(text);
848
849 // check to see whether the text before the first substitution
850 // matches the text at the beginning of the string being
851 // parsed. If it does, strip that off the front of workText;
852 // otherwise, dump out with a mismatch
853 UnicodeString prefix;
854 prefix.setTo(ruleText, 0, sub1->getPos());
855
856 #ifdef RBNF_DEBUG
857 fprintf(stderr, "doParse %x ", this);
858 {
859 UnicodeString rt;
860 _appendRuleText(rt);
861 dumpUS(stderr, rt);
862 }
863
864 fprintf(stderr, " text: '", this);
865 dumpUS(stderr, text);
866 fprintf(stderr, "' prefix: '");
867 dumpUS(stderr, prefix);
868 #endif
869 stripPrefix(workText, prefix, pp);
870 int32_t prefixLength = text.length() - workText.length();
871
872 #ifdef RBNF_DEBUG
873 fprintf(stderr, "' pl: %d ppi: %d s1p: %d\n", prefixLength, pp.getIndex(), sub1->getPos());
874 #endif
875
876 if (pp.getIndex() == 0 && sub1->getPos() != 0) {
877 // commented out because ParsePosition doesn't have error index in 1.1.x
878 // restored for ICU4C port
879 parsePosition.setErrorIndex(pp.getErrorIndex());
880 resVal.setLong(0);
881 return TRUE;
882 }
883
884 // this is the fun part. The basic guts of the rule-matching
885 // logic is matchToDelimiter(), which is called twice. The first
886 // time it searches the input string for the rule text BETWEEN
887 // the substitutions and tries to match the intervening text
888 // in the input string with the first substitution. If that
889 // succeeds, it then calls it again, this time to look for the
890 // rule text after the second substitution and to match the
891 // intervening input text against the second substitution.
892 //
893 // For example, say we have a rule that looks like this:
894 // first << middle >> last;
895 // and input text that looks like this:
896 // first one middle two last
897 // First we use stripPrefix() to match "first " in both places and
898 // strip it off the front, leaving
899 // one middle two last
900 // Then we use matchToDelimiter() to match " middle " and try to
901 // match "one" against a substitution. If it's successful, we now
902 // have
903 // two last
904 // We use matchToDelimiter() a second time to match " last" and
905 // try to match "two" against a substitution. If "two" matches
906 // the substitution, we have a successful parse.
907 //
908 // Since it's possible in many cases to find multiple instances
909 // of each of these pieces of rule text in the input string,
910 // we need to try all the possible combinations of these
911 // locations. This prevents us from prematurely declaring a mismatch,
912 // and makes sure we match as much input text as we can.
913 int highWaterMark = 0;
914 double result = 0;
915 int start = 0;
916 double tempBaseValue = (double)(baseValue <= 0 ? 0 : baseValue);
917
918 UnicodeString temp;
919 do {
920 // our partial parse result starts out as this rule's base
921 // value. If it finds a successful match, matchToDelimiter()
922 // will compose this in some way with what it gets back from
923 // the substitution, giving us a new partial parse result
924 pp.setIndex(0);
925
926 temp.setTo(ruleText, sub1->getPos(), sub2->getPos() - sub1->getPos());
927 double partialResult = matchToDelimiter(workText, start, tempBaseValue,
928 temp, pp, sub1,
929 upperBound);
930
931 // if we got a successful match (or were trying to match a
932 // null substitution), pp is now pointing at the first unmatched
933 // character. Take note of that, and try matchToDelimiter()
934 // on the input text again
935 if (pp.getIndex() != 0 || sub1->isNullSubstitution()) {
936 start = pp.getIndex();
937
938 UnicodeString workText2;
939 workText2.setTo(workText, pp.getIndex(), workText.length() - pp.getIndex());
940 ParsePosition pp2;
941
942 // the second matchToDelimiter() will compose our previous
943 // partial result with whatever it gets back from its
944 // substitution if there's a successful match, giving us
945 // a real result
946 temp.setTo(ruleText, sub2->getPos(), ruleText.length() - sub2->getPos());
