1 /*
2 * Copyright (c) 1993, 1994, 1995, 1996, 1998
3 * The Regents of the University of California. All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that: (1) source code distributions
7 * retain the above copyright notice and this paragraph in its entirety, (2)
8 * distributions including binary code include the above copyright notice and
9 * this paragraph in its entirety in the documentation or other materials
10 * provided with the distribution, and (3) all advertising materials mentioning
11 * features or use of this software display the following acknowledgement:
12 * ``This product includes software developed by the University of California,
13 * Lawrence Berkeley Laboratory and its contributors.'' Neither the name of
14 * the University nor the names of its contributors may be used to endorse
15 * or promote products derived from this software without specific prior
16 * written permission.
17 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND WITHOUT ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF
19 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
20 */
21 #ifndef lint
22 static const char rcsid[] _U_ =
23 "@(#) $Header: /tcpdump/master/libpcap/pcap-bpf.c,v 1.116 2008-09-16 18:42:29 guy Exp $ (LBL)";
24 #endif
25
26 #ifdef HAVE_CONFIG_H
27 #include "config.h"
28 #endif
29
30 #include <sys/param.h> /* optionally get BSD define */
31 #ifdef HAVE_ZEROCOPY_BPF
32 #include <sys/mman.h>
33 #endif
34 #include <sys/socket.h>
35 #include <time.h>
36 /*
37 * <net/bpf.h> defines ioctls, but doesn't include <sys/ioccom.h>.
38 *
39 * We include <sys/ioctl.h> as it might be necessary to declare ioctl();
40 * at least on *BSD and Mac OS X, it also defines various SIOC ioctls -
41 * we could include <sys/sockio.h>, but if we're already including
42 * <sys/ioctl.h>, which includes <sys/sockio.h> on those platforms,
43 * there's not much point in doing so.
44 *
45 * If we have <sys/ioccom.h>, we include it as well, to handle systems
46 * such as Solaris which don't arrange to include <sys/ioccom.h> if you
47 * include <sys/ioctl.h>
48 */
49 #include <sys/ioctl.h>
50 #ifdef HAVE_SYS_IOCCOM_H
51 #include <sys/ioccom.h>
52 #endif
53 #include <sys/utsname.h>
54
55 #ifdef HAVE_ZEROCOPY_BPF
56 #include <machine/atomic.h>
57 #endif
58
59 #include <net/if.h>
60
61 #ifdef _AIX
62
63 /*
64 * Make "pcap.h" not include "pcap/bpf.h"; we are going to include the
65 * native OS version, as we need "struct bpf_config" from it.
66 */
67 #define PCAP_DONT_INCLUDE_PCAP_BPF_H
68
69 #include <sys/types.h>
70
71 /*
72 * Prevent bpf.h from redefining the DLT_ values to their
73 * IFT_ values, as we're going to return the standard libpcap
74 * values, not IBM's non-standard IFT_ values.
75 */
76 #undef _AIX
77 #include <net/bpf.h>
78 #define _AIX
79
80 #include <net/if_types.h> /* for IFT_ values */
81 #include <sys/sysconfig.h>
82 #include <sys/device.h>
83 #include <sys/cfgodm.h>
84 #include <cf.h>
85
86 #ifdef __64BIT__
87 #define domakedev makedev64
88 #define getmajor major64
89 #define bpf_hdr bpf_hdr32
90 #else /* __64BIT__ */
91 #define domakedev makedev
92 #define getmajor major
93 #endif /* __64BIT__ */
94
95 #define BPF_NAME "bpf"
96 #define BPF_MINORS 4
97 #define DRIVER_PATH "/usr/lib/drivers"
98 #define BPF_NODE "/dev/bpf"
99 static int bpfloadedflag = 0;
100 static int odmlockid = 0;
101
102 static int bpf_load(char *errbuf);
103
104 #else /* _AIX */
105
106 #include <net/bpf.h>
107
108 #endif /* _AIX */
109
110 #include <ctype.h>
111 #include <fcntl.h>
112 #include <errno.h>
113 #include <netdb.h>
114 #include <stdio.h>
115 #include <stdlib.h>
116 #include <string.h>
117 #include <unistd.h>
118
119 #ifdef HAVE_NET_IF_MEDIA_H
120 # include <net/if_media.h>
121 #endif
122
123 #include "pcap-int.h"
124
125 #ifdef HAVE_OS_PROTO_H
126 #include "os-proto.h"
127 #endif
128
129 /*
130 * Later versions of NetBSD stick padding in front of FDDI frames
131 * to align the IP header on a 4-byte boundary.
132 */
133 #if defined(__NetBSD__) && __NetBSD_Version__ > 106000000
134 #define PCAP_FDDIPAD 3
135 #endif
136
137 /*
138 * Private data for capturing on BPF devices.
139 */
140 struct pcap_bpf {
141 #ifdef PCAP_FDDIPAD
142 int fddipad;
143 #endif
144
145 #ifdef HAVE_ZEROCOPY_BPF
146 /*
147 * Zero-copy read buffer -- for zero-copy BPF. 'buffer' above will
148 * alternative between these two actual mmap'd buffers as required.
149 * As there is a header on the front size of the mmap'd buffer, only
150 * some of the buffer is exposed to libpcap as a whole via bufsize;
151 * zbufsize is the true size. zbuffer tracks the current zbuf
152 * assocated with buffer so that it can be used to decide which the
153 * next buffer to read will be.
154 */
155 u_char *zbuf1, *zbuf2, *zbuffer;
156 u_int zbufsize;
157 u_int zerocopy;
158 u_int interrupted;
159 struct timespec firstsel;
160 /*
161 * If there's currently a buffer being actively processed, then it is
162 * referenced here; 'buffer' is also pointed at it, but offset by the
163 * size of the header.
164 */
165 struct bpf_zbuf_header *bzh;
166 int nonblock; /* true if in nonblocking mode */
167 #endif /* HAVE_ZEROCOPY_BPF */
168
169 char *device; /* device name */
170 int filtering_in_kernel; /* using kernel filter */
171 int must_do_on_close; /* stuff we must do when we close */
172 };
173
174 /*
175 * Stuff to do when we close.
176 */
177 #define MUST_CLEAR_RFMON 0x00000001 /* clear rfmon (monitor) mode */
178
179 #ifdef BIOCGDLTLIST
180 # if (defined(HAVE_NET_IF_MEDIA_H) && defined(IFM_IEEE80211)) && !defined(__APPLE__)
181 #define HAVE_BSD_IEEE80211
182 # endif
183
184 # if defined(__APPLE__) || defined(HAVE_BSD_IEEE80211)
185 static int find_802_11(struct bpf_dltlist *);
186
187 # ifdef HAVE_BSD_IEEE80211
188 static int monitor_mode(pcap_t *, int);
189 # endif
190
191 # if defined(__APPLE__)
192 static void remove_en(pcap_t *);
193 static void remove_802_11(pcap_t *);
194 # endif
195
196 # endif /* defined(__APPLE__) || defined(HAVE_BSD_IEEE80211) */
197
198 #endif /* BIOCGDLTLIST */
199
200 #if defined(sun) && defined(LIFNAMSIZ) && defined(lifr_zoneid)
201 #include <zone.h>
202 #endif
203
204 /*
205 * We include the OS's <net/bpf.h>, not our "pcap/bpf.h", so we probably
206 * don't get DLT_DOCSIS defined.
207 */
208 #ifndef DLT_DOCSIS
209 #define DLT_DOCSIS 143
210 #endif
211
212 /*
213 * On OS X, we don't even get any of the 802.11-plus-radio-header DLT_'s
214 * defined, even though some of them are used by various Airport drivers.
215 */
216 #ifndef DLT_PRISM_HEADER
217 #define DLT_PRISM_HEADER 119
218 #endif
219 #ifndef DLT_AIRONET_HEADER
220 #define DLT_AIRONET_HEADER 120
221 #endif
222 #ifndef DLT_IEEE802_11_RADIO
223 #define DLT_IEEE802_11_RADIO 127
224 #endif
225 #ifndef DLT_IEEE802_11_RADIO_AVS
226 #define DLT_IEEE802_11_RADIO_AVS 163
227 #endif
228
229 static int pcap_can_set_rfmon_bpf(pcap_t *p);
230 static int pcap_activate_bpf(pcap_t *p);
231 static int pcap_setfilter_bpf(pcap_t *p, struct bpf_program *fp);
232 static int pcap_setdirection_bpf(pcap_t *, pcap_direction_t);
233 static int pcap_set_datalink_bpf(pcap_t *p, int dlt);
234
235 /*
236 * For zerocopy bpf, the setnonblock/getnonblock routines need to modify
237 * pb->nonblock so we don't call select(2) if the pcap handle is in non-
238 * blocking mode.
239 */
240 static int
pcap_getnonblock_bpf(pcap_t * p,char * errbuf)241 pcap_getnonblock_bpf(pcap_t *p, char *errbuf)
242 {
243 #ifdef HAVE_ZEROCOPY_BPF
244 struct pcap_bpf *pb = p->priv;
245
246 if (pb->zerocopy)
247 return (pb->nonblock);
248 #endif
249 return (pcap_getnonblock_fd(p, errbuf));
250 }
251
252 static int
pcap_setnonblock_bpf(pcap_t * p,int nonblock,char * errbuf)253 pcap_setnonblock_bpf(pcap_t *p, int nonblock, char *errbuf)
254 {
255 #ifdef HAVE_ZEROCOPY_BPF
256 struct pcap_bpf *pb = p->priv;
257
258 if (pb->zerocopy) {
259 pb->nonblock = nonblock;
260 return (0);
261 }
262 #endif
263 return (pcap_setnonblock_fd(p, nonblock, errbuf));
264 }
265
266 #ifdef HAVE_ZEROCOPY_BPF
267 /*
268 * Zero-copy BPF buffer routines to check for and acknowledge BPF data in
269 * shared memory buffers.
270 *
271 * pcap_next_zbuf_shm(): Check for a newly available shared memory buffer,
272 * and set up p->buffer and cc to reflect one if available. Notice that if
273 * there was no prior buffer, we select zbuf1 as this will be the first
274 * buffer filled for a fresh BPF session.
275 */
276 static int
pcap_next_zbuf_shm(pcap_t * p,int * cc)277 pcap_next_zbuf_shm(pcap_t *p, int *cc)
278 {
279 struct pcap_bpf *pb = p->priv;
280 struct bpf_zbuf_header *bzh;
281
282 if (pb->zbuffer == pb->zbuf2 || pb->zbuffer == NULL) {
283 bzh = (struct bpf_zbuf_header *)pb->zbuf1;
284 if (bzh->bzh_user_gen !=
285 atomic_load_acq_int(&bzh->bzh_kernel_gen)) {
286 pb->bzh = bzh;
287 pb->zbuffer = (u_char *)pb->zbuf1;
288 p->buffer = pb->zbuffer + sizeof(*bzh);
289 *cc = bzh->bzh_kernel_len;
290 return (1);
291 }
292 } else if (pb->zbuffer == pb->zbuf1) {
293 bzh = (struct bpf_zbuf_header *)pb->zbuf2;
294 if (bzh->bzh_user_gen !=
295 atomic_load_acq_int(&bzh->bzh_kernel_gen)) {
296 pb->bzh = bzh;
297 pb->zbuffer = (u_char *)pb->zbuf2;
298 p->buffer = pb->zbuffer + sizeof(*bzh);
299 *cc = bzh->bzh_kernel_len;
300 return (1);
301 }
302 }
303 *cc = 0;
304 return (0);
305 }
306
307 /*
308 * pcap_next_zbuf() -- Similar to pcap_next_zbuf_shm(), except wait using
309 * select() for data or a timeout, and possibly force rotation of the buffer
310 * in the event we time out or are in immediate mode. Invoke the shared
311 * memory check before doing system calls in order to avoid doing avoidable
312 * work.
313 */
314 static int
pcap_next_zbuf(pcap_t * p,int * cc)315 pcap_next_zbuf(pcap_t *p, int *cc)
316 {
317 struct pcap_bpf *pb = p->priv;
318 struct bpf_zbuf bz;
319 struct timeval tv;
320 struct timespec cur;
321 fd_set r_set;
322 int data, r;
323 int expire, tmout;
324
325 #define TSTOMILLI(ts) (((ts)->tv_sec * 1000) + ((ts)->tv_nsec / 1000000))
326 /*
327 * Start out by seeing whether anything is waiting by checking the
328 * next shared memory buffer for data.
329 */
330 data = pcap_next_zbuf_shm(p, cc);
331 if (data)
332 return (data);
333 /*
334 * If a previous sleep was interrupted due to signal delivery, make
335 * sure that the timeout gets adjusted accordingly. This requires
336 * that we analyze when the timeout should be been expired, and
337 * subtract the current time from that. If after this operation,
338 * our timeout is less then or equal to zero, handle it like a
339 * regular timeout.
