1; 2; Copyright (c) 2013 The WebM project authors. All Rights Reserved. 3; 4; Use of this source code is governed by a BSD-style license 5; that can be found in the LICENSE file in the root of the source 6; tree. An additional intellectual property rights grant can be found 7; in the file PATENTS. All contributing project authors may 8; be found in the AUTHORS file in the root of the source tree. 9; 10 11 EXPORT |vp9_idct4x4_16_add_neon| 12 ARM 13 REQUIRE8 14 PRESERVE8 15 16 AREA ||.text||, CODE, READONLY, ALIGN=2 17 18 AREA Block, CODE, READONLY ; name this block of code 19;void vp9_idct4x4_16_add_neon(int16_t *input, uint8_t *dest, int dest_stride) 20; 21; r0 int16_t input 22; r1 uint8_t *dest 23; r2 int dest_stride) 24 25|vp9_idct4x4_16_add_neon| PROC 26 27 ; The 2D transform is done with two passes which are actually pretty 28 ; similar. We first transform the rows. This is done by transposing 29 ; the inputs, doing an SIMD column transform (the columns are the 30 ; transposed rows) and then transpose the results (so that it goes back 31 ; in normal/row positions). Then, we transform the columns by doing 32 ; another SIMD column transform. 33 ; So, two passes of a transpose followed by a column transform. 34 35 ; load the inputs into q8-q9, d16-d19 36 vld1.s16 {q8,q9}, [r0]! 37 38 ; generate scalar constants 39 ; cospi_8_64 = 15137 = 0x3b21 40 mov r0, #0x3b00 41 add r0, #0x21 42 ; cospi_16_64 = 11585 = 0x2d41 43 mov r3, #0x2d00 44 add r3, #0x41 45 ; cospi_24_64 = 6270 = 0x 187e 46 mov r12, #0x1800 47 add r12, #0x7e 48 49 ; transpose the input data 50 ; 00 01 02 03 d16 51 ; 10 11 12 13 d17 52 ; 20 21 22 23 d18 53 ; 30 31 32 33 d19 54 vtrn.16 d16, d17 55 vtrn.16 d18, d19 56 57 ; generate constant vectors 58 vdup.16 d20, r0 ; replicate cospi_8_64 59 vdup.16 d21, r3 ; replicate cospi_16_64 60 61 ; 00 10 02 12 d16 62 ; 01 11 03 13 d17 63 ; 20 30 22 32 d18 64 ; 21 31 23 33 d19 65 vtrn.32 q8, q9 66 ; 00 10 20 30 d16 67 ; 01 11 21 31 d17 68 ; 02 12 22 32 d18 69 ; 03 13 23 33 d19 70 71 vdup.16 d22, r12 ; replicate cospi_24_64 72 73 ; do the transform on transposed rows 74 75 ; stage 1 76 vadd.s16 d23, d16, d18 ; (input[0] + input[2]) 77 vsub.s16 d24, d16, d18 ; (input[0] - input[2]) 78 79 vmull.s16 q15, d17, d22 ; input[1] * cospi_24_64 80 vmull.s16 q1, d17, d20 ; input[1] * cospi_8_64 81 82 ; (input[0] + input[2]) * cospi_16_64; 83 ; (input[0] - input[2]) * cospi_16_64; 84 vmull.s16 q13, d23, d21 85 vmull.s16 q14, d24, d21 86 87 ; input[1] * cospi_24_64 - input[3] * cospi_8_64; 88 ; input[1] * cospi_8_64 + input[3] * cospi_24_64; 89 vmlsl.s16 q15, d19, d20 90 vmlal.s16 q1, d19, d22 91 92 ; dct_const_round_shift 93 vqrshrn.s32 d26, q13, #14 