1 /***********************************************************************
2 Copyright (c) 2006-2011, Skype Limited. All rights reserved.
3 Redistribution and use in source and binary forms, with or without
4 modification, are permitted provided that the following conditions
5 are met:
6 - Redistributions of source code must retain the above copyright notice,
7 this list of conditions and the following disclaimer.
8 - Redistributions in binary form must reproduce the above copyright
9 notice, this list of conditions and the following disclaimer in the
10 documentation and/or other materials provided with the distribution.
11 - Neither the name of Internet Society, IETF or IETF Trust, nor the
12 names of specific contributors, may be used to endorse or promote
13 products derived from this software without specific prior written
14 permission.
15 THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
16 AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
17 IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18 ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
19 LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
20 CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
21 SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
22 INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
23 CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
24 ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
25 POSSIBILITY OF SUCH DAMAGE.
26 ***********************************************************************/
27 
28 #ifndef SILK_SIGPROC_FLP_H
29 #define SILK_SIGPROC_FLP_H
30 
31 #include "SigProc_FIX.h"
32 #include "float_cast.h"
33 #include <math.h>
34 
35 #ifdef  __cplusplus
36 extern "C"
37 {
38 #endif
39 
40 /********************************************************************/
41 /*                    SIGNAL PROCESSING FUNCTIONS                   */
42 /********************************************************************/
43 
44 /* Chirp (bw expand) LP AR filter */
45 void silk_bwexpander_FLP(
46     silk_float          *ar,                /* I/O  AR filter to be expanded (without leading 1)                */
47     const opus_int      d,                  /* I    length of ar                                                */
48     const silk_float    chirp               /* I    chirp factor (typically in range (0..1) )                   */
49 );
50 
51 /* compute inverse of LPC prediction gain, and                          */
52 /* test if LPC coefficients are stable (all poles within unit circle)   */
53 /* this code is based on silk_FLP_a2k()                                 */
54 silk_float silk_LPC_inverse_pred_gain_FLP(  /* O    return inverse prediction gain, energy domain               */
55     const silk_float    *A,                 /* I    prediction coefficients [order]                             */
56     opus_int32          order               /* I    prediction order                                            */
57 );
58 
59 silk_float silk_schur_FLP(                  /* O    returns residual energy                                     */
60     silk_float          refl_coef[],        /* O    reflection coefficients (length order)                      */
61     const silk_float    auto_corr[],        /* I    autocorrelation sequence (length order+1)                   */
62     opus_int            order               /* I    order                                                       */
63 );
64 
65 void silk_k2a_FLP(
66     silk_float          *A,                 /* O     prediction coefficients [order]                            */
67     const silk_float    *rc,                /* I     reflection coefficients [order]                            */
68     opus_int32          order               /* I     prediction order                                           */
69 );
70 
71 /* Solve the normal equations using the Levinson-Durbin recursion */
72 silk_float silk_levinsondurbin_FLP(         /* O    prediction error energy                                     */
73     silk_float          A[],                /* O    prediction coefficients [order]                             */
74     const silk_float    corr[],             /* I    input auto-correlations [order + 1]                         */
75     const opus_int      order               /* I    prediction order                                            */
76 );
77 
78 /* compute autocorrelation */
79 void silk_autocorrelation_FLP(
80     silk_float          *results,           /* O    result (length correlationCount)                            */
81     const silk_float    *inputData,         /* I    input data to correlate                                     */
82     opus_int            inputDataSize,      /* I    length of input                                             */
83     opus_int            correlationCount    /* I    number of correlation taps to compute                       */
84 );
85 
86 opus_int silk_pitch_analysis_core_FLP(      /* O    Voicing estimate: 0 voiced, 1 unvoiced                      */
87     const silk_float    *frame,             /* I    Signal of length PE_FRAME_LENGTH_MS*Fs_kHz                  */
88     opus_int            *pitch_out,         /* O    Pitch lag values [nb_subfr]                                 */
89     opus_int16          *lagIndex,          /* O    Lag Index                                                   */
