1 /*
2  * jcsample.c
3  *
4  * Copyright (C) 1991-1996, Thomas G. Lane.
5  * This file is part of the Independent JPEG Group's software.
6  * For conditions of distribution and use, see the accompanying README file.
7  *
8  * This file contains downsampling routines.
9  *
10  * Downsampling input data is counted in "row groups".  A row group
11  * is defined to be max_v_samp_factor pixel rows of each component,
12  * from which the downsampler produces v_samp_factor sample rows.
13  * A single row group is processed in each call to the downsampler module.
14  *
15  * The downsampler is responsible for edge-expansion of its output data
16  * to fill an integral number of DCT blocks horizontally.  The source buffer
17  * may be modified if it is helpful for this purpose (the source buffer is
18  * allocated wide enough to correspond to the desired output width).
19  * The caller (the prep controller) is responsible for vertical padding.
20  *
21  * The downsampler may request "context rows" by setting need_context_rows
22  * during startup.  In this case, the input arrays will contain at least
23  * one row group's worth of pixels above and below the passed-in data;
24  * the caller will create dummy rows at image top and bottom by replicating
25  * the first or last real pixel row.
26  *
27  * An excellent reference for image resampling is
28  *   Digital Image Warping, George Wolberg, 1990.
29  *   Pub. by IEEE Computer Society Press, Los Alamitos, CA. ISBN 0-8186-8944-7.
30  *
31  * The downsampling algorithm used here is a simple average of the source
32  * pixels covered by the output pixel.  The hi-falutin sampling literature
33  * refers to this as a "box filter".  In general the characteristics of a box
34  * filter are not very good, but for the specific cases we normally use (1:1
35  * and 2:1 ratios) the box is equivalent to a "triangle filter" which is not
36  * nearly so bad.  If you intend to use other sampling ratios, you'd be well
37  * advised to improve this code.
38  *
39  * A simple input-smoothing capability is provided.  This is mainly intended
40  * for cleaning up color-dithered GIF input files (if you find it inadequate,
41  * we suggest using an external filtering program such as pnmconvol).  When
42  * enabled, each input pixel P is replaced by a weighted sum of itself and its
43  * eight neighbors.  P's weight is 1-8*SF and each neighbor's weight is SF,
44  * where SF = (smoothing_factor / 1024).
45  * Currently, smoothing is only supported for 2h2v sampling factors.
46  */
47 
48 #define JPEG_INTERNALS
49 #include "jinclude.h"
50 #include "jpeglib.h"
51 
52 
53 /* Pointer to routine to downsample a single component */
54 typedef JMETHOD(void, downsample1_ptr,
55 		(j_compress_ptr cinfo, jpeg_component_info * compptr,
56 		 JSAMPARRAY input_data, JSAMPARRAY output_data));
57 
58 /* Private subobject */
59 
60 typedef struct {
61   struct jpeg_downsampler pub;	/* public fields */
62 
63   /* Downsampling method pointers, one per component */
64   downsample1_ptr methods[MAX_COMPONENTS];
65 } my_downsampler;
66 
67 typedef my_downsampler * my_downsample_ptr;
68 
69 
70 /*
71  * Initialize for a downsampling pass.
72  */
73 
74 METHODDEF(void)
start_pass_downsample(j_compress_ptr cinfo)75 start_pass_downsample (j_compress_ptr cinfo)
76 {
77   /* no work for now */
78 }
79 
80 
81 /*
82  * Expand a component horizontally from width input_cols to width output_cols,
83  * by duplicating the rightmost samples.
84  */
85 
86 LOCAL(void)
expand_right_edge(JSAMPARRAY image_data,int num_rows,JDIMENSION input_cols,JDIMENSION output_cols)87 expand_right_edge (JSAMPARRAY image_data, int num_rows,
88 		   JDIMENSION input_cols, JDIMENSION output_cols)
89 {
90   register JSAMPROW ptr;
91   register JSAMPLE pixval;
92   register int count;
93   int row;
94   int numcols = (int) (output_cols - input_cols);
95 
96   if (numcols > 0) {
97     for (row = 0; row < num_rows; row++) {
98       ptr = image_data[row] + input_cols;
99       pixval = ptr[-1];		/* don't need GETJSAMPLE() here */
100       for (count = numcols; count > 0; count--)
101 	*ptr++ = pixval;
102     }
103   }
104 }
105 
106 
107 /*
108  * Do downsampling for a whole row group (all components).
