1 #include "llvm/IR/Verifier.h"
2 #include "llvm/IR/DerivedTypes.h"
3 #include "llvm/IR/IRBuilder.h"
4 #include "llvm/IR/LLVMContext.h"
5 #include "llvm/IR/Module.h"
6 #include <cctype>
7 #include <cstdio>
8 #include <map>
9 #include <string>
10 #include <vector>
11 using namespace llvm;
12
13 //===----------------------------------------------------------------------===//
14 // Lexer
15 //===----------------------------------------------------------------------===//
16
17 // The lexer returns tokens [0-255] if it is an unknown character, otherwise one
18 // of these for known things.
19 enum Token {
20 tok_eof = -1,
21
22 // commands
23 tok_def = -2, tok_extern = -3,
24
25 // primary
26 tok_identifier = -4, tok_number = -5
27 };
28
29 static std::string IdentifierStr; // Filled in if tok_identifier
30 static double NumVal; // Filled in if tok_number
31
32 /// gettok - Return the next token from standard input.
gettok()33 static int gettok() {
34 static int LastChar = ' ';
35
36 // Skip any whitespace.
37 while (isspace(LastChar))
38 LastChar = getchar();
39
40 if (isalpha(LastChar)) { // identifier: [a-zA-Z][a-zA-Z0-9]*
41 IdentifierStr = LastChar;
42 while (isalnum((LastChar = getchar())))
43 IdentifierStr += LastChar;
44
45 if (IdentifierStr == "def") return tok_def;
46 if (IdentifierStr == "extern") return tok_extern;
47 return tok_identifier;
48 }
49
50 if (isdigit(LastChar) || LastChar == '.') { // Number: [0-9.]+
51 std::string NumStr;
52 do {
53 NumStr += LastChar;
54 LastChar = getchar();
55 } while (isdigit(LastChar) || LastChar == '.');
56
57 NumVal = strtod(NumStr.c_str(), 0);
58 return tok_number;
59 }
60
61 if (LastChar == '#') {
62 // Comment until end of line.
63 do LastChar = getchar();
64 while (LastChar != EOF && LastChar != '\n' && LastChar != '\r');
65
66 if (LastChar != EOF)
67 return gettok();
68 }
69
70 // Check for end of file. Don't eat the EOF.
71 if (LastChar == EOF)
72 return tok_eof;
73
74 // Otherwise, just return the character as its ascii value.
75 int ThisChar = LastChar;
76 LastChar = getchar();
77 return ThisChar;
78 }
79
80 //===----------------------------------------------------------------------===//
81 // Abstract Syntax Tree (aka Parse Tree)
82 //===----------------------------------------------------------------------===//
83 namespace {
84 /// ExprAST - Base class for all expression nodes.
85 class ExprAST {
86 public:
~ExprAST()87 virtual ~ExprAST() {}
88 virtual Value *Codegen() = 0;
89 };
90
91 /// NumberExprAST - Expression class for numeric literals like "1.0".
92 class NumberExprAST : public ExprAST {
93 double Val;
94 public:
NumberExprAST(double val)95 NumberExprAST(double val) : Val(val) {}
96 Value *Codegen() override;
97 };
98
99 /// VariableExprAST - Expression class for referencing a variable, like "a".
100 class VariableExprAST : public ExprAST {
101 std::string Name;
102 public:
VariableExprAST(const std::string & name)103 VariableExprAST(const std::string &name) : Name(name) {}
104 Value *Codegen() override;
105 };
106
107 /// BinaryExprAST - Expression class for a binary operator.
108 class BinaryExprAST : public ExprAST {
109 char Op;
110 ExprAST *LHS, *RHS;
111 public:
BinaryExprAST(char op,ExprAST * lhs,ExprAST * rhs)112 BinaryExprAST(char op, ExprAST *lhs, ExprAST *rhs)
113 : Op(op), LHS(lhs), RHS(rhs) {}
114 Value *Codegen() override;
115 };
116
117 /// CallExprAST - Expression class for function calls.