90     opus_int8           *contourIndex,      /* O    Pitch contour Index                                         */
91     silk_float          *LTPCorr,           /* I/O  Normalized correlation; input: value from previous frame    */
92     opus_int            prevLag,            /* I    Last lag of previous frame; set to zero is unvoiced         */
93     const silk_float    search_thres1,      /* I    First stage threshold for lag candidates 0 - 1              */
94     const silk_float    search_thres2,      /* I    Final threshold for lag candidates 0 - 1                    */
95     const opus_int      Fs_kHz,             /* I    sample frequency (kHz)                                      */
96     const opus_int      complexity,         /* I    Complexity setting, 0-2, where 2 is highest                 */
97     const opus_int      nb_subfr,           /* I    Number of 5 ms subframes                                    */
98     int                 arch                /* I    Run-time architecture                                       */
99 );
100 
101 void silk_insertion_sort_decreasing_FLP(
102     silk_float          *a,                 /* I/O  Unsorted / Sorted vector                                    */
103     opus_int            *idx,               /* O    Index vector for the sorted elements                        */
104     const opus_int      L,                  /* I    Vector length                                               */
105     const opus_int      K                   /* I    Number of correctly sorted positions                        */
106 );
107 
108 /* Compute reflection coefficients from input signal */
109 silk_float silk_burg_modified_FLP(          /* O    returns residual energy                                     */
110     silk_float          A[],                /* O    prediction coefficients (length order)                      */
111     const silk_float    x[],                /* I    input signal, length: nb_subfr*(D+L_sub)                    */
112     const silk_float    minInvGain,         /* I    minimum inverse prediction gain                             */
113     const opus_int      subfr_length,       /* I    input signal subframe length (incl. D preceding samples)    */
114     const opus_int      nb_subfr,           /* I    number of subframes stacked in x                            */
115     const opus_int      D                   /* I    order                                                       */
116 );
117 
118 /* multiply a vector by a constant */
119 void silk_scale_vector_FLP(
120     silk_float          *data1,
121     silk_float          gain,
122     opus_int            dataSize
123 );
124 
125 /* copy and multiply a vector by a constant */
126 void silk_scale_copy_vector_FLP(
127     silk_float          *data_out,
128     const silk_float    *data_in,
129     silk_float          gain,
130     opus_int            dataSize
131 );
132 
133 /* inner product of two silk_float arrays, with result as double */
134 double silk_inner_product_FLP(
135     const silk_float    *data1,
136     const silk_float    *data2,
137     opus_int            dataSize
138 );
139 
140 /* sum of squares of a silk_float array, with result as double */
141 double silk_energy_FLP(
142     const silk_float    *data,
143     opus_int            dataSize
144 );
145 
146 /********************************************************************/
147 /*                                MACROS                            */
148 /********************************************************************/
149 
150 #define PI              (3.1415926536f)
151 
152 #define silk_min_float( a, b )                  (((a) < (b)) ? (a) :  (b))
153 #define silk_max_float( a, b )                  (((a) > (b)) ? (a) :  (b))
154 #define silk_abs_float( a )                     ((silk_float)fabs(a))
155 
156 /* sigmoid function */
silk_sigmoid(silk_float x)157 static OPUS_INLINE silk_float silk_sigmoid( silk_float x )
158 {
159     return (silk_float)(1.0 / (1.0 + exp(-x)));
160 }
161 
162 /* floating-point to integer conversion (rounding) */
silk_float2int(silk_float x)163 static OPUS_INLINE opus_int32 silk_float2int( silk_float x )
164 {
165     return (opus_int32)float2int( x );
166 }
167 
168 /* floating-point to integer conversion (rounding) */
silk_float2short_array(opus_int16 * out,const silk_float * in,opus_int32 length)169 static OPUS_INLINE void silk_float2short_array(
170     opus_int16       *out,
171     const silk_float *in,
172     opus_int32       length
173 )
174 {
175     opus_int32 k;
176     for( k = length - 1; k >= 0; k-- ) {
177         out[k] = silk_SAT16( (opus_int32)float2int( in[k] ) );
178     }
179 }
180 
181 /* integer to floating-point conversion */
silk_short2float_array(silk_float * out,const opus_int16 * in,opus_int32 length)182 static OPUS_INLINE void silk_short2float_array(
183     silk_float       *out,
184     const opus_int16 *in,
185     opus_int32       length
186 )
187 {
188     opus_int32 k;
189     for( k = length - 1; k >= 0; k-- ) {
190         out[k] = (silk_float)in[k];
191     }
192 }
193 
194 /* using log2() helps the fixed-point conversion */
silk_log2(double x)195 static OPUS_INLINE silk_float silk_log2( double x )
196 {
197     return ( silk_float )( 3.32192809488736 * log10( x ) );
198 }
199 
200 #ifdef  __cplusplus
201 }
202 #endif
203 
204 #endif /* SILK_SIGPROC_FLP_H */
205