1 #include "llvm/Analysis/Passes.h"
2 #include "llvm/ExecutionEngine/Orc/CompileUtils.h"
3 #include "llvm/ExecutionEngine/Orc/IRCompileLayer.h"
4 #include "llvm/ExecutionEngine/Orc/LambdaResolver.h"
5 #include "llvm/ExecutionEngine/Orc/LazyEmittingLayer.h"
6 #include "llvm/ExecutionEngine/Orc/ObjectLinkingLayer.h"
7 #include "llvm/IR/DataLayout.h"
8 #include "llvm/IR/DerivedTypes.h"
9 #include "llvm/IR/IRBuilder.h"
10 #include "llvm/IR/LegacyPassManager.h"
11 #include "llvm/IR/LLVMContext.h"
12 #include "llvm/IR/Module.h"
13 #include "llvm/IR/Verifier.h"
14 #include "llvm/Support/TargetSelect.h"
15 #include "llvm/Transforms/Scalar.h"
16 #include <cctype>
17 #include <iomanip>
18 #include <iostream>
19 #include <map>
20 #include <sstream>
21 #include <string>
22 #include <vector>
23
24 using namespace llvm;
25 using namespace llvm::orc;
26
27 //===----------------------------------------------------------------------===//
28 // Lexer
29 //===----------------------------------------------------------------------===//
30
31 // The lexer returns tokens [0-255] if it is an unknown character, otherwise one
32 // of these for known things.
33 enum Token {
34 tok_eof = -1,
35
36 // commands
37 tok_def = -2, tok_extern = -3,
38
39 // primary
40 tok_identifier = -4, tok_number = -5,
41
42 // control
43 tok_if = -6, tok_then = -7, tok_else = -8,
44 tok_for = -9, tok_in = -10,
45
46 // operators
47 tok_binary = -11, tok_unary = -12,
48
49 // var definition
50 tok_var = -13
51 };
52
53 static std::string IdentifierStr; // Filled in if tok_identifier
54 static double NumVal; // Filled in if tok_number
55
56 /// gettok - Return the next token from standard input.
gettok()57 static int gettok() {
58 static int LastChar = ' ';
59
60 // Skip any whitespace.
61 while (isspace(LastChar))
62 LastChar = getchar();
63
64 if (isalpha(LastChar)) { // identifier: [a-zA-Z][a-zA-Z0-9]*
65 IdentifierStr = LastChar;
66 while (isalnum((LastChar = getchar())))
67 IdentifierStr += LastChar;
68
69 if (IdentifierStr == "def") return tok_def;
70 if (IdentifierStr == "extern") return tok_extern;
71 if (IdentifierStr == "if") return tok_if;
72 if (IdentifierStr == "then") return tok_then;
73 if (IdentifierStr == "else") return tok_else;
74 if (IdentifierStr == "for") return tok_for;
75 if (IdentifierStr == "in") return tok_in;
76 if (IdentifierStr == "binary") return tok_binary;
77 if (IdentifierStr == "unary") return tok_unary;
78 if (IdentifierStr == "var") return tok_var;
79 return tok_identifier;
80 }
81
82 if (isdigit(LastChar) || LastChar == '.') { // Number: [0-9.]+
83 std::string NumStr;
84 do {
85 NumStr += LastChar;
86 LastChar = getchar();
87 } while (isdigit(LastChar) || LastChar == '.');
88
89 NumVal = strtod(NumStr.c_str(), 0);
90 return tok_number;
91 }
92
93 if (LastChar == '#') {
94 // Comment until end of line.
95 do LastChar = getchar();
96 while (LastChar != EOF && LastChar != '\n' && LastChar != '\r');
97
98 if (LastChar != EOF)
99 return gettok();
100 }
101
102 // Check for end of file. Don't eat the EOF.
103 if (LastChar == EOF)
104 return tok_eof;
105
106 // Otherwise, just return the character as its ascii value.
107 int ThisChar = LastChar;
108 LastChar = getchar();
109 return ThisChar;
110 }
111
112 //===----------------------------------------------------------------------===//
113 // Abstract Syntax Tree (aka Parse Tree)
114 //===----------------------------------------------------------------------===//
115
116 class IRGenContext;
117
118 /// ExprAST - Base class for all expression nodes.
119 struct ExprAST {
~ExprASTExprAST120 virtual ~ExprAST() {}
121 virtual Value *IRGen(IRGenContext &C) const = 0;
122 };
123
124 /// NumberExprAST - Expression class for numeric literals like "1.0".
125 struct NumberExprAST : public ExprAST {
NumberExprASTNumberExprAST126 NumberExprAST(double Val) : Val(Val) {}
127 Value *IRGen(IRGenContext &C) const override;
128
129 double Val;
130 };
131
132 /// VariableExprAST - Expression class for referencing a variable, like "a".
133 struct VariableExprAST : public ExprAST {
VariableExprASTVariableExprAST134 VariableExprAST(std::string Name) : Name(std::move(Name)) {}
135 Value *IRGen(IRGenContext &C) const override;
136
137 std::string Name;
138 };
139
140 /// UnaryExprAST - Expression class for a unary operator.
141 struct UnaryExprAST : public ExprAST {
UnaryExprASTUnaryExprAST142 UnaryExprAST(char Opcode, std::unique_ptr<ExprAST> Operand)
143 : Opcode(std::move(Opcode)), Operand(std::move(Operand)) {}
144
145 Value *IRGen(IRGenContext &C) const override;
146
147 char Opcode;
148 std::unique_ptr<ExprAST> Operand;
149 };
150
151 /// BinaryExprAST - Expression class for a binary operator.
152 struct BinaryExprAST : public ExprAST {
BinaryExprASTBinaryExprAST153 BinaryExprAST(char Op, std::unique_ptr<ExprAST> LHS,
154 std::unique_ptr<ExprAST> RHS)
155 : Op(Op), LHS(std::move(LHS)), RHS(std::move(RHS)) {}
156
157 Value *IRGen(IRGenContext &C) const override;
158
159 char Op;
160 std::unique_ptr<ExprAST> LHS, RHS;
161 };
162
163 /// CallExprAST - Expression class for function calls.
164 struct CallExprAST : public ExprAST {
CallExprASTCallExprAST165 CallExprAST(std::string CalleeName,
166 std::vector<std::unique_ptr<ExprAST>> Args)
167 : CalleeName(std::move(CalleeName)), Args(std::move(Args)) {}
168
169 Value *IRGen(IRGenContext &C) const override;
170
171 std::string CalleeName;
172 std::vector<std::unique_ptr<ExprAST>> Args;
173 };
174
175 /// IfExprAST - Expression class for if/then/else.