340 */
341 tmout = p->opt.timeout;
342 if (tmout)
343 (void) clock_gettime(CLOCK_MONOTONIC, &cur);
344 if (pb->interrupted && p->opt.timeout) {
345 expire = TSTOMILLI(&pb->firstsel) + p->opt.timeout;
346 tmout = expire - TSTOMILLI(&cur);
347 #undef TSTOMILLI
348 if (tmout <= 0) {
349 pb->interrupted = 0;
350 data = pcap_next_zbuf_shm(p, cc);
351 if (data)
352 return (data);
353 if (ioctl(p->fd, BIOCROTZBUF, &bz) < 0) {
354 (void) snprintf(p->errbuf, PCAP_ERRBUF_SIZE,
355 "BIOCROTZBUF: %s", strerror(errno));
356 return (PCAP_ERROR);
357 }
358 return (pcap_next_zbuf_shm(p, cc));
359 }
360 }
361 /*
362 * No data in the buffer, so must use select() to wait for data or
363 * the next timeout. Note that we only call select if the handle
364 * is in blocking mode.
365 */
366 if (!pb->nonblock) {
367 FD_ZERO(&r_set);
368 FD_SET(p->fd, &r_set);
369 if (tmout != 0) {
370 tv.tv_sec = tmout / 1000;
371 tv.tv_usec = (tmout * 1000) % 1000000;
372 }
373 r = select(p->fd + 1, &r_set, NULL, NULL,
374 p->opt.timeout != 0 ? &tv : NULL);
375 if (r < 0 && errno == EINTR) {
376 if (!pb->interrupted && p->opt.timeout) {
377 pb->interrupted = 1;
378 pb->firstsel = cur;
379 }
380 return (0);
381 } else if (r < 0) {
382 (void) snprintf(p->errbuf, PCAP_ERRBUF_SIZE,
383 "select: %s", strerror(errno));
384 return (PCAP_ERROR);
385 }
386 }
387 pb->interrupted = 0;
388 /*
389 * Check again for data, which may exist now that we've either been
390 * woken up as a result of data or timed out. Try the "there's data"
391 * case first since it doesn't require a system call.
392 */
393 data = pcap_next_zbuf_shm(p, cc);
394 if (data)
395 return (data);
396 /*
397 * Try forcing a buffer rotation to dislodge timed out or immediate
398 * data.
399 */
400 if (ioctl(p->fd, BIOCROTZBUF, &bz) < 0) {
401 (void) snprintf(p->errbuf, PCAP_ERRBUF_SIZE,
402 "BIOCROTZBUF: %s", strerror(errno));
403 return (PCAP_ERROR);
404 }
405 return (pcap_next_zbuf_shm(p, cc));
406 }
407
408 /*
409 * Notify kernel that we are done with the buffer. We don't reset zbuffer so
410 * that we know which buffer to use next time around.
411 */
412 static int
pcap_ack_zbuf(pcap_t * p)413 pcap_ack_zbuf(pcap_t *p)
414 {
415 struct pcap_bpf *pb = p->priv;
416
417 atomic_store_rel_int(&pb->bzh->bzh_user_gen,
418 pb->bzh->bzh_kernel_gen);
419 pb->bzh = NULL;
420 p->buffer = NULL;
421 return (0);
422 }
423 #endif /* HAVE_ZEROCOPY_BPF */
424
425 pcap_t *
pcap_create_interface(const char * device,char * ebuf)426 pcap_create_interface(const char *device, char *ebuf)
427 {
428 pcap_t *p;
429
430 p = pcap_create_common(device, ebuf, sizeof (struct pcap_bpf));
431 if (p == NULL)
432 return (NULL);
433
434 p->activate_op = pcap_activate_bpf;
435 p->can_set_rfmon_op = pcap_can_set_rfmon_bpf;
436 return (p);
437 }
438
439 /*
440 * On success, returns a file descriptor for a BPF device.
441 * On failure, returns a PCAP_ERROR_ value, and sets p->errbuf.
442 */
443 static int
bpf_open(pcap_t * p)444 bpf_open(pcap_t *p)
445 {
446 int fd;
447 #ifdef HAVE_CLONING_BPF
448 static const char device[] = "/dev/bpf";
449 #else
450 int n = 0;
451 char device[sizeof "/dev/bpf0000000000"];
452 #endif
453
454 #ifdef _AIX
455 /*
456 * Load the bpf driver, if it isn't already loaded,
457 * and create the BPF device entries, if they don't
458 * already exist.
459 */
460 if (bpf_load(p->errbuf) == PCAP_ERROR)
461 return (PCAP_ERROR);
462 #endif
463
464 #ifdef HAVE_CLONING_BPF
465 if ((fd = open(device, O_RDWR)) == -1 &&
466 (errno != EACCES || (fd = open(device, O_RDONLY)) == -1)) {
467 if (errno == EACCES)
468 fd = PCAP_ERROR_PERM_DENIED;
469 else
470 fd = PCAP_ERROR;
471 snprintf(p->errbuf, PCAP_ERRBUF_SIZE,
472 "(cannot open device) %s: %s", device, pcap_strerror(errno));
473 }
474 #else
475 /*
476 * Go through all the minors and find one that isn't in use.
477 */
478 do {
479 (void)snprintf(device, sizeof(device), "/dev/bpf%d", n++);
480 /*
481 * Initially try a read/write open (to allow the inject
482 * method to work). If that fails due to permission
483 * issues, fall back to read-only. This allows a
484 * non-root user to be granted specific access to pcap
485 * capabilities via file permissions.
486 *
487 * XXX - we should have an API that has a flag that
488 * controls whether to open read-only or read-write,
489 * so that denial of permission to send (or inability
490 * to send, if sending packets isn't supported on
491 * the device in question) can be indicated at open
492 * time.
493 */
494 fd = open(device, O_RDWR);
495 if (fd == -1 && errno == EACCES)
496 fd = open(device, O_RDONLY);
497 } while (fd < 0 && errno == EBUSY);
498
499 /*
500 * XXX better message for all minors used
501 */
502 if (fd < 0) {
503 switch (errno) {
504
505 case ENOENT:
506 fd = PCAP_ERROR;
507 if (n == 1) {
508 /*
509 * /dev/bpf0 doesn't exist, which
510 * means we probably have no BPF
511 * devices.
512 */
513 snprintf(p->errbuf, PCAP_ERRBUF_SIZE,
514 "(there are no BPF devices)");
515 } else {
516 /*
517 * We got EBUSY on at least one
518 * BPF device, so we have BPF
519 * devices, but all the ones
520 * that exist are busy.
521 */
522 snprintf(p->errbuf, PCAP_ERRBUF_SIZE,
523 "(all BPF devices are busy)");
524 }
525 break;
526
527 case EACCES:
528 /*
529 * Got EACCES on the last device we tried,
530 * and EBUSY on all devices before that,
531 * if any.
532 */
533 fd = PCAP_ERROR_PERM_DENIED;
534 snprintf(p->errbuf, PCAP_ERRBUF_SIZE,
535 "(cannot open BPF device) %s: %s", device,
536 pcap_strerror(errno));
537 break;
538
539 default:
540 /*
541 * Some other problem.
542 */
543 fd = PCAP_ERROR;
544 snprintf(p->errbuf, PCAP_ERRBUF_SIZE,
545 "(cannot open BPF device) %s: %s", device,
546 pcap_strerror(errno));
547 break;
548 }
549 }
550 #endif
551
552 return (fd);
553 }
554
555 #ifdef BIOCGDLTLIST
556 static int
get_dlt_list(int fd,int v,struct bpf_dltlist * bdlp,char * ebuf)557 get_dlt_list(int fd, int v, struct bpf_dltlist *bdlp, char *ebuf)
558 {
559 memset(bdlp, 0, sizeof(*bdlp));
560 if (ioctl(fd, BIOCGDLTLIST, (caddr_t)bdlp) == 0) {
561 u_int i;
562 int is_ethernet;
563
564 bdlp->bfl_list = (u_int *) malloc(sizeof(u_int) * (bdlp->bfl_len + 1));
565 if (bdlp->bfl_list == NULL) {
566 (void)snprintf(ebuf, PCAP_ERRBUF_SIZE, "malloc: %s",
567 pcap_strerror(errno));
568 return (PCAP_ERROR);
569 }
570
571 if (ioctl(fd, BIOCGDLTLIST, (caddr_t)bdlp) < 0) {
572 (void)snprintf(ebuf, PCAP_ERRBUF_SIZE,
573 "BIOCGDLTLIST: %s", pcap_strerror(errno));
574 free(bdlp->bfl_list);
575 return (PCAP_ERROR);
576 }
577
578 /*
579 * OK, for real Ethernet devices, add DLT_DOCSIS to the
580 * list, so that an application can let you choose it,
581 * in case you're capturing DOCSIS traffic that a Cisco
582 * Cable Modem Termination System is putting out onto
583 * an Ethernet (it doesn't put an Ethernet header onto
584 * the wire, it puts raw DOCSIS frames out on the wire
585 * inside the low-level Ethernet framing).
586 *
587 * A "real Ethernet device" is defined here as a device
588 * that has a link-layer type of DLT_EN10MB and that has
589 * no alternate link-layer types; that's done to exclude
590 * 802.11 interfaces (which might or might not be the
591 * right thing to do, but I suspect it is - Ethernet <->
592 * 802.11 bridges would probably badly mishandle frames
593 * that don't have Ethernet headers).
594 *
595 * On Solaris with BPF, Ethernet devices also offer
596 * DLT_IPNET, so we, if DLT_IPNET is defined, we don't
597 * treat it as an indication that the device isn't an
598 * Ethernet.
599 */
600 if (v == DLT_EN10MB) {
601 is_ethernet = 1;
602 for (i = 0; i < bdlp->bfl_len; i++) {
603 if (bdlp->bfl_list[i] != DLT_EN10MB
604 #ifdef DLT_IPNET
605 && bdlp->bfl_list[i] != DLT_IPNET
606 #endif
607 ) {
608 is_ethernet = 0;
609 break;
610 }
611 }
612 if (is_ethernet) {
613 /*
614 * We reserved one more slot at the end of
615 * the list.
616 */
617 bdlp->bfl_list[bdlp->bfl_len] = DLT_DOCSIS;
618 bdlp->bfl_len++;
619 }
620 }
621 } else {
622 /*
623 * EINVAL just means "we don't support this ioctl on
624 * this device"; don't treat it as an error.
625 */
626 if (errno != EINVAL) {
627 (void)snprintf(ebuf, PCAP_ERRBUF_SIZE,
628 "BIOCGDLTLIST: %s", pcap_strerror(errno));
629 return (PCAP_ERROR);
630 }
631 }
632 return (0);
633 }
634 #endif
635
636 static int
pcap_can_set_rfmon_bpf(pcap_t * p)637 pcap_can_set_rfmon_bpf(pcap_t *p)
638 {
639 #if defined(__APPLE__)
640 struct utsname osinfo;
641 struct ifreq ifr;
642 int fd;
643 #ifdef BIOCGDLTLIST
644 struct bpf_dltlist bdl;
645 #endif
646
647 /*
648 * The joys of monitor mode on OS X.
649 *
650 * Prior to 10.4, it's not supported at all.
651 *
652 * In 10.4, if adapter enN supports monitor mode, there's a
653 * wltN adapter corresponding to it; you open it, instead of
654 * enN, to get monitor mode. You get whatever link-layer
655 * headers it supplies.
656 *
657 * In 10.5, and, we assume, later releases, if adapter enN
658 * supports monitor mode, it offers, among its selectable
659 * DLT_ values, values that let you get the 802.11 header;
660 * selecting one of those values puts the adapter into monitor
661 * mode (i.e., you can't get 802.11 headers except in monitor
662 * mode, and you can't get Ethernet headers in monitor mode).
663 */
664 if (uname(&osinfo) == -1) {
665 /*
666 * Can't get the OS version; just say "no".
667 */
668 return (0);
669 }
670 /*
671 * We assume osinfo.sysname is "Darwin", because
672 * __APPLE__ is defined. We just check the version.
673 */
674 if (osinfo.release[0] < '8' && osinfo.release[1] == '.') {
675 /*
676 * 10.3 (Darwin 7.x) or earlier.
677 * Monitor mode not supported.
678 */
679 return (0);
680 }
681 if (osinfo.release[0] == '8' && osinfo.release[1] == '.') {
682 /*
683 * 10.4 (Darwin 8.x). s/en/wlt/, and check
684 * whether the device exists.
