• Home
  • History
  • Annotate
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1  /*
2   * Copyright 1992 by Jutta Degener and Carsten Bormann, Technische
3   * Universitaet Berlin.  See the accompanying file "COPYRIGHT" for
4   * details.  THERE IS ABSOLUTELY NO WARRANTY FOR THIS SOFTWARE.
5   */
6  
7  /* $Header: /tmp_amd/presto/export/kbs/jutta/src/gsm/RCS/short_term.c,v 1.2 1994/05/10 20:18:47 jutta Exp $ */
8  
9  #include <stdio.h>
10  #include <assert.h>
11  
12  #include "private.h"
13  
14  #include "gsm.h"
15  #include "proto.h"
16  
17  /*
18   *  SHORT TERM ANALYSIS FILTERING SECTION
19   */
20  
21  /* 4.2.8 */
22  
23  static void Decoding_of_the_coded_Log_Area_Ratios P2((LARc,LARpp),
24  	word 	* LARc,		/* coded log area ratio	[0..7] 	IN	*/
25  	word	* LARpp)	/* out: decoded ..			*/
26  {
27  	register word	temp1 /* , temp2 */;
28  	register long	ltmp;	/* for GSM_ADD */
29  
30  	/*  This procedure requires for efficient implementation
31  	 *  two tables.
32   	 *
33  	 *  INVA[1..8] = integer( (32768 * 8) / real_A[1..8])
34  	 *  MIC[1..8]  = minimum value of the LARc[1..8]
35  	 */
36  
37  	/*  Compute the LARpp[1..8]
38  	 */
39  
40  	/* 	for (i = 1; i <= 8; i++, B++, MIC++, INVA++, LARc++, LARpp++) {
41  	 *
42  	 *		temp1  = GSM_ADD( *LARc, *MIC ) << 10;
43  	 *		temp2  = *B << 1;
44  	 *		temp1  = GSM_SUB( temp1, temp2 );
45  	 *
46  	 *		assert(*INVA != MIN_WORD);
47  	 *
48  	 *		temp1  = GSM_MULT_R( *INVA, temp1 );
49  	 *		*LARpp = GSM_ADD( temp1, temp1 );
50  	 *	}
51  	 */
52  
53  #undef	STEP
54  #define	STEP( B, MIC, INVA )	\
55  		temp1    = GSM_ADD( *LARc++, MIC ) << 10;	\
56  		temp1    = GSM_SUB( temp1, B << 1 );		\
57  		temp1    = GSM_MULT_R( INVA, temp1 );		\
58  		*LARpp++ = GSM_ADD( temp1, temp1 );
59  
60  	STEP(      0,  -32,  13107 );
61  	STEP(      0,  -32,  13107 );
62  	STEP(   2048,  -16,  13107 );
63  	STEP(  -2560,  -16,  13107 );
64  
65  	STEP(     94,   -8,  19223 );
66  	STEP(  -1792,   -8,  17476 );
67  	STEP(   -341,   -4,  31454 );
68  	STEP(  -1144,   -4,  29708 );
69  
70  	/* NOTE: the addition of *MIC is used to restore
71  	 * 	 the sign of *LARc.
72  	 */
73  }
74  
75  /* 4.2.9 */
76  /* Computation of the quantized reflection coefficients
77   */
78  
79  /* 4.2.9.1  Interpolation of the LARpp[1..8] to get the LARp[1..8]
80   */
81  
82  /*
83   *  Within each frame of 160 analyzed speech samples the short term
84   *  analysis and synthesis filters operate with four different sets of
85   *  coefficients, derived from the previous set of decoded LARs(LARpp(j-1))
86   *  and the actual set of decoded LARs (LARpp(j))
87   *
88   * (Initial value: LARpp(j-1)[1..8] = 0.)