94 vqrshrn.s32 d27, q14, #14 95 vqrshrn.s32 d29, q15, #14 96 vqrshrn.s32 d28, q1, #14 97 98 ; stage 2 99 ; output[0] = step[0] + step[3]; 100 ; output[1] = step[1] + step[2]; 101 ; output[3] = step[0] - step[3]; 102 ; output[2] = step[1] - step[2]; 103 vadd.s16 q8, q13, q14 104 vsub.s16 q9, q13, q14 105 vswp d18, d19 106 107 ; transpose the results 108 ; 00 01 02 03 d16 109 ; 10 11 12 13 d17 110 ; 20 21 22 23 d18 111 ; 30 31 32 33 d19 112 vtrn.16 d16, d17 113 vtrn.16 d18, d19 114 ; 00 10 02 12 d16 115 ; 01 11 03 13 d17 116 ; 20 30 22 32 d18 117 ; 21 31 23 33 d19 118 vtrn.32 q8, q9 119 ; 00 10 20 30 d16 120 ; 01 11 21 31 d17 121 ; 02 12 22 32 d18 122 ; 03 13 23 33 d19 123 124 ; do the transform on columns 125 126 ; stage 1 127 vadd.s16 d23, d16, d18 ; (input[0] + input[2]) 128 vsub.s16 d24, d16, d18 ; (input[0] - input[2]) 129 130 vmull.s16 q15, d17, d22 ; input[1] * cospi_24_64 131 vmull.s16 q1, d17, d20 ; input[1] * cospi_8_64 132 133 ; (input[0] + input[2]) * cospi_16_64; 134 ; (input[0] - input[2]) * cospi_16_64; 135 vmull.s16 q13, d23, d21 136 vmull.s16 q14, d24, d21 137 138 ; input[1] * cospi_24_64 - input[3] * cospi_8_64; 139 ; input[1] * cospi_8_64 + input[3] * cospi_24_64; 140 vmlsl.s16 q15, d19, d20 141 vmlal.s16 q1, d19, d22 142 143 ; dct_const_round_shift 144 vqrshrn.s32 d26, q13, #14 145 vqrshrn.s32 d27, q14, #14 146 vqrshrn.s32 d29, q15, #14 147 vqrshrn.s32 d28, q1, #14 148 149 ; stage 2 150 ; output[0] = step[0] + step[3]; 151 ; output[1] = step[1] + step[2]; 152 ; output[3] = step[0] - step[3]; 153 ; output[2] = step[1] - step[2]; 154 vadd.s16 q8, q13, q14 155 vsub.s16 q9, q13, q14 156 157 ; The results are in two registers, one of them being swapped. This will 158 ; be taken care of by loading the 'dest' value in a swapped fashion and 159 ; also storing them in the same swapped fashion. 160 ; temp_out[0, 1] = d16, d17 = q8 161 ; temp_out[2, 3] = d19, d18 = q9 swapped 162 163 ; ROUND_POWER_OF_TWO(temp_out[j], 4) 164 vrshr.s16 q8, q8, #4 165 vrshr.s16 q9, q9, #4 166 167 vld1.32 {d26[0]}, [r1], r2 168 vld1.32 {d26[1]}, [r1], r2 169 vld1.32 {d27[1]}, [r1], r2 170 vld1.32 {d27[0]}, [r1] ; no post-increment 171 172 ; ROUND_POWER_OF_TWO(temp_out[j], 4) + dest[j * dest_stride + i] 173 vaddw.u8 q8, q8, d26 174 vaddw.u8 q9, q9, d27 175 176 ; clip_pixel 177 vqmovun.s16 d26, q8 178 vqmovun.s16 d27, q9 179 180 ; do the stores in reverse order with negative post-increment, by changing 181 ; the sign of the stride 182 rsb r2, r2, #0 183 vst1.32 {d27[0]}, [r1], r2 184 vst1.32 {d27[1]}, [r1], r2 185 vst1.32 {d26[1]}, [r1], r2 186 vst1.32 {d26[0]}, [r1] ; no post-increment 187 bx lr 188 ENDP ; |vp9_idct4x4_16_add_neon| 189 190 END 191