947 partialResult = matchToDelimiter(workText2, 0, partialResult,
948 temp, pp2, sub2,
949 upperBound);
950
951 // if we got a successful match on this second
952 // matchToDelimiter() call, update the high-water mark
953 // and result (if necessary)
954 if (pp2.getIndex() != 0 || sub2->isNullSubstitution()) {
955 if (prefixLength + pp.getIndex() + pp2.getIndex() > highWaterMark) {
956 highWaterMark = prefixLength + pp.getIndex() + pp2.getIndex();
957 result = partialResult;
958 }
959 }
960 // commented out because ParsePosition doesn't have error index in 1.1.x
961 // restored for ICU4C port
962 else {
963 int32_t temp = pp2.getErrorIndex() + sub1->getPos() + pp.getIndex();
964 if (temp> parsePosition.getErrorIndex()) {
965 parsePosition.setErrorIndex(temp);
966 }
967 }
968 }
969 // commented out because ParsePosition doesn't have error index in 1.1.x
970 // restored for ICU4C port
971 else {
972 int32_t temp = sub1->getPos() + pp.getErrorIndex();
973 if (temp > parsePosition.getErrorIndex()) {
974 parsePosition.setErrorIndex(temp);
975 }
976 }
977 // keep trying to match things until the outer matchToDelimiter()
978 // call fails to make a match (each time, it picks up where it
979 // left off the previous time)
980 } while (sub1->getPos() != sub2->getPos()
981 && pp.getIndex() > 0
982 && pp.getIndex() < workText.length()
983 && pp.getIndex() != start);
984
985 // update the caller's ParsePosition with our high-water mark
986 // (i.e., it now points at the first character this function
987 // didn't match-- the ParsePosition is therefore unchanged if
988 // we didn't match anything)
989 parsePosition.setIndex(highWaterMark);
990 // commented out because ParsePosition doesn't have error index in 1.1.x
991 // restored for ICU4C port
992 if (highWaterMark > 0) {
993 parsePosition.setErrorIndex(0);
994 }
995
996 // this is a hack for one unusual condition: Normally, whether this
997 // rule belong to a fraction rule set or not is handled by its
998 // substitutions. But if that rule HAS NO substitutions, then
999 // we have to account for it here. By definition, if the matching
1000 // rule in a fraction rule set has no substitutions, its numerator
1001 // is 1, and so the result is the reciprocal of its base value.
1002 if (isFractionRule &&
1003 highWaterMark > 0 &&
1004 sub1->isNullSubstitution()) {
1005 result = 1 / result;
1006 }
1007
1008 resVal.setDouble(result);
1009 return TRUE; // ??? do we need to worry if it is a long or a double?
1010 }
1011
1012 /**
1013 * This function is used by parse() to match the text being parsed
1014 * against a possible prefix string. This function
1015 * matches characters from the beginning of the string being parsed
1016 * to characters from the prospective prefix. If they match, pp is
1017 * updated to the first character not matched, and the result is
1018 * the unparsed part of the string. If they don't match, the whole
1019 * string is returned, and pp is left unchanged.
1020 * @param text The string being parsed
1021 * @param prefix The text to match against
1022 * @param pp On entry, ignored and assumed to be 0. On exit, points
1023 * to the first unmatched character (assuming the whole prefix matched),
1024 * or is unchanged (if the whole prefix didn't match).
1025 * @return If things match, this is the unparsed part of "text";
1026 * if they didn't match, this is "text".
1027 */
1028 void
stripPrefix(UnicodeString & text,const UnicodeString & prefix,ParsePosition & pp) const1029 NFRule::stripPrefix(UnicodeString& text, const UnicodeString& prefix, ParsePosition& pp) const
1030 {
1031 // if the prefix text is empty, dump out without doing anything
1032 if (prefix.length() != 0) {
1033 UErrorCode status = U_ZERO_ERROR;
1034 // use prefixLength() to match the beginning of
1035 // "text" against "prefix". This function returns the
1036 // number of characters from "text" that matched (or 0 if
1037 // we didn't match the whole prefix)
1038 int32_t pfl = prefixLength(text, prefix, status);
1039 if (U_FAILURE(status)) { // Memory allocation error.