89   */
90  
91  static void Coefficients_0_12 P3((LARpp_j_1, LARpp_j, LARp),
92  	register word * LARpp_j_1,
93  	register word * LARpp_j,
94  	register word * LARp)
95  {
96  	register int 	i;
97  	register longword ltmp;
98  
99  	for (i = 1; i <= 8; i++, LARp++, LARpp_j_1++, LARpp_j++) {
100  		*LARp = GSM_ADD( SASR( *LARpp_j_1, 2 ), SASR( *LARpp_j, 2 ));
101  		*LARp = GSM_ADD( *LARp,  SASR( *LARpp_j_1, 1));
102  	}
103  }
104  
105  static void Coefficients_13_26 P3((LARpp_j_1, LARpp_j, LARp),
106  	register word * LARpp_j_1,
107  	register word * LARpp_j,
108  	register word * LARp)
109  {
110  	register int i;
111  	register longword ltmp;
112  	for (i = 1; i <= 8; i++, LARpp_j_1++, LARpp_j++, LARp++) {
113  		*LARp = GSM_ADD( SASR( *LARpp_j_1, 1), SASR( *LARpp_j, 1 ));
114  	}
115  }
116  
117  static void Coefficients_27_39 P3((LARpp_j_1, LARpp_j, LARp),
118  	register word * LARpp_j_1,
119  	register word * LARpp_j,
120  	register word * LARp)
121  {
122  	register int i;
123  	register longword ltmp;
124  
125  	for (i = 1; i <= 8; i++, LARpp_j_1++, LARpp_j++, LARp++) {
126  		*LARp = GSM_ADD( SASR( *LARpp_j_1, 2 ), SASR( *LARpp_j, 2 ));
127  		*LARp = GSM_ADD( *LARp, SASR( *LARpp_j, 1 ));
128  	}
129  }
130  
131  
132  static void Coefficients_40_159 P2((LARpp_j, LARp),
133  	register word * LARpp_j,
134  	register word * LARp)
135  {
136  	register int i;
137  
138  	for (i = 1; i <= 8; i++, LARp++, LARpp_j++)
139  		*LARp = *LARpp_j;
140  }
141  
142  /* 4.2.9.2 */
143  
144  static void LARp_to_rp P1((LARp),
145  	register word * LARp)	/* [0..7] IN/OUT  */
146  /*
147   *  The input of this procedure is the interpolated LARp[0..7] array.
148   *  The reflection coefficients, rp[i], are used in the analysis
149   *  filter and in the synthesis filter.
150   */
151  {
152  	register int 		i;
153  	register word		temp;
154  	register longword	ltmp;
155  
156  	for (i = 1; i <= 8; i++, LARp++) {
157  
158  		/* temp = GSM_ABS( *LARp );
159  	         *
160  		 * if (temp < 11059) temp <<= 1;
161  		 * else if (temp < 20070) temp += 11059;
162  		 * else temp = GSM_ADD( temp >> 2, 26112 );
163  		 *
164  		 * *LARp = *LARp < 0 ? -temp : temp;
165  		 */
166  
167  		if (*LARp < 0) {
168  			temp = *LARp == MIN_WORD ? MAX_WORD : -(*LARp);
169  			*LARp = - ((temp < 11059) ? temp << 1
170  				: ((temp < 20070) ? temp + 11059
171  				:  GSM_ADD( temp >> 2, 26112 )));
172  		} else {
173  			temp  = *LARp;
174  			*LARp =    (temp < 11059) ? temp << 1
175  				: ((temp < 20070) ? temp + 11059
176  				:  GSM_ADD( temp >> 2, 26112 ));
177  		}
178  	}
179  }
180  
181  
182  /* 4.2.10 */
183  static void Short_term_analysis_filtering P4((S,rp,k_n,s),
184  	struct gsm_state * S,
185  	register word	* rp,	/* [0..7]	IN	*/
186  	register int 	k_n, 	/*   k_end - k_start	*/
187  	register word	* s	/* [0..n-1]	IN/OUT	*/
188  )
189  /*
190   *  This procedure computes the short term residual signal d[..] to be fed
191   *  to the RPE-LTP loop from the s[..] signal and from the local rp[..]
192   *  array (quantized reflection coefficients).  As the call of this
193   *  procedure can be done in many ways (see the interpolation of the LAR
194   *  coefficient), it is assumed that the computation begins with index
195   *  k_start (for arrays d[..] and s[..]) and stops with index k_end
196   *  (k_start and k_end are defined in 4.2.9.1).  This procedure also
197   *  needs to keep the array u[0..7] in memory for each call.