685 */
686 if (strncmp(p->opt.source, "en", 2) != 0) {
687 /*
688 * Not an enN device; no monitor mode.
689 */
690 return (0);
691 }
692 fd = socket(AF_INET, SOCK_DGRAM, 0);
693 if (fd == -1) {
694 (void)snprintf(p->errbuf, PCAP_ERRBUF_SIZE,
695 "socket: %s", pcap_strerror(errno));
696 return (PCAP_ERROR);
697 }
698 strlcpy(ifr.ifr_name, "wlt", sizeof(ifr.ifr_name));
699 strlcat(ifr.ifr_name, p->opt.source + 2, sizeof(ifr.ifr_name));
700 if (ioctl(fd, SIOCGIFFLAGS, (char *)&ifr) < 0) {
701 /*
702 * No such device?
703 */
704 close(fd);
705 return (0);
706 }
707 close(fd);
708 return (1);
709 }
710
711 #ifdef BIOCGDLTLIST
712 /*
713 * Everything else is 10.5 or later; for those,
714 * we just open the enN device, and check whether
715 * we have any 802.11 devices.
716 *
717 * First, open a BPF device.
718 */
719 fd = bpf_open(p);
720 if (fd < 0)
721 return (fd); /* fd is the appropriate error code */
722
723 /*
724 * Now bind to the device.
725 */
726 (void)strncpy(ifr.ifr_name, p->opt.source, sizeof(ifr.ifr_name));
727 if (ioctl(fd, BIOCSETIF, (caddr_t)&ifr) < 0) {
728 switch (errno) {
729
730 case ENXIO:
731 /*
732 * There's no such device.
733 */
734 close(fd);
735 return (PCAP_ERROR_NO_SUCH_DEVICE);
736
737 case ENETDOWN:
738 /*
739 * Return a "network down" indication, so that
740 * the application can report that rather than
741 * saying we had a mysterious failure and
742 * suggest that they report a problem to the
743 * libpcap developers.
744 */
745 close(fd);
746 return (PCAP_ERROR_IFACE_NOT_UP);
747
748 default:
749 snprintf(p->errbuf, PCAP_ERRBUF_SIZE,
750 "BIOCSETIF: %s: %s",
751 p->opt.source, pcap_strerror(errno));
752 close(fd);
753 return (PCAP_ERROR);
754 }
755 }
756
757 /*
758 * We know the default link type -- now determine all the DLTs
759 * this interface supports. If this fails with EINVAL, it's
760 * not fatal; we just don't get to use the feature later.
761 * (We don't care about DLT_DOCSIS, so we pass DLT_NULL
762 * as the default DLT for this adapter.)
763 */
764 if (get_dlt_list(fd, DLT_NULL, &bdl, p->errbuf) == PCAP_ERROR) {
765 close(fd);
766 return (PCAP_ERROR);
767 }
768 if (find_802_11(&bdl) != -1) {
769 /*
770 * We have an 802.11 DLT, so we can set monitor mode.
771 */
772 free(bdl.bfl_list);
773 close(fd);
774 return (1);
775 }
776 free(bdl.bfl_list);
777 #endif /* BIOCGDLTLIST */
778 return (0);
779 #elif defined(HAVE_BSD_IEEE80211)
780 int ret;
781
782 ret = monitor_mode(p, 0);
783 if (ret == PCAP_ERROR_RFMON_NOTSUP)
784 return (0); /* not an error, just a "can't do" */
785 if (ret == 0)
786 return (1); /* success */
787 return (ret);
788 #else
789 return (0);
790 #endif
791 }
792
793 static int
pcap_stats_bpf(pcap_t * p,struct pcap_stat * ps)794 pcap_stats_bpf(pcap_t *p, struct pcap_stat *ps)
795 {
796 struct bpf_stat s;
797
798 /*
799 * "ps_recv" counts packets handed to the filter, not packets
800 * that passed the filter. This includes packets later dropped
801 * because we ran out of buffer space.
802 *
803 * "ps_drop" counts packets dropped inside the BPF device
804 * because we ran out of buffer space. It doesn't count
805 * packets dropped by the interface driver. It counts
806 * only packets that passed the filter.
807 *
808 * Both statistics include packets not yet read from the kernel
809 * by libpcap, and thus not yet seen by the application.
810 */
811 if (ioctl(p->fd, BIOCGSTATS, (caddr_t)&s) < 0) {
812 snprintf(p->errbuf, PCAP_ERRBUF_SIZE, "BIOCGSTATS: %s",
813 pcap_strerror(errno));
814 return (PCAP_ERROR);
815 }
816
817 ps->ps_recv = s.bs_recv;
818 ps->ps_drop = s.bs_drop;
819 ps->ps_ifdrop = 0;
820 return (0);
821 }
822
823 static int
pcap_read_bpf(pcap_t * p,int cnt,pcap_handler callback,u_char * user)824 pcap_read_bpf(pcap_t *p, int cnt, pcap_handler callback, u_char *user)
825 {
826 struct pcap_bpf *pb = p->priv;
827 int cc;
828 int n = 0;
829 register u_char *bp, *ep;
830 u_char *datap;
831 #ifdef PCAP_FDDIPAD
832 register int pad;
833 #endif
834 #ifdef HAVE_ZEROCOPY_BPF
835 int i;
836 #endif
837
838 again:
839 /*
840 * Has "pcap_breakloop()" been called?
841 */
842 if (p->break_loop) {
843 /*
844 * Yes - clear the flag that indicates that it
845 * has, and return PCAP_ERROR_BREAK to indicate
846 * that we were told to break out of the loop.
847 */
848 p->break_loop = 0;
849 return (PCAP_ERROR_BREAK);
850 }
851 cc = p->cc;
852 if (p->cc == 0) {
853 /*
854 * When reading without zero-copy from a file descriptor, we
855 * use a single buffer and return a length of data in the
856 * buffer. With zero-copy, we update the p->buffer pointer
857 * to point at whatever underlying buffer contains the next
858 * data and update cc to reflect the data found in the
859 * buffer.
860 */
861 #ifdef HAVE_ZEROCOPY_BPF
862 if (pb->zerocopy) {
863 if (p->buffer != NULL)
864 pcap_ack_zbuf(p);
865 i = pcap_next_zbuf(p, &cc);
866 if (i == 0)
867 goto again;
868 if (i < 0)
869 return (PCAP_ERROR);
870 } else
871 #endif
872 {
873 cc = read(p->fd, (char *)p->buffer, p->bufsize);
874 }
875 if (cc < 0) {
876 /* Don't choke when we get ptraced */
877 switch (errno) {
878
879 case EINTR:
880 goto again;
881
882 #ifdef _AIX
883 case EFAULT:
884 /*
885 * Sigh. More AIX wonderfulness.
886 *
887 * For some unknown reason the uiomove()
888 * operation in the bpf kernel extension
889 * used to copy the buffer into user
890 * space sometimes returns EFAULT. I have
891 * no idea why this is the case given that
892 * a kernel debugger shows the user buffer
893 * is correct. This problem appears to
894 * be mostly mitigated by the memset of
895 * the buffer before it is first used.
896 * Very strange.... Shaun Clowes
897 *
898 * In any case this means that we shouldn't
899 * treat EFAULT as a fatal error; as we
900 * don't have an API for returning
901 * a "some packets were dropped since
902 * the last packet you saw" indication,
903 * we just ignore EFAULT and keep reading.
904 */
905 goto again;
906 #endif
907
908 case EWOULDBLOCK:
909 return (0);
910
911 case ENXIO:
912 /*
913 * The device on which we're capturing
914 * went away.
915 *
916 * XXX - we should really return
917 * PCAP_ERROR_IFACE_NOT_UP, but
918 * pcap_dispatch() etc. aren't
919 * defined to retur that.
920 */
921 snprintf(p->errbuf, PCAP_ERRBUF_SIZE,
922 "The interface went down");
923 return (PCAP_ERROR);
924
925 #if defined(sun) && !defined(BSD) && !defined(__svr4__) && !defined(__SVR4)
926 /*
927 * Due to a SunOS bug, after 2^31 bytes, the kernel
928 * file offset overflows and read fails with EINVAL.
929 * The lseek() to 0 will fix things.
930 */
931 case EINVAL:
932 if (lseek(p->fd, 0L, SEEK_CUR) +
933 p->bufsize < 0) {
934 (void)lseek(p->fd, 0L, SEEK_SET);
935 goto again;
936 }
937 /* fall through */
938 #endif
939 }
940 snprintf(p->errbuf, PCAP_ERRBUF_SIZE, "read: %s",
941 pcap_strerror(errno));
942 return (PCAP_ERROR);
943 }
944 bp = p->buffer;
945 } else
946 bp = p->bp;
947
948 /*
949 * Loop through each packet.
950 */
951 #define bhp ((struct bpf_hdr *)bp)
952 ep = bp + cc;
953 #ifdef PCAP_FDDIPAD
954 pad = p->fddipad;
955 #endif
956 while (bp < ep) {
957 register int caplen, hdrlen;
958
959 /*
960 * Has "pcap_breakloop()" been called?
961 * If so, return immediately - if we haven't read any
962 * packets, clear the flag and return PCAP_ERROR_BREAK
963 * to indicate that we were told to break out of the loop,
964 * otherwise leave the flag set, so that the *next* call
965 * will break out of the loop without having read any
966 * packets, and return the number of packets we've
967 * processed so far.
968 */
969 if (p->break_loop) {
970 p->bp = bp;
971 p->cc = ep - bp;
972 /*
973 * ep is set based on the return value of read(),
974 * but read() from a BPF device doesn't necessarily
975 * return a value that's a multiple of the alignment
976 * value for BPF_WORDALIGN(). However, whenever we
977 * increment bp, we round up the increment value by
978 * a value rounded up by BPF_WORDALIGN(), so we
979 * could increment bp past ep after processing the
980 * last packet in the buffer.
981 *
982 * We treat ep < bp as an indication that this
983 * happened, and just set p->cc to 0.
984 */
985 if (p->cc < 0)
986 p->cc = 0;
987 if (n == 0) {
988 p->break_loop = 0;
989 return (PCAP_ERROR_BREAK);
990 } else
991 return (n);
992 }
993
994 caplen = bhp->bh_caplen;
995 hdrlen = bhp->bh_hdrlen;
996 datap = bp + hdrlen;
997 /*
998 * Short-circuit evaluation: if using BPF filter
999 * in kernel, no need to do it now - we already know
1000 * the packet passed the filter.
1001 *
1002 #ifdef PCAP_FDDIPAD
1003 * Note: the filter code was generated assuming
1004 * that p->fddipad was the amount of padding
1005 * before the header, as that's what's required
1006 * in the kernel, so we run the filter before
1007 * skipping that padding.
1008 #endif
1009 */
1010 if (pb->filtering_in_kernel ||
1011 bpf_filter(p->fcode.bf_insns, datap, bhp->bh_datalen, caplen)) {
1012 struct pcap_pkthdr pkthdr;
1013
1014 pkthdr.ts.tv_sec = bhp->bh_tstamp.tv_sec;
1015 #ifdef _AIX
1016 /*
1017 * AIX's BPF returns seconds/nanoseconds time
1018 * stamps, not seconds/microseconds time stamps.
1019 */
1020 pkthdr.ts.tv_usec = bhp->bh_tstamp.tv_usec/1000;
1021 #else
1022 pkthdr.ts.tv_usec = bhp->bh_tstamp.tv_usec;
1023 #endif
1024 #ifdef PCAP_FDDIPAD
1025 if (caplen > pad)
1026 pkthdr.caplen = caplen - pad;
1027 else
1028 pkthdr.caplen = 0;
1029 if (bhp->bh_datalen > pad)
1030 pkthdr.len = bhp->bh_datalen - pad;
1031 else
1032 pkthdr.len = 0;
1033 datap += pad;
1034 #else
1035 pkthdr.caplen = caplen;
1036 pkthdr.len = bhp->bh_datalen;
1037 #endif
1038 (*callback)(user, &pkthdr, datap);
1039 bp += BPF_WORDALIGN(caplen + hdrlen);
1040 if (++n >= cnt && !PACKET_COUNT_IS_UNLIMITED(cnt)) {
1041 p->bp = bp;
1042 p->cc = ep - bp;
1043 /*
1044 * See comment above about p->cc < 0.
1045 */
1046 if (p->cc < 0)
1047 p->cc = 0;
1048 return (n);
1049 }
1050 } else {
1051 /*
1052 * Skip this packet.