176 struct IfExprAST : public ExprAST {
IfExprASTIfExprAST177 IfExprAST(std::unique_ptr<ExprAST> Cond, std::unique_ptr<ExprAST> Then,
178 std::unique_ptr<ExprAST> Else)
179 : Cond(std::move(Cond)), Then(std::move(Then)), Else(std::move(Else)) {}
180 Value *IRGen(IRGenContext &C) const override;
181
182 std::unique_ptr<ExprAST> Cond, Then, Else;
183 };
184
185 /// ForExprAST - Expression class for for/in.
186 struct ForExprAST : public ExprAST {
ForExprASTForExprAST187 ForExprAST(std::string VarName, std::unique_ptr<ExprAST> Start,
188 std::unique_ptr<ExprAST> End, std::unique_ptr<ExprAST> Step,
189 std::unique_ptr<ExprAST> Body)
190 : VarName(std::move(VarName)), Start(std::move(Start)), End(std::move(End)),
191 Step(std::move(Step)), Body(std::move(Body)) {}
192
193 Value *IRGen(IRGenContext &C) const override;
194
195 std::string VarName;
196 std::unique_ptr<ExprAST> Start, End, Step, Body;
197 };
198
199 /// VarExprAST - Expression class for var/in
200 struct VarExprAST : public ExprAST {
201 typedef std::pair<std::string, std::unique_ptr<ExprAST>> Binding;
202 typedef std::vector<Binding> BindingList;
203
VarExprASTVarExprAST204 VarExprAST(BindingList VarBindings, std::unique_ptr<ExprAST> Body)
205 : VarBindings(std::move(VarBindings)), Body(std::move(Body)) {}
206
207 Value *IRGen(IRGenContext &C) const override;
208
209 BindingList VarBindings;
210 std::unique_ptr<ExprAST> Body;
211 };
212
213 /// PrototypeAST - This class represents the "prototype" for a function,
214 /// which captures its argument names as well as if it is an operator.
215 struct PrototypeAST {
PrototypeASTPrototypeAST216 PrototypeAST(std::string Name, std::vector<std::string> Args,
217 bool IsOperator = false, unsigned Precedence = 0)
218 : Name(std::move(Name)), Args(std::move(Args)), IsOperator(IsOperator),
219 Precedence(Precedence) {}
220
221 Function *IRGen(IRGenContext &C) const;
222 void CreateArgumentAllocas(Function *F, IRGenContext &C);
223
isUnaryOpPrototypeAST224 bool isUnaryOp() const { return IsOperator && Args.size() == 1; }
isBinaryOpPrototypeAST225 bool isBinaryOp() const { return IsOperator && Args.size() == 2; }
226
getOperatorNamePrototypeAST227 char getOperatorName() const {
228 assert(isUnaryOp() || isBinaryOp());
229 return Name[Name.size()-1];
230 }
231
232 std::string Name;
233 std::vector<std::string> Args;
234 bool IsOperator;
235 unsigned Precedence; // Precedence if a binary op.
236 };
237
238 /// FunctionAST - This class represents a function definition itself.
239 struct FunctionAST {
FunctionASTFunctionAST240 FunctionAST(std::unique_ptr<PrototypeAST> Proto,
241 std::unique_ptr<ExprAST> Body)
242 : Proto(std::move(Proto)), Body(std::move(Body)) {}
243
244 Function *IRGen(IRGenContext &C) const;
245
246 std::unique_ptr<PrototypeAST> Proto;
247 std::unique_ptr<ExprAST> Body;
248 };
249
250 //===----------------------------------------------------------------------===//
251 // Parser
252 //===----------------------------------------------------------------------===//
253
254 /// CurTok/getNextToken - Provide a simple token buffer. CurTok is the current
255 /// token the parser is looking at. getNextToken reads another token from the
256 /// lexer and updates CurTok with its results.
257 static int CurTok;
getNextToken()258 static int getNextToken() {
259 return CurTok = gettok();
260 }
261
262 /// BinopPrecedence - This holds the precedence for each binary operator that is
263 /// defined.
264 static std::map<char, int> BinopPrecedence;
265
266 /// GetTokPrecedence - Get the precedence of the pending binary operator token.
GetTokPrecedence()267 static int GetTokPrecedence() {
268 if (!isascii(CurTok))
269 return -1;
270
271 // Make sure it's a declared binop.
272 int TokPrec = BinopPrecedence[CurTok];
273 if (TokPrec <= 0) return -1;
274 return TokPrec;
275 }
276
277 template <typename T>
ErrorU(const std::string & Str)278 std::unique_ptr<T> ErrorU(const std::string &Str) {
279 std::cerr << "Error: " << Str << "\n";
280 return nullptr;
281 }
282
283 template <typename T>
ErrorP(const std::string & Str)284 T* ErrorP(const std::string &Str) {
285 std::cerr << "Error: " << Str << "\n";
286 return nullptr;
287 }
288
289 static std::unique_ptr<ExprAST> ParseExpression();
290
291 /// identifierexpr
292 /// ::= identifier
293 /// ::= identifier '(' expression* ')'
ParseIdentifierExpr()294 static std::unique_ptr<ExprAST> ParseIdentifierExpr() {
295 std::string IdName = IdentifierStr;
296
297 getNextToken(); // eat identifier.
298
299 if (CurTok != '(') // Simple variable ref.
300 return llvm::make_unique<VariableExprAST>(IdName);
301
302 // Call.
303 getNextToken(); // eat (
304 std::vector<std::unique_ptr<ExprAST>> Args;
305 if (CurTok != ')') {
306 while (1) {
307 auto Arg = ParseExpression();
308 if (!Arg) return nullptr;
309 Args.push_back(std::move(Arg));
310
311 if (CurTok == ')') break;
312
313 if (CurTok != ',')
314 return ErrorU<CallExprAST>("Expected ')' or ',' in argument list");
315 getNextToken();
316 }
317 }
318
319 // Eat the ')'.
320 getNextToken();
321
322 return llvm::make_unique<CallExprAST>(IdName, std::move(Args));
323 }
324
325 /// numberexpr ::= number
ParseNumberExpr()326 static std::unique_ptr<NumberExprAST> ParseNumberExpr() {
327 auto Result = llvm::make_unique<NumberExprAST>(NumVal);
328 getNextToken(); // consume the number
329 return Result;
330 }
331
332 /// parenexpr ::= '(' expression ')'
ParseParenExpr()333 static std::unique_ptr<ExprAST> ParseParenExpr() {
334 getNextToken(); // eat (.