109  *
110  * In this version we simply downsample each component independently.
111  */
112 
113 METHODDEF(void)
sep_downsample(j_compress_ptr cinfo,JSAMPIMAGE input_buf,JDIMENSION in_row_index,JSAMPIMAGE output_buf,JDIMENSION out_row_group_index)114 sep_downsample (j_compress_ptr cinfo,
115 		JSAMPIMAGE input_buf, JDIMENSION in_row_index,
116 		JSAMPIMAGE output_buf, JDIMENSION out_row_group_index)
117 {
118   my_downsample_ptr downsample = (my_downsample_ptr) cinfo->downsample;
119   int ci;
120   jpeg_component_info * compptr;
121   JSAMPARRAY in_ptr, out_ptr;
122 
123   for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
124        ci++, compptr++) {
125     in_ptr = input_buf[ci] + in_row_index;
126     out_ptr = output_buf[ci] + (out_row_group_index * compptr->v_samp_factor);
127     (*downsample->methods[ci]) (cinfo, compptr, in_ptr, out_ptr);
128   }
129 }
130 
131 
132 /*
133  * Downsample pixel values of a single component.
134  * One row group is processed per call.
135  * This version handles arbitrary integral sampling ratios, without smoothing.
136  * Note that this version is not actually used for customary sampling ratios.
137  */
138 
139 METHODDEF(void)
int_downsample(j_compress_ptr cinfo,jpeg_component_info * compptr,JSAMPARRAY input_data,JSAMPARRAY output_data)140 int_downsample (j_compress_ptr cinfo, jpeg_component_info * compptr,
141 		JSAMPARRAY input_data, JSAMPARRAY output_data)
142 {
143   int inrow, outrow, h_expand, v_expand, numpix, numpix2, h, v;
144   JDIMENSION outcol, outcol_h;	/* outcol_h == outcol*h_expand */
145   JDIMENSION output_cols = compptr->width_in_blocks * DCTSIZE;
146   JSAMPROW inptr, outptr;
147   INT32 outvalue;
148 
149   h_expand = cinfo->max_h_samp_factor / compptr->h_samp_factor;
150   v_expand = cinfo->max_v_samp_factor / compptr->v_samp_factor;
151   numpix = h_expand * v_expand;
152   numpix2 = numpix/2;
153 
154   /* Expand input data enough to let all the output samples be generated
155    * by the standard loop.  Special-casing padded output would be more
156    * efficient.
157    */
158   expand_right_edge(input_data, cinfo->max_v_samp_factor,
159 		    cinfo->image_width, output_cols * h_expand);
160 
161   inrow = 0;
162   for (outrow = 0; outrow < compptr->v_samp_factor; outrow++) {
163     outptr = output_data[outrow];
164     for (outcol = 0, outcol_h = 0; outcol < output_cols;
165 	 outcol++, outcol_h += h_expand) {
166       outvalue = 0;
167       for (v = 0; v < v_expand; v++) {
168 	inptr = input_data[inrow+v] + outcol_h;
169 	for (h = 0; h < h_expand; h++) {
170 	  outvalue += (INT32) GETJSAMPLE(*inptr++);
171 	}
172       }
173       *outptr++ = (JSAMPLE) ((outvalue + numpix2) / numpix);
174     }
175     inrow += v_expand;
176   }
177 }
178 
179 
180 /*
181  * Downsample pixel values of a single component.
182  * This version handles the special case of a full-size component,
183  * without smoothing.
184  */
185 
186 METHODDEF(void)
fullsize_downsample(j_compress_ptr cinfo,jpeg_component_info * compptr,JSAMPARRAY input_data,JSAMPARRAY output_data)187 fullsize_downsample (j_compress_ptr cinfo, jpeg_component_info * compptr,
188 		     JSAMPARRAY input_data, JSAMPARRAY output_data)
189 {
190   /* Copy the data */
191   jcopy_sample_rows(input_data, 0, output_data, 0,
192 		    cinfo->max_v_samp_factor, cinfo->image_width);
193   /* Edge-expand */
194   expand_right_edge(output_data, cinfo->max_v_samp_factor,
195 		    cinfo->image_width, compptr->width_in_blocks * DCTSIZE);
196 }
197 
198 
199 /*
200  * Downsample pixel values of a single component.
