1 /*
2  * IDCT implementation using the MIPS DSP ASE (little endian version)
3  *
4  * jidctfst.c
5  *
6  * Copyright (C) 1994-1998, Thomas G. Lane.
7  * This file is part of the Independent JPEG Group's software.
8  * For conditions of distribution and use, see the accompanying README file.
9  *
10  * This file contains a fast, not so accurate integer implementation of the
11  * inverse DCT (Discrete Cosine Transform).  In the IJG code, this routine
12  * must also perform dequantization of the input coefficients.
13  *
14  * A 2-D IDCT can be done by 1-D IDCT on each column followed by 1-D IDCT
15  * on each row (or vice versa, but it's more convenient to emit a row at
16  * a time).  Direct algorithms are also available, but they are much more
17  * complex and seem not to be any faster when reduced to code.
18  *
19  * This implementation is based on Arai, Agui, and Nakajima's algorithm for
20  * scaled DCT.  Their original paper (Trans. IEICE E-71(11):1095) is in
21  * Japanese, but the algorithm is described in the Pennebaker & Mitchell
22  * JPEG textbook (see REFERENCES section in file README).  The following code
23  * is based directly on figure 4-8 in P&M.
24  * While an 8-point DCT cannot be done in less than 11 multiplies, it is
25  * possible to arrange the computation so that many of the multiplies are
26  * simple scalings of the final outputs.  These multiplies can then be
27  * folded into the multiplications or divisions by the JPEG quantization
28  * table entries.  The AA&N method leaves only 5 multiplies and 29 adds
29  * to be done in the DCT itself.
30  * The primary disadvantage of this method is that with fixed-point math,
31  * accuracy is lost due to imprecise representation of the scaled
32  * quantization values.  The smaller the quantization table entry, the less
33  * precise the scaled value, so this implementation does worse with high-
34  * quality-setting files than with low-quality ones.
35  */
36 
37 #define JPEG_INTERNALS
38 #include "jinclude.h"
39 #include "jpeglib.h"
40 #include "jdct.h"               /* Private declarations for DCT subsystem */
41 
42 #ifdef DCT_IFAST_SUPPORTED
43 
44 
45 /*
46  * This module is specialized to the case DCTSIZE = 8.
47  */
48 
49 #if DCTSIZE != 8
50   Sorry, this code only copes with 8x8 DCTs. /* deliberate syntax err */
51 #endif
52 
53 
54 /* Scaling decisions are generally the same as in the LL&M algorithm;
55  * see jidctint.c for more details.  However, we choose to descale
56  * (right shift) multiplication products as soon as they are formed,
57  * rather than carrying additional fractional bits into subsequent additions.
58  * This compromises accuracy slightly, but it lets us save a few shifts.
59  * More importantly, 16-bit arithmetic is then adequate (for 8-bit samples)
60  * everywhere except in the multiplications proper; this saves a good deal
61  * of work on 16-bit-int machines.
62  *
63  * The dequantized coefficients are not integers because the AA&N scaling
64  * factors have been incorporated.  We represent them scaled up by PASS1_BITS,
65  * so that the first and second IDCT rounds have the same input scaling.
66  * For 8-bit JSAMPLEs, we choose IFAST_SCALE_BITS = PASS1_BITS so as to
67  * avoid a descaling shift; this compromises accuracy rather drastically
68  * for small quantization table entries, but it saves a lot of shifts.
69  * For 12-bit JSAMPLEs, there's no hope of using 16x16 multiplies anyway,
70  * so we use a much larger scaling factor to preserve accuracy.
71  *
72  * A final compromise is to represent the multiplicative constants to only
73  * 8 fractional bits, rather than 13.  This saves some shifting work on some
74  * machines, and may also reduce the cost of multiplication (since there
75  * are fewer one-bits in the constants).
76  */
77 
78 #if BITS_IN_JSAMPLE == 8
79 #define CONST_BITS  8
80 #define PASS1_BITS  2
81 #else
82 #define CONST_BITS  8
83 #define PASS1_BITS  1           /* lose a little precision to avoid overflow */
84 #endif
85 
86 /* Some C compilers fail to reduce "FIX(constant)" at compile time, thus
87  * causing a lot of useless floating-point operations at run time.
88  * To get around this we use the following pre-calculated constants.
89  * If you change CONST_BITS you may want to add appropriate values.
90  * (With a reasonable C compiler, you can just rely on the FIX() macro...)
91  */
92 
93 #if CONST_BITS == 8
94 #define FIX_1_082392200  ((INT32)  277)         /* FIX(1.082392200) */
95 #define FIX_1_414213562  ((INT32)  362)         /* FIX(1.414213562) */
96 #define FIX_1_847759065  ((INT32)  473)         /* FIX(1.847759065) */
97 #define FIX_2_613125930  ((INT32)  669)         /* FIX(2.613125930) */
98 #else
99 #define FIX_1_082392200  FIX(1.082392200)
100 #define FIX_1_414213562  FIX(1.414213562)
101 #define FIX_1_847759065  FIX(1.847759065)
102 #define FIX_2_613125930  FIX(2.613125930)
103 #endif
104 
105 
106 /* We can gain a little more speed, with a further compromise in accuracy,
107  * by omitting the addition in a descaling shift.  This yields an incorrectly
108  * rounded result half the time...
