1 #include "llvm/Analysis/Passes.h"
2 #include "llvm/ExecutionEngine/Orc/CompileUtils.h"
3 #include "llvm/ExecutionEngine/Orc/IRCompileLayer.h"
4 #include "llvm/ExecutionEngine/Orc/LambdaResolver.h"
5 #include "llvm/ExecutionEngine/Orc/LazyEmittingLayer.h"
6 #include "llvm/ExecutionEngine/Orc/ObjectLinkingLayer.h"
7 #include "llvm/IR/DataLayout.h"
8 #include "llvm/IR/DerivedTypes.h"
9 #include "llvm/IR/IRBuilder.h"
10 #include "llvm/IR/LegacyPassManager.h"
11 #include "llvm/IR/LLVMContext.h"
12 #include "llvm/IR/Module.h"
13 #include "llvm/IR/Verifier.h"
14 #include "llvm/Support/TargetSelect.h"
15 #include "llvm/Transforms/Scalar.h"
16 #include <cctype>
17 #include <iomanip>
18 #include <iostream>
19 #include <map>
20 #include <sstream>
21 #include <string>
22 #include <vector>
23 
24 using namespace llvm;
25 using namespace llvm::orc;
26 
27 //===----------------------------------------------------------------------===//
28 // Lexer
29 //===----------------------------------------------------------------------===//
30 
31 // The lexer returns tokens [0-255] if it is an unknown character, otherwise one
32 // of these for known things.
33 enum Token {
34   tok_eof = -1,
35 
36   // commands
37   tok_def = -2, tok_extern = -3,
38 
39   // primary
40   tok_identifier = -4, tok_number = -5,
41 
42   // control
43   tok_if = -6, tok_then = -7, tok_else = -8,
44   tok_for = -9, tok_in = -10,
45 
46   // operators
47   tok_binary = -11, tok_unary = -12,
48 
49   // var definition
50   tok_var = -13
51 };
52 
53 static std::string IdentifierStr;  // Filled in if tok_identifier
54 static double NumVal;              // Filled in if tok_number
55 
56 /// gettok - Return the next token from standard input.
gettok()57 static int gettok() {
58   static int LastChar = ' ';
59 
60   // Skip any whitespace.
61   while (isspace(LastChar))
62     LastChar = getchar();
63 
64   if (isalpha(LastChar)) { // identifier: [a-zA-Z][a-zA-Z0-9]*
65     IdentifierStr = LastChar;
66     while (isalnum((LastChar = getchar())))
67       IdentifierStr += LastChar;
68 
69     if (IdentifierStr == "def") return tok_def;
70     if (IdentifierStr == "extern") return tok_extern;
71     if (IdentifierStr == "if") return tok_if;
72     if (IdentifierStr == "then") return tok_then;
73     if (IdentifierStr == "else") return tok_else;
74     if (IdentifierStr == "for") return tok_for;
75     if (IdentifierStr == "in") return tok_in;
76     if (IdentifierStr == "binary") return tok_binary;
77     if (IdentifierStr == "unary") return tok_unary;
78     if (IdentifierStr == "var") return tok_var;
79     return tok_identifier;
80   }
81 
82   if (isdigit(LastChar) || LastChar == '.') {   // Number: [0-9.]+
83     std::string NumStr;
84     do {
85       NumStr += LastChar;
86       LastChar = getchar();
87     } while (isdigit(LastChar) || LastChar == '.');
88 
89     NumVal = strtod(NumStr.c_str(), 0);
90     return tok_number;
91   }
92 
93   if (LastChar == '#') {
94     // Comment until end of line.
95     do LastChar = getchar();
96     while (LastChar != EOF && LastChar != '\n' && LastChar != '\r');
97 
98     if (LastChar != EOF)
99       return gettok();
100   }
101 
102   // Check for end of file.  Don't eat the EOF.
103   if (LastChar == EOF)
104     return tok_eof;
105 
106   // Otherwise, just return the character as its ascii value.
107   int ThisChar = LastChar;
108   LastChar = getchar();
109   return ThisChar;
110 }
111 
112 //===----------------------------------------------------------------------===//
113 // Abstract Syntax Tree (aka Parse Tree)
114 //===----------------------------------------------------------------------===//
115 
116 class IRGenContext;
117 
118 /// ExprAST - Base class for all expression nodes.
119 struct ExprAST {
~ExprASTExprAST120   virtual ~ExprAST() {}
121   virtual Value *IRGen(IRGenContext &C) const = 0;
122 };
123 
124 /// NumberExprAST - Expression class for numeric literals like "1.0".
125 struct NumberExprAST : public ExprAST {
NumberExprASTNumberExprAST126   NumberExprAST(double Val) : Val(Val) {}
127   Value *IRGen(IRGenContext &C) const override;
128 
129   double Val;
130 };
131 
132 /// VariableExprAST - Expression class for referencing a variable, like "a".
133 struct VariableExprAST : public ExprAST {
VariableExprASTVariableExprAST134   VariableExprAST(std::string Name) : Name(std::move(Name)) {}
135   Value *IRGen(IRGenContext &C) const override;
136 
137   std::string Name;
138 };
139 
140 /// UnaryExprAST - Expression class for a unary operator.
141 struct UnaryExprAST : public ExprAST {
UnaryExprASTUnaryExprAST142   UnaryExprAST(char Opcode, std::unique_ptr<ExprAST> Operand)
143     : Opcode(std::move(Opcode)), Operand(std::move(Operand)) {}
144 
145   Value *IRGen(IRGenContext &C) const override;
146 
147   char Opcode;
148   std::unique_ptr<ExprAST> Operand;
149 };
150 
151 /// BinaryExprAST - Expression class for a binary operator.
152 struct BinaryExprAST : public ExprAST {
BinaryExprASTBinaryExprAST153   BinaryExprAST(char Op, std::unique_ptr<ExprAST> LHS,
154                 std::unique_ptr<ExprAST> RHS)
155     : Op(Op), LHS(std::move(LHS)), RHS(std::move(RHS)) {}
156 
157   Value *IRGen(IRGenContext &C) const override;
158 
159   char Op;
160   std::unique_ptr<ExprAST> LHS, RHS;
161 };
162 
163 /// CallExprAST - Expression class for function calls.
164 struct CallExprAST : public ExprAST {
CallExprASTCallExprAST165   CallExprAST(std::string CalleeName,
166               std::vector<std::unique_ptr<ExprAST>> Args)
167     : CalleeName(std::move(CalleeName)), Args(std::move(Args)) {}
168 
169   Value *IRGen(IRGenContext &C) const override;
170 
171   std::string CalleeName;
172   std::vector<std::unique_ptr<ExprAST>> Args;
173 };
174 
175 /// IfExprAST - Expression class for if/then/else.