335 auto V = ParseExpression();
336 if (!V)
337 return nullptr;
338
339 if (CurTok != ')')
340 return ErrorU<ExprAST>("expected ')'");
341 getNextToken(); // eat ).
342 return V;
343 }
344
345 /// ifexpr ::= 'if' expression 'then' expression 'else' expression
ParseIfExpr()346 static std::unique_ptr<ExprAST> ParseIfExpr() {
347 getNextToken(); // eat the if.
348
349 // condition.
350 auto Cond = ParseExpression();
351 if (!Cond)
352 return nullptr;
353
354 if (CurTok != tok_then)
355 return ErrorU<ExprAST>("expected then");
356 getNextToken(); // eat the then
357
358 auto Then = ParseExpression();
359 if (!Then)
360 return nullptr;
361
362 if (CurTok != tok_else)
363 return ErrorU<ExprAST>("expected else");
364
365 getNextToken();
366
367 auto Else = ParseExpression();
368 if (!Else)
369 return nullptr;
370
371 return llvm::make_unique<IfExprAST>(std::move(Cond), std::move(Then),
372 std::move(Else));
373 }
374
375 /// forexpr ::= 'for' identifier '=' expr ',' expr (',' expr)? 'in' expression
ParseForExpr()376 static std::unique_ptr<ForExprAST> ParseForExpr() {
377 getNextToken(); // eat the for.
378
379 if (CurTok != tok_identifier)
380 return ErrorU<ForExprAST>("expected identifier after for");
381
382 std::string IdName = IdentifierStr;
383 getNextToken(); // eat identifier.
384
385 if (CurTok != '=')
386 return ErrorU<ForExprAST>("expected '=' after for");
387 getNextToken(); // eat '='.
388
389
390 auto Start = ParseExpression();
391 if (!Start)
392 return nullptr;
393 if (CurTok != ',')
394 return ErrorU<ForExprAST>("expected ',' after for start value");
395 getNextToken();
396
397 auto End = ParseExpression();
398 if (!End)
399 return nullptr;
400
401 // The step value is optional.
402 std::unique_ptr<ExprAST> Step;
403 if (CurTok == ',') {
404 getNextToken();
405 Step = ParseExpression();
406 if (!Step)
407 return nullptr;
408 }
409
410 if (CurTok != tok_in)
411 return ErrorU<ForExprAST>("expected 'in' after for");
412 getNextToken(); // eat 'in'.
413
414 auto Body = ParseExpression();
415 if (Body)
416 return nullptr;
417
418 return llvm::make_unique<ForExprAST>(IdName, std::move(Start), std::move(End),
419 std::move(Step), std::move(Body));
420 }
421
422 /// varexpr ::= 'var' identifier ('=' expression)?
423 // (',' identifier ('=' expression)?)* 'in' expression
ParseVarExpr()424 static std::unique_ptr<VarExprAST> ParseVarExpr() {
425 getNextToken(); // eat the var.
426
427 VarExprAST::BindingList VarBindings;
428
429 // At least one variable name is required.
430 if (CurTok != tok_identifier)
431 return ErrorU<VarExprAST>("expected identifier after var");
432
433 while (1) {
434 std::string Name = IdentifierStr;
435 getNextToken(); // eat identifier.
436
437 // Read the optional initializer.
438 std::unique_ptr<ExprAST> Init;
439 if (CurTok == '=') {
440 getNextToken(); // eat the '='.
441
442 Init = ParseExpression();
443 if (!Init)
444 return nullptr;
445 }
446
447 VarBindings.push_back(VarExprAST::Binding(Name, std::move(Init)));
448
449 // End of var list, exit loop.
450 if (CurTok != ',') break;
451 getNextToken(); // eat the ','.
452
453 if (CurTok != tok_identifier)
454 return ErrorU<VarExprAST>("expected identifier list after var");
455 }
456
457 // At this point, we have to have 'in'.
458 if (CurTok != tok_in)
459 return ErrorU<VarExprAST>("expected 'in' keyword after 'var'");
460 getNextToken(); // eat 'in'.
461
462 auto Body = ParseExpression();
463 if (!Body)
464 return nullptr;
465
466 return llvm::make_unique<VarExprAST>(std::move(VarBindings), std::move(Body));
467 }
468
469 /// primary
470 /// ::= identifierexpr
471 /// ::= numberexpr
472 /// ::= parenexpr
473 /// ::= ifexpr
474 /// ::= forexpr
475 /// ::= varexpr
ParsePrimary()476 static std::unique_ptr<ExprAST> ParsePrimary() {
477 switch (CurTok) {
478 default: return ErrorU<ExprAST>("unknown token when expecting an expression");
479 case tok_identifier: return ParseIdentifierExpr();
480 case tok_number: return ParseNumberExpr();
481 case '(': return ParseParenExpr();
482 case tok_if: return ParseIfExpr();
483 case tok_for: return ParseForExpr();
484 case tok_var: return ParseVarExpr();
485 }
486 }
487
488 /// unary
489 /// ::= primary
490 /// ::= '!' unary
ParseUnary()491 static std::unique_ptr<ExprAST> ParseUnary() {
492 // If the current token is not an operator, it must be a primary expr.
493 if (!isascii(CurTok) || CurTok == '(' || CurTok == ',')
494 return ParsePrimary();
495
496 // If this is a unary operator, read it.
497 int Opc = CurTok;
498 getNextToken();
499 if (auto Operand = ParseUnary())
500 return llvm::make_unique<UnaryExprAST>(Opc, std::move(Operand));
501 return nullptr;
502 }
503
504 /// binoprhs
505 /// ::= ('+' unary)*
ParseBinOpRHS(int ExprPrec,std::unique_ptr<ExprAST> LHS)506 static std::unique_ptr<ExprAST> ParseBinOpRHS(int ExprPrec,
507 std::unique_ptr<ExprAST> LHS) {
508 // If this is a binop, find its precedence.
509 while (1) {
510 int TokPrec = GetTokPrecedence();
511
512 // If this is a binop that binds at least as tightly as the current binop,
513 // consume it, otherwise we are done.
514 if (TokPrec < ExprPrec)
515 return LHS;
516
517 // Okay, we know this is a binop.
518 int BinOp = CurTok;
519 getNextToken(); // eat binop
520
521 // Parse the unary expression after the binary operator.
522 auto RHS = ParseUnary();
523 if (!RHS)
524 return nullptr;
525
526 // If BinOp binds less tightly with RHS than the operator after RHS, let
527 // the pending operator take RHS as its LHS.