1040 return;
1041 }
1042 if (pfl != 0) {
1043 // if we got a successful match, update the parse position
1044 // and strip the prefix off of "text"
1045 pp.setIndex(pp.getIndex() + pfl);
1046 text.remove(0, pfl);
1047 }
1048 }
1049 }
1050
1051 /**
1052 * Used by parse() to match a substitution and any following text.
1053 * "text" is searched for instances of "delimiter". For each instance
1054 * of delimiter, the intervening text is tested to see whether it
1055 * matches the substitution. The longest match wins.
1056 * @param text The string being parsed
1057 * @param startPos The position in "text" where we should start looking
1058 * for "delimiter".
1059 * @param baseValue A partial parse result (often the rule's base value),
1060 * which is combined with the result from matching the substitution
1061 * @param delimiter The string to search "text" for.
1062 * @param pp Ignored and presumed to be 0 on entry. If there's a match,
1063 * on exit this will point to the first unmatched character.
1064 * @param sub If we find "delimiter" in "text", this substitution is used
1065 * to match the text between the beginning of the string and the
1066 * position of "delimiter." (If "delimiter" is the empty string, then
1067 * this function just matches against this substitution and updates
1068 * everything accordingly.)
1069 * @param upperBound When matching the substitution, it will only
1070 * consider rules with base values lower than this value.
1071 * @return If there's a match, this is the result of composing
1072 * baseValue with the result of matching the substitution. Otherwise,
1073 * this is new Long(0). It's never null. If the result is an integer,
1074 * this will be an instance of Long; otherwise, it's an instance of
1075 * Double.
1076 *
1077 * !!! note {dlf} in point of fact, in the java code the caller always converts
1078 * the result to a double, so we might as well return one.
1079 */
1080 double
matchToDelimiter(const UnicodeString & text,int32_t startPos,double _baseValue,const UnicodeString & delimiter,ParsePosition & pp,const NFSubstitution * sub,double upperBound) const1081 NFRule::matchToDelimiter(const UnicodeString& text,
1082 int32_t startPos,
1083 double _baseValue,
1084 const UnicodeString& delimiter,
1085 ParsePosition& pp,
1086 const NFSubstitution* sub,
1087 double upperBound) const
1088 {
1089 UErrorCode status = U_ZERO_ERROR;
1090 // if "delimiter" contains real (i.e., non-ignorable) text, search
1091 // it for "delimiter" beginning at "start". If that succeeds, then
1092 // use "sub"'s doParse() method to match the text before the
1093 // instance of "delimiter" we just found.
1094 if (!allIgnorable(delimiter, status)) {
1095 if (U_FAILURE(status)) { //Memory allocation error.
1096 return 0;
1097 }
1098 ParsePosition tempPP;
1099 Formattable result;
1100
1101 // use findText() to search for "delimiter". It returns a two-
1102 // element array: element 0 is the position of the match, and
1103 // element 1 is the number of characters that matched
1104 // "delimiter".
1105 int32_t dLen;
1106 int32_t dPos = findText(text, delimiter, startPos, &dLen);
1107
1108 // if findText() succeeded, isolate the text preceding the
1109 // match, and use "sub" to match that text
1110 while (dPos >= 0) {
1111 UnicodeString subText;
1112 subText.setTo(text, 0, dPos);
1113 if (subText.length() > 0) {
1114 UBool success = sub->doParse(subText, tempPP, _baseValue, upperBound,
1115 #if UCONFIG_NO_COLLATION
1116 FALSE,
1117 #else
1118 formatter->isLenient(),
1119 #endif
1120 result);
1121
1122 // if the substitution could match all the text up to
1123 // where we found "delimiter", then this function has
1124 // a successful match. Bump the caller's parse position
1125 // to point to the first character after the text
1126 // that matches "delimiter", and return the result
1127 // we got from parsing the substitution.