198   */
199  {
200  	register word		* u = S->u;
201  	register int		i;
202  	register word		di, zzz, ui, sav, rpi;
203  	register longword 	ltmp;
204  
205  	for (; k_n--; s++) {
206  
207  		di = sav = *s;
208  
209  		for (i = 0; i < 8; i++) {		/* YYY */
210  
211  			ui    = u[i];
212  			rpi   = rp[i];
213  			u[i]  = sav;
214  
215  			zzz   = GSM_MULT_R(rpi, di);
216  			sav   = GSM_ADD(   ui,  zzz);
217  
218  			zzz   = GSM_MULT_R(rpi, ui);
219  			di    = GSM_ADD(   di,  zzz );
220  		}
221  
222  		*s = di;
223  	}
224  }
225  
226  #if defined(USE_FLOAT_MUL) && defined(FAST)
227  
228  static void Fast_Short_term_analysis_filtering P4((S,rp,k_n,s),
229  	struct gsm_state * S,
230  	register word	* rp,	/* [0..7]	IN	*/
231  	register int 	k_n, 	/*   k_end - k_start	*/
232  	register word	* s	/* [0..n-1]	IN/OUT	*/
233  )
234  {
235  	register word		* u = S->u;
236  	register int		i;
237  
238  	float 	  uf[8],
239  		 rpf[8];
240  
241  	register float scalef = 3.0517578125e-5;
242  	register float		sav, di, temp;
243  
244  	for (i = 0; i < 8; ++i) {
245  		uf[i]  = u[i];
246  		rpf[i] = rp[i] * scalef;
247  	}
248  	for (; k_n--; s++) {
249  		sav = di = *s;
250  		for (i = 0; i < 8; ++i) {
251  			register float rpfi = rpf[i];
252  			register float ufi  = uf[i];
253  
254  			uf[i] = sav;
255  			temp  = rpfi * di + ufi;
256  			di   += rpfi * ufi;
257  			sav   = temp;
258  		}
259  		*s = di;
260  	}
261  	for (i = 0; i < 8; ++i) u[i] = uf[i];
262  }
263  #endif /* ! (defined (USE_FLOAT_MUL) && defined (FAST)) */
264  
265  static void Short_term_synthesis_filtering P5((S,rrp,k,wt,sr),
266  	struct gsm_state * S,
267  	register word	* rrp,	/* [0..7]	IN	*/
268  	register int	k,	/* k_end - k_start	*/
269  	register word	* wt,	/* [0..k-1]	IN	*/
270  	register word	* sr	/* [0..k-1]	OUT	*/
271  )
272  {
273  	register word		* v = S->v;
274  	register int		i;
275  	register word		sri, tmp1, tmp2;
276  	register longword	ltmp;	/* for GSM_ADD  & GSM_SUB */
277  
278  	while (k--) {
279  		sri = *wt++;
280  		for (i = 8; i--;) {
281  
282  			/* sri = GSM_SUB( sri, gsm_mult_r( rrp[i], v[i] ) );
283  			 */
284  			tmp1 = rrp[i];
285  			tmp2 = v[i];
286  			tmp2 =  ( tmp1 == MIN_WORD && tmp2 == MIN_WORD
287  				? MAX_WORD
288  				: 0x0FFFF & (( (longword)tmp1 * (longword)tmp2
289  					     + 16384) >> 15)) ;
290  
291  			sri  = GSM_SUB( sri, tmp2 );
292  
293  			/* v[i+1] = GSM_ADD( v[i], gsm_mult_r( rrp[i], sri ) );
294  			 */
295  			tmp1  = ( tmp1 == MIN_WORD && sri == MIN_WORD
296  				? MAX_WORD
297  				: 0x0FFFF & (( (longword)tmp1 * (longword)sri
298  					     + 16384) >> 15)) ;
299  
300  			v[i+1] = GSM_ADD( v[i], tmp1);
301  		}
302  		*sr++ = v[0] = sri;
303  	}
304  }
305  
306  
307  #if defined(FAST) && defined(USE_FLOAT_MUL)
308  
309  static void Fast_Short_term_synthesis_filtering P5((S,rrp,k,wt,sr),
310  	struct gsm_state * S,
311  	register word	* rrp,	/* [0..7]	IN	*/
312  	register int	k,	/* k_end - k_start	*/
313  	register word	* wt,	/* [0..k-1]	IN	*/
314  	register word	* sr	/* [0..k-1]	OUT	*/
315  )
316  {
317  	register word		* v = S->v;
318  	register int		i;
319  
320  	float va[9], rrpa[8];