528 int NextPrec = GetTokPrecedence();
529 if (TokPrec < NextPrec) {
530 RHS = ParseBinOpRHS(TokPrec+1, std::move(RHS));
531 if (!RHS)
532 return nullptr;
533 }
534
535 // Merge LHS/RHS.
536 LHS = llvm::make_unique<BinaryExprAST>(BinOp, std::move(LHS), std::move(RHS));
537 }
538 }
539
540 /// expression
541 /// ::= unary binoprhs
542 ///
ParseExpression()543 static std::unique_ptr<ExprAST> ParseExpression() {
544 auto LHS = ParseUnary();
545 if (!LHS)
546 return nullptr;
547
548 return ParseBinOpRHS(0, std::move(LHS));
549 }
550
551 /// prototype
552 /// ::= id '(' id* ')'
553 /// ::= binary LETTER number? (id, id)
554 /// ::= unary LETTER (id)
ParsePrototype()555 static std::unique_ptr<PrototypeAST> ParsePrototype() {
556 std::string FnName;
557
558 unsigned Kind = 0; // 0 = identifier, 1 = unary, 2 = binary.
559 unsigned BinaryPrecedence = 30;
560
561 switch (CurTok) {
562 default:
563 return ErrorU<PrototypeAST>("Expected function name in prototype");
564 case tok_identifier:
565 FnName = IdentifierStr;
566 Kind = 0;
567 getNextToken();
568 break;
569 case tok_unary:
570 getNextToken();
571 if (!isascii(CurTok))
572 return ErrorU<PrototypeAST>("Expected unary operator");
573 FnName = "unary";
574 FnName += (char)CurTok;
575 Kind = 1;
576 getNextToken();
577 break;
578 case tok_binary:
579 getNextToken();
580 if (!isascii(CurTok))
581 return ErrorU<PrototypeAST>("Expected binary operator");
582 FnName = "binary";
583 FnName += (char)CurTok;
584 Kind = 2;
585 getNextToken();
586
587 // Read the precedence if present.
588 if (CurTok == tok_number) {
589 if (NumVal < 1 || NumVal > 100)
590 return ErrorU<PrototypeAST>("Invalid precedecnce: must be 1..100");
591 BinaryPrecedence = (unsigned)NumVal;
592 getNextToken();
593 }
594 break;
595 }
596
597 if (CurTok != '(')
598 return ErrorU<PrototypeAST>("Expected '(' in prototype");
599
600 std::vector<std::string> ArgNames;
601 while (getNextToken() == tok_identifier)
602 ArgNames.push_back(IdentifierStr);
603 if (CurTok != ')')
604 return ErrorU<PrototypeAST>("Expected ')' in prototype");
605
606 // success.
607 getNextToken(); // eat ')'.
608
609 // Verify right number of names for operator.
610 if (Kind && ArgNames.size() != Kind)
611 return ErrorU<PrototypeAST>("Invalid number of operands for operator");
612
613 return llvm::make_unique<PrototypeAST>(FnName, std::move(ArgNames), Kind != 0,
614 BinaryPrecedence);
615 }
616
617 /// definition ::= 'def' prototype expression
ParseDefinition()618 static std::unique_ptr<FunctionAST> ParseDefinition() {
619 getNextToken(); // eat def.
620 auto Proto = ParsePrototype();
621 if (!Proto)
622 return nullptr;
623
624 if (auto Body = ParseExpression())
625 return llvm::make_unique<FunctionAST>(std::move(Proto), std::move(Body));
626 return nullptr;
627 }
628
629 /// toplevelexpr ::= expression
ParseTopLevelExpr()630 static std::unique_ptr<FunctionAST> ParseTopLevelExpr() {
631 if (auto E = ParseExpression()) {
632 // Make an anonymous proto.
633 auto Proto =
634 llvm::make_unique<PrototypeAST>("__anon_expr", std::vector<std::string>());
635 return llvm::make_unique<FunctionAST>(std::move(Proto), std::move(E));
636 }
637 return nullptr;
638 }
639
640 /// external ::= 'extern' prototype
ParseExtern()641 static std::unique_ptr<PrototypeAST> ParseExtern() {
642 getNextToken(); // eat extern.
643 return ParsePrototype();
644 }
645
646 //===----------------------------------------------------------------------===//
647 // Code Generation
648 //===----------------------------------------------------------------------===//
649
650 // FIXME: Obviously we can do better than this
GenerateUniqueName(const std::string & Root)651 std::string GenerateUniqueName(const std::string &Root) {
652 static int i = 0;
653 std::ostringstream NameStream;
654 NameStream << Root << ++i;
655 return NameStream.str();
656 }
657
MakeLegalFunctionName(std::string Name)658 std::string MakeLegalFunctionName(std::string Name)
659 {
660 std::string NewName;
661 assert(!Name.empty() && "Base name must not be empty");
662
663 // Start with what we have
664 NewName = Name;
665
666 // Look for a numberic first character
667 if (NewName.find_first_of("0123456789") == 0) {
668 NewName.insert(0, 1, 'n');
669 }
670
671 // Replace illegal characters with their ASCII equivalent
672 std::string legal_elements = "_abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789";
673 size_t pos;
674 while ((pos = NewName.find_first_not_of(legal_elements)) != std::string::npos) {
675 std::ostringstream NumStream;
676 NumStream << (int)NewName.at(pos);
677 NewName = NewName.replace(pos, 1, NumStream.str());
678 }
679
680 return NewName;
681 }
682
683 class SessionContext {
684 public:
SessionContext(LLVMContext & C)685 SessionContext(LLVMContext &C)
686 : Context(C), TM(EngineBuilder().selectTarget()) {}
getLLVMContext() const687 LLVMContext& getLLVMContext() const { return Context; }
getTarget()688 TargetMachine& getTarget() { return *TM; }
689 void addPrototypeAST(std::unique_ptr<PrototypeAST> P);
690 PrototypeAST* getPrototypeAST(const std::string &Name);
691 private:
692 typedef std::map<std::string, std::unique_ptr<PrototypeAST>> PrototypeMap;
693
694 LLVMContext &Context;
695 std::unique_ptr<TargetMachine> TM;
696
697 PrototypeMap Prototypes;
698 };
699
addPrototypeAST(std::unique_ptr<PrototypeAST> P)700 void SessionContext::addPrototypeAST(std::unique_ptr<PrototypeAST> P) {
701 Prototypes[P->Name] = std::move(P);
702 }
703
getPrototypeAST(const std::string & Name)704 PrototypeAST* SessionContext::getPrototypeAST(const std::string &Name) {
705 PrototypeMap::iterator I = Prototypes.find(Name);
706 if (I != Prototypes.end())
707 return I->second.get();
708 return nullptr;
709 }
710
711 class IRGenContext {
712 public:
713
IRGenContext(SessionContext & S)714 IRGenContext(SessionContext &S)
715 : Session(S),
716 M(new Module(GenerateUniqueName("jit_module_"),
717 Session.getLLVMContext())),
718 Builder(Session.getLLVMContext()) {
719 M->setDataLayout(*Session.getTarget().getDataLayout());
720 }
721
getSession()722 SessionContext& getSession() { return Session; }
getM() const723 Module& getM() const { return *M; }
takeM()724 std::unique_ptr<Module> takeM() { return std::move(M); }
getBuilder()725 IRBuilder<>& getBuilder() { return Builder; }
getLLVMContext()726 LLVMContext& getLLVMContext() { return Session.getLLVMContext(); }
727 Function* getPrototype(const std::string &Name);
728
729 std::map<std::string, AllocaInst*> NamedValues;
730 private:
731 SessionContext &Session;
732 std::unique_ptr<Module> M;
733 IRBuilder<> Builder;
734 };
735
getPrototype(const std::string & Name)736 Function* IRGenContext::getPrototype(const std::string &Name) {
737 if (Function *ExistingProto = M->getFunction(Name))
738 return ExistingProto;
739 if (PrototypeAST *ProtoAST = Session.getPrototypeAST(Name))
740 return ProtoAST->IRGen(*this);
741 return nullptr;
742 }
743
744 /// CreateEntryBlockAlloca - Create an alloca instruction in the entry block of
745 /// the function. This is used for mutable variables etc.