118 class CallExprAST : public ExprAST {
119 std::string Callee;
120 std::vector<ExprAST*> Args;
121 public:
CallExprAST(const std::string & callee,std::vector<ExprAST * > & args)122 CallExprAST(const std::string &callee, std::vector<ExprAST*> &args)
123 : Callee(callee), Args(args) {}
124 Value *Codegen() override;
125 };
126
127 /// PrototypeAST - This class represents the "prototype" for a function,
128 /// which captures its name, and its argument names (thus implicitly the number
129 /// of arguments the function takes).
130 class PrototypeAST {
131 std::string Name;
132 std::vector<std::string> Args;
133 public:
PrototypeAST(const std::string & name,const std::vector<std::string> & args)134 PrototypeAST(const std::string &name, const std::vector<std::string> &args)
135 : Name(name), Args(args) {}
136
137 Function *Codegen();
138 };
139
140 /// FunctionAST - This class represents a function definition itself.
141 class FunctionAST {
142 PrototypeAST *Proto;
143 ExprAST *Body;
144 public:
FunctionAST(PrototypeAST * proto,ExprAST * body)145 FunctionAST(PrototypeAST *proto, ExprAST *body)
146 : Proto(proto), Body(body) {}
147
148 Function *Codegen();
149 };
150 } // end anonymous namespace
151
152 //===----------------------------------------------------------------------===//
153 // Parser
154 //===----------------------------------------------------------------------===//
155
156 /// CurTok/getNextToken - Provide a simple token buffer. CurTok is the current
157 /// token the parser is looking at. getNextToken reads another token from the
158 /// lexer and updates CurTok with its results.
159 static int CurTok;
getNextToken()160 static int getNextToken() {
161 return CurTok = gettok();
162 }
163
164 /// BinopPrecedence - This holds the precedence for each binary operator that is
165 /// defined.
166 static std::map<char, int> BinopPrecedence;
167
168 /// GetTokPrecedence - Get the precedence of the pending binary operator token.
GetTokPrecedence()169 static int GetTokPrecedence() {
170 if (!isascii(CurTok))
171 return -1;
172
173 // Make sure it's a declared binop.
174 int TokPrec = BinopPrecedence[CurTok];
175 if (TokPrec <= 0) return -1;
176 return TokPrec;
177 }
178
179 /// Error* - These are little helper functions for error handling.
Error(const char * Str)180 ExprAST *Error(const char *Str) { fprintf(stderr, "Error: %s\n", Str);return 0;}
ErrorP(const char * Str)181 PrototypeAST *ErrorP(const char *Str) { Error(Str); return 0; }
ErrorF(const char * Str)182 FunctionAST *ErrorF(const char *Str) { Error(Str); return 0; }
183
184 static ExprAST *ParseExpression();
185
186 /// identifierexpr
187 /// ::= identifier
188 /// ::= identifier '(' expression* ')'
ParseIdentifierExpr()189 static ExprAST *ParseIdentifierExpr() {
190 std::string IdName = IdentifierStr;
191
192 getNextToken(); // eat identifier.
193
194 if (CurTok != '(') // Simple variable ref.
195 return new VariableExprAST(IdName);
196
197 // Call.
198 getNextToken(); // eat (
199 std::vector<ExprAST*> Args;
200 if (CurTok != ')') {
201 while (1) {
202 ExprAST *Arg = ParseExpression();
203 if (!Arg) return 0;
204 Args.push_back(Arg);
205
206 if (CurTok == ')') break;
207
208 if (CurTok != ',')
209 return Error("Expected ')' or ',' in argument list");
210 getNextToken();
211 }
212 }
213
214 // Eat the ')'.