1053 */
1054 bp += BPF_WORDALIGN(caplen + hdrlen);
1055 }
1056 }
1057 #undef bhp
1058 p->cc = 0;
1059 return (n);
1060 }
1061
1062 static int
pcap_inject_bpf(pcap_t * p,const void * buf,size_t size)1063 pcap_inject_bpf(pcap_t *p, const void *buf, size_t size)
1064 {
1065 int ret;
1066
1067 ret = write(p->fd, buf, size);
1068 #ifdef __APPLE__
1069 if (ret == -1 && errno == EAFNOSUPPORT) {
1070 /*
1071 * In Mac OS X, there's a bug wherein setting the
1072 * BIOCSHDRCMPLT flag causes writes to fail; see,
1073 * for example:
1074 *
1075 * http://cerberus.sourcefire.com/~jeff/archives/patches/macosx/BIOCSHDRCMPLT-10.3.3.patch
1076 *
1077 * So, if, on OS X, we get EAFNOSUPPORT from the write, we
1078 * assume it's due to that bug, and turn off that flag
1079 * and try again. If we succeed, it either means that
1080 * somebody applied the fix from that URL, or other patches
1081 * for that bug from
1082 *
1083 * http://cerberus.sourcefire.com/~jeff/archives/patches/macosx/
1084 *
1085 * and are running a Darwin kernel with those fixes, or
1086 * that Apple fixed the problem in some OS X release.
1087 */
1088 u_int spoof_eth_src = 0;
1089
1090 if (ioctl(p->fd, BIOCSHDRCMPLT, &spoof_eth_src) == -1) {
1091 (void)snprintf(p->errbuf, PCAP_ERRBUF_SIZE,
1092 "send: can't turn off BIOCSHDRCMPLT: %s",
1093 pcap_strerror(errno));
1094 return (PCAP_ERROR);
1095 }
1096
1097 /*
1098 * Now try the write again.
1099 */
1100 ret = write(p->fd, buf, size);
1101 }
1102 #endif /* __APPLE__ */
1103 if (ret == -1) {
1104 snprintf(p->errbuf, PCAP_ERRBUF_SIZE, "send: %s",
1105 pcap_strerror(errno));
1106 return (PCAP_ERROR);
1107 }
1108 return (ret);
1109 }
1110
1111 #ifdef _AIX
1112 static int
bpf_odminit(char * errbuf)1113 bpf_odminit(char *errbuf)
1114 {
1115 char *errstr;
1116
1117 if (odm_initialize() == -1) {
1118 if (odm_err_msg(odmerrno, &errstr) == -1)
1119 errstr = "Unknown error";
1120 snprintf(errbuf, PCAP_ERRBUF_SIZE,
1121 "bpf_load: odm_initialize failed: %s",
1122 errstr);
1123 return (PCAP_ERROR);
1124 }
1125
1126 if ((odmlockid = odm_lock("/etc/objrepos/config_lock", ODM_WAIT)) == -1) {
1127 if (odm_err_msg(odmerrno, &errstr) == -1)
1128 errstr = "Unknown error";
1129 snprintf(errbuf, PCAP_ERRBUF_SIZE,
1130 "bpf_load: odm_lock of /etc/objrepos/config_lock failed: %s",
1131 errstr);
1132 (void)odm_terminate();
1133 return (PCAP_ERROR);
1134 }
1135
1136 return (0);
1137 }
1138
1139 static int
bpf_odmcleanup(char * errbuf)1140 bpf_odmcleanup(char *errbuf)
1141 {
1142 char *errstr;
1143
1144 if (odm_unlock(odmlockid) == -1) {
1145 if (errbuf != NULL) {
1146 if (odm_err_msg(odmerrno, &errstr) == -1)
1147 errstr = "Unknown error";
1148 snprintf(errbuf, PCAP_ERRBUF_SIZE,
1149 "bpf_load: odm_unlock failed: %s",
1150 errstr);
1151 }
1152 return (PCAP_ERROR);
1153 }
1154
1155 if (odm_terminate() == -1) {
1156 if (errbuf != NULL) {
1157 if (odm_err_msg(odmerrno, &errstr) == -1)
1158 errstr = "Unknown error";
1159 snprintf(errbuf, PCAP_ERRBUF_SIZE,
1160 "bpf_load: odm_terminate failed: %s",
1161 errstr);
1162 }
1163 return (PCAP_ERROR);
1164 }
1165
1166 return (0);
1167 }
1168
1169 static int
bpf_load(char * errbuf)1170 bpf_load(char *errbuf)
1171 {
1172 long major;
1173 int *minors;
1174 int numminors, i, rc;
1175 char buf[1024];
1176 struct stat sbuf;
1177 struct bpf_config cfg_bpf;
1178 struct cfg_load cfg_ld;
1179 struct cfg_kmod cfg_km;
1180
1181 /*
1182 * This is very very close to what happens in the real implementation
1183 * but I've fixed some (unlikely) bug situations.
1184 */
1185 if (bpfloadedflag)
1186 return (0);
1187
1188 if (bpf_odminit(errbuf) == PCAP_ERROR)
1189 return (PCAP_ERROR);
1190
1191 major = genmajor(BPF_NAME);
1192 if (major == -1) {
1193 snprintf(errbuf, PCAP_ERRBUF_SIZE,
1194 "bpf_load: genmajor failed: %s", pcap_strerror(errno));
1195 (void)bpf_odmcleanup(NULL);
1196 return (PCAP_ERROR);
1197 }
1198
1199 minors = getminor(major, &numminors, BPF_NAME);
1200 if (!minors) {
1201 minors = genminor("bpf", major, 0, BPF_MINORS, 1, 1);
1202 if (!minors) {
1203 snprintf(errbuf, PCAP_ERRBUF_SIZE,
1204 "bpf_load: genminor failed: %s",
1205 pcap_strerror(errno));
1206 (void)bpf_odmcleanup(NULL);
1207 return (PCAP_ERROR);
1208 }
1209 }
1210
1211 if (bpf_odmcleanup(errbuf) == PCAP_ERROR)
1212 return (PCAP_ERROR);
1213
1214 rc = stat(BPF_NODE "0", &sbuf);
1215 if (rc == -1 && errno != ENOENT) {
1216 snprintf(errbuf, PCAP_ERRBUF_SIZE,
1217 "bpf_load: can't stat %s: %s",
1218 BPF_NODE "0", pcap_strerror(errno));
1219 return (PCAP_ERROR);
1220 }
1221
1222 if (rc == -1 || getmajor(sbuf.st_rdev) != major) {
1223 for (i = 0; i < BPF_MINORS; i++) {
1224 sprintf(buf, "%s%d", BPF_NODE, i);
1225 unlink(buf);
1226 if (mknod(buf, S_IRUSR | S_IFCHR, domakedev(major, i)) == -1) {
1227 snprintf(errbuf, PCAP_ERRBUF_SIZE,
1228 "bpf_load: can't mknod %s: %s",
1229 buf, pcap_strerror(errno));
1230 return (PCAP_ERROR);
1231 }
1232 }
1233 }
1234
1235 /* Check if the driver is loaded */
1236 memset(&cfg_ld, 0x0, sizeof(cfg_ld));
1237 cfg_ld.path = buf;
1238 sprintf(cfg_ld.path, "%s/%s", DRIVER_PATH, BPF_NAME);
1239 if ((sysconfig(SYS_QUERYLOAD, (void *)&cfg_ld, sizeof(cfg_ld)) == -1) ||
1240 (cfg_ld.kmid == 0)) {
1241 /* Driver isn't loaded, load it now */
1242 if (sysconfig(SYS_SINGLELOAD, (void *)&cfg_ld, sizeof(cfg_ld)) == -1) {
1243 snprintf(errbuf, PCAP_ERRBUF_SIZE,
1244 "bpf_load: could not load driver: %s",
1245 strerror(errno));
1246 return (PCAP_ERROR);
1247 }
1248 }
1249
1250 /* Configure the driver */
1251 cfg_km.cmd = CFG_INIT;
1252 cfg_km.kmid = cfg_ld.kmid;
1253 cfg_km.mdilen = sizeof(cfg_bpf);
1254 cfg_km.mdiptr = (void *)&cfg_bpf;
1255 for (i = 0; i < BPF_MINORS; i++) {
1256 cfg_bpf.devno = domakedev(major, i);
1257 if (sysconfig(SYS_CFGKMOD, (void *)&cfg_km, sizeof(cfg_km)) == -1) {
1258 snprintf(errbuf, PCAP_ERRBUF_SIZE,
1259 "bpf_load: could not configure driver: %s",
1260 strerror(errno));
1261 return (PCAP_ERROR);
1262 }
1263 }
1264
1265 bpfloadedflag = 1;
1266
1267 return (0);
1268 }
1269 #endif
1270
1271 /*
1272 * Turn off rfmon mode if necessary.
1273 */
1274 static void
pcap_cleanup_bpf(pcap_t * p)1275 pcap_cleanup_bpf(pcap_t *p)
1276 {
1277 struct pcap_bpf *pb = p->priv;
1278 #ifdef HAVE_BSD_IEEE80211
1279 int sock;
1280 struct ifmediareq req;
1281 struct ifreq ifr;
1282 #endif
1283
1284 if (pb->must_do_on_close != 0) {
1285 /*
1286 * There's something we have to do when closing this
1287 * pcap_t.
1288 */
1289 #ifdef HAVE_BSD_IEEE80211
1290 if (pb->must_do_on_close & MUST_CLEAR_RFMON) {
1291 /*
1292 * We put the interface into rfmon mode;
1293 * take it out of rfmon mode.
1294 *
1295 * XXX - if somebody else wants it in rfmon
1296 * mode, this code cannot know that, so it'll take
1297 * it out of rfmon mode.
1298 */
1299 sock = socket(AF_INET, SOCK_DGRAM, 0);
1300 if (sock == -1) {
1301 fprintf(stderr,
1302 "Can't restore interface flags (socket() failed: %s).\n"
1303 "Please adjust manually.\n",
1304 strerror(errno));
1305 } else {
1306 memset(&req, 0, sizeof(req));
1307 strncpy(req.ifm_name, pb->device,
1308 sizeof(req.ifm_name));
1309 if (ioctl(sock, SIOCGIFMEDIA, &req) < 0) {
1310 fprintf(stderr,
1311 "Can't restore interface flags (SIOCGIFMEDIA failed: %s).\n"
1312 "Please adjust manually.\n",
1313 strerror(errno));
1314 } else {
1315 if (req.ifm_current & IFM_IEEE80211_MONITOR) {
1316 /*
1317 * Rfmon mode is currently on;
1318 * turn it off.
1319 */
1320 memset(&ifr, 0, sizeof(ifr));
1321 (void)strncpy(ifr.ifr_name,
1322 pb->device,
1323 sizeof(ifr.ifr_name));
1324 ifr.ifr_media =
1325 req.ifm_current & ~IFM_IEEE80211_MONITOR;
1326 if (ioctl(sock, SIOCSIFMEDIA,
1327 &ifr) == -1) {
1328 fprintf(stderr,
1329 "Can't restore interface flags (SIOCSIFMEDIA failed: %s).\n"
1330 "Please adjust manually.\n",
1331 strerror(errno));
1332 }
1333 }
1334 }
1335 close(sock);
1336 }
1337 }
1338 #endif /* HAVE_BSD_IEEE80211 */
1339
1340 /*
1341 * Take this pcap out of the list of pcaps for which we
1342 * have to take the interface out of some mode.
1343 */
1344 pcap_remove_from_pcaps_to_close(p);
1345 pb->must_do_on_close = 0;
1346 }
1347
1348 #ifdef HAVE_ZEROCOPY_BPF
1349 if (pb->zerocopy) {
1350 /*
1351 * Delete the mappings. Note that p->buffer gets
1352 * initialized to one of the mmapped regions in
1353 * this case, so do not try and free it directly;
1354 * null it out so that pcap_cleanup_live_common()
1355 * doesn't try to free it.
1356 */
1357 if (pb->zbuf1 != MAP_FAILED && pb->zbuf1 != NULL)
1358 (void) munmap(pb->zbuf1, pb->zbufsize);
1359 if (pb->zbuf2 != MAP_FAILED && pb->zbuf2 != NULL)
1360 (void) munmap(pb->zbuf2, pb->zbufsize);
1361 p->buffer = NULL;
1362 }
1363 #endif
1364 if (pb->device != NULL) {
1365 free(pb->device);
1366 pb->device = NULL;
1367 }
1368 pcap_cleanup_live_common(p);
1369 }
1370
1371 static int
check_setif_failure(pcap_t * p,int error)1372 check_setif_failure(pcap_t *p, int error)
1373 {
1374 #ifdef __APPLE__
1375 int fd;
1376 struct ifreq ifr;
1377 int err;
1378 #endif
1379
1380 if (error == ENXIO) {
1381 /*
1382 * No such device exists.