CreateEntryBlockAlloca(Function * TheFunction,const std::string & VarName)746 static AllocaInst *CreateEntryBlockAlloca(Function *TheFunction,
747 const std::string &VarName) {
748 IRBuilder<> TmpB(&TheFunction->getEntryBlock(),
749 TheFunction->getEntryBlock().begin());
750 return TmpB.CreateAlloca(Type::getDoubleTy(getGlobalContext()), 0,
751 VarName.c_str());
752 }
753
IRGen(IRGenContext & C) const754 Value *NumberExprAST::IRGen(IRGenContext &C) const {
755 return ConstantFP::get(C.getLLVMContext(), APFloat(Val));
756 }
757
IRGen(IRGenContext & C) const758 Value *VariableExprAST::IRGen(IRGenContext &C) const {
759 // Look this variable up in the function.
760 Value *V = C.NamedValues[Name];
761
762 if (V == 0)
763 return ErrorP<Value>("Unknown variable name '" + Name + "'");
764
765 // Load the value.
766 return C.getBuilder().CreateLoad(V, Name.c_str());
767 }
768
IRGen(IRGenContext & C) const769 Value *UnaryExprAST::IRGen(IRGenContext &C) const {
770 if (Value *OperandV = Operand->IRGen(C)) {
771 std::string FnName = MakeLegalFunctionName(std::string("unary")+Opcode);
772 if (Function *F = C.getPrototype(FnName))
773 return C.getBuilder().CreateCall(F, OperandV, "unop");
774 return ErrorP<Value>("Unknown unary operator");
775 }
776
777 // Could not codegen operand - return null.
778 return nullptr;
779 }
780
IRGen(IRGenContext & C) const781 Value *BinaryExprAST::IRGen(IRGenContext &C) const {
782 // Special case '=' because we don't want to emit the LHS as an expression.
783 if (Op == '=') {
784 // Assignment requires the LHS to be an identifier.
785 auto LHSVar = static_cast<VariableExprAST&>(*LHS);
786 // Codegen the RHS.
787 Value *Val = RHS->IRGen(C);
788 if (!Val) return nullptr;
789
790 // Look up the name.
791 if (auto Variable = C.NamedValues[LHSVar.Name]) {
792 C.getBuilder().CreateStore(Val, Variable);
793 return Val;
794 }
795 return ErrorP<Value>("Unknown variable name");
796 }
797
798 Value *L = LHS->IRGen(C);
799 Value *R = RHS->IRGen(C);
800 if (!L || !R) return nullptr;
801
802 switch (Op) {
803 case '+': return C.getBuilder().CreateFAdd(L, R, "addtmp");
804 case '-': return C.getBuilder().CreateFSub(L, R, "subtmp");
805 case '*': return C.getBuilder().CreateFMul(L, R, "multmp");
806 case '/': return C.getBuilder().CreateFDiv(L, R, "divtmp");
807 case '<':
808 L = C.getBuilder().CreateFCmpULT(L, R, "cmptmp");
809 // Convert bool 0/1 to double 0.0 or 1.0
810 return C.getBuilder().CreateUIToFP(L, Type::getDoubleTy(getGlobalContext()),
811 "booltmp");
812 default: break;
813 }
814
815 // If it wasn't a builtin binary operator, it must be a user defined one. Emit
816 // a call to it.
817 std::string FnName = MakeLegalFunctionName(std::string("binary")+Op);
818 if (Function *F = C.getPrototype(FnName)) {
819 Value *Ops[] = { L, R };
820 return C.getBuilder().CreateCall(F, Ops, "binop");
821 }
822
823 return ErrorP<Value>("Unknown binary operator");
824 }
825
IRGen(IRGenContext & C) const826 Value *CallExprAST::IRGen(IRGenContext &C) const {
827 // Look up the name in the global module table.
828 if (auto CalleeF = C.getPrototype(CalleeName)) {
829 // If argument mismatch error.
830 if (CalleeF->arg_size() != Args.size())
831 return ErrorP<Value>("Incorrect # arguments passed");
832
833 std::vector<Value*> ArgsV;
834 for (unsigned i = 0, e = Args.size(); i != e; ++i) {
835 ArgsV.push_back(Args[i]->IRGen(C));
836 if (!ArgsV.back()) return nullptr;
837 }
838
839 return C.getBuilder().CreateCall(CalleeF, ArgsV, "calltmp");
840 }
841
842 return ErrorP<Value>("Unknown function referenced");
843 }
844
IRGen(IRGenContext & C) const845 Value *IfExprAST::IRGen(IRGenContext &C) const {
846 Value *CondV = Cond->IRGen(C);
847 if (!CondV) return nullptr;
848
849 // Convert condition to a bool by comparing equal to 0.0.
850 ConstantFP *FPZero =
851 ConstantFP::get(C.getLLVMContext(), APFloat(0.0));
852 CondV = C.getBuilder().CreateFCmpONE(CondV, FPZero, "ifcond");
853
854 Function *TheFunction = C.getBuilder().GetInsertBlock()->getParent();
855
856 // Create blocks for the then and else cases. Insert the 'then' block at the
857 // end of the function.