215 getNextToken();
216
217 return new CallExprAST(IdName, Args);
218 }
219
220 /// numberexpr ::= number
ParseNumberExpr()221 static ExprAST *ParseNumberExpr() {
222 ExprAST *Result = new NumberExprAST(NumVal);
223 getNextToken(); // consume the number
224 return Result;
225 }
226
227 /// parenexpr ::= '(' expression ')'
ParseParenExpr()228 static ExprAST *ParseParenExpr() {
229 getNextToken(); // eat (.
230 ExprAST *V = ParseExpression();
231 if (!V) return 0;
232
233 if (CurTok != ')')
234 return Error("expected ')'");
235 getNextToken(); // eat ).
236 return V;
237 }
238
239 /// primary
240 /// ::= identifierexpr
241 /// ::= numberexpr
242 /// ::= parenexpr
ParsePrimary()243 static ExprAST *ParsePrimary() {
244 switch (CurTok) {
245 default: return Error("unknown token when expecting an expression");
246 case tok_identifier: return ParseIdentifierExpr();
247 case tok_number: return ParseNumberExpr();
248 case '(': return ParseParenExpr();
249 }
250 }
251
252 /// binoprhs
253 /// ::= ('+' primary)*
ParseBinOpRHS(int ExprPrec,ExprAST * LHS)254 static ExprAST *ParseBinOpRHS(int ExprPrec, ExprAST *LHS) {
255 // If this is a binop, find its precedence.
256 while (1) {
257 int TokPrec = GetTokPrecedence();
258
259 // If this is a binop that binds at least as tightly as the current binop,
260 // consume it, otherwise we are done.
261 if (TokPrec < ExprPrec)
262 return LHS;
263
264 // Okay, we know this is a binop.
265 int BinOp = CurTok;
266 getNextToken(); // eat binop
267
268 // Parse the primary expression after the binary operator.
269 ExprAST *RHS = ParsePrimary();
270 if (!RHS) return 0;
271
272 // If BinOp binds less tightly with RHS than the operator after RHS, let
273 // the pending operator take RHS as its LHS.
274 int NextPrec = GetTokPrecedence();
275 if (TokPrec < NextPrec) {
276 RHS = ParseBinOpRHS(TokPrec+1, RHS);
277 if (RHS == 0) return 0;
278 }
279
280 // Merge LHS/RHS.
281 LHS = new BinaryExprAST(BinOp, LHS, RHS);
282 }
283 }
284
285 /// expression
286 /// ::= primary binoprhs
287 ///
ParseExpression()288 static ExprAST *ParseExpression() {
289 ExprAST *LHS = ParsePrimary();
290 if (!LHS) return 0;
291
292 return ParseBinOpRHS(0, LHS);
293 }
294
295 /// prototype
296 /// ::= id '(' id* ')'
ParsePrototype()297 static PrototypeAST *ParsePrototype() {
298 if (CurTok != tok_identifier)
299 return ErrorP("Expected function name in prototype");
300
301 std::string FnName = IdentifierStr;
302 getNextToken();
303
304 if (CurTok != '(')
305 return ErrorP("Expected '(' in prototype");
306
307 std::vector<std::string> ArgNames;
308 while (getNextToken() == tok_identifier)
309 ArgNames.push_back(IdentifierStr);
310 if (CurTok != ')')
311 return ErrorP("Expected ')' in prototype");
312
313 // success.
314 getNextToken(); // eat ')'.
315
316 return new PrototypeAST(FnName, ArgNames);
317 }
318
319 /// definition ::= 'def' prototype expression
ParseDefinition()320 static FunctionAST *ParseDefinition() {
321 getNextToken(); // eat def.
322 PrototypeAST *Proto = ParsePrototype();
323 if (Proto == 0) return 0;
324
325 if (ExprAST *E = ParseExpression())
326 return new FunctionAST(Proto, E);
327 return 0;
328 }
329
330 /// toplevelexpr ::= expression
ParseTopLevelExpr()331 static FunctionAST *ParseTopLevelExpr() {
332 if (ExprAST *E = ParseExpression()) {
333 // Make an anonymous proto.