1383 */
1384 #ifdef __APPLE__
1385 if (p->opt.rfmon && strncmp(p->opt.source, "wlt", 3) == 0) {
1386 /*
1387 * Monitor mode was requested, and we're trying
1388 * to open a "wltN" device. Assume that this
1389 * is 10.4 and that we were asked to open an
1390 * "enN" device; if that device exists, return
1391 * "monitor mode not supported on the device".
1392 */
1393 fd = socket(AF_INET, SOCK_DGRAM, 0);
1394 if (fd != -1) {
1395 strlcpy(ifr.ifr_name, "en",
1396 sizeof(ifr.ifr_name));
1397 strlcat(ifr.ifr_name, p->opt.source + 3,
1398 sizeof(ifr.ifr_name));
1399 if (ioctl(fd, SIOCGIFFLAGS, (char *)&ifr) < 0) {
1400 /*
1401 * We assume this failed because
1402 * the underlying device doesn't
1403 * exist.
1404 */
1405 err = PCAP_ERROR_NO_SUCH_DEVICE;
1406 snprintf(p->errbuf, PCAP_ERRBUF_SIZE,
1407 "SIOCGIFFLAGS on %s failed: %s",
1408 ifr.ifr_name, pcap_strerror(errno));
1409 } else {
1410 /*
1411 * The underlying "enN" device
1412 * exists, but there's no
1413 * corresponding "wltN" device;
1414 * that means that the "enN"
1415 * device doesn't support
1416 * monitor mode, probably because
1417 * it's an Ethernet device rather
1418 * than a wireless device.
1419 */
1420 err = PCAP_ERROR_RFMON_NOTSUP;
1421 }
1422 close(fd);
1423 } else {
1424 /*
1425 * We can't find out whether there's
1426 * an underlying "enN" device, so
1427 * just report "no such device".
1428 */
1429 err = PCAP_ERROR_NO_SUCH_DEVICE;
1430 snprintf(p->errbuf, PCAP_ERRBUF_SIZE,
1431 "socket() failed: %s",
1432 pcap_strerror(errno));
1433 }
1434 return (err);
1435 }
1436 #endif
1437 /*
1438 * No such device.
1439 */
1440 snprintf(p->errbuf, PCAP_ERRBUF_SIZE, "BIOCSETIF failed: %s",
1441 pcap_strerror(errno));
1442 return (PCAP_ERROR_NO_SUCH_DEVICE);
1443 } else if (errno == ENETDOWN) {
1444 /*
1445 * Return a "network down" indication, so that
1446 * the application can report that rather than
1447 * saying we had a mysterious failure and
1448 * suggest that they report a problem to the
1449 * libpcap developers.
1450 */
1451 return (PCAP_ERROR_IFACE_NOT_UP);
1452 } else {
1453 /*
1454 * Some other error; fill in the error string, and
1455 * return PCAP_ERROR.
1456 */
1457 snprintf(p->errbuf, PCAP_ERRBUF_SIZE, "BIOCSETIF: %s: %s",
1458 p->opt.source, pcap_strerror(errno));
1459 return (PCAP_ERROR);
1460 }
1461 }
1462
1463 /*
1464 * Default capture buffer size.
1465 * 32K isn't very much for modern machines with fast networks; we
1466 * pick .5M, as that's the maximum on at least some systems with BPF.
1467 *
1468 * However, on AIX 3.5, the larger buffer sized caused unrecoverable
1469 * read failures under stress, so we leave it as 32K; yet another
1470 * place where AIX's BPF is broken.
1471 */
1472 #ifdef _AIX
1473 #define DEFAULT_BUFSIZE 32768
1474 #else
1475 #define DEFAULT_BUFSIZE 524288
1476 #endif
1477
1478 static int
pcap_activate_bpf(pcap_t * p)1479 pcap_activate_bpf(pcap_t *p)
1480 {
1481 struct pcap_bpf *pb = p->priv;
1482 int status = 0;
1483 int fd;
1484 #ifdef LIFNAMSIZ
1485 char *zonesep;
1486 struct lifreq ifr;
1487 char *ifrname = ifr.lifr_name;
1488 const size_t ifnamsiz = sizeof(ifr.lifr_name);
1489 #else
1490 struct ifreq ifr;
1491 char *ifrname = ifr.ifr_name;
1492 const size_t ifnamsiz = sizeof(ifr.ifr_name);
1493 #endif
1494 struct bpf_version bv;
1495 #ifdef __APPLE__
1496 int sockfd;
1497 char *wltdev = NULL;
1498 #endif
1499 #ifdef BIOCGDLTLIST
1500 struct bpf_dltlist bdl;
1501 #if defined(__APPLE__) || defined(HAVE_BSD_IEEE80211)
1502 int new_dlt;
1503 #endif
1504 #endif /* BIOCGDLTLIST */
1505 #if defined(BIOCGHDRCMPLT) && defined(BIOCSHDRCMPLT)
1506 u_int spoof_eth_src = 1;
1507 #endif
1508 u_int v;
1509 struct bpf_insn total_insn;
1510 struct bpf_program total_prog;
1511 struct utsname osinfo;
1512 int have_osinfo = 0;
1513 #ifdef HAVE_ZEROCOPY_BPF
1514 struct bpf_zbuf bz;
1515 u_int bufmode, zbufmax;
1516 #endif
1517
1518 fd = bpf_open(p);
1519 if (fd < 0) {
1520 status = fd;
1521 goto bad;
1522 }
1523
1524 p->fd = fd;
1525
1526 if (ioctl(fd, BIOCVERSION, (caddr_t)&bv) < 0) {
1527 snprintf(p->errbuf, PCAP_ERRBUF_SIZE, "BIOCVERSION: %s",
1528 pcap_strerror(errno));
1529 status = PCAP_ERROR;
1530 goto bad;
1531 }
1532 if (bv.bv_major != BPF_MAJOR_VERSION ||
1533 bv.bv_minor < BPF_MINOR_VERSION) {
1534 snprintf(p->errbuf, PCAP_ERRBUF_SIZE,
1535 "kernel bpf filter out of date");
1536 status = PCAP_ERROR;
1537 goto bad;
1538 }
1539
1540 #if defined(LIFNAMSIZ) && defined(ZONENAME_MAX) && defined(lifr_zoneid)
1541 /*
1542 * Check if the given source network device has a '/' separated
1543 * zonename prefix string. The zonename prefixed source device
1544 * can be used by libpcap consumers to capture network traffic
1545 * in non-global zones from the global zone on Solaris 11 and
1546 * above. If the zonename prefix is present then we strip the
1547 * prefix and pass the zone ID as part of lifr_zoneid.
1548 */
1549 if ((zonesep = strchr(p->opt.source, '/')) != NULL) {
1550 char zonename[ZONENAME_MAX];
1551 int znamelen;
1552 char *lnamep;
1553
1554 znamelen = zonesep - p->opt.source;
1555 (void) strlcpy(zonename, p->opt.source, znamelen + 1);
1556 lnamep = strdup(zonesep + 1);
1557 ifr.lifr_zoneid = getzoneidbyname(zonename);
1558 free(p->opt.source);
1559 p->opt.source = lnamep;
1560 }
1561 #endif
1562
1563 pb->device = strdup(p->opt.source);
1564 if (pb->device == NULL) {
1565 snprintf(p->errbuf, PCAP_ERRBUF_SIZE, "strdup: %s",
1566 pcap_strerror(errno));
1567 status = PCAP_ERROR;
1568 goto bad;
1569 }
1570
1571 /*
1572 * Attempt to find out the version of the OS on which we're running.
1573 */
1574 if (uname(&osinfo) == 0)
1575 have_osinfo = 1;
1576
1577 #ifdef __APPLE__
1578 /*
1579 * See comment in pcap_can_set_rfmon_bpf() for an explanation
1580 * of why we check the version number.
1581 */
1582 if (p->opt.rfmon) {
1583 if (have_osinfo) {
1584 /*
1585 * We assume osinfo.sysname is "Darwin", because
1586 * __APPLE__ is defined. We just check the version.
1587 */
1588 if (osinfo.release[0] < '8' &&
1589 osinfo.release[1] == '.') {
1590 /*
1591 * 10.3 (Darwin 7.x) or earlier.
1592 */
1593 status = PCAP_ERROR_RFMON_NOTSUP;
1594 goto bad;
1595 }
1596 if (osinfo.release[0] == '8' &&
1597 osinfo.release[1] == '.') {
1598 /*
1599 * 10.4 (Darwin 8.x). s/en/wlt/
1600 */
1601 if (strncmp(p->opt.source, "en", 2) != 0) {
1602 /*
1603 * Not an enN device; check
1604 * whether the device even exists.
1605 */
1606 sockfd = socket(AF_INET, SOCK_DGRAM, 0);
1607 if (sockfd != -1) {
1608 strlcpy(ifrname,
1609 p->opt.source, ifnamsiz);
1610 if (ioctl(sockfd, SIOCGIFFLAGS,
1611 (char *)&ifr) < 0) {
1612 /*
1613 * We assume this
1614 * failed because
1615 * the underlying
1616 * device doesn't
1617 * exist.
1618 */
1619 status = PCAP_ERROR_NO_SUCH_DEVICE;
1620 snprintf(p->errbuf,
1621 PCAP_ERRBUF_SIZE,
1622 "SIOCGIFFLAGS failed: %s",
1623 pcap_strerror(errno));
1624 } else
1625 status = PCAP_ERROR_RFMON_NOTSUP;
1626 close(sockfd);
1627 } else {
1628 /*
1629 * We can't find out whether
1630 * the device exists, so just
1631 * report "no such device".
1632 */
1633 status = PCAP_ERROR_NO_SUCH_DEVICE;
1634 snprintf(p->errbuf,
1635 PCAP_ERRBUF_SIZE,
1636 "socket() failed: %s",
1637 pcap_strerror(errno));
1638 }
1639 goto bad;
1640 }
1641 wltdev = malloc(strlen(p->opt.source) + 2);
1642 if (wltdev == NULL) {
1643 (void)snprintf(p->errbuf,
1644 PCAP_ERRBUF_SIZE, "malloc: %s",
1645 pcap_strerror(errno));
1646 status = PCAP_ERROR;
1647 goto bad;
1648 }
1649 strcpy(wltdev, "wlt");
1650 strcat(wltdev, p->opt.source + 2);
1651 free(p->opt.source);
1652 p->opt.source = wltdev;
1653 }
1654 /*
1655 * Everything else is 10.5 or later; for those,
1656 * we just open the enN device, and set the DLT.
1657 */
1658 }
1659 }
1660 #endif /* __APPLE__ */
1661 #ifdef HAVE_ZEROCOPY_BPF
1662 /*
1663 * If the BPF extension to set buffer mode is present, try setting
1664 * the mode to zero-copy. If that fails, use regular buffering. If
1665 * it succeeds but other setup fails, return an error to the user.
1666 */
1667 bufmode = BPF_BUFMODE_ZBUF;
1668 if (ioctl(fd, BIOCSETBUFMODE, (caddr_t)&bufmode) == 0) {
1669 /*
1670 * We have zerocopy BPF; use it.
1671 */
1672 pb->zerocopy = 1;
1673
1674 /*
1675 * How to pick a buffer size: first, query the maximum buffer
1676 * size supported by zero-copy. This also lets us quickly
1677 * determine whether the kernel generally supports zero-copy.
1678 * Then, if a buffer size was specified, use that, otherwise
1679 * query the default buffer size, which reflects kernel
1680 * policy for a desired default. Round to the nearest page
1681 * size.
1682 */
1683 if (ioctl(fd, BIOCGETZMAX, (caddr_t)&zbufmax) < 0) {
1684 snprintf(p->errbuf, PCAP_ERRBUF_SIZE, "BIOCGETZMAX: %s",
1685 pcap_strerror(errno));
1686 goto bad;
1687 }
1688
1689 if (p->opt.buffer_size != 0) {
1690 /*
1691 * A buffer size was explicitly specified; use it.