1128 if (success && tempPP.getIndex() == dPos) {
1129 pp.setIndex(dPos + dLen);
1130 return result.getDouble();
1131 }
1132 // commented out because ParsePosition doesn't have error index in 1.1.x
1133 // restored for ICU4C port
1134 else {
1135 if (tempPP.getErrorIndex() > 0) {
1136 pp.setErrorIndex(tempPP.getErrorIndex());
1137 } else {
1138 pp.setErrorIndex(tempPP.getIndex());
1139 }
1140 }
1141 }
1142
1143 // if we didn't match the substitution, search for another
1144 // copy of "delimiter" in "text" and repeat the loop if
1145 // we find it
1146 tempPP.setIndex(0);
1147 dPos = findText(text, delimiter, dPos + dLen, &dLen);
1148 }
1149 // if we make it here, this was an unsuccessful match, and we
1150 // leave pp unchanged and return 0
1151 pp.setIndex(0);
1152 return 0;
1153
1154 // if "delimiter" is empty, or consists only of ignorable characters
1155 // (i.e., is semantically empty), thwe we obviously can't search
1156 // for "delimiter". Instead, just use "sub" to parse as much of
1157 // "text" as possible.
1158 } else {
1159 ParsePosition tempPP;
1160 Formattable result;
1161
1162 // try to match the whole string against the substitution
1163 UBool success = sub->doParse(text, tempPP, _baseValue, upperBound,
1164 #if UCONFIG_NO_COLLATION
1165 FALSE,
1166 #else
1167 formatter->isLenient(),
1168 #endif
1169 result);
1170 if (success && (tempPP.getIndex() != 0 || sub->isNullSubstitution())) {
1171 // if there's a successful match (or it's a null
1172 // substitution), update pp to point to the first
1173 // character we didn't match, and pass the result from
1174 // sub.doParse() on through to the caller
1175 pp.setIndex(tempPP.getIndex());
1176 return result.getDouble();
1177 }
1178 // commented out because ParsePosition doesn't have error index in 1.1.x
1179 // restored for ICU4C port
1180 else {
1181 pp.setErrorIndex(tempPP.getErrorIndex());
1182 }
1183
1184 // and if we get to here, then nothing matched, so we return
1185 // 0 and leave pp alone
1186 return 0;
1187 }
1188 }
1189
1190 /**
1191 * Used by stripPrefix() to match characters. If lenient parse mode
1192 * is off, this just calls startsWith(). If lenient parse mode is on,
1193 * this function uses CollationElementIterators to match characters in
1194 * the strings (only primary-order differences are significant in
1195 * determining whether there's a match).
1196 * @param str The string being tested
1197 * @param prefix The text we're hoping to see at the beginning
1198 * of "str"
1199 * @return If "prefix" is found at the beginning of "str", this
1200 * is the number of characters in "str" that were matched (this
1201 * isn't necessarily the same as the length of "prefix" when matching
1202 * text with a collator). If there's no match, this is 0.
1203 */
1204 int32_t
prefixLength(const UnicodeString & str,const UnicodeString & prefix,UErrorCode & status) const1205 NFRule::prefixLength(const UnicodeString& str, const UnicodeString& prefix, UErrorCode& status) const
1206 {
1207 // if we're looking for an empty prefix, it obviously matches
1208 // zero characters. Just go ahead and return 0.
1209 if (prefix.length() == 0) {
1210 return 0;
1211 }
1212
1213 #if !UCONFIG_NO_COLLATION
1214 // go through all this grief if we're in lenient-parse mode
1215 if (formatter->isLenient()) {
1216 // get the formatter's collator and use it to create two
1217 // collation element iterators, one over the target string
1218 // and another over the prefix (right now, we'll throw an
1219 // exception if the collator we get back from the formatter
1220 // isn't a RuleBasedCollator, because RuleBasedCollator defines
1221 // the CollationElementIterator protocol. Hopefully, this
1222 // will change someday.)
1223 const RuleBasedCollator* collator = formatter->getCollator();
1224 if (collator == NULL) {
1225 status = U_MEMORY_ALLOCATION_ERROR;
1226 return 0;
1227 }
1228 LocalPointer<CollationElementIterator> strIter(collator->createCollationElementIterator(str));
1229 LocalPointer<CollationElementIterator> prefixIter(collator->createCollationElementIterator(prefix));
1230 // Check for memory allocation error.