201  * This version handles the common case of 2:1 horizontal and 1:1 vertical,
202  * without smoothing.
203  *
204  * A note about the "bias" calculations: when rounding fractional values to
205  * integer, we do not want to always round 0.5 up to the next integer.
206  * If we did that, we'd introduce a noticeable bias towards larger values.
207  * Instead, this code is arranged so that 0.5 will be rounded up or down at
208  * alternate pixel locations (a simple ordered dither pattern).
209  */
210 
211 METHODDEF(void)
h2v1_downsample(j_compress_ptr cinfo,jpeg_component_info * compptr,JSAMPARRAY input_data,JSAMPARRAY output_data)212 h2v1_downsample (j_compress_ptr cinfo, jpeg_component_info * compptr,
213 		 JSAMPARRAY input_data, JSAMPARRAY output_data)
214 {
215   int outrow;
216   JDIMENSION outcol;
217   JDIMENSION output_cols = compptr->width_in_blocks * DCTSIZE;
218   register JSAMPROW inptr, outptr;
219   register int bias;
220 
221   /* Expand input data enough to let all the output samples be generated
222    * by the standard loop.  Special-casing padded output would be more
223    * efficient.
224    */
225   expand_right_edge(input_data, cinfo->max_v_samp_factor,
226 		    cinfo->image_width, output_cols * 2);
227 
228   for (outrow = 0; outrow < compptr->v_samp_factor; outrow++) {
229     outptr = output_data[outrow];
230     inptr = input_data[outrow];
231     bias = 0;			/* bias = 0,1,0,1,... for successive samples */
232     for (outcol = 0; outcol < output_cols; outcol++) {
233       *outptr++ = (JSAMPLE) ((GETJSAMPLE(*inptr) + GETJSAMPLE(inptr[1])
234 			      + bias) >> 1);
235       bias ^= 1;		/* 0=>1, 1=>0 */
236       inptr += 2;
237     }
238   }
239 }
240 
241 
242 /*
243  * Downsample pixel values of a single component.
244  * This version handles the standard case of 2:1 horizontal and 2:1 vertical,
245  * without smoothing.
246  */
247 
248 METHODDEF(void)
h2v2_downsample(j_compress_ptr cinfo,jpeg_component_info * compptr,JSAMPARRAY input_data,JSAMPARRAY output_data)249 h2v2_downsample (j_compress_ptr cinfo, jpeg_component_info * compptr,
250 		 JSAMPARRAY input_data, JSAMPARRAY output_data)
251 {
252   int inrow, outrow;
253   JDIMENSION outcol;
254   JDIMENSION output_cols = compptr->width_in_blocks * DCTSIZE;
255   register JSAMPROW inptr0, inptr1, outptr;
256   register int bias;
257 
258   /* Expand input data enough to let all the output samples be generated
259    * by the standard loop.  Special-casing padded output would be more
260    * efficient.
261    */
262   expand_right_edge(input_data, cinfo->max_v_samp_factor,
263 		    cinfo->image_width, output_cols * 2);
264 
265   inrow = 0;
266   for (outrow = 0; outrow < compptr->v_samp_factor; outrow++) {
267     outptr = output_data[outrow];
268     inptr0 = input_data[inrow];
269     inptr1 = input_data[inrow+1];
270     bias = 1;			/* bias = 1,2,1,2,... for successive samples */
271     for (outcol = 0; outcol < output_cols; outcol++) {
272       *outptr++ = (JSAMPLE) ((GETJSAMPLE(*inptr0) + GETJSAMPLE(inptr0[1]) +
273 			      GETJSAMPLE(*inptr1) + GETJSAMPLE(inptr1[1])
274 			      + bias) >> 2);
275       bias ^= 3;		/* 1=>2, 2=>1 */
276       inptr0 += 2; inptr1 += 2;
277     }
278     inrow += 2;
279   }
280 }
281 
282 
283 #ifdef INPUT_SMOOTHING_SUPPORTED
284 
285 /*
286  * Downsample pixel values of a single component.
287  * This version handles the standard case of 2:1 horizontal and 2:1 vertical,
288  * with smoothing.  One row of context is required.