1692 */
1693 v = p->opt.buffer_size;
1694 } else {
1695 if ((ioctl(fd, BIOCGBLEN, (caddr_t)&v) < 0) ||
1696 v < DEFAULT_BUFSIZE)
1697 v = DEFAULT_BUFSIZE;
1698 }
1699 #ifndef roundup
1700 #define roundup(x, y) ((((x)+((y)-1))/(y))*(y)) /* to any y */
1701 #endif
1702 pb->zbufsize = roundup(v, getpagesize());
1703 if (pb->zbufsize > zbufmax)
1704 pb->zbufsize = zbufmax;
1705 pb->zbuf1 = mmap(NULL, pb->zbufsize, PROT_READ | PROT_WRITE,
1706 MAP_ANON, -1, 0);
1707 pb->zbuf2 = mmap(NULL, pb->zbufsize, PROT_READ | PROT_WRITE,
1708 MAP_ANON, -1, 0);
1709 if (pb->zbuf1 == MAP_FAILED || pb->zbuf2 == MAP_FAILED) {
1710 snprintf(p->errbuf, PCAP_ERRBUF_SIZE, "mmap: %s",
1711 pcap_strerror(errno));
1712 goto bad;
1713 }
1714 memset(&bz, 0, sizeof(bz)); /* bzero() deprecated, replaced with memset() */
1715 bz.bz_bufa = pb->zbuf1;
1716 bz.bz_bufb = pb->zbuf2;
1717 bz.bz_buflen = pb->zbufsize;
1718 if (ioctl(fd, BIOCSETZBUF, (caddr_t)&bz) < 0) {
1719 snprintf(p->errbuf, PCAP_ERRBUF_SIZE, "BIOCSETZBUF: %s",
1720 pcap_strerror(errno));
1721 goto bad;
1722 }
1723 (void)strncpy(ifrname, p->opt.source, ifnamsiz);
1724 if (ioctl(fd, BIOCSETIF, (caddr_t)&ifr) < 0) {
1725 snprintf(p->errbuf, PCAP_ERRBUF_SIZE, "BIOCSETIF: %s: %s",
1726 p->opt.source, pcap_strerror(errno));
1727 goto bad;
1728 }
1729 v = pb->zbufsize - sizeof(struct bpf_zbuf_header);
1730 } else
1731 #endif
1732 {
1733 /*
1734 * We don't have zerocopy BPF.
1735 * Set the buffer size.
1736 */
1737 if (p->opt.buffer_size != 0) {
1738 /*
1739 * A buffer size was explicitly specified; use it.
1740 */
1741 if (ioctl(fd, BIOCSBLEN,
1742 (caddr_t)&p->opt.buffer_size) < 0) {
1743 snprintf(p->errbuf, PCAP_ERRBUF_SIZE,
1744 "BIOCSBLEN: %s: %s", p->opt.source,
1745 pcap_strerror(errno));
1746 status = PCAP_ERROR;
1747 goto bad;
1748 }
1749
1750 /*
1751 * Now bind to the device.
1752 */
1753 (void)strncpy(ifrname, p->opt.source, ifnamsiz);
1754 #ifdef BIOCSETLIF
1755 if (ioctl(fd, BIOCSETLIF, (caddr_t)&ifr) < 0)
1756 #else
1757 if (ioctl(fd, BIOCSETIF, (caddr_t)&ifr) < 0)
1758 #endif
1759 {
1760 status = check_setif_failure(p, errno);
1761 goto bad;
1762 }
1763 } else {
1764 /*
1765 * No buffer size was explicitly specified.
1766 *
1767 * Try finding a good size for the buffer;
1768 * DEFAULT_BUFSIZE may be too big, so keep
1769 * cutting it in half until we find a size
1770 * that works, or run out of sizes to try.
1771 * If the default is larger, don't make it smaller.
1772 */
1773 if ((ioctl(fd, BIOCGBLEN, (caddr_t)&v) < 0) ||
1774 v < DEFAULT_BUFSIZE)
1775 v = DEFAULT_BUFSIZE;
1776 for ( ; v != 0; v >>= 1) {
1777 /*
1778 * Ignore the return value - this is because the
1779 * call fails on BPF systems that don't have
1780 * kernel malloc. And if the call fails, it's
1781 * no big deal, we just continue to use the
1782 * standard buffer size.
1783 */
1784 (void) ioctl(fd, BIOCSBLEN, (caddr_t)&v);
1785
1786 (void)strncpy(ifrname, p->opt.source, ifnamsiz);
1787 #ifdef BIOCSETLIF
1788 if (ioctl(fd, BIOCSETLIF, (caddr_t)&ifr) >= 0)
1789 #else
1790 if (ioctl(fd, BIOCSETIF, (caddr_t)&ifr) >= 0)
1791 #endif
1792 break; /* that size worked; we're done */
1793
1794 if (errno != ENOBUFS) {
1795 status = check_setif_failure(p, errno);
1796 goto bad;
1797 }
1798 }
1799
1800 if (v == 0) {
1801 snprintf(p->errbuf, PCAP_ERRBUF_SIZE,
1802 "BIOCSBLEN: %s: No buffer size worked",
1803 p->opt.source);
1804 status = PCAP_ERROR;
1805 goto bad;
1806 }
1807 }
1808 }
1809
1810 /* Get the data link layer type. */
1811 if (ioctl(fd, BIOCGDLT, (caddr_t)&v) < 0) {
1812 snprintf(p->errbuf, PCAP_ERRBUF_SIZE, "BIOCGDLT: %s",
1813 pcap_strerror(errno));
1814 status = PCAP_ERROR;
1815 goto bad;
1816 }
1817
1818 #ifdef _AIX
1819 /*
1820 * AIX's BPF returns IFF_ types, not DLT_ types, in BIOCGDLT.
1821 */
1822 switch (v) {
1823
1824 case IFT_ETHER:
1825 case IFT_ISO88023:
1826 v = DLT_EN10MB;
1827 break;
1828
1829 case IFT_FDDI:
1830 v = DLT_FDDI;
1831 break;
1832
1833 case IFT_ISO88025:
1834 v = DLT_IEEE802;
1835 break;
1836
1837 case IFT_LOOP:
1838 v = DLT_NULL;
1839 break;
1840
1841 default:
1842 /*
1843 * We don't know what to map this to yet.
1844 */
1845 snprintf(p->errbuf, PCAP_ERRBUF_SIZE, "unknown interface type %u",
1846 v);
1847 status = PCAP_ERROR;
1848 goto bad;
1849 }
1850 #endif
1851 #if _BSDI_VERSION - 0 >= 199510
1852 /* The SLIP and PPP link layer header changed in BSD/OS 2.1 */
1853 switch (v) {
1854
1855 case DLT_SLIP:
1856 v = DLT_SLIP_BSDOS;
1857 break;
1858
1859 case DLT_PPP:
1860 v = DLT_PPP_BSDOS;
1861 break;
1862
1863 case 11: /*DLT_FR*/
1864 v = DLT_FRELAY;
1865 break;
1866
1867 case 12: /*DLT_C_HDLC*/
1868 v = DLT_CHDLC;
1869 break;
1870 }
1871 #endif
1872
1873 #ifdef BIOCGDLTLIST
1874 /*
1875 * We know the default link type -- now determine all the DLTs
1876 * this interface supports. If this fails with EINVAL, it's
1877 * not fatal; we just don't get to use the feature later.
1878 */
1879 if (get_dlt_list(fd, v, &bdl, p->errbuf) == -1) {
1880 status = PCAP_ERROR;
1881 goto bad;
1882 }
1883 p->dlt_count = bdl.bfl_len;
1884 p->dlt_list = bdl.bfl_list;
1885
1886 #ifdef __APPLE__
1887 /*
1888 * Monitor mode fun, continued.
1889 *
1890 * For 10.5 and, we're assuming, later releases, as noted above,
1891 * 802.1 adapters that support monitor mode offer both DLT_EN10MB,
1892 * DLT_IEEE802_11, and possibly some 802.11-plus-radio-information
1893 * DLT_ value. Choosing one of the 802.11 DLT_ values will turn
1894 * monitor mode on.
1895 *
1896 * Therefore, if the user asked for monitor mode, we filter out
1897 * the DLT_EN10MB value, as you can't get that in monitor mode,
1898 * and, if the user didn't ask for monitor mode, we filter out
1899 * the 802.11 DLT_ values, because selecting those will turn
1900 * monitor mode on. Then, for monitor mode, if an 802.11-plus-
1901 * radio DLT_ value is offered, we try to select that, otherwise
1902 * we try to select DLT_IEEE802_11.
1903 */
1904 if (have_osinfo) {
1905 if (isdigit((unsigned)osinfo.release[0]) &&
1906 (osinfo.release[0] == '9' ||
1907 isdigit((unsigned)osinfo.release[1]))) {
1908 /*
1909 * 10.5 (Darwin 9.x), or later.
1910 */
1911 new_dlt = find_802_11(&bdl);
1912 if (new_dlt != -1) {
1913 /*
1914 * We have at least one 802.11 DLT_ value,
1915 * so this is an 802.11 interface.
1916 * new_dlt is the best of the 802.11
1917 * DLT_ values in the list.
1918 */
1919 if (p->opt.rfmon) {
1920 /*
1921 * Our caller wants monitor mode.
1922 * Purge DLT_EN10MB from the list
1923 * of link-layer types, as selecting
1924 * it will keep monitor mode off.
1925 */
1926 remove_en(p);
1927
1928 /*
1929 * If the new mode we want isn't
1930 * the default mode, attempt to
1931 * select the new mode.
1932 */
1933 if (new_dlt != v) {
1934 if (ioctl(p->fd, BIOCSDLT,
1935 &new_dlt) != -1) {
1936 /*
1937 * We succeeded;
1938 * make this the
1939 * new DLT_ value.
1940 */
1941 v = new_dlt;
1942 }
1943 }
1944 } else {
1945 /*
1946 * Our caller doesn't want
1947 * monitor mode. Unless this
1948 * is being done by pcap_open_live(),
1949 * purge the 802.11 link-layer types
1950 * from the list, as selecting
1951 * one of them will turn monitor
1952 * mode on.
1953 */
1954 if (!p->oldstyle)
1955 remove_802_11(p);
1956 }
1957 } else {
1958 if (p->opt.rfmon) {
1959 /*
1960 * The caller requested monitor
1961 * mode, but we have no 802.11
1962 * link-layer types, so they
1963 * can't have it.
1964 */
1965 status = PCAP_ERROR_RFMON_NOTSUP;
1966 goto bad;
1967 }
1968 }
1969 }
1970 }
1971 #elif defined(HAVE_BSD_IEEE80211)
1972 /*
1973 * *BSD with the new 802.11 ioctls.
1974 * Do we want monitor mode?
1975 */
1976 if (p->opt.rfmon) {
1977 /*
1978 * Try to put the interface into monitor mode.
1979 */
1980 status = monitor_mode(p, 1);
1981 if (status != 0) {
1982 /*
1983 * We failed.
1984 */
1985 goto bad;
1986 }
1987
1988 /*
1989 * We're in monitor mode.
1990 * Try to find the best 802.11 DLT_ value and, if we
1991 * succeed, try to switch to that mode if we're not
1992 * already in that mode.
1993 */
1994 new_dlt = find_802_11(&bdl);
1995 if (new_dlt != -1) {
1996 /*
1997 * We have at least one 802.11 DLT_ value.
1998 * new_dlt is the best of the 802.11
1999 * DLT_ values in the list.
2000 *
2001 * If the new mode we want isn't the default mode,
2002 * attempt to select the new mode.
2003 */
2004 if (new_dlt != v) {
2005 if (ioctl(p->fd, BIOCSDLT, &new_dlt) != -1) {
2006 /*
2007 * We succeeded; make this the
2008 * new DLT_ value.
2009 */
2010 v = new_dlt;
2011 }
2012 }
2013 }
2014 }
2015 #endif /* various platforms */
2016 #endif /* BIOCGDLTLIST */
2017
2018 /*
2019 * If this is an Ethernet device, and we don't have a DLT_ list,
2020 * give it a list with DLT_EN10MB and DLT_DOCSIS. (That'd give
2021 * 802.11 interfaces DLT_DOCSIS, which isn't the right thing to
2022 * do, but there's not much we can do about that without finding
2023 * some other way of determining whether it's an Ethernet or 802.11
2024 * device.)
2025 */
2026 if (v == DLT_EN10MB && p->dlt_count == 0) {
2027 p->dlt_list = (u_int *) malloc(sizeof(u_int) * 2);
2028 /*
2029 * If that fails, just leave the list empty.
2030 */
2031 if (p->dlt_list != NULL) {
2032 p->dlt_list[0] = DLT_EN10MB;
2033 p->dlt_list[1] = DLT_DOCSIS;
2034 p->dlt_count = 2;
2035 }
2036 }
2037 #ifdef PCAP_FDDIPAD
2038 if (v == DLT_FDDI)
2039 p->fddipad = PCAP_FDDIPAD;
2040 else
2041 #endif
2042 p->fddipad = 0;
2043 p->linktype = v;
2044
2045 #if defined(BIOCGHDRCMPLT) && defined(BIOCSHDRCMPLT)
2046 /*
2047 * Do a BIOCSHDRCMPLT, if defined, to turn that flag on, so
2048 * the link-layer source address isn't forcibly overwritten.
2049 * (Should we ignore errors? Should we do this only if
2050 * we're open for writing?)
2051 *
2052 * XXX - I seem to remember some packet-sending bug in some
2053 * BSDs - check CVS log for "bpf.c"?