334 PrototypeAST *Proto = new PrototypeAST("", std::vector<std::string>());
335 return new FunctionAST(Proto, E);
336 }
337 return 0;
338 }
339
340 /// external ::= 'extern' prototype
ParseExtern()341 static PrototypeAST *ParseExtern() {
342 getNextToken(); // eat extern.
343 return ParsePrototype();
344 }
345
346 //===----------------------------------------------------------------------===//
347 // Code Generation
348 //===----------------------------------------------------------------------===//
349
350 static Module *TheModule;
351 static IRBuilder<> Builder(getGlobalContext());
352 static std::map<std::string, Value*> NamedValues;
353
ErrorV(const char * Str)354 Value *ErrorV(const char *Str) { Error(Str); return 0; }
355
Codegen()356 Value *NumberExprAST::Codegen() {
357 return ConstantFP::get(getGlobalContext(), APFloat(Val));
358 }
359
Codegen()360 Value *VariableExprAST::Codegen() {
361 // Look this variable up in the function.
362 Value *V = NamedValues[Name];
363 return V ? V : ErrorV("Unknown variable name");
364 }
365
Codegen()366 Value *BinaryExprAST::Codegen() {
367 Value *L = LHS->Codegen();
368 Value *R = RHS->Codegen();
369 if (L == 0 || R == 0) return 0;
370
371 switch (Op) {
372 case '+': return Builder.CreateFAdd(L, R, "addtmp");
373 case '-': return Builder.CreateFSub(L, R, "subtmp");
374 case '*': return Builder.CreateFMul(L, R, "multmp");
375 case '<':
376 L = Builder.CreateFCmpULT(L, R, "cmptmp");
377 // Convert bool 0/1 to double 0.0 or 1.0
378 return Builder.CreateUIToFP(L, Type::getDoubleTy(getGlobalContext()),
379 "booltmp");
380 default: return ErrorV("invalid binary operator");
381 }
382 }
383
Codegen()384 Value *CallExprAST::Codegen() {
385 // Look up the name in the global module table.
386 Function *CalleeF = TheModule->getFunction(Callee);
387 if (CalleeF == 0)
388 return ErrorV("Unknown function referenced");
389
390 // If argument mismatch error.
391 if (CalleeF->arg_size() != Args.size())
392 return ErrorV("Incorrect # arguments passed");
393
394 std::vector<Value*> ArgsV;
395 for (unsigned i = 0, e = Args.size(); i != e; ++i) {
396 ArgsV.push_back(Args[i]->Codegen());
397 if (ArgsV.back() == 0) return 0;
398 }
399
400 return Builder.CreateCall(CalleeF, ArgsV, "calltmp");
401 }
402
Codegen()403 Function *PrototypeAST::Codegen() {
404 // Make the function type: double(double,double) etc.
405 std::vector<Type*> Doubles(Args.size(),
406 Type::getDoubleTy(getGlobalContext()));
407 FunctionType *FT = FunctionType::get(Type::getDoubleTy(getGlobalContext()),
408 Doubles, false);
409
410 Function *F = Function::Create(FT, Function::ExternalLinkage, Name, TheModule);
411
412 // If F conflicted, there was already something named 'Name'. If it has a
413 // body, don't allow redefinition or reextern.
414 if (F->getName() != Name) {
415 // Delete the one we just made and get the existing one.
416 F->eraseFromParent();
417 F = TheModule->getFunction(Name);
418
419 // If F already has a body, reject this.
420 if (!F->empty()) {
421 ErrorF("redefinition of function");
422 return 0;
423 }
424
425 // If F took a different number of args, reject.
426 if (F->arg_size() != Args.size()) {
427 ErrorF("redefinition of function with different # args");
428 return 0;
429 }
430 }
431
432 // Set names for all arguments.
433 unsigned Idx = 0;
434 for (Function::arg_iterator AI = F->arg_begin(); Idx != Args.size();
435 ++AI, ++Idx) {
436 AI->setName(Args[Idx]);
437
438 // Add arguments to variable symbol table.