858 BasicBlock *ThenBB = BasicBlock::Create(C.getLLVMContext(), "then", TheFunction);
859 BasicBlock *ElseBB = BasicBlock::Create(C.getLLVMContext(), "else");
860 BasicBlock *MergeBB = BasicBlock::Create(C.getLLVMContext(), "ifcont");
861
862 C.getBuilder().CreateCondBr(CondV, ThenBB, ElseBB);
863
864 // Emit then value.
865 C.getBuilder().SetInsertPoint(ThenBB);
866
867 Value *ThenV = Then->IRGen(C);
868 if (!ThenV) return nullptr;
869
870 C.getBuilder().CreateBr(MergeBB);
871 // Codegen of 'Then' can change the current block, update ThenBB for the PHI.
872 ThenBB = C.getBuilder().GetInsertBlock();
873
874 // Emit else block.
875 TheFunction->getBasicBlockList().push_back(ElseBB);
876 C.getBuilder().SetInsertPoint(ElseBB);
877
878 Value *ElseV = Else->IRGen(C);
879 if (!ElseV) return nullptr;
880
881 C.getBuilder().CreateBr(MergeBB);
882 // Codegen of 'Else' can change the current block, update ElseBB for the PHI.
883 ElseBB = C.getBuilder().GetInsertBlock();
884
885 // Emit merge block.
886 TheFunction->getBasicBlockList().push_back(MergeBB);
887 C.getBuilder().SetInsertPoint(MergeBB);
888 PHINode *PN = C.getBuilder().CreatePHI(Type::getDoubleTy(getGlobalContext()), 2,
889 "iftmp");
890
891 PN->addIncoming(ThenV, ThenBB);
892 PN->addIncoming(ElseV, ElseBB);
893 return PN;
894 }
895
IRGen(IRGenContext & C) const896 Value *ForExprAST::IRGen(IRGenContext &C) const {
897 // Output this as:
898 // var = alloca double
899 // ...
900 // start = startexpr
901 // store start -> var
902 // goto loop
903 // loop:
904 // ...
905 // bodyexpr
906 // ...
907 // loopend:
908 // step = stepexpr
909 // endcond = endexpr
910 //
911 // curvar = load var
912 // nextvar = curvar + step
913 // store nextvar -> var
914 // br endcond, loop, endloop
915 // outloop:
916
917 Function *TheFunction = C.getBuilder().GetInsertBlock()->getParent();
918
919 // Create an alloca for the variable in the entry block.
920 AllocaInst *Alloca = CreateEntryBlockAlloca(TheFunction, VarName);
921
922 // Emit the start code first, without 'variable' in scope.
923 Value *StartVal = Start->IRGen(C);
924 if (!StartVal) return nullptr;
925
926 // Store the value into the alloca.
927 C.getBuilder().CreateStore(StartVal, Alloca);
928
929 // Make the new basic block for the loop header, inserting after current
930 // block.
931 BasicBlock *LoopBB = BasicBlock::Create(getGlobalContext(), "loop", TheFunction);
932
933 // Insert an explicit fall through from the current block to the LoopBB.
934 C.getBuilder().CreateBr(LoopBB);
935
936 // Start insertion in LoopBB.
937 C.getBuilder().SetInsertPoint(LoopBB);
938
939 // Within the loop, the variable is defined equal to the PHI node. If it
940 // shadows an existing variable, we have to restore it, so save it now.
941 AllocaInst *OldVal = C.NamedValues[VarName];
942 C.NamedValues[VarName] = Alloca;
943
944 // Emit the body of the loop. This, like any other expr, can change the
945 // current BB. Note that we ignore the value computed by the body, but don't
946 // allow an error.
947 if (!Body->IRGen(C))
948 return nullptr;
949
950 // Emit the step value.
951 Value *StepVal;
952 if (Step) {
953 StepVal = Step->IRGen(C);
954 if (!StepVal) return nullptr;
955 } else {
956 // If not specified, use 1.0.
957 StepVal = ConstantFP::get(getGlobalContext(), APFloat(1.0));
958 }
959
960 // Compute the end condition.
961 Value *EndCond = End->IRGen(C);
962 if (EndCond == 0) return EndCond;
963
964 // Reload, increment, and restore the alloca. This handles the case where
965 // the body of the loop mutates the variable.
966 Value *CurVar = C.getBuilder().CreateLoad(Alloca, VarName.c_str());
967 Value *NextVar = C.getBuilder().CreateFAdd(CurVar, StepVal, "nextvar");
968 C.getBuilder().CreateStore(NextVar, Alloca);
969
970 // Convert condition to a bool by comparing equal to 0.0.
971 EndCond = C.getBuilder().CreateFCmpONE(EndCond,
972 ConstantFP::get(getGlobalContext(), APFloat(0.0)),
973 "loopcond");
974
975 // Create the "after loop" block and insert it.
976 BasicBlock *AfterBB = BasicBlock::Create(getGlobalContext(), "afterloop", TheFunction);
977
978 // Insert the conditional branch into the end of LoopEndBB.
979 C.getBuilder().CreateCondBr(EndCond, LoopBB, AfterBB);
980
981 // Any new code will be inserted in AfterBB.
982 C.getBuilder().SetInsertPoint(AfterBB);
983
984 // Restore the unshadowed variable.
985 if (OldVal)
986 C.NamedValues[VarName] = OldVal;
987 else
988 C.NamedValues.erase(VarName);
989
990
991 // for expr always returns 0.0.
992 return Constant::getNullValue(Type::getDoubleTy(getGlobalContext()));
993 }
994
IRGen(IRGenContext & C) const995 Value *VarExprAST::IRGen(IRGenContext &C) const {
996 std::vector<AllocaInst *> OldBindings;
997
998 Function *TheFunction = C.getBuilder().GetInsertBlock()->getParent();
999
1000 // Register all variables and emit their initializer.
1001 for (unsigned i = 0, e = VarBindings.size(); i != e; ++i) {
1002 auto &VarName = VarBindings[i].first;
1003 auto &Init = VarBindings[i].second;
1004
1005 // Emit the initializer before adding the variable to scope, this prevents
1006 // the initializer from referencing the variable itself, and permits stuff
1007 // like this:
1008 // var a = 1 in
1009 // var a = a in ... # refers to outer 'a'.
1010 Value *InitVal;
1011 if (Init) {
1012 InitVal = Init->IRGen(C);
1013 if (!InitVal) return nullptr;
1014 } else // If not specified, use 0.0.