2054 */
2055 if (ioctl(fd, BIOCSHDRCMPLT, &spoof_eth_src) == -1) {
2056 (void)snprintf(p->errbuf, PCAP_ERRBUF_SIZE,
2057 "BIOCSHDRCMPLT: %s", pcap_strerror(errno));
2058 status = PCAP_ERROR;
2059 goto bad;
2060 }
2061 #endif
2062 /* set timeout */
2063 #ifdef HAVE_ZEROCOPY_BPF
2064 /*
2065 * In zero-copy mode, we just use the timeout in select().
2066 * XXX - what if we're in non-blocking mode and the *application*
2067 * is using select() or poll() or kqueues or....?
2068 */
2069 if (p->opt.timeout && !pb->zerocopy) {
2070 #else
2071 if (p->opt.timeout) {
2072 #endif
2073 /*
2074 * XXX - is this seconds/nanoseconds in AIX?
2075 * (Treating it as such doesn't fix the timeout
2076 * problem described below.)
2077 *
2078 * XXX - Mac OS X 10.6 mishandles BIOCSRTIMEOUT in
2079 * 64-bit userland - it takes, as an argument, a
2080 * "struct BPF_TIMEVAL", which has 32-bit tv_sec
2081 * and tv_usec, rather than a "struct timeval".
2082 *
2083 * If this platform defines "struct BPF_TIMEVAL",
2084 * we check whether the structure size in BIOCSRTIMEOUT
2085 * is that of a "struct timeval" and, if not, we use
2086 * a "struct BPF_TIMEVAL" rather than a "struct timeval".
2087 * (That way, if the bug is fixed in a future release,
2088 * we will still do the right thing.)
2089 */
2090 struct timeval to;
2091 #ifdef HAVE_STRUCT_BPF_TIMEVAL
2092 struct BPF_TIMEVAL bpf_to;
2093
2094 if (IOCPARM_LEN(BIOCSRTIMEOUT) != sizeof(struct timeval)) {
2095 bpf_to.tv_sec = p->opt.timeout / 1000;
2096 bpf_to.tv_usec = (p->opt.timeout * 1000) % 1000000;
2097 if (ioctl(p->fd, BIOCSRTIMEOUT, (caddr_t)&bpf_to) < 0) {
2098 snprintf(p->errbuf, PCAP_ERRBUF_SIZE,
2099 "BIOCSRTIMEOUT: %s", pcap_strerror(errno));
2100 status = PCAP_ERROR;
2101 goto bad;
2102 }
2103 } else {
2104 #endif
2105 to.tv_sec = p->opt.timeout / 1000;
2106 to.tv_usec = (p->opt.timeout * 1000) % 1000000;
2107 if (ioctl(p->fd, BIOCSRTIMEOUT, (caddr_t)&to) < 0) {
2108 snprintf(p->errbuf, PCAP_ERRBUF_SIZE,
2109 "BIOCSRTIMEOUT: %s", pcap_strerror(errno));
2110 status = PCAP_ERROR;
2111 goto bad;
2112 }
2113 #ifdef HAVE_STRUCT_BPF_TIMEVAL
2114 }
2115 #endif
2116 }
2117
2118 #ifdef BIOCIMMEDIATE
2119 /*
2120 * Darren Reed notes that
2121 *
2122 * On AIX (4.2 at least), if BIOCIMMEDIATE is not set, the
2123 * timeout appears to be ignored and it waits until the buffer
2124 * is filled before returning. The result of not having it
2125 * set is almost worse than useless if your BPF filter
2126 * is reducing things to only a few packets (i.e. one every
2127 * second or so).
2128 *
2129 * so we always turn BIOCIMMEDIATE mode on if this is AIX.
2130 *
2131 * For other platforms, we don't turn immediate mode on by default,
2132 * as that would mean we get woken up for every packet, which
2133 * probably isn't what you want for a packet sniffer.
2134 *
2135 * We set immediate mode if the caller requested it by calling
2136 * pcap_set_immediate() before calling pcap_activate().
2137 */
2138 #ifndef _AIX
2139 if (p->opt.immediate) {
2140 #endif /* _AIX */
2141 v = 1;
2142 if (ioctl(p->fd, BIOCIMMEDIATE, &v) < 0) {
2143 snprintf(p->errbuf, PCAP_ERRBUF_SIZE,
2144 "BIOCIMMEDIATE: %s", pcap_strerror(errno));
2145 status = PCAP_ERROR;
2146 goto bad;
2147 }
2148 #ifndef _AIX
2149 }
2150 #endif /* _AIX */
2151 #else /* BIOCIMMEDIATE */
2152 if (p->opt.immediate) {
2153 /*
2154 * We don't support immediate mode. Fail.
2155 */
2156 snprintf(p->errbuf, PCAP_ERRBUF_SIZE, "Immediate mode not supported");
2157 status = PCAP_ERROR;
2158 goto bad;
2159 }
2160 #endif /* BIOCIMMEDIATE */
2161
2162 if (p->opt.promisc) {
2163 /* set promiscuous mode, just warn if it fails */
2164 if (ioctl(p->fd, BIOCPROMISC, NULL) < 0) {
2165 snprintf(p->errbuf, PCAP_ERRBUF_SIZE, "BIOCPROMISC: %s",
2166 pcap_strerror(errno));
2167 status = PCAP_WARNING_PROMISC_NOTSUP;
2168 }
2169 }
2170
2171 if (ioctl(fd, BIOCGBLEN, (caddr_t)&v) < 0) {
2172 snprintf(p->errbuf, PCAP_ERRBUF_SIZE, "BIOCGBLEN: %s",
2173 pcap_strerror(errno));
2174 status = PCAP_ERROR;
2175 goto bad;
2176 }
2177 p->bufsize = v;
2178 #ifdef HAVE_ZEROCOPY_BPF
2179 if (!pb->zerocopy) {
2180 #endif
2181 p->buffer = (u_char *)malloc(p->bufsize);
2182 if (p->buffer == NULL) {
2183 snprintf(p->errbuf, PCAP_ERRBUF_SIZE, "malloc: %s",
2184 pcap_strerror(errno));
2185 status = PCAP_ERROR;
2186 goto bad;
2187 }
2188 #ifdef _AIX
2189 /* For some strange reason this seems to prevent the EFAULT
2190 * problems we have experienced from AIX BPF. */
2191 memset(p->buffer, 0x0, p->bufsize);
2192 #endif
2193 #ifdef HAVE_ZEROCOPY_BPF
2194 }
2195 #endif
2196
2197 /*
2198 * If there's no filter program installed, there's
2199 * no indication to the kernel of what the snapshot
2200 * length should be, so no snapshotting is done.
2201 *
2202 * Therefore, when we open the device, we install
2203 * an "accept everything" filter with the specified
2204 * snapshot length.
2205 */
2206 total_insn.code = (u_short)(BPF_RET | BPF_K);
2207 total_insn.jt = 0;
2208 total_insn.jf = 0;
2209 total_insn.k = p->snapshot;
2210
2211 total_prog.bf_len = 1;
2212 total_prog.bf_insns = &total_insn;
2213 if (ioctl(p->fd, BIOCSETF, (caddr_t)&total_prog) < 0) {
2214 snprintf(p->errbuf, PCAP_ERRBUF_SIZE, "BIOCSETF: %s",
2215 pcap_strerror(errno));
2216 status = PCAP_ERROR;
2217 goto bad;
2218 }
2219
2220 /*
2221 * On most BPF platforms, either you can do a "select()" or
2222 * "poll()" on a BPF file descriptor and it works correctly,
2223 * or you can do it and it will return "readable" if the
2224 * hold buffer is full but not if the timeout expires *and*
2225 * a non-blocking read will, if the hold buffer is empty
2226 * but the store buffer isn't empty, rotate the buffers
2227 * and return what packets are available.
2228 *
2229 * In the latter case, the fact that a non-blocking read
2230 * will give you the available packets means you can work
2231 * around the failure of "select()" and "poll()" to wake up
2232 * and return "readable" when the timeout expires by using
2233 * the timeout as the "select()" or "poll()" timeout, putting
2234 * the BPF descriptor into non-blocking mode, and read from
2235 * it regardless of whether "select()" reports it as readable
2236 * or not.
2237 *
2238 * However, in FreeBSD 4.3 and 4.4, "select()" and "poll()"
2239 * won't wake up and return "readable" if the timer expires
2240 * and non-blocking reads return EWOULDBLOCK if the hold
2241 * buffer is empty, even if the store buffer is non-empty.
2242 *
2243 * This means the workaround in question won't work.
2244 *
2245 * Therefore, on FreeBSD 4.3 and 4.4, we set "p->selectable_fd"
2246 * to -1, which means "sorry, you can't use 'select()' or 'poll()'
2247 * here". On all other BPF platforms, we set it to the FD for
2248 * the BPF device; in NetBSD, OpenBSD, and Darwin, a non-blocking
2249 * read will, if the hold buffer is empty and the store buffer
2250 * isn't empty, rotate the buffers and return what packets are
2251 * there (and in sufficiently recent versions of OpenBSD
2252 * "select()" and "poll()" should work correctly).
2253 *
2254 * XXX - what about AIX?
2255 */
2256 p->selectable_fd = p->fd; /* assume select() works until we know otherwise */
2257 if (have_osinfo) {
2258 /*
2259 * We can check what OS this is.
2260 */
2261 if (strcmp(osinfo.sysname, "FreeBSD") == 0) {
2262 if (strncmp(osinfo.release, "4.3-", 4) == 0 ||
2263 strncmp(osinfo.release, "4.4-", 4) == 0)
2264 p->selectable_fd = -1;
2265 }
2266 }
2267
2268 p->read_op = pcap_read_bpf;
2269 p->inject_op = pcap_inject_bpf;
2270 p->setfilter_op = pcap_setfilter_bpf;
2271 p->setdirection_op = pcap_setdirection_bpf;
2272 p->set_datalink_op = pcap_set_datalink_bpf;
2273 p->getnonblock_op = pcap_getnonblock_bpf;
2274 p->setnonblock_op = pcap_setnonblock_bpf;
2275 p->stats_op = pcap_stats_bpf;
2276 p->cleanup_op = pcap_cleanup_bpf;
2277
2278 return (status);
2279 bad:
2280 pcap_cleanup_bpf(p);
2281 return (status);
2282 }
2283
2284 int
2285 pcap_platform_finddevs(pcap_if_t **alldevsp, char *errbuf)
2286 {
2287 return (0);
2288 }
2289
2290 #ifdef HAVE_BSD_IEEE80211
2291 static int
2292 monitor_mode(pcap_t *p, int set)
2293 {
2294 struct pcap_bpf *pb = p->priv;
2295 int sock;
2296 struct ifmediareq req;
2297 int *media_list;
2298 int i;
2299 int can_do;
2300 struct ifreq ifr;
2301
2302 sock = socket(AF_INET, SOCK_DGRAM, 0);
2303 if (sock == -1) {
2304 snprintf(p->errbuf, PCAP_ERRBUF_SIZE, "can't open socket: %s",
2305 pcap_strerror(errno));
2306 return (PCAP_ERROR);
2307 }
2308
2309 memset(&req, 0, sizeof req);
2310 strncpy(req.ifm_name, p->opt.source, sizeof req.ifm_name);
2311
2312 /*
2313 * Find out how many media types we have.
2314 */
2315 if (ioctl(sock, SIOCGIFMEDIA, &req) < 0) {
2316 /*
2317 * Can't get the media types.
2318 */
2319 switch (errno) {
2320
2321 case ENXIO:
2322 /*
2323 * There's no such device.
2324 */
2325 close(sock);
2326 return (PCAP_ERROR_NO_SUCH_DEVICE);
2327
2328 case EINVAL:
2329 /*
2330 * Interface doesn't support SIOC{G,S}IFMEDIA.
2331 */
2332 close(sock);
2333 return (PCAP_ERROR_RFMON_NOTSUP);
2334
2335 default:
2336 snprintf(p->errbuf, PCAP_ERRBUF_SIZE,
2337 "SIOCGIFMEDIA 1: %s", pcap_strerror(errno));
2338 close(sock);
2339 return (PCAP_ERROR);
2340 }
2341 }
2342 if (req.ifm_count == 0) {
2343 /*
2344 * No media types.
2345 */
2346 close(sock);
2347 return (PCAP_ERROR_RFMON_NOTSUP);
2348 }
2349
2350 /*
2351 * Allocate a buffer to hold all the media types, and
2352 * get the media types.