1231 if (strIter.isNull() || prefixIter.isNull()) {
1232 status = U_MEMORY_ALLOCATION_ERROR;
1233 return 0;
1234 }
1235
1236 UErrorCode err = U_ZERO_ERROR;
1237
1238 // The original code was problematic. Consider this match:
1239 // prefix = "fifty-"
1240 // string = " fifty-7"
1241 // The intent is to match string up to the '7', by matching 'fifty-' at position 1
1242 // in the string. Unfortunately, we were getting a match, and then computing where
1243 // the match terminated by rematching the string. The rematch code was using as an
1244 // initial guess the substring of string between 0 and prefix.length. Because of
1245 // the leading space and trailing hyphen (both ignorable) this was succeeding, leaving
1246 // the position before the hyphen in the string. Recursing down, we then parsed the
1247 // remaining string '-7' as numeric. The resulting number turned out as 43 (50 - 7).
1248 // This was not pretty, especially since the string "fifty-7" parsed just fine.
1249 //
1250 // We have newer APIs now, so we can use calls on the iterator to determine what we
1251 // matched up to. If we terminate because we hit the last element in the string,
1252 // our match terminates at this length. If we terminate because we hit the last element
1253 // in the target, our match terminates at one before the element iterator position.
1254
1255 // match collation elements between the strings
1256 int32_t oStr = strIter->next(err);
1257 int32_t oPrefix = prefixIter->next(err);
1258
1259 while (oPrefix != CollationElementIterator::NULLORDER) {
1260 // skip over ignorable characters in the target string
1261 while (CollationElementIterator::primaryOrder(oStr) == 0
1262 && oStr != CollationElementIterator::NULLORDER) {
1263 oStr = strIter->next(err);
1264 }
1265
1266 // skip over ignorable characters in the prefix
1267 while (CollationElementIterator::primaryOrder(oPrefix) == 0
1268 && oPrefix != CollationElementIterator::NULLORDER) {
1269 oPrefix = prefixIter->next(err);
1270 }
1271
1272 // dlf: move this above following test, if we consume the
1273 // entire target, aren't we ok even if the source was also
1274 // entirely consumed?
1275
1276 // if skipping over ignorables brought to the end of
1277 // the prefix, we DID match: drop out of the loop
1278 if (oPrefix == CollationElementIterator::NULLORDER) {
1279 break;
1280 }
1281
1282 // if skipping over ignorables brought us to the end
1283 // of the target string, we didn't match and return 0
1284 if (oStr == CollationElementIterator::NULLORDER) {
1285 return 0;
1286 }
1287
1288 // match collation elements from the two strings
1289 // (considering only primary differences). If we
1290 // get a mismatch, dump out and return 0
1291 if (CollationElementIterator::primaryOrder(oStr)
1292 != CollationElementIterator::primaryOrder(oPrefix)) {
1293 return 0;
1294
1295 // otherwise, advance to the next character in each string
1296 // and loop (we drop out of the loop when we exhaust
1297 // collation elements in the prefix)
1298 } else {
1299 oStr = strIter->next(err);
1300 oPrefix = prefixIter->next(err);
1301 }
1302 }
1303
1304 int32_t result = strIter->getOffset();
1305 if (oStr != CollationElementIterator::NULLORDER) {
1306 --result; // back over character that we don't want to consume;
1307 }
1308
1309 #ifdef RBNF_DEBUG
1310 fprintf(stderr, "prefix length: %d\n", result);
1311 #endif
1312 return result;
1313 #if 0
1314 //----------------------------------------------------------------
1315 // JDK 1.2-specific API call
1316 // return strIter.getOffset();
1317 //----------------------------------------------------------------
1318 // JDK 1.1 HACK (take out for 1.2-specific code)
1319
1320 // if we make it to here, we have a successful match. Now we
1321 // have to find out HOW MANY characters from the target string
1322 // matched the prefix (there isn't necessarily a one-to-one
1323 // mapping between collation elements and characters).