1015 InitVal = ConstantFP::get(getGlobalContext(), APFloat(0.0));
1016
1017 AllocaInst *Alloca = CreateEntryBlockAlloca(TheFunction, VarName);
1018 C.getBuilder().CreateStore(InitVal, Alloca);
1019
1020 // Remember the old variable binding so that we can restore the binding when
1021 // we unrecurse.
1022 OldBindings.push_back(C.NamedValues[VarName]);
1023
1024 // Remember this binding.
1025 C.NamedValues[VarName] = Alloca;
1026 }
1027
1028 // Codegen the body, now that all vars are in scope.
1029 Value *BodyVal = Body->IRGen(C);
1030 if (!BodyVal) return nullptr;
1031
1032 // Pop all our variables from scope.
1033 for (unsigned i = 0, e = VarBindings.size(); i != e; ++i)
1034 C.NamedValues[VarBindings[i].first] = OldBindings[i];
1035
1036 // Return the body computation.
1037 return BodyVal;
1038 }
1039
IRGen(IRGenContext & C) const1040 Function *PrototypeAST::IRGen(IRGenContext &C) const {
1041 std::string FnName = MakeLegalFunctionName(Name);
1042
1043 // Make the function type: double(double,double) etc.
1044 std::vector<Type*> Doubles(Args.size(),
1045 Type::getDoubleTy(getGlobalContext()));
1046 FunctionType *FT = FunctionType::get(Type::getDoubleTy(getGlobalContext()),
1047 Doubles, false);
1048 Function *F = Function::Create(FT, Function::ExternalLinkage, FnName,
1049 &C.getM());
1050
1051 // If F conflicted, there was already something named 'FnName'. If it has a
1052 // body, don't allow redefinition or reextern.
1053 if (F->getName() != FnName) {
1054 // Delete the one we just made and get the existing one.
1055 F->eraseFromParent();
1056 F = C.getM().getFunction(Name);
1057
1058 // If F already has a body, reject this.
1059 if (!F->empty()) {
1060 ErrorP<Function>("redefinition of function");
1061 return nullptr;
1062 }
1063
1064 // If F took a different number of args, reject.
1065 if (F->arg_size() != Args.size()) {
1066 ErrorP<Function>("redefinition of function with different # args");
1067 return nullptr;
1068 }
1069 }
1070
1071 // Set names for all arguments.
1072 unsigned Idx = 0;
1073 for (Function::arg_iterator AI = F->arg_begin(); Idx != Args.size();
1074 ++AI, ++Idx)
1075 AI->setName(Args[Idx]);
1076
1077 return F;
1078 }
1079
1080 /// CreateArgumentAllocas - Create an alloca for each argument and register the
1081 /// argument in the symbol table so that references to it will succeed.
CreateArgumentAllocas(Function * F,IRGenContext & C)1082 void PrototypeAST::CreateArgumentAllocas(Function *F, IRGenContext &C) {
1083 Function::arg_iterator AI = F->arg_begin();
1084 for (unsigned Idx = 0, e = Args.size(); Idx != e; ++Idx, ++AI) {
1085 // Create an alloca for this variable.
1086 AllocaInst *Alloca = CreateEntryBlockAlloca(F, Args[Idx]);
1087
1088 // Store the initial value into the alloca.
1089 C.getBuilder().CreateStore(AI, Alloca);
1090
1091 // Add arguments to variable symbol table.
1092 C.NamedValues[Args[Idx]] = Alloca;
1093 }
1094 }
1095
IRGen(IRGenContext & C) const1096 Function *FunctionAST::IRGen(IRGenContext &C) const {
1097 C.NamedValues.clear();
1098
1099 Function *TheFunction = Proto->IRGen(C);
1100 if (!TheFunction)
1101 return nullptr;
1102
1103 // If this is an operator, install it.
1104 if (Proto->isBinaryOp())
1105 BinopPrecedence[Proto->getOperatorName()] = Proto->Precedence;
1106
1107 // Create a new basic block to start insertion into.
1108 BasicBlock *BB = BasicBlock::Create(getGlobalContext(), "entry", TheFunction);
1109 C.getBuilder().SetInsertPoint(BB);
1110
1111 // Add all arguments to the symbol table and create their allocas.
1112 Proto->CreateArgumentAllocas(TheFunction, C);
1113
1114 if (Value *RetVal = Body->IRGen(C)) {
1115 // Finish off the function.
1116 C.getBuilder().CreateRet(RetVal);
1117
1118 // Validate the generated code, checking for consistency.
1119 verifyFunction(*TheFunction);
1120
1121 return TheFunction;
1122 }
1123
1124 // Error reading body, remove function.
1125 TheFunction->eraseFromParent();
1126
1127 if (Proto->isBinaryOp())
1128 BinopPrecedence.erase(Proto->getOperatorName());
1129 return nullptr;
1130 }
1131
1132 //===----------------------------------------------------------------------===//
1133 // Top-Level parsing and JIT Driver
1134 //===----------------------------------------------------------------------===//
1135
IRGen(SessionContext & S,const FunctionAST & F)1136 static std::unique_ptr<llvm::Module> IRGen(SessionContext &S,
1137 const FunctionAST &F) {
1138 IRGenContext C(S);
1139 auto LF = F.IRGen(C);
1140 if (!LF)
1141 return nullptr;
1142 #ifndef MINIMAL_STDERR_OUTPUT
1143 fprintf(stderr, "Read function definition:");
1144 LF->dump();
1145 #endif
1146 return C.takeM();
1147 }
1148
1149 template <typename T>
singletonSet(T t)1150 static std::vector<T> singletonSet(T t) {
1151 std::vector<T> Vec;
1152 Vec.push_back(std::move(t));
1153 return Vec;
1154 }
1155
1156 class KaleidoscopeJIT {
1157 public:
1158 typedef ObjectLinkingLayer<> ObjLayerT;
1159 typedef IRCompileLayer<ObjLayerT> CompileLayerT;
1160 typedef LazyEmittingLayer<CompileLayerT> LazyEmitLayerT;
1161 typedef LazyEmitLayerT::ModuleSetHandleT ModuleHandleT;
1162
KaleidoscopeJIT(SessionContext & Session)1163 KaleidoscopeJIT(SessionContext &Session)
1164 : Session(Session),
1165 Mang(Session.getTarget().getDataLayout()),
1166 CompileLayer(ObjectLayer, SimpleCompiler(Session.getTarget())),
1167 LazyEmitLayer(CompileLayer) {}
1168
mangle(const std::string & Name)1169 std::string mangle(const std::string &Name) {
1170 std::string MangledName;
1171 {
1172 raw_string_ostream MangledNameStream(MangledName);
1173 Mang.getNameWithPrefix(MangledNameStream, Name);
1174 }
1175 return MangledName;
1176 }
1177
addFunctionAST(std::unique_ptr<FunctionAST> FnAST)1178 void addFunctionAST(std::unique_ptr<FunctionAST> FnAST) {
1179 std::cerr << "Adding AST: " << FnAST->Proto->Name << "\n";
1180 FunctionDefs[mangle(FnAST->Proto->Name)] = std::move(FnAST);
1181 }
1182
addModule(std::unique_ptr<Module> M)1183 ModuleHandleT addModule(std::unique_ptr<Module> M) {
1184 // We need a memory manager to allocate memory and resolve symbols for this
1185 // new module. Create one that resolves symbols by looking back into the
1186 // JIT.