176 struct IfExprAST : public ExprAST {
IfExprASTIfExprAST177   IfExprAST(std::unique_ptr<ExprAST> Cond, std::unique_ptr<ExprAST> Then,
178             std::unique_ptr<ExprAST> Else)
179     : Cond(std::move(Cond)), Then(std::move(Then)), Else(std::move(Else)) {}
180   Value *IRGen(IRGenContext &C) const override;
181 
182   std::unique_ptr<ExprAST> Cond, Then, Else;
183 };
184 
185 /// ForExprAST - Expression class for for/in.
186 struct ForExprAST : public ExprAST {
ForExprASTForExprAST187   ForExprAST(std::string VarName, std::unique_ptr<ExprAST> Start,
188              std::unique_ptr<ExprAST> End, std::unique_ptr<ExprAST> Step,
189              std::unique_ptr<ExprAST> Body)
190     : VarName(std::move(VarName)), Start(std::move(Start)), End(std::move(End)),
191       Step(std::move(Step)), Body(std::move(Body)) {}
192 
193   Value *IRGen(IRGenContext &C) const override;
194 
195   std::string VarName;
196   std::unique_ptr<ExprAST> Start, End, Step, Body;
197 };
198 
199 /// VarExprAST - Expression class for var/in
200 struct VarExprAST : public ExprAST {
201   typedef std::pair<std::string, std::unique_ptr<ExprAST>> Binding;
202   typedef std::vector<Binding> BindingList;
203 
VarExprASTVarExprAST204   VarExprAST(BindingList VarBindings, std::unique_ptr<ExprAST> Body)
205     : VarBindings(std::move(VarBindings)), Body(std::move(Body)) {}
206 
207   Value *IRGen(IRGenContext &C) const override;
208 
209   BindingList VarBindings;
210   std::unique_ptr<ExprAST> Body;
211 };
212 
213 /// PrototypeAST - This class represents the "prototype" for a function,
214 /// which captures its argument names as well as if it is an operator.
215 struct PrototypeAST {
PrototypeASTPrototypeAST216   PrototypeAST(std::string Name, std::vector<std::string> Args,
217                bool IsOperator = false, unsigned Precedence = 0)
218     : Name(std::move(Name)), Args(std::move(Args)), IsOperator(IsOperator),
219       Precedence(Precedence) {}
220 
221   Function *IRGen(IRGenContext &C) const;
222   void CreateArgumentAllocas(Function *F, IRGenContext &C);
223 
isUnaryOpPrototypeAST224   bool isUnaryOp() const { return IsOperator && Args.size() == 1; }
isBinaryOpPrototypeAST225   bool isBinaryOp() const { return IsOperator && Args.size() == 2; }
226 
getOperatorNamePrototypeAST227   char getOperatorName() const {
228     assert(isUnaryOp() || isBinaryOp());
229     return Name[Name.size()-1];
230   }
231 
232   std::string Name;
233   std::vector<std::string> Args;
234   bool IsOperator;
235   unsigned Precedence;  // Precedence if a binary op.
236 };
237 
238 /// FunctionAST - This class represents a function definition itself.
239 struct FunctionAST {
FunctionASTFunctionAST240   FunctionAST(std::unique_ptr<PrototypeAST> Proto,
241               std::unique_ptr<ExprAST> Body)
242     : Proto(std::move(Proto)), Body(std::move(Body)) {}
243 
244   Function *IRGen(IRGenContext &C) const;
245 
246   std::unique_ptr<PrototypeAST> Proto;
247   std::unique_ptr<ExprAST> Body;
248 };
249 
250 //===----------------------------------------------------------------------===//
251 // Parser
252 //===----------------------------------------------------------------------===//
253 
254 /// CurTok/getNextToken - Provide a simple token buffer.  CurTok is the current
255 /// token the parser is looking at.  getNextToken reads another token from the
256 /// lexer and updates CurTok with its results.
257 static int CurTok;
getNextToken()258 static int getNextToken() {
259   return CurTok = gettok();
260 }
261 
262 /// BinopPrecedence - This holds the precedence for each binary operator that is
263 /// defined.
264 static std::map<char, int> BinopPrecedence;
265 
266 /// GetTokPrecedence - Get the precedence of the pending binary operator token.
GetTokPrecedence()267 static int GetTokPrecedence() {
268   if (!isascii(CurTok))
269     return -1;
270 
271   // Make sure it's a declared binop.
272   int TokPrec = BinopPrecedence[CurTok];
273   if (TokPrec <= 0) return -1;
274   return TokPrec;
275 }
276 
277 template <typename T>
ErrorU(const std::string & Str)278 std::unique_ptr<T> ErrorU(const std::string &Str) {
279   std::cerr << "Error: " << Str << "\n";
280   return nullptr;
281 }
282 
283 template <typename T>
ErrorP(const std::string & Str)284 T* ErrorP(const std::string &Str) {
285   std::cerr << "Error: " << Str << "\n";
286   return nullptr;
287 }
288 
289 static std::unique_ptr<ExprAST> ParseExpression();
290 
291 /// identifierexpr
292 ///   ::= identifier
293 ///   ::= identifier '(' expression* ')'
ParseIdentifierExpr()294 static std::unique_ptr<ExprAST> ParseIdentifierExpr() {
295   std::string IdName = IdentifierStr;
296 
297   getNextToken();  // eat identifier.
298 
299   if (CurTok != '(') // Simple variable ref.
300     return llvm::make_unique<VariableExprAST>(IdName);
301 
302   // Call.
303   getNextToken();  // eat (
304   std::vector<std::unique_ptr<ExprAST>> Args;
305   if (CurTok != ')') {
306     while (1) {
307       auto Arg = ParseExpression();
308       if (!Arg) return nullptr;
309       Args.push_back(std::move(Arg));
310 
311       if (CurTok == ')') break;
312 
313       if (CurTok != ',')
314         return ErrorU<CallExprAST>("Expected ')' or ',' in argument list");
315       getNextToken();
316     }
317   }
318 
319   // Eat the ')'.
320   getNextToken();
321 
322   return llvm::make_unique<CallExprAST>(IdName, std::move(Args));
323 }
324 
325 /// numberexpr ::= number
ParseNumberExpr()326 static std::unique_ptr<NumberExprAST> ParseNumberExpr() {
327   auto Result = llvm::make_unique<NumberExprAST>(NumVal);
328   getNextToken(); // consume the number
329   return Result;
330 }
331 
332 /// parenexpr ::= '(' expression ')'
ParseParenExpr()333 static std::unique_ptr<ExprAST> ParseParenExpr() {
334   getNextToken();  // eat (.