321  	register float scalef = 3.0517578125e-5, temp;
322  
323  	for (i = 0; i < 8; ++i) {
324  		va[i]   = v[i];
325  		rrpa[i] = (float)rrp[i] * scalef;
326  	}
327  	while (k--) {
328  		register float sri = *wt++;
329  		for (i = 8; i--;) {
330  			sri -= rrpa[i] * va[i];
331  			if     (sri < -32768.) sri = -32768.;
332  			else if (sri > 32767.) sri =  32767.;
333  
334  			temp = va[i] + rrpa[i] * sri;
335  			if     (temp < -32768.) temp = -32768.;
336  			else if (temp > 32767.) temp =  32767.;
337  			va[i+1] = temp;
338  		}
339  		*sr++ = va[0] = sri;
340  	}
341  	for (i = 0; i < 9; ++i) v[i] = va[i];
342  }
343  
344  #endif /* defined(FAST) && defined(USE_FLOAT_MUL) */
345  
346  void Gsm_Short_Term_Analysis_Filter P3((S,LARc,s),
347  
348  	struct gsm_state * S,
349  
350  	word	* LARc,		/* coded log area ratio [0..7]  IN	*/
351  	word	* s		/* signal [0..159]		IN/OUT	*/
352  )
353  {
354  	word		* LARpp_j	= S->LARpp[ S->j      ];
355  	word		* LARpp_j_1	= S->LARpp[ S->j ^= 1 ];
356  
357  	word		LARp[8];
358  
359  #undef	FILTER
360  #if 	defined(FAST) && defined(USE_FLOAT_MUL)
361  # 	define	FILTER 	(* (S->fast			\
362  			   ? Fast_Short_term_analysis_filtering	\
363  		    	   : Short_term_analysis_filtering	))
364  
365  #else
366  # 	define	FILTER	Short_term_analysis_filtering
367  #endif
368  
369  	Decoding_of_the_coded_Log_Area_Ratios( LARc, LARpp_j );
370  
371  	Coefficients_0_12(  LARpp_j_1, LARpp_j, LARp );
372  	LARp_to_rp( LARp );
373  	FILTER( S, LARp, 13, s);
374  
375  	Coefficients_13_26( LARpp_j_1, LARpp_j, LARp);
376  	LARp_to_rp( LARp );
377  	FILTER( S, LARp, 14, s + 13);
378  
379  	Coefficients_27_39( LARpp_j_1, LARpp_j, LARp);
380  	LARp_to_rp( LARp );
381  	FILTER( S, LARp, 13, s + 27);
382  
383  	Coefficients_40_159( LARpp_j, LARp);
384  	LARp_to_rp( LARp );
385  	FILTER( S, LARp, 120, s + 40);
386  }
387  
388  void Gsm_Short_Term_Synthesis_Filter P4((S, LARcr, wt, s),
389  	struct gsm_state * S,
390  
391  	word	* LARcr,	/* received log area ratios [0..7] IN  */
392  	word	* wt,		/* received d [0..159]		   IN  */
393  
394  	word	* s		/* signal   s [0..159]		  OUT  */
395  )
396  {
397  	word		* LARpp_j	= S->LARpp[ S->j     ];
398  	word		* LARpp_j_1	= S->LARpp[ S->j ^=1 ];
399  
400  	word		LARp[8];
401  
402  #undef	FILTER
403  #if 	defined(FAST) && defined(USE_FLOAT_MUL)
404  
405  # 	define	FILTER 	(* (S->fast			\
406  			   ? Fast_Short_term_synthesis_filtering	\
407  		    	   : Short_term_synthesis_filtering	))
408  #else
409  #	define	FILTER	Short_term_synthesis_filtering
410  #endif
411  
412  	Decoding_of_the_coded_Log_Area_Ratios( LARcr, LARpp_j );
413  
414  	Coefficients_0_12( LARpp_j_1, LARpp_j, LARp );
415  	LARp_to_rp( LARp );
416  	FILTER( S, LARp, 13, wt, s );
417  
418  	Coefficients_13_26( LARpp_j_1, LARpp_j, LARp);
419  	LARp_to_rp( LARp );
420  	FILTER( S, LARp, 14, wt + 13, s + 13 );
421  
422  	Coefficients_27_39( LARpp_j_1, LARpp_j, LARp);
423  	LARp_to_rp( LARp );
424  	FILTER( S, LARp, 13, wt + 27, s + 27 );
425  
426  	Coefficients_40_159( LARpp_j, LARp );
427  	LARp_to_rp( LARp );
428  	FILTER(S, LARp, 120, wt + 40, s + 40);
429  }
430