1324 // In JDK 1.2, there's a simple getOffset() call we can use.
1325 // In JDK 1.1, on the other hand, we have to go through some
1326 // ugly contortions. First, use the collator to compare the
1327 // same number of characters from the prefix and target string.
1328 // If they're equal, we're done.
1329 collator->setStrength(Collator::PRIMARY);
1330 if (str.length() >= prefix.length()) {
1331 UnicodeString temp;
1332 temp.setTo(str, 0, prefix.length());
1333 if (collator->equals(temp, prefix)) {
1334 #ifdef RBNF_DEBUG
1335 fprintf(stderr, "returning: %d\n", prefix.length());
1336 #endif
1337 return prefix.length();
1338 }
1339 }
1340
1341 // if they're not equal, then we have to compare successively
1342 // larger and larger substrings of the target string until we
1343 // get to one that matches the prefix. At that point, we know
1344 // how many characters matched the prefix, and we can return.
1345 int32_t p = 1;
1346 while (p <= str.length()) {
1347 UnicodeString temp;
1348 temp.setTo(str, 0, p);
1349 if (collator->equals(temp, prefix)) {
1350 return p;
1351 } else {
1352 ++p;
1353 }
1354 }
1355
1356 // SHOULD NEVER GET HERE!!!
1357 return 0;
1358 //----------------------------------------------------------------
1359 #endif
1360
1361 // If lenient parsing is turned off, forget all that crap above.
1362 // Just use String.startsWith() and be done with it.
1363 } else
1364 #endif
1365 {
1366 if (str.startsWith(prefix)) {
1367 return prefix.length();
1368 } else {
1369 return 0;
1370 }
1371 }
1372 }
1373
1374 /**
1375 * Searches a string for another string. If lenient parsing is off,
1376 * this just calls indexOf(). If lenient parsing is on, this function
1377 * uses CollationElementIterator to match characters, and only
1378 * primary-order differences are significant in determining whether
1379 * there's a match.
1380 * @param str The string to search
1381 * @param key The string to search "str" for
1382 * @param startingAt The index into "str" where the search is to
1383 * begin
1384 * @return A two-element array of ints. Element 0 is the position
1385 * of the match, or -1 if there was no match. Element 1 is the
1386 * number of characters in "str" that matched (which isn't necessarily
1387 * the same as the length of "key")
1388 */
1389 int32_t
findText(const UnicodeString & str,const UnicodeString & key,int32_t startingAt,int32_t * length) const1390 NFRule::findText(const UnicodeString& str,
1391 const UnicodeString& key,
1392 int32_t startingAt,
1393 int32_t* length) const
1394 {
1395 if (rulePatternFormat) {
1396 Formattable result;
1397 FieldPosition position(UNUM_INTEGER_FIELD);
1398 position.setBeginIndex(startingAt);
1399 rulePatternFormat->parseType(str, this, result, position);
1400 int start = position.getBeginIndex();
1401 if (start >= 0) {
1402 int32_t pluralRuleStart = ruleText.indexOf(gDollarOpenParenthesis, -1, 0);
1403 int32_t pluralRuleSuffix = ruleText.indexOf(gClosedParenthesisDollar, -1, pluralRuleStart) + 2;
1404 int32_t matchLen = position.getEndIndex() - start;
1405 UnicodeString prefix(ruleText.tempSubString(0, pluralRuleStart));
1406 UnicodeString suffix(ruleText.tempSubString(pluralRuleSuffix));
1407 if (str.compare(start - prefix.length(), prefix.length(), prefix, 0, prefix.length()) == 0
1408 && str.compare(start + matchLen, suffix.length(), suffix, 0, suffix.length()) == 0)
1409 {
1410 *length = matchLen + prefix.length() + suffix.length();
1411 return start - prefix.length();
1412 }
1413 }
1414 *length = 0;
1415 return -1;
1416 }
1417 if (!formatter->isLenient()) {
1418 // if lenient parsing is turned off, this is easy: just call
1419 // String.indexOf() and we're done
1420 *length = key.length();
1421 return str.indexOf(key, startingAt);