335   auto V = ParseExpression();
336   if (!V)
337     return nullptr;
338 
339   if (CurTok != ')')
340     return ErrorU<ExprAST>("expected ')'");
341   getNextToken();  // eat ).
342   return V;
343 }
344 
345 /// ifexpr ::= 'if' expression 'then' expression 'else' expression
ParseIfExpr()346 static std::unique_ptr<ExprAST> ParseIfExpr() {
347   getNextToken();  // eat the if.
348 
349   // condition.
350   auto Cond = ParseExpression();
351   if (!Cond)
352     return nullptr;
353 
354   if (CurTok != tok_then)
355     return ErrorU<ExprAST>("expected then");
356   getNextToken();  // eat the then
357 
358   auto Then = ParseExpression();
359   if (!Then)
360     return nullptr;
361 
362   if (CurTok != tok_else)
363     return ErrorU<ExprAST>("expected else");
364 
365   getNextToken();
366 
367   auto Else = ParseExpression();
368   if (!Else)
369     return nullptr;
370 
371   return llvm::make_unique<IfExprAST>(std::move(Cond), std::move(Then),
372                                       std::move(Else));
373 }
374 
375 /// forexpr ::= 'for' identifier '=' expr ',' expr (',' expr)? 'in' expression
ParseForExpr()376 static std::unique_ptr<ForExprAST> ParseForExpr() {
377   getNextToken();  // eat the for.
378 
379   if (CurTok != tok_identifier)
380     return ErrorU<ForExprAST>("expected identifier after for");
381 
382   std::string IdName = IdentifierStr;
383   getNextToken();  // eat identifier.
384 
385   if (CurTok != '=')
386     return ErrorU<ForExprAST>("expected '=' after for");
387   getNextToken();  // eat '='.
388 
389 
390   auto Start = ParseExpression();
391   if (!Start)
392     return nullptr;
393   if (CurTok != ',')
394     return ErrorU<ForExprAST>("expected ',' after for start value");
395   getNextToken();
396 
397   auto End = ParseExpression();
398   if (!End)
399     return nullptr;
400 
401   // The step value is optional.
402   std::unique_ptr<ExprAST> Step;
403   if (CurTok == ',') {
404     getNextToken();
405     Step = ParseExpression();
406     if (!Step)
407       return nullptr;
408   }
409 
410   if (CurTok != tok_in)
411     return ErrorU<ForExprAST>("expected 'in' after for");
412   getNextToken();  // eat 'in'.
413 
414   auto Body = ParseExpression();
415   if (Body)
416     return nullptr;
417 
418   return llvm::make_unique<ForExprAST>(IdName, std::move(Start), std::move(End),
419                                        std::move(Step), std::move(Body));
420 }
421 
422 /// varexpr ::= 'var' identifier ('=' expression)?
423 //                    (',' identifier ('=' expression)?)* 'in' expression
ParseVarExpr()424 static std::unique_ptr<VarExprAST> ParseVarExpr() {
425   getNextToken();  // eat the var.
426 
427   VarExprAST::BindingList VarBindings;
428 
429   // At least one variable name is required.
430   if (CurTok != tok_identifier)
431     return ErrorU<VarExprAST>("expected identifier after var");
432 
433   while (1) {
434     std::string Name = IdentifierStr;
435     getNextToken();  // eat identifier.
436 
437     // Read the optional initializer.
438     std::unique_ptr<ExprAST> Init;
439     if (CurTok == '=') {
440       getNextToken(); // eat the '='.
441 
442       Init = ParseExpression();
443       if (!Init)
444         return nullptr;
445     }
446 
447     VarBindings.push_back(VarExprAST::Binding(Name, std::move(Init)));
448 
449     // End of var list, exit loop.
450     if (CurTok != ',') break;
451     getNextToken(); // eat the ','.
452 
453     if (CurTok != tok_identifier)
454       return ErrorU<VarExprAST>("expected identifier list after var");
455   }
456 
457   // At this point, we have to have 'in'.
458   if (CurTok != tok_in)
459     return ErrorU<VarExprAST>("expected 'in' keyword after 'var'");
460   getNextToken();  // eat 'in'.
461 
462   auto Body = ParseExpression();
463   if (!Body)
464     return nullptr;
465 
466   return llvm::make_unique<VarExprAST>(std::move(VarBindings), std::move(Body));
467 }
468 
469 /// primary
470 ///   ::= identifierexpr
471 ///   ::= numberexpr
472 ///   ::= parenexpr
473 ///   ::= ifexpr
474 ///   ::= forexpr
475 ///   ::= varexpr
ParsePrimary()476 static std::unique_ptr<ExprAST> ParsePrimary() {
477   switch (CurTok) {
478   default: return ErrorU<ExprAST>("unknown token when expecting an expression");
479   case tok_identifier: return ParseIdentifierExpr();
480   case tok_number:     return ParseNumberExpr();
481   case '(':            return ParseParenExpr();
482   case tok_if:         return ParseIfExpr();
483   case tok_for:        return ParseForExpr();
484   case tok_var:        return ParseVarExpr();
485   }
486 }
487 
488 /// unary
489 ///   ::= primary
490 ///   ::= '!' unary
ParseUnary()491 static std::unique_ptr<ExprAST> ParseUnary() {
492   // If the current token is not an operator, it must be a primary expr.
493   if (!isascii(CurTok) || CurTok == '(' || CurTok == ',')
494     return ParsePrimary();
495 
496   // If this is a unary operator, read it.
497   int Opc = CurTok;
498   getNextToken();
499   if (auto Operand = ParseUnary())
500     return llvm::make_unique<UnaryExprAST>(Opc, std::move(Operand));
501   return nullptr;
502 }
503 
504 /// binoprhs
505 ///   ::= ('+' unary)*
ParseBinOpRHS(int ExprPrec,std::unique_ptr<ExprAST> LHS)506 static std::unique_ptr<ExprAST> ParseBinOpRHS(int ExprPrec,
507                                               std::unique_ptr<ExprAST> LHS) {
508   // If this is a binop, find its precedence.
509   while (1) {
510     int TokPrec = GetTokPrecedence();
511 
512     // If this is a binop that binds at least as tightly as the current binop,
513     // consume it, otherwise we are done.
514     if (TokPrec < ExprPrec)
515       return LHS;
516 
517     // Okay, we know this is a binop.
518     int BinOp = CurTok;
519     getNextToken();  // eat binop
520 
521     // Parse the unary expression after the binary operator.
522     auto RHS = ParseUnary();
523     if (!RHS)
524       return nullptr;
525 
526     // If BinOp binds less tightly with RHS than the operator after RHS, let
527     // the pending operator take RHS as its LHS.