289  */
290 
291 METHODDEF(void)
h2v2_smooth_downsample(j_compress_ptr cinfo,jpeg_component_info * compptr,JSAMPARRAY input_data,JSAMPARRAY output_data)292 h2v2_smooth_downsample (j_compress_ptr cinfo, jpeg_component_info * compptr,
293 			JSAMPARRAY input_data, JSAMPARRAY output_data)
294 {
295   int inrow, outrow;
296   JDIMENSION colctr;
297   JDIMENSION output_cols = compptr->width_in_blocks * DCTSIZE;
298   register JSAMPROW inptr0, inptr1, above_ptr, below_ptr, outptr;
299   INT32 membersum, neighsum, memberscale, neighscale;
300 
301   /* Expand input data enough to let all the output samples be generated
302    * by the standard loop.  Special-casing padded output would be more
303    * efficient.
304    */
305   expand_right_edge(input_data - 1, cinfo->max_v_samp_factor + 2,
306 		    cinfo->image_width, output_cols * 2);
307 
308   /* We don't bother to form the individual "smoothed" input pixel values;
309    * we can directly compute the output which is the average of the four
310    * smoothed values.  Each of the four member pixels contributes a fraction
311    * (1-8*SF) to its own smoothed image and a fraction SF to each of the three
312    * other smoothed pixels, therefore a total fraction (1-5*SF)/4 to the final
313    * output.  The four corner-adjacent neighbor pixels contribute a fraction
314    * SF to just one smoothed pixel, or SF/4 to the final output; while the
315    * eight edge-adjacent neighbors contribute SF to each of two smoothed
316    * pixels, or SF/2 overall.  In order to use integer arithmetic, these
317    * factors are scaled by 2^16 = 65536.
318    * Also recall that SF = smoothing_factor / 1024.
319    */
320 
321   memberscale = 16384 - cinfo->smoothing_factor * 80; /* scaled (1-5*SF)/4 */
322   neighscale = cinfo->smoothing_factor * 16; /* scaled SF/4 */
323 
324   inrow = 0;
325   for (outrow = 0; outrow < compptr->v_samp_factor; outrow++) {
326     outptr = output_data[outrow];
327     inptr0 = input_data[inrow];
328     inptr1 = input_data[inrow+1];
329     above_ptr = input_data[inrow-1];
330     below_ptr = input_data[inrow+2];
331 
332     /* Special case for first column: pretend column -1 is same as column 0 */
333     membersum = GETJSAMPLE(*inptr0) + GETJSAMPLE(inptr0[1]) +
334 		GETJSAMPLE(*inptr1) + GETJSAMPLE(inptr1[1]);
335     neighsum = GETJSAMPLE(*above_ptr) + GETJSAMPLE(above_ptr[1]) +
336 	       GETJSAMPLE(*below_ptr) + GETJSAMPLE(below_ptr[1]) +
337 	       GETJSAMPLE(*inptr0) + GETJSAMPLE(inptr0[2]) +
338 	       GETJSAMPLE(*inptr1) + GETJSAMPLE(inptr1[2]);
339     neighsum += neighsum;
340     neighsum += GETJSAMPLE(*above_ptr) + GETJSAMPLE(above_ptr[2]) +
341 		GETJSAMPLE(*below_ptr) + GETJSAMPLE(below_ptr[2]);
342     membersum = membersum * memberscale + neighsum * neighscale;
343     *outptr++ = (JSAMPLE) ((membersum + 32768) >> 16);
344     inptr0 += 2; inptr1 += 2; above_ptr += 2; below_ptr += 2;
345 
346     for (colctr = output_cols - 2; colctr > 0; colctr--) {
347       /* sum of pixels directly mapped to this output element */