439 NamedValues[Args[Idx]] = AI;
440 }
441
442 return F;
443 }
444
Codegen()445 Function *FunctionAST::Codegen() {
446 NamedValues.clear();
447
448 Function *TheFunction = Proto->Codegen();
449 if (TheFunction == 0)
450 return 0;
451
452 // Create a new basic block to start insertion into.
453 BasicBlock *BB = BasicBlock::Create(getGlobalContext(), "entry", TheFunction);
454 Builder.SetInsertPoint(BB);
455
456 if (Value *RetVal = Body->Codegen()) {
457 // Finish off the function.
458 Builder.CreateRet(RetVal);
459
460 // Validate the generated code, checking for consistency.
461 verifyFunction(*TheFunction);
462
463 return TheFunction;
464 }
465
466 // Error reading body, remove function.
467 TheFunction->eraseFromParent();
468 return 0;
469 }
470
471 //===----------------------------------------------------------------------===//
472 // Top-Level parsing and JIT Driver
473 //===----------------------------------------------------------------------===//
474
HandleDefinition()475 static void HandleDefinition() {
476 if (FunctionAST *F = ParseDefinition()) {
477 if (Function *LF = F->Codegen()) {
478 fprintf(stderr, "Read function definition:");
479 LF->dump();
480 }
481 } else {
482 // Skip token for error recovery.
483 getNextToken();
484 }
485 }
486
HandleExtern()487 static void HandleExtern() {
488 if (PrototypeAST *P = ParseExtern()) {
489 if (Function *F = P->Codegen()) {
490 fprintf(stderr, "Read extern: ");
491 F->dump();
492 }
493 } else {
494 // Skip token for error recovery.
495 getNextToken();
496 }
497 }
498
HandleTopLevelExpression()499 static void HandleTopLevelExpression() {
500 // Evaluate a top-level expression into an anonymous function.
501 if (FunctionAST *F = ParseTopLevelExpr()) {
502 if (Function *LF = F->Codegen()) {
503 fprintf(stderr, "Read top-level expression:");
504 LF->dump();
505 }
506 } else {
507 // Skip token for error recovery.
508 getNextToken();
509 }
510 }
511
512 /// top ::= definition | external | expression | ';'
MainLoop()513 static void MainLoop() {
514 while (1) {
515 fprintf(stderr, "ready> ");
516 switch (CurTok) {
517 case tok_eof: return;
518 case ';': getNextToken(); break; // ignore top-level semicolons.
519 case tok_def: HandleDefinition(); break;
520 case tok_extern: HandleExtern(); break;
521 default: HandleTopLevelExpression(); break;
522 }
523 }
524 }
525
526 //===----------------------------------------------------------------------===//
527 // "Library" functions that can be "extern'd" from user code.
528 //===----------------------------------------------------------------------===//
529
530 /// putchard - putchar that takes a double and returns 0.
531 extern "C"
putchard(double X)532 double putchard(double X) {
533 putchar((char)X);
534 return 0;
535 }
536
537 //===----------------------------------------------------------------------===//
538 // Main driver code.
539 //===----------------------------------------------------------------------===//
540
main()541 int main() {
542 LLVMContext &Context = getGlobalContext();
543
544 // Install standard binary operators.
545 // 1 is lowest precedence.
546 BinopPrecedence['<'] = 10;
547 BinopPrecedence['+'] = 20;
548 BinopPrecedence['-'] = 20;
549 BinopPrecedence['*'] = 40; // highest.
550
551 // Prime the first token.
552 fprintf(stderr, "ready> ");
553 getNextToken();
554
555 // Make the module, which holds all the code.
556 TheModule = new Module("my cool jit", Context);
557
558 // Run the main "interpreter loop" now.
559 MainLoop();
560
561 // Print out all of the generated code.
562 TheModule->dump();
563
564 return 0;
565 }
566