528     int NextPrec = GetTokPrecedence();
529     if (TokPrec < NextPrec) {
530       RHS = ParseBinOpRHS(TokPrec+1, std::move(RHS));
531       if (!RHS)
532         return nullptr;
533     }
534 
535     // Merge LHS/RHS.
536     LHS = llvm::make_unique<BinaryExprAST>(BinOp, std::move(LHS), std::move(RHS));
537   }
538 }
539 
540 /// expression
541 ///   ::= unary binoprhs
542 ///
ParseExpression()543 static std::unique_ptr<ExprAST> ParseExpression() {
544   auto LHS = ParseUnary();
545   if (!LHS)
546     return nullptr;
547 
548   return ParseBinOpRHS(0, std::move(LHS));
549 }
550 
551 /// prototype
552 ///   ::= id '(' id* ')'
553 ///   ::= binary LETTER number? (id, id)
554 ///   ::= unary LETTER (id)
ParsePrototype()555 static std::unique_ptr<PrototypeAST> ParsePrototype() {
556   std::string FnName;
557 
558   unsigned Kind = 0; // 0 = identifier, 1 = unary, 2 = binary.
559   unsigned BinaryPrecedence = 30;
560 
561   switch (CurTok) {
562   default:
563     return ErrorU<PrototypeAST>("Expected function name in prototype");
564   case tok_identifier:
565     FnName = IdentifierStr;
566     Kind = 0;
567     getNextToken();
568     break;
569   case tok_unary:
570     getNextToken();
571     if (!isascii(CurTok))
572       return ErrorU<PrototypeAST>("Expected unary operator");
573     FnName = "unary";
574     FnName += (char)CurTok;
575     Kind = 1;
576     getNextToken();
577     break;
578   case tok_binary:
579     getNextToken();
580     if (!isascii(CurTok))
581       return ErrorU<PrototypeAST>("Expected binary operator");
582     FnName = "binary";
583     FnName += (char)CurTok;
584     Kind = 2;
585     getNextToken();
586 
587     // Read the precedence if present.
588     if (CurTok == tok_number) {
589       if (NumVal < 1 || NumVal > 100)
590         return ErrorU<PrototypeAST>("Invalid precedecnce: must be 1..100");
591       BinaryPrecedence = (unsigned)NumVal;
592       getNextToken();
593     }
594     break;
595   }
596 
597   if (CurTok != '(')
598     return ErrorU<PrototypeAST>("Expected '(' in prototype");
599 
600   std::vector<std::string> ArgNames;
601   while (getNextToken() == tok_identifier)
602     ArgNames.push_back(IdentifierStr);
603   if (CurTok != ')')
604     return ErrorU<PrototypeAST>("Expected ')' in prototype");
605 
606   // success.
607   getNextToken();  // eat ')'.
608 
609   // Verify right number of names for operator.
610   if (Kind && ArgNames.size() != Kind)
611     return ErrorU<PrototypeAST>("Invalid number of operands for operator");
612 
613   return llvm::make_unique<PrototypeAST>(FnName, std::move(ArgNames), Kind != 0,
614                                          BinaryPrecedence);
615 }
616 
617 /// definition ::= 'def' prototype expression
ParseDefinition()618 static std::unique_ptr<FunctionAST> ParseDefinition() {
619   getNextToken();  // eat def.
620   auto Proto = ParsePrototype();
621   if (!Proto)
622     return nullptr;
623 
624   if (auto Body = ParseExpression())
625     return llvm::make_unique<FunctionAST>(std::move(Proto), std::move(Body));
626   return nullptr;
627 }
628 
629 /// toplevelexpr ::= expression
ParseTopLevelExpr()630 static std::unique_ptr<FunctionAST> ParseTopLevelExpr() {
631   if (auto E = ParseExpression()) {
632     // Make an anonymous proto.
633     auto Proto =
634       llvm::make_unique<PrototypeAST>("__anon_expr", std::vector<std::string>());
635     return llvm::make_unique<FunctionAST>(std::move(Proto), std::move(E));
636   }
637   return nullptr;
638 }
639 
640 /// external ::= 'extern' prototype
ParseExtern()641 static std::unique_ptr<PrototypeAST> ParseExtern() {
642   getNextToken();  // eat extern.
643   return ParsePrototype();
644 }
645 
646 //===----------------------------------------------------------------------===//
647 // Code Generation
648 //===----------------------------------------------------------------------===//
649 
650 // FIXME: Obviously we can do better than this
GenerateUniqueName(const std::string & Root)651 std::string GenerateUniqueName(const std::string &Root) {
652   static int i = 0;
653   std::ostringstream NameStream;
654   NameStream << Root << ++i;
655   return NameStream.str();
656 }
657 
MakeLegalFunctionName(std::string Name)658 std::string MakeLegalFunctionName(std::string Name)
659 {
660   std::string NewName;
661   assert(!Name.empty() && "Base name must not be empty");
662 
663   // Start with what we have
664   NewName = Name;
665 
666   // Look for a numberic first character
667   if (NewName.find_first_of("0123456789") == 0) {
668     NewName.insert(0, 1, 'n');
669   }
670 
671   // Replace illegal characters with their ASCII equivalent
672   std::string legal_elements = "_abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789";
673   size_t pos;
674   while ((pos = NewName.find_first_not_of(legal_elements)) != std::string::npos) {
675     std::ostringstream NumStream;
676     NumStream << (int)NewName.at(pos);
677     NewName = NewName.replace(pos, 1, NumStream.str());
678   }
679 
680   return NewName;
681 }
682 
683 class SessionContext {
684 public:
SessionContext(LLVMContext & C)685   SessionContext(LLVMContext &C)
686     : Context(C), TM(EngineBuilder().selectTarget()) {}
getLLVMContext() const687   LLVMContext& getLLVMContext() const { return Context; }
getTarget()688   TargetMachine& getTarget() { return *TM; }
689   void addPrototypeAST(std::unique_ptr<PrototypeAST> P);
690   PrototypeAST* getPrototypeAST(const std::string &Name);
691 private:
692   typedef std::map<std::string, std::unique_ptr<PrototypeAST>> PrototypeMap;
693 
694   LLVMContext &Context;
695   std::unique_ptr<TargetMachine> TM;
696 
697   PrototypeMap Prototypes;
698 };
699 
addPrototypeAST(std::unique_ptr<PrototypeAST> P)700 void SessionContext::addPrototypeAST(std::unique_ptr<PrototypeAST> P) {
701   Prototypes[P->Name] = std::move(P);
702 }
703 
getPrototypeAST(const std::string & Name)704 PrototypeAST* SessionContext::getPrototypeAST(const std::string &Name) {
705   PrototypeMap::iterator I = Prototypes.find(Name);
706   if (I != Prototypes.end())
707     return I->second.get();
708   return nullptr;
709 }
710 
711 class IRGenContext {
712 public:
713 
IRGenContext(SessionContext & S)714   IRGenContext(SessionContext &S)
715     : Session(S),
716       M(new Module(GenerateUniqueName("jit_module_"),
717                    Session.getLLVMContext())),
718       Builder(Session.getLLVMContext()) {
719     M->setDataLayout(*Session.getTarget().getDataLayout());
720   }
721 
getSession()722   SessionContext& getSession() { return Session; }
getM() const723   Module& getM() const { return *M; }
takeM()724   std::unique_ptr<Module> takeM() { return std::move(M); }
getBuilder()725   IRBuilder<>& getBuilder() { return Builder; }
getLLVMContext()726   LLVMContext& getLLVMContext() { return Session.getLLVMContext(); }
727   Function* getPrototype(const std::string &Name);
728 
729   std::map<std::string, AllocaInst*> NamedValues;
730 private:
731   SessionContext &Session;
732   std::unique_ptr<Module> M;
733   IRBuilder<> Builder;
734 };
735 
getPrototype(const std::string & Name)736 Function* IRGenContext::getPrototype(const std::string &Name) {
737   if (Function *ExistingProto = M->getFunction(Name))
738     return ExistingProto;
739   if (PrototypeAST *ProtoAST = Session.getPrototypeAST(Name))
740     return ProtoAST->IRGen(*this);
741   return nullptr;
742 }
743 
744 /// CreateEntryBlockAlloca - Create an alloca instruction in the entry block of
745 /// the function.  This is used for mutable variables etc.