1422 }
1423 else {
1424 // but if lenient parsing is turned ON, we've got some work
1425 // ahead of us
1426 return findTextLenient(str, key, startingAt, length);
1427 }
1428 }
1429
1430 int32_t
findTextLenient(const UnicodeString & str,const UnicodeString & key,int32_t startingAt,int32_t * length) const1431 NFRule::findTextLenient(const UnicodeString& str,
1432 const UnicodeString& key,
1433 int32_t startingAt,
1434 int32_t* length) const
1435 {
1436 //----------------------------------------------------------------
1437 // JDK 1.1 HACK (take out of 1.2-specific code)
1438
1439 // in JDK 1.2, CollationElementIterator provides us with an
1440 // API to map between character offsets and collation elements
1441 // and we can do this by marching through the string comparing
1442 // collation elements. We can't do that in JDK 1.1. Insted,
1443 // we have to go through this horrible slow mess:
1444 int32_t p = startingAt;
1445 int32_t keyLen = 0;
1446
1447 // basically just isolate smaller and smaller substrings of
1448 // the target string (each running to the end of the string,
1449 // and with the first one running from startingAt to the end)
1450 // and then use prefixLength() to see if the search key is at
1451 // the beginning of each substring. This is excruciatingly
1452 // slow, but it will locate the key and tell use how long the
1453 // matching text was.
1454 UnicodeString temp;
1455 UErrorCode status = U_ZERO_ERROR;
1456 while (p < str.length() && keyLen == 0) {
1457 temp.setTo(str, p, str.length() - p);
1458 keyLen = prefixLength(temp, key, status);
1459 if (U_FAILURE(status)) {
1460 break;
1461 }
1462 if (keyLen != 0) {
1463 *length = keyLen;
1464 return p;
1465 }
1466 ++p;
1467 }
1468 // if we make it to here, we didn't find it. Return -1 for the
1469 // location. The length should be ignored, but set it to 0,
1470 // which should be "safe"
1471 *length = 0;
1472 return -1;
1473 }
1474
1475 /**
1476 * Checks to see whether a string consists entirely of ignorable
1477 * characters.
1478 * @param str The string to test.
1479 * @return true if the string is empty of consists entirely of
1480 * characters that the number formatter's collator says are
1481 * ignorable at the primary-order level. false otherwise.
1482 */
1483 UBool
allIgnorable(const UnicodeString & str,UErrorCode & status) const1484 NFRule::allIgnorable(const UnicodeString& str, UErrorCode& status) const
1485 {
1486 // if the string is empty, we can just return true
1487 if (str.length() == 0) {
1488 return TRUE;
1489 }
1490
1491 #if !UCONFIG_NO_COLLATION
1492 // if lenient parsing is turned on, walk through the string with
1493 // a collation element iterator and make sure each collation
1494 // element is 0 (ignorable) at the primary level
1495 if (formatter->isLenient()) {
1496 const RuleBasedCollator* collator = formatter->getCollator();
1497 if (collator == NULL) {
1498 status = U_MEMORY_ALLOCATION_ERROR;
1499 return FALSE;
1500 }
1501 LocalPointer<CollationElementIterator> iter(collator->createCollationElementIterator(str));
1502
1503 // Memory allocation error check.
1504 if (iter.isNull()) {
1505 status = U_MEMORY_ALLOCATION_ERROR;
1506 return FALSE;
1507 }
1508
1509 UErrorCode err = U_ZERO_ERROR;
1510 int32_t o = iter->next(err);
1511 while (o != CollationElementIterator::NULLORDER
1512 && CollationElementIterator::primaryOrder(o) == 0) {
1513 o = iter->next(err);
1514 }
1515
1516 return o == CollationElementIterator::NULLORDER;
1517 }
1518 #endif
1519
1520 // if lenient parsing is turned off, there is no such thing as
1521 // an ignorable character: return true only if the string is empty
1522 return FALSE;
1523 }
1524
1525 U_NAMESPACE_END
1526
1527 /* U_HAVE_RBNF */
1528 #endif
1529