348       membersum = GETJSAMPLE(*inptr0) + GETJSAMPLE(inptr0[1]) +
349 		  GETJSAMPLE(*inptr1) + GETJSAMPLE(inptr1[1]);
350       /* sum of edge-neighbor pixels */
351       neighsum = GETJSAMPLE(*above_ptr) + GETJSAMPLE(above_ptr[1]) +
352 		 GETJSAMPLE(*below_ptr) + GETJSAMPLE(below_ptr[1]) +
353 		 GETJSAMPLE(inptr0[-1]) + GETJSAMPLE(inptr0[2]) +
354 		 GETJSAMPLE(inptr1[-1]) + GETJSAMPLE(inptr1[2]);
355       /* The edge-neighbors count twice as much as corner-neighbors */
356       neighsum += neighsum;
357       /* Add in the corner-neighbors */
358       neighsum += GETJSAMPLE(above_ptr[-1]) + GETJSAMPLE(above_ptr[2]) +
359 		  GETJSAMPLE(below_ptr[-1]) + GETJSAMPLE(below_ptr[2]);
360       /* form final output scaled up by 2^16 */
361       membersum = membersum * memberscale + neighsum * neighscale;
362       /* round, descale and output it */
363       *outptr++ = (JSAMPLE) ((membersum + 32768) >> 16);
364       inptr0 += 2; inptr1 += 2; above_ptr += 2; below_ptr += 2;
365     }
366 
367     /* Special case for last column */
368     membersum = GETJSAMPLE(*inptr0) + GETJSAMPLE(inptr0[1]) +
369 		GETJSAMPLE(*inptr1) + GETJSAMPLE(inptr1[1]);
370     neighsum = GETJSAMPLE(*above_ptr) + GETJSAMPLE(above_ptr[1]) +
371 	       GETJSAMPLE(*below_ptr) + GETJSAMPLE(below_ptr[1]) +
372 	       GETJSAMPLE(inptr0[-1]) + GETJSAMPLE(inptr0[1]) +
373 	       GETJSAMPLE(inptr1[-1]) + GETJSAMPLE(inptr1[1]);
374     neighsum += neighsum;
375     neighsum += GETJSAMPLE(above_ptr[-1]) + GETJSAMPLE(above_ptr[1]) +
376 		GETJSAMPLE(below_ptr[-1]) + GETJSAMPLE(below_ptr[1]);
377     membersum = membersum * memberscale + neighsum * neighscale;
378     *outptr = (JSAMPLE) ((membersum + 32768) >> 16);
379 
380     inrow += 2;
381   }
382 }
383 
384 
385 /*
386  * Downsample pixel values of a single component.
387  * This version handles the special case of a full-size component,
388  * with smoothing.  One row of context is required.
389  */
390 
391 METHODDEF(void)
fullsize_smooth_downsample(j_compress_ptr cinfo,jpeg_component_info * compptr,JSAMPARRAY input_data,JSAMPARRAY output_data)392 fullsize_smooth_downsample (j_compress_ptr cinfo, jpeg_component_info *compptr,
393 			    JSAMPARRAY input_data, JSAMPARRAY output_data)
394 {
395   int outrow;
396   JDIMENSION colctr;
397   JDIMENSION output_cols = compptr->width_in_blocks * DCTSIZE;
398   register JSAMPROW inptr, above_ptr, below_ptr, outptr;
399   INT32 membersum, neighsum, memberscale, neighscale;
400   int colsum, lastcolsum, nextcolsum;
401 
402   /* Expand input data enough to let all the output samples be generated
403    * by the standard loop.  Special-casing padded output would be more
404    * efficient.
405    */
406   expand_right_edge(input_data - 1, cinfo->max_v_samp_factor + 2,
407 		    cinfo->image_width, output_cols);
408 
409   /* Each of the eight neighbor pixels contributes a fraction SF to the
410    * smoothed pixel, while the main pixel contributes (1-8*SF).  In order
411    * to use integer arithmetic, these factors are multiplied by 2^16 = 65536.
412    * Also recall that SF = smoothing_factor / 1024.