CreateEntryBlockAlloca(Function * TheFunction,const std::string & VarName)746 static AllocaInst *CreateEntryBlockAlloca(Function *TheFunction,
747                                           const std::string &VarName) {
748   IRBuilder<> TmpB(&TheFunction->getEntryBlock(),
749                  TheFunction->getEntryBlock().begin());
750   return TmpB.CreateAlloca(Type::getDoubleTy(getGlobalContext()), 0,
751                            VarName.c_str());
752 }
753 
IRGen(IRGenContext & C) const754 Value *NumberExprAST::IRGen(IRGenContext &C) const {
755   return ConstantFP::get(C.getLLVMContext(), APFloat(Val));
756 }
757 
IRGen(IRGenContext & C) const758 Value *VariableExprAST::IRGen(IRGenContext &C) const {
759   // Look this variable up in the function.
760   Value *V = C.NamedValues[Name];
761 
762   if (V == 0)
763     return ErrorP<Value>("Unknown variable name '" + Name + "'");
764 
765   // Load the value.
766   return C.getBuilder().CreateLoad(V, Name.c_str());
767 }
768 
IRGen(IRGenContext & C) const769 Value *UnaryExprAST::IRGen(IRGenContext &C) const {
770   if (Value *OperandV = Operand->IRGen(C)) {
771     std::string FnName = MakeLegalFunctionName(std::string("unary")+Opcode);
772     if (Function *F = C.getPrototype(FnName))
773       return C.getBuilder().CreateCall(F, OperandV, "unop");
774     return ErrorP<Value>("Unknown unary operator");
775   }
776 
777   // Could not codegen operand - return null.
778   return nullptr;
779 }
780 
IRGen(IRGenContext & C) const781 Value *BinaryExprAST::IRGen(IRGenContext &C) const {
782   // Special case '=' because we don't want to emit the LHS as an expression.
783   if (Op == '=') {
784     // Assignment requires the LHS to be an identifier.
785     auto LHSVar = static_cast<VariableExprAST&>(*LHS);
786     // Codegen the RHS.
787     Value *Val = RHS->IRGen(C);
788     if (!Val) return nullptr;
789 
790     // Look up the name.
791     if (auto Variable = C.NamedValues[LHSVar.Name]) {
792       C.getBuilder().CreateStore(Val, Variable);
793       return Val;
794     }
795     return ErrorP<Value>("Unknown variable name");
796   }
797 
798   Value *L = LHS->IRGen(C);
799   Value *R = RHS->IRGen(C);
800   if (!L || !R) return nullptr;
801 
802   switch (Op) {
803   case '+': return C.getBuilder().CreateFAdd(L, R, "addtmp");
804   case '-': return C.getBuilder().CreateFSub(L, R, "subtmp");
805   case '*': return C.getBuilder().CreateFMul(L, R, "multmp");
806   case '/': return C.getBuilder().CreateFDiv(L, R, "divtmp");
807   case '<':
808     L = C.getBuilder().CreateFCmpULT(L, R, "cmptmp");
809     // Convert bool 0/1 to double 0.0 or 1.0
810     return C.getBuilder().CreateUIToFP(L, Type::getDoubleTy(getGlobalContext()),
811                                 "booltmp");
812   default: break;
813   }
814 
815   // If it wasn't a builtin binary operator, it must be a user defined one. Emit
816   // a call to it.
817   std::string FnName = MakeLegalFunctionName(std::string("binary")+Op);
818   if (Function *F = C.getPrototype(FnName)) {
819     Value *Ops[] = { L, R };
820     return C.getBuilder().CreateCall(F, Ops, "binop");
821   }
822 
823   return ErrorP<Value>("Unknown binary operator");
824 }
825 
IRGen(IRGenContext & C) const826 Value *CallExprAST::IRGen(IRGenContext &C) const {
827   // Look up the name in the global module table.
828   if (auto CalleeF = C.getPrototype(CalleeName)) {
829     // If argument mismatch error.
830     if (CalleeF->arg_size() != Args.size())
831       return ErrorP<Value>("Incorrect # arguments passed");
832 
833     std::vector<Value*> ArgsV;
834     for (unsigned i = 0, e = Args.size(); i != e; ++i) {
835       ArgsV.push_back(Args[i]->IRGen(C));
836       if (!ArgsV.back()) return nullptr;
837     }
838 
839     return C.getBuilder().CreateCall(CalleeF, ArgsV, "calltmp");
840   }
841 
842   return ErrorP<Value>("Unknown function referenced");
843 }
844 
IRGen(IRGenContext & C) const845 Value *IfExprAST::IRGen(IRGenContext &C) const {
846   Value *CondV = Cond->IRGen(C);
847   if (!CondV) return nullptr;
848 
849   // Convert condition to a bool by comparing equal to 0.0.