2353 */
2354 media_list = malloc(req.ifm_count * sizeof(int));
2355 if (media_list == NULL) {
2356 snprintf(p->errbuf, PCAP_ERRBUF_SIZE, "malloc: %s",
2357 pcap_strerror(errno));
2358 close(sock);
2359 return (PCAP_ERROR);
2360 }
2361 req.ifm_ulist = media_list;
2362 if (ioctl(sock, SIOCGIFMEDIA, &req) < 0) {
2363 snprintf(p->errbuf, PCAP_ERRBUF_SIZE, "SIOCGIFMEDIA: %s",
2364 pcap_strerror(errno));
2365 free(media_list);
2366 close(sock);
2367 return (PCAP_ERROR);
2368 }
2369
2370 /*
2371 * Look for an 802.11 "automatic" media type.
2372 * We assume that all 802.11 adapters have that media type,
2373 * and that it will carry the monitor mode supported flag.
2374 */
2375 can_do = 0;
2376 for (i = 0; i < req.ifm_count; i++) {
2377 if (IFM_TYPE(media_list[i]) == IFM_IEEE80211
2378 && IFM_SUBTYPE(media_list[i]) == IFM_AUTO) {
2379 /* OK, does it do monitor mode? */
2380 if (media_list[i] & IFM_IEEE80211_MONITOR) {
2381 can_do = 1;
2382 break;
2383 }
2384 }
2385 }
2386 free(media_list);
2387 if (!can_do) {
2388 /*
2389 * This adapter doesn't support monitor mode.
2390 */
2391 close(sock);
2392 return (PCAP_ERROR_RFMON_NOTSUP);
2393 }
2394
2395 if (set) {
2396 /*
2397 * Don't just check whether we can enable monitor mode,
2398 * do so, if it's not already enabled.
2399 */
2400 if ((req.ifm_current & IFM_IEEE80211_MONITOR) == 0) {
2401 /*
2402 * Monitor mode isn't currently on, so turn it on,
2403 * and remember that we should turn it off when the
2404 * pcap_t is closed.
2405 */
2406
2407 /*
2408 * If we haven't already done so, arrange to have
2409 * "pcap_close_all()" called when we exit.
2410 */
2411 if (!pcap_do_addexit(p)) {
2412 /*
2413 * "atexit()" failed; don't put the interface
2414 * in monitor mode, just give up.
2415 */
2416 snprintf(p->errbuf, PCAP_ERRBUF_SIZE,
2417 "atexit failed");
2418 close(sock);
2419 return (PCAP_ERROR);
2420 }
2421 memset(&ifr, 0, sizeof(ifr));
2422 (void)strncpy(ifr.ifr_name, p->opt.source,
2423 sizeof(ifr.ifr_name));
2424 ifr.ifr_media = req.ifm_current | IFM_IEEE80211_MONITOR;
2425 if (ioctl(sock, SIOCSIFMEDIA, &ifr) == -1) {
2426 snprintf(p->errbuf, PCAP_ERRBUF_SIZE,
2427 "SIOCSIFMEDIA: %s", pcap_strerror(errno));
2428 close(sock);
2429 return (PCAP_ERROR);
2430 }
2431
2432 pb->must_do_on_close |= MUST_CLEAR_RFMON;
2433
2434 /*
2435 * Add this to the list of pcaps to close when we exit.
2436 */
2437 pcap_add_to_pcaps_to_close(p);
2438 }
2439 }
2440 return (0);
2441 }
2442 #endif /* HAVE_BSD_IEEE80211 */
2443
2444 #if defined(BIOCGDLTLIST) && (defined(__APPLE__) || defined(HAVE_BSD_IEEE80211))
2445 /*
2446 * Check whether we have any 802.11 link-layer types; return the best
2447 * of the 802.11 link-layer types if we find one, and return -1
2448 * otherwise.
2449 *
2450 * DLT_IEEE802_11_RADIO, with the radiotap header, is considered the
2451 * best 802.11 link-layer type; any of the other 802.11-plus-radio
2452 * headers are second-best; 802.11 with no radio information is
2453 * the least good.
2454 */
2455 static int
2456 find_802_11(struct bpf_dltlist *bdlp)
2457 {
2458 int new_dlt;
2459 int i;
2460
2461 /*
2462 * Scan the list of DLT_ values, looking for 802.11 values,
2463 * and, if we find any, choose the best of them.
2464 */
2465 new_dlt = -1;
2466 for (i = 0; i < bdlp->bfl_len; i++) {
2467 switch (bdlp->bfl_list[i]) {
2468
2469 case DLT_IEEE802_11:
2470 /*
2471 * 802.11, but no radio.
2472 *
2473 * Offer this, and select it as the new mode
2474 * unless we've already found an 802.11
2475 * header with radio information.
2476 */
2477 if (new_dlt == -1)
2478 new_dlt = bdlp->bfl_list[i];
2479 break;
2480
2481 case DLT_PRISM_HEADER:
2482 case DLT_AIRONET_HEADER:
2483 case DLT_IEEE802_11_RADIO_AVS:
2484 /*
2485 * 802.11 with radio, but not radiotap.
2486 *
2487 * Offer this, and select it as the new mode
2488 * unless we've already found the radiotap DLT_.
2489 */
2490 if (new_dlt != DLT_IEEE802_11_RADIO)
2491 new_dlt = bdlp->bfl_list[i];
2492 break;
2493
2494 case DLT_IEEE802_11_RADIO:
2495 /*
2496 * 802.11 with radiotap.
2497 *
2498 * Offer this, and select it as the new mode.
2499 */
2500 new_dlt = bdlp->bfl_list[i];
2501 break;
2502
2503 default:
2504 /*
2505 * Not 802.11.
2506 */
2507 break;
2508 }
2509 }
2510
2511 return (new_dlt);
2512 }
2513 #endif /* defined(BIOCGDLTLIST) && (defined(__APPLE__) || defined(HAVE_BSD_IEEE80211)) */
2514
2515 #if defined(__APPLE__) && defined(BIOCGDLTLIST)
2516 /*
2517 * Remove DLT_EN10MB from the list of DLT_ values, as we're in monitor mode,
2518 * and DLT_EN10MB isn't supported in monitor mode.
2519 */
2520 static void
2521 remove_en(pcap_t *p)
2522 {
2523 int i, j;
2524
2525 /*
2526 * Scan the list of DLT_ values and discard DLT_EN10MB.
2527 */
2528 j = 0;
2529 for (i = 0; i < p->dlt_count; i++) {
2530 switch (p->dlt_list[i]) {
2531
2532 case DLT_EN10MB:
2533 /*
2534 * Don't offer this one.
2535 */
2536 continue;
2537
2538 default:
2539 /*
2540 * Just copy this mode over.
2541 */
2542 break;
2543 }
2544
2545 /*
2546 * Copy this DLT_ value to its new position.
2547 */
2548 p->dlt_list[j] = p->dlt_list[i];
2549 j++;
2550 }
2551
2552 /*
2553 * Set the DLT_ count to the number of entries we copied.
2554 */
2555 p->dlt_count = j;
2556 }
2557
2558 /*
2559 * Remove 802.11 link-layer types from the list of DLT_ values, as
2560 * we're not in monitor mode, and those DLT_ values will switch us
2561 * to monitor mode.
2562 */
2563 static void
2564 remove_802_11(pcap_t *p)
2565 {
2566 int i, j;
2567
2568 /*
2569 * Scan the list of DLT_ values and discard 802.11 values.
2570 */
2571 j = 0;
2572 for (i = 0; i < p->dlt_count; i++) {
2573 switch (p->dlt_list[i]) {
2574
2575 case DLT_IEEE802_11:
2576 case DLT_PRISM_HEADER:
2577 case DLT_AIRONET_HEADER:
2578 case DLT_IEEE802_11_RADIO:
2579 case DLT_IEEE802_11_RADIO_AVS:
2580 /*
2581 * 802.11. Don't offer this one.
2582 */
2583 continue;
2584
2585 default:
2586 /*
2587 * Just copy this mode over.
2588 */
2589 break;
2590 }
2591
2592 /*
2593 * Copy this DLT_ value to its new position.
2594 */
2595 p->dlt_list[j] = p->dlt_list[i];
2596 j++;
2597 }
2598
2599 /*
2600 * Set the DLT_ count to the number of entries we copied.
2601 */
2602 p->dlt_count = j;
2603 }
2604 #endif /* defined(__APPLE__) && defined(BIOCGDLTLIST) */
2605
2606 static int
2607 pcap_setfilter_bpf(pcap_t *p, struct bpf_program *fp)
2608 {
2609 struct pcap_bpf *pb = p->priv;
2610
2611 /*
2612 * Free any user-mode filter we might happen to have installed.
2613 */
2614 pcap_freecode(&p->fcode);
2615
2616 /*
2617 * Try to install the kernel filter.
2618 */
2619 if (ioctl(p->fd, BIOCSETF, (caddr_t)fp) == 0) {
2620 /*
2621 * It worked.
2622 */
2623 pb->filtering_in_kernel = 1; /* filtering in the kernel */
2624
2625 /*
2626 * Discard any previously-received packets, as they might
2627 * have passed whatever filter was formerly in effect, but
2628 * might not pass this filter (BIOCSETF discards packets
2629 * buffered in the kernel, so you can lose packets in any
2630 * case).
2631 */
2632 p->cc = 0;
2633 return (0);
2634 }
2635
2636 /*
2637 * We failed.
2638 *
2639 * If it failed with EINVAL, that's probably because the program
2640 * is invalid or too big. Validate it ourselves; if we like it
2641 * (we currently allow backward branches, to support protochain),
2642 * run it in userland. (There's no notion of "too big" for
2643 * userland.)
2644 *
2645 * Otherwise, just give up.
2646 * XXX - if the copy of the program into the kernel failed,
2647 * we will get EINVAL rather than, say, EFAULT on at least
2648 * some kernels.
2649 */
2650 if (errno != EINVAL) {
2651 snprintf(p->errbuf, PCAP_ERRBUF_SIZE, "BIOCSETF: %s",
2652 pcap_strerror(errno));
2653 return (-1);
2654 }
2655
2656 /*
2657 * install_bpf_program() validates the program.
2658 *
2659 * XXX - what if we already have a filter in the kernel?
2660 */
2661 if (install_bpf_program(p, fp) < 0)
2662 return (-1);
2663 pb->filtering_in_kernel = 0; /* filtering in userland */
2664 return (0);
2665 }
2666
2667 /*
2668 * Set direction flag: Which packets do we accept on a forwarding
2669 * single device? IN, OUT or both?
2670 */
2671 static int
2672 pcap_setdirection_bpf(pcap_t *p, pcap_direction_t d)
2673 {
2674 #if defined(BIOCSDIRECTION)
2675 u_int direction;
2676
2677 direction = (d == PCAP_D_IN) ? BPF_D_IN :
2678 ((d == PCAP_D_OUT) ? BPF_D_OUT : BPF_D_INOUT);
2679 if (ioctl(p->fd, BIOCSDIRECTION, &direction) == -1) {
2680 (void) snprintf(p->errbuf, sizeof(p->errbuf),
2681 "Cannot set direction to %s: %s",
2682 (d == PCAP_D_IN) ? "PCAP_D_IN" :
2683 ((d == PCAP_D_OUT) ? "PCAP_D_OUT" : "PCAP_D_INOUT"),
2684 strerror(errno));
2685 return (-1);
2686 }
2687 return (0);
2688 #elif defined(BIOCSSEESENT)
2689 u_int seesent;
2690
2691 /*
2692 * We don't support PCAP_D_OUT.
2693 */
2694 if (d == PCAP_D_OUT) {
2695 snprintf(p->errbuf, sizeof(p->errbuf),
2696 "Setting direction to PCAP_D_OUT is not supported on BPF");
2697 return -1;
2698 }
2699
2700 seesent = (d == PCAP_D_INOUT);
2701 if (ioctl(p->fd, BIOCSSEESENT, &seesent) == -1) {
2702 (void) snprintf(p->errbuf, sizeof(p->errbuf),
2703 "Cannot set direction to %s: %s",
2704 (d == PCAP_D_INOUT) ? "PCAP_D_INOUT" : "PCAP_D_IN",
2705 strerror(errno));
2706 return (-1);
2707 }
2708 return (0);
2709 #else
2710 (void) snprintf(p->errbuf, sizeof(p->errbuf),
2711 "This system doesn't support BIOCSSEESENT, so the direction can't be set");
2712 return (-1);
2713 #endif
2714 }
2715
2716 static int
2717 pcap_set_datalink_bpf(pcap_t *p, int dlt)
2718 {
2719 #ifdef BIOCSDLT
2720 if (ioctl(p->fd, BIOCSDLT, &dlt) == -1) {
2721 (void) snprintf(p->errbuf, sizeof(p->errbuf),
2722 "Cannot set DLT %d: %s", dlt, strerror(errno));
2723 return (-1);
2724 }
2725 #endif
2726 return (0);
2727 }
2728