413    */
414 
415   memberscale = 65536L - cinfo->smoothing_factor * 512L; /* scaled 1-8*SF */
416   neighscale = cinfo->smoothing_factor * 64; /* scaled SF */
417 
418   for (outrow = 0; outrow < compptr->v_samp_factor; outrow++) {
419     outptr = output_data[outrow];
420     inptr = input_data[outrow];
421     above_ptr = input_data[outrow-1];
422     below_ptr = input_data[outrow+1];
423 
424     /* Special case for first column */
425     colsum = GETJSAMPLE(*above_ptr++) + GETJSAMPLE(*below_ptr++) +
426 	     GETJSAMPLE(*inptr);
427     membersum = GETJSAMPLE(*inptr++);
428     nextcolsum = GETJSAMPLE(*above_ptr) + GETJSAMPLE(*below_ptr) +
429 		 GETJSAMPLE(*inptr);
430     neighsum = colsum + (colsum - membersum) + nextcolsum;
431     membersum = membersum * memberscale + neighsum * neighscale;
432     *outptr++ = (JSAMPLE) ((membersum + 32768) >> 16);
433     lastcolsum = colsum; colsum = nextcolsum;
434 
435     for (colctr = output_cols - 2; colctr > 0; colctr--) {
436       membersum = GETJSAMPLE(*inptr++);
437       above_ptr++; below_ptr++;
438       nextcolsum = GETJSAMPLE(*above_ptr) + GETJSAMPLE(*below_ptr) +
439 		   GETJSAMPLE(*inptr);
440       neighsum = lastcolsum + (colsum - membersum) + nextcolsum;
441       membersum = membersum * memberscale + neighsum * neighscale;
442       *outptr++ = (JSAMPLE) ((membersum + 32768) >> 16);
443       lastcolsum = colsum; colsum = nextcolsum;
444     }
445 
446     /* Special case for last column */
447     membersum = GETJSAMPLE(*inptr);
448     neighsum = lastcolsum + (colsum - membersum) + colsum;
449     membersum = membersum * memberscale + neighsum * neighscale;
450     *outptr = (JSAMPLE) ((membersum + 32768) >> 16);
451 
452   }
453 }
454 
455 #endif /* INPUT_SMOOTHING_SUPPORTED */
456 
457 
458 /*
459  * Module initialization routine for downsampling.
460  * Note that we must select a routine for each component.
461  */
462 
463 GLOBAL(void)
jinit_downsampler(j_compress_ptr cinfo)464 jinit_downsampler (j_compress_ptr cinfo)
465 {
466   my_downsample_ptr downsample;
467   int ci;
468   jpeg_component_info * compptr;
469   boolean smoothok = TRUE;
470 
471   downsample = (my_downsample_ptr)
472     (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
473 				SIZEOF(my_downsampler));
474   cinfo->downsample = (struct jpeg_downsampler *) downsample;
475   downsample->pub.start_pass = start_pass_downsample;
476   downsample->pub.downsample = sep_downsample;
477   downsample->pub.need_context_rows = FALSE;
478 
479   if (cinfo->CCIR601_sampling)
480     ERREXIT(cinfo, JERR_CCIR601_NOTIMPL);
481 
482   /* Verify we can handle the sampling factors, and set up method pointers */
483   for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
484        ci++, compptr++) {
485     if (compptr->h_samp_factor == cinfo->max_h_samp_factor &&
486 	compptr->v_samp_factor == cinfo->max_v_samp_factor) {
487 #ifdef INPUT_SMOOTHING_SUPPORTED
488       if (cinfo->smoothing_factor) {
489 	downsample->methods[ci] = fullsize_smooth_downsample;
490 	downsample->pub.need_context_rows = TRUE;
491       } else
492 #endif
493 	downsample->methods[ci] = fullsize_downsample;
494     } else if (compptr->h_samp_factor * 2 == cinfo->max_h_samp_factor &&
495 	       compptr->v_samp_factor == cinfo->max_v_samp_factor) {
496       smoothok = FALSE;
497       downsample->methods[ci] = h2v1_downsample;
498     } else if (compptr->h_samp_factor * 2 == cinfo->max_h_samp_factor &&
499 	       compptr->v_samp_factor * 2 == cinfo->max_v_samp_factor) {
500 #ifdef INPUT_SMOOTHING_SUPPORTED
501       if (cinfo->smoothing_factor) {
502 	downsample->methods[ci] = h2v2_smooth_downsample;
503 	downsample->pub.need_context_rows = TRUE;
504       } else
505 #endif
506 	downsample->methods[ci] = h2v2_downsample;
507     } else if ((cinfo->max_h_samp_factor % compptr->h_samp_factor) == 0 &&
508 	       (cinfo->max_v_samp_factor % compptr->v_samp_factor) == 0) {
509       smoothok = FALSE;
510       downsample->methods[ci] = int_downsample;
511     } else
512       ERREXIT(cinfo, JERR_FRACT_SAMPLE_NOTIMPL);
513   }
514 
515 #ifdef INPUT_SMOOTHING_SUPPORTED
516   if (cinfo->smoothing_factor && !smoothok)
517     TRACEMS(cinfo, 0, JTRC_SMOOTH_NOTIMPL);
518 #endif
519 }
520