850   ConstantFP *FPZero =
851     ConstantFP::get(C.getLLVMContext(), APFloat(0.0));
852   CondV = C.getBuilder().CreateFCmpONE(CondV, FPZero, "ifcond");
853 
854   Function *TheFunction = C.getBuilder().GetInsertBlock()->getParent();
855 
856   // Create blocks for the then and else cases.  Insert the 'then' block at the
857   // end of the function.
858   BasicBlock *ThenBB = BasicBlock::Create(C.getLLVMContext(), "then", TheFunction);
859   BasicBlock *ElseBB = BasicBlock::Create(C.getLLVMContext(), "else");
860   BasicBlock *MergeBB = BasicBlock::Create(C.getLLVMContext(), "ifcont");
861 
862   C.getBuilder().CreateCondBr(CondV, ThenBB, ElseBB);
863 
864   // Emit then value.
865   C.getBuilder().SetInsertPoint(ThenBB);
866 
867   Value *ThenV = Then->IRGen(C);
868   if (!ThenV) return nullptr;
869 
870   C.getBuilder().CreateBr(MergeBB);
871   // Codegen of 'Then' can change the current block, update ThenBB for the PHI.
872   ThenBB = C.getBuilder().GetInsertBlock();
873 
874   // Emit else block.
875   TheFunction->getBasicBlockList().push_back(ElseBB);
876   C.getBuilder().SetInsertPoint(ElseBB);
877 
878   Value *ElseV = Else->IRGen(C);
879   if (!ElseV) return nullptr;
880 
881   C.getBuilder().CreateBr(MergeBB);
882   // Codegen of 'Else' can change the current block, update ElseBB for the PHI.
883   ElseBB = C.getBuilder().GetInsertBlock();
884 
885   // Emit merge block.
886   TheFunction->getBasicBlockList().push_back(MergeBB);
887   C.getBuilder().SetInsertPoint(MergeBB);
888   PHINode *PN = C.getBuilder().CreatePHI(Type::getDoubleTy(getGlobalContext()), 2,
889                                   "iftmp");
890 
891   PN->addIncoming(ThenV, ThenBB);
892   PN->addIncoming(ElseV, ElseBB);
893   return PN;
894 }
895 
IRGen(IRGenContext & C) const896 Value *ForExprAST::IRGen(IRGenContext &C) const {
897   // Output this as:
898   //   var = alloca double
899   //   ...
900   //   start = startexpr
901   //   store start -> var
902   //   goto loop
903   // loop:
904   //   ...
905   //   bodyexpr
906   //   ...
907   // loopend:
908   //   step = stepexpr
909   //   endcond = endexpr
910   //
911   //   curvar = load var
912   //   nextvar = curvar + step
913   //   store nextvar -> var
914   //   br endcond, loop, endloop
915   // outloop:
916 
917   Function *TheFunction = C.getBuilder().GetInsertBlock()->getParent();
918 
919   // Create an alloca for the variable in the entry block.
920   AllocaInst *Alloca = CreateEntryBlockAlloca(TheFunction, VarName);
921 
922   // Emit the start code first, without 'variable' in scope.
923   Value *StartVal = Start->IRGen(C);
924   if (!StartVal) return nullptr;
925 
926   // Store the value into the alloca.
927   C.getBuilder().CreateStore(StartVal, Alloca);
928 
929   // Make the new basic block for the loop header, inserting after current
930   // block.
931   BasicBlock *LoopBB = BasicBlock::Create(getGlobalContext(), "loop", TheFunction);
932 
933   // Insert an explicit fall through from the current block to the LoopBB.
934   C.getBuilder().CreateBr(LoopBB);
935 
936   // Start insertion in LoopBB.
937   C.getBuilder().SetInsertPoint(LoopBB);
938 
939   // Within the loop, the variable is defined equal to the PHI node.  If it
940   // shadows an existing variable, we have to restore it, so save it now.
941   AllocaInst *OldVal = C.NamedValues[VarName];
942   C.NamedValues[VarName] = Alloca;
943 
944   // Emit the body of the loop.  This, like any other expr, can change the
945   // current BB.  Note that we ignore the value computed by the body, but don't
946   // allow an error.
947   if (!Body->IRGen(C))
948     return nullptr;
949 
950   // Emit the step value.
951   Value *StepVal;
952   if (Step) {
953     StepVal = Step->IRGen(C);
954     if (!StepVal) return nullptr;
955   } else {
956     // If not specified, use 1.0.
957     StepVal = ConstantFP::get(getGlobalContext(), APFloat(1.0));
958   }
959 
960   // Compute the end condition.
961   Value *EndCond = End->IRGen(C);
962   if (EndCond == 0) return EndCond;
963 
964   // Reload, increment, and restore the alloca.  This handles the case where
965   // the body of the loop mutates the variable.
966   Value *CurVar = C.getBuilder().CreateLoad(Alloca, VarName.c_str());
967   Value *NextVar = C.getBuilder().CreateFAdd(CurVar, StepVal, "nextvar");
968   C.getBuilder().CreateStore(NextVar, Alloca);
969 
970   // Convert condition to a bool by comparing equal to 0.0.
971   EndCond = C.getBuilder().CreateFCmpONE(EndCond,
972                               ConstantFP::get(getGlobalContext(), APFloat(0.0)),
973                                   "loopcond");
974 
975   // Create the "after loop" block and insert it.
976   BasicBlock *AfterBB = BasicBlock::Create(getGlobalContext(), "afterloop", TheFunction);
977 
978   // Insert the conditional branch into the end of LoopEndBB.
979   C.getBuilder().CreateCondBr(EndCond, LoopBB, AfterBB);
980 
981   // Any new code will be inserted in AfterBB.
982   C.getBuilder().SetInsertPoint(AfterBB);
983 
984   // Restore the unshadowed variable.
985   if (OldVal)
986     C.NamedValues[VarName] = OldVal;
987   else
988     C.NamedValues.erase(VarName);
989 
990 
991   // for expr always returns 0.0.
992   return Constant::getNullValue(Type::getDoubleTy(getGlobalContext()));
993 }
994 
IRGen(IRGenContext & C) const995 Value *VarExprAST::IRGen(IRGenContext &C) const {
996   std::vector<AllocaInst *> OldBindings;
997 
998   Function *TheFunction = C.getBuilder().GetInsertBlock()->getParent();
999 
1000   // Register all variables and emit their initializer.
1001   for (unsigned i = 0, e = VarBindings.size(); i != e; ++i) {
1002     auto &VarName = VarBindings[i].first;
1003     auto &Init = VarBindings[i].second;
1004 
1005     // Emit the initializer before adding the variable to scope, this prevents
1006     // the initializer from referencing the variable itself, and permits stuff
1007     // like this:
1008     //  var a = 1 in
1009     //    var a = a in ...   # refers to outer 'a'.