109  */
110 
111 #ifndef USE_ACCURATE_ROUNDING
112 #undef DESCALE
113 #define DESCALE(x,n)  RIGHT_SHIFT(x, n)
114 #endif
115 
116 
117 /* Multiply a DCTELEM variable by an INT32 constant, and immediately
118  * descale to yield a DCTELEM result.
119  */
120 
121 #define MULTIPLY(var,const)  ((DCTELEM) DESCALE((var) * (const), CONST_BITS))
122 
123 
124 /* Dequantize a coefficient by multiplying it by the multiplier-table
125  * entry; produce a DCTELEM result.  For 8-bit data a 16x16->16
126  * multiplication will do.  For 12-bit data, the multiplier table is
127  * declared INT32, so a 32-bit multiply will be used.
128  */
129 
130 #if BITS_IN_JSAMPLE == 8
131 #define DEQUANTIZE(coef,quantval)  (((IFAST_MULT_TYPE) (coef)) * (quantval))
132 #else
133 #define DEQUANTIZE(coef,quantval)  \
134         DESCALE((coef)*(quantval), IFAST_SCALE_BITS-PASS1_BITS)
135 #endif
136 
137 
138 /* Like DESCALE, but applies to a DCTELEM and produces an int.
139  * We assume that int right shift is unsigned if INT32 right shift is.
140  */
141 
142 #ifdef RIGHT_SHIFT_IS_UNSIGNED
143 #define ISHIFT_TEMPS    DCTELEM ishift_temp;
144 #if BITS_IN_JSAMPLE == 8
145 #define DCTELEMBITS  16         /* DCTELEM may be 16 or 32 bits */
146 #else
147 #define DCTELEMBITS  32         /* DCTELEM must be 32 bits */
148 #endif
149 #define IRIGHT_SHIFT(x,shft)  \
150     ((ishift_temp = (x)) < 0 ? \
151      (ishift_temp >> (shft)) | ((~((DCTELEM) 0)) << (DCTELEMBITS-(shft))) : \
152      (ishift_temp >> (shft)))
153 #else
154 #define ISHIFT_TEMPS
155 #define IRIGHT_SHIFT(x,shft)    ((x) >> (shft))
156 #endif
157 
158 #ifdef USE_ACCURATE_ROUNDING
159 #define IDESCALE(x,n)  ((int) IRIGHT_SHIFT((x) + (1 << ((n)-1)), n))
160 #else
161 #define IDESCALE(x,n)  ((int) IRIGHT_SHIFT(x, n))
162 #endif
163 
164 
165 // this table of constants has been moved from mips_idct_le/_be.s to
166 // avoid having to make the assembler code position independent
167 static const int mips_idct_coefs[4] = {
168   0x45464546,           // FIX( 1.082392200 / 2) =  17734 = 0x4546
169   0x5A825A82,           // FIX( 1.414213562 / 2) =  23170 = 0x5A82
170   0x76427642,           // FIX( 1.847759065 / 2) =  30274 = 0x7642
171   0xAC61AC61            // FIX(-2.613125930 / 4) = -21407 = 0xAC61
172 };
173 
174 void mips_idct_columns(JCOEF * inptr, IFAST_MULT_TYPE * quantptr,
175                        DCTELEM * wsptr, const int * mips_idct_coefs);
176 void mips_idct_rows(DCTELEM * wsptr, JSAMPARRAY output_buf,
177                     JDIMENSION output_col, const int * mips_idct_coefs);
178 
179 
180 /*
181  * Perform dequantization and inverse DCT on one block of coefficients.
182  */
183 
184 GLOBAL(void)
jpeg_idct_mips(j_decompress_ptr cinfo,jpeg_component_info * compptr,JCOEFPTR coef_block,JSAMPARRAY output_buf,JDIMENSION output_col)185 jpeg_idct_mips (j_decompress_ptr cinfo, jpeg_component_info * compptr,
186                  JCOEFPTR coef_block,
187                  JSAMPARRAY output_buf, JDIMENSION output_col)
188 {
189   JCOEFPTR inptr;
190   IFAST_MULT_TYPE * quantptr;
191   DCTELEM workspace[DCTSIZE2];  /* buffers data between passes */
192 
193   /* Pass 1: process columns from input, store into work array. */
194 
195   inptr = coef_block;
196   quantptr = (IFAST_MULT_TYPE *) compptr->dct_table;
197 
198   mips_idct_columns(inptr, quantptr, workspace, mips_idct_coefs);
199 
200   /* Pass 2: process rows from work array, store into output array. */
201   /* Note that we must descale the results by a factor of 8 == 2**3, */
202   /* and also undo the PASS1_BITS scaling. */
203 
204   mips_idct_rows(workspace, output_buf, output_col, mips_idct_coefs);
205 
206 }
207 
208 #endif /* DCT_IFAST_SUPPORTED */
209