1010     Value *InitVal;
1011     if (Init) {
1012       InitVal = Init->IRGen(C);
1013       if (!InitVal) return nullptr;
1014     } else // If not specified, use 0.0.
1015       InitVal = ConstantFP::get(getGlobalContext(), APFloat(0.0));
1016 
1017     AllocaInst *Alloca = CreateEntryBlockAlloca(TheFunction, VarName);
1018     C.getBuilder().CreateStore(InitVal, Alloca);
1019 
1020     // Remember the old variable binding so that we can restore the binding when
1021     // we unrecurse.
1022     OldBindings.push_back(C.NamedValues[VarName]);
1023 
1024     // Remember this binding.
1025     C.NamedValues[VarName] = Alloca;
1026   }
1027 
1028   // Codegen the body, now that all vars are in scope.
1029   Value *BodyVal = Body->IRGen(C);
1030   if (!BodyVal) return nullptr;
1031 
1032   // Pop all our variables from scope.
1033   for (unsigned i = 0, e = VarBindings.size(); i != e; ++i)
1034     C.NamedValues[VarBindings[i].first] = OldBindings[i];
1035 
1036   // Return the body computation.
1037   return BodyVal;
1038 }
1039 
IRGen(IRGenContext & C) const1040 Function *PrototypeAST::IRGen(IRGenContext &C) const {
1041   std::string FnName = MakeLegalFunctionName(Name);
1042 
1043   // Make the function type:  double(double,double) etc.
1044   std::vector<Type*> Doubles(Args.size(),
1045                              Type::getDoubleTy(getGlobalContext()));
1046   FunctionType *FT = FunctionType::get(Type::getDoubleTy(getGlobalContext()),
1047                                        Doubles, false);
1048   Function *F = Function::Create(FT, Function::ExternalLinkage, FnName,
1049                                  &C.getM());
1050 
1051   // If F conflicted, there was already something named 'FnName'.  If it has a
1052   // body, don't allow redefinition or reextern.
1053   if (F->getName() != FnName) {
1054     // Delete the one we just made and get the existing one.
1055     F->eraseFromParent();
1056     F = C.getM().getFunction(Name);
1057 
1058     // If F already has a body, reject this.
1059     if (!F->empty()) {
1060       ErrorP<Function>("redefinition of function");
1061       return nullptr;
1062     }
1063 
1064     // If F took a different number of args, reject.
1065     if (F->arg_size() != Args.size()) {
1066       ErrorP<Function>("redefinition of function with different # args");
1067       return nullptr;
1068     }
1069   }
1070 
1071   // Set names for all arguments.
1072   unsigned Idx = 0;
1073   for (Function::arg_iterator AI = F->arg_begin(); Idx != Args.size();
1074        ++AI, ++Idx)
1075     AI->setName(Args[Idx]);
1076 
1077   return F;
1078 }
1079 
1080 /// CreateArgumentAllocas - Create an alloca for each argument and register the
1081 /// argument in the symbol table so that references to it will succeed.
CreateArgumentAllocas(Function * F,IRGenContext & C)1082 void PrototypeAST::CreateArgumentAllocas(Function *F, IRGenContext &C) {
1083   Function::arg_iterator AI = F->arg_begin();
1084   for (unsigned Idx = 0, e = Args.size(); Idx != e; ++Idx, ++AI) {
1085     // Create an alloca for this variable.
1086     AllocaInst *Alloca = CreateEntryBlockAlloca(F, Args[Idx]);
1087 
1088     // Store the initial value into the alloca.
1089     C.getBuilder().CreateStore(AI, Alloca);
1090 
1091     // Add arguments to variable symbol table.
1092     C.NamedValues[Args[Idx]] = Alloca;
1093   }
1094 }
1095 
IRGen(IRGenContext & C) const1096 Function *FunctionAST::IRGen(IRGenContext &C) const {
1097   C.NamedValues.clear();
1098 
1099   Function *TheFunction = Proto->IRGen(C);
1100   if (!TheFunction)
1101     return nullptr;
1102 
1103   // If this is an operator, install it.
1104   if (Proto->isBinaryOp())
1105     BinopPrecedence[Proto->getOperatorName()] = Proto->Precedence;
1106 
1107   // Create a new basic block to start insertion into.
1108   BasicBlock *BB = BasicBlock::Create(getGlobalContext(), "entry", TheFunction);
1109   C.getBuilder().SetInsertPoint(BB);
1110 
1111   // Add all arguments to the symbol table and create their allocas.
1112   Proto->CreateArgumentAllocas(TheFunction, C);
1113 
1114   if (Value *RetVal = Body->IRGen(C)) {
1115     // Finish off the function.
1116     C.getBuilder().CreateRet(RetVal);
1117 
1118     // Validate the generated code, checking for consistency.
1119     verifyFunction(*TheFunction);
1120 
1121     return TheFunction;
1122   }
1123 
1124   // Error reading body, remove function.
1125   TheFunction->eraseFromParent();
1126 
1127   if (Proto->isBinaryOp())
1128     BinopPrecedence.erase(Proto->getOperatorName());
1129   return nullptr;
1130 }
1131 
1132 //===----------------------------------------------------------------------===//
1133 // Top-Level parsing and JIT Driver
1134 //===----------------------------------------------------------------------===//
1135 
IRGen(SessionContext & S,const FunctionAST & F)1136 static std::unique_ptr<llvm::Module> IRGen(SessionContext &S,
1137                                            const FunctionAST &F) {
1138   IRGenContext C(S);
1139   auto LF = F.IRGen(C);
1140   if (!LF)
1141     return nullptr;
1142 #ifndef MINIMAL_STDERR_OUTPUT
1143   fprintf(stderr, "Read function definition:");
1144   LF->dump();
1145 #endif
1146   return C.takeM();
1147 }
1148 
1149 template <typename T>
singletonSet(T t)1150 static std::vector<T> singletonSet(T t) {
1151   std::vector<T> Vec;
1152   Vec.push_back(std::move(t));
1153   return Vec;
1154 }
1155 
1156 class KaleidoscopeJIT {
1157 public:
1158   typedef ObjectLinkingLayer<> ObjLayerT;
1159   typedef IRCompileLayer<ObjLayerT> CompileLayerT;
1160   typedef CompileLayerT::ModuleSetHandleT ModuleHandleT;
1161 
KaleidoscopeJIT(SessionContext & Session)1162   KaleidoscopeJIT(SessionContext &Session)
1163     : Mang(Session.getTarget().getDataLayout()),
1164       CompileLayer(ObjectLayer, SimpleCompiler(Session.getTarget())) {}
1165 
mangle(const std::string & Name)1166   std::string mangle(const std::string &Name) {
1167     std::string MangledName;
1168     {
1169       raw_string_ostream MangledNameStream(MangledName);
1170       Mang.getNameWithPrefix(MangledNameStream, Name);
1171     }
1172     return MangledName;
1173   }
1174 
addModule(std::unique_ptr<Module> M)1175   ModuleHandleT addModule(std::unique_ptr<Module> M) {
1176     // We need a memory manager to allocate memory and resolve symbols for this
1177     // new module. Create one that resolves symbols by looking back into the
1178     // JIT.
1179     auto Resolver = createLambdaResolver(
1180                       [&](const std::string &Name) {
1181                         if (auto Sym = findSymbol(Name))
1182                           return RuntimeDyld::SymbolInfo(Sym.getAddress(),
1183                                                          Sym.getFlags());
1184                         return RuntimeDyld::SymbolInfo(nullptr);
1185                       },
1186                       [](const std::string &S) { return nullptr; }
1187                     );
1188     return CompileLayer.addModuleSet(singletonSet(std::move(M)),
1189                                      make_unique<SectionMemoryManager>(),
1190                                      std::move(Resolver));
1191   }
1192 
removeModule(ModuleHandleT H)1193   void removeModule(ModuleHandleT H) { CompileLayer.removeModuleSet(H); }
1194 
findSymbol(const std::string & Name)1195   JITSymbol findSymbol(const std::string &Name) {
1196     return CompileLayer.findSymbol(Name, true);
1197   }
1198 
findUnmangledSymbol(const std::string Name)1199   JITSymbol findUnmangledSymbol(const std::string Name) {
1200     return findSymbol(mangle(Name));
1201   }
1202 
1203 private:
1204 
1205   Mangler Mang;
1206   ObjLayerT ObjectLayer;
1207   CompileLayerT CompileLayer;
1208 };
1209 
HandleDefinition(SessionContext & S,KaleidoscopeJIT & J)1210 static void HandleDefinition(SessionContext &S, KaleidoscopeJIT &J) {
1211   if (auto F = ParseDefinition()) {
1212     if (auto M = IRGen(S, *F)) {
1213       S.addPrototypeAST(llvm::make_unique<PrototypeAST>(*F->Proto));
1214       J.addModule(std::move(M));
1215     }
1216   } else {
1217     // Skip token for error recovery.
1218     getNextToken();
1219   }
1220 }
1221 
HandleExtern(SessionContext & S)1222 static void HandleExtern(SessionContext &S) {
1223   if (auto P = ParseExtern())
1224     S.addPrototypeAST(std::move(P));
1225   else {
1226     // Skip token for error recovery.
1227     getNextToken();
1228   }
1229 }
1230 
HandleTopLevelExpression(SessionContext & S,KaleidoscopeJIT & J)1231 static void HandleTopLevelExpression(SessionContext &S, KaleidoscopeJIT &J) {
1232   // Evaluate a top-level expression into an anonymous function.
1233   if (auto F = ParseTopLevelExpr()) {
1234     IRGenContext C(S);
1235     if (auto ExprFunc = F->IRGen(C)) {
1236 #ifndef MINIMAL_STDERR_OUTPUT
1237       std::cerr << "Expression function:\n";
1238       ExprFunc->dump();
1239 #endif
1240       // Add the CodeGen'd module to the JIT. Keep a handle to it: We can remove
1241       // this module as soon as we've executed Function ExprFunc.
1242       auto H = J.addModule(C.takeM());
1243 
1244       // Get the address of the JIT'd function in memory.
1245       auto ExprSymbol = J.findUnmangledSymbol("__anon_expr");
1246 
1247       // Cast it to the right type (takes no arguments, returns a double) so we
1248       // can call it as a native function.
1249       double (*FP)() = (double (*)())(intptr_t)ExprSymbol.getAddress();
1250 #ifdef MINIMAL_STDERR_OUTPUT
1251       FP();
1252 #else
1253       std::cerr << "Evaluated to " << FP() << "\n";
1254 #endif
1255 
1256       // Remove the function.
1257       J.removeModule(H);
1258     }
1259   } else {
1260     // Skip token for error recovery.
1261     getNextToken();
1262   }
1263 }
1264 
1265 /// top ::= definition | external | expression | ';'
MainLoop()1266 static void MainLoop() {
1267   SessionContext S(getGlobalContext());
1268   KaleidoscopeJIT J(S);
1269 
1270   while (1) {
1271     switch (CurTok) {
1272     case tok_eof:    return;
1273     case ';':        getNextToken(); continue;  // ignore top-level semicolons.
1274     case tok_def:    HandleDefinition(S, J); break;
1275     case tok_extern: HandleExtern(S); break;
1276     default:         HandleTopLevelExpression(S, J); break;
1277     }
1278 #ifndef MINIMAL_STDERR_OUTPUT
1279     std::cerr << "ready> ";
1280 #endif
1281   }
1282 }
1283 
1284 //===----------------------------------------------------------------------===//
1285 // "Library" functions that can be "extern'd" from user code.
1286 //===----------------------------------------------------------------------===//
1287 
1288 /// putchard - putchar that takes a double and returns 0.
1289 extern "C"
putchard(double X)1290 double putchard(double X) {
1291   putchar((char)X);
1292   return 0;
1293 }
1294 
1295 /// printd - printf that takes a double prints it as "%f\n", returning 0.
1296 extern "C"
printd(double X)1297 double printd(double X) {
1298   printf("%f", X);
1299   return 0;
1300 }
1301 
1302 extern "C"
printlf()1303 double printlf() {
1304   printf("\n");
1305   return 0;
1306 }
1307 
1308 //===----------------------------------------------------------------------===//
1309 // Main driver code.
1310 //===----------------------------------------------------------------------===//
1311 
main()1312 int main() {
1313   InitializeNativeTarget();
1314   InitializeNativeTargetAsmPrinter();
1315   InitializeNativeTargetAsmParser();
1316 
1317   // Install standard binary operators.
1318   // 1 is lowest precedence.
1319   BinopPrecedence['='] = 2;
1320   BinopPrecedence['<'] = 10;
1321   BinopPrecedence['+'] = 20;
1322   BinopPrecedence['-'] = 20;
1323   BinopPrecedence['/'] = 40;
1324   BinopPrecedence['*'] = 40;  // highest.
1325 
1326   // Prime the first token.
1327 #ifndef MINIMAL_STDERR_OUTPUT
1328   std::cerr << "ready> ";
1329 #endif
1330   getNextToken();
1331 
1332   std::cerr << std::fixed;
1333 
1334   // Run the main "interpreter loop" now.
1335   MainLoop();
1336 
1337   return 0;
1338 }
1339 
1340