1187 auto Resolver = createLambdaResolver(
1188 [&](const std::string &Name) {
1189 // First try to find 'Name' within the JIT.
1190 if (auto Symbol = findSymbol(Name))
1191 return RuntimeDyld::SymbolInfo(Symbol.getAddress(),
1192 Symbol.getFlags());
1193
1194 // If we don't already have a definition of 'Name' then search
1195 // the ASTs.
1196 return searchFunctionASTs(Name);
1197 },
1198 [](const std::string &S) { return nullptr; } );
1199
1200 return LazyEmitLayer.addModuleSet(singletonSet(std::move(M)),
1201 make_unique<SectionMemoryManager>(),
1202 std::move(Resolver));
1203 }
1204
removeModule(ModuleHandleT H)1205 void removeModule(ModuleHandleT H) { LazyEmitLayer.removeModuleSet(H); }
1206
findSymbol(const std::string & Name)1207 JITSymbol findSymbol(const std::string &Name) {
1208 return LazyEmitLayer.findSymbol(Name, true);
1209 }
1210
findSymbolIn(ModuleHandleT H,const std::string & Name)1211 JITSymbol findSymbolIn(ModuleHandleT H, const std::string &Name) {
1212 return LazyEmitLayer.findSymbolIn(H, Name, true);
1213 }
1214
findUnmangledSymbol(const std::string & Name)1215 JITSymbol findUnmangledSymbol(const std::string &Name) {
1216 return findSymbol(mangle(Name));
1217 }
1218
1219 private:
1220
1221 // This method searches the FunctionDefs map for a definition of 'Name'. If it
1222 // finds one it generates a stub for it and returns the address of the stub.
searchFunctionASTs(const std::string & Name)1223 RuntimeDyld::SymbolInfo searchFunctionASTs(const std::string &Name) {
1224 auto DefI = FunctionDefs.find(Name);
1225 if (DefI == FunctionDefs.end())
1226 return 0;
1227
1228 // Take the FunctionAST out of the map.
1229 auto FnAST = std::move(DefI->second);
1230 FunctionDefs.erase(DefI);
1231
1232 // IRGen the AST, add it to the JIT, and return the address for it.
1233 auto H = addModule(IRGen(Session, *FnAST));
1234 auto Sym = findSymbolIn(H, Name);
1235 return RuntimeDyld::SymbolInfo(Sym.getAddress(), Sym.getFlags());
1236 }
1237
1238 SessionContext &Session;
1239 Mangler Mang;
1240 ObjLayerT ObjectLayer;
1241 CompileLayerT CompileLayer;
1242 LazyEmitLayerT LazyEmitLayer;
1243
1244 std::map<std::string, std::unique_ptr<FunctionAST>> FunctionDefs;
1245 };
1246
HandleDefinition(SessionContext & S,KaleidoscopeJIT & J)1247 static void HandleDefinition(SessionContext &S, KaleidoscopeJIT &J) {
1248 if (auto F = ParseDefinition()) {
1249 S.addPrototypeAST(llvm::make_unique<PrototypeAST>(*F->Proto));
1250 J.addFunctionAST(std::move(F));
1251 } else {
1252 // Skip token for error recovery.
1253 getNextToken();
1254 }
1255 }
1256
HandleExtern(SessionContext & S)1257 static void HandleExtern(SessionContext &S) {
1258 if (auto P = ParseExtern())
1259 S.addPrototypeAST(std::move(P));
1260 else {
1261 // Skip token for error recovery.
1262 getNextToken();
1263 }
1264 }
1265
HandleTopLevelExpression(SessionContext & S,KaleidoscopeJIT & J)1266 static void HandleTopLevelExpression(SessionContext &S, KaleidoscopeJIT &J) {
1267 // Evaluate a top-level expression into an anonymous function.
1268 if (auto F = ParseTopLevelExpr()) {
1269 IRGenContext C(S);
1270 if (auto ExprFunc = F->IRGen(C)) {
1271 #ifndef MINIMAL_STDERR_OUTPUT
1272 std::cerr << "Expression function:\n";
1273 ExprFunc->dump();
1274 #endif
1275 // Add the CodeGen'd module to the JIT. Keep a handle to it: We can remove
1276 // this module as soon as we've executed Function ExprFunc.
1277 auto H = J.addModule(C.takeM());
1278
1279 // Get the address of the JIT'd function in memory.
1280 auto ExprSymbol = J.findUnmangledSymbol("__anon_expr");
1281
1282 // Cast it to the right type (takes no arguments, returns a double) so we
1283 // can call it as a native function.
1284 double (*FP)() = (double (*)())(intptr_t)ExprSymbol.getAddress();
1285 #ifdef MINIMAL_STDERR_OUTPUT
1286 FP();
1287 #else
1288 std::cerr << "Evaluated to " << FP() << "\n";
1289 #endif
1290
1291 // Remove the function.
1292 J.removeModule(H);
1293 }
1294 } else {
1295 // Skip token for error recovery.
1296 getNextToken();
1297 }
1298 }
1299
1300 /// top ::= definition | external | expression | ';'
MainLoop()1301 static void MainLoop() {
1302 SessionContext S(getGlobalContext());
1303 KaleidoscopeJIT J(S);
1304
1305 while (1) {
1306 switch (CurTok) {
1307 case tok_eof: return;
1308 case ';': getNextToken(); continue; // ignore top-level semicolons.
1309 case tok_def: HandleDefinition(S, J); break;
1310 case tok_extern: HandleExtern(S); break;
1311 default: HandleTopLevelExpression(S, J); break;
1312 }
1313 #ifndef MINIMAL_STDERR_OUTPUT
1314 std::cerr << "ready> ";
1315 #endif
1316 }
1317 }
1318
1319 //===----------------------------------------------------------------------===//
1320 // "Library" functions that can be "extern'd" from user code.
1321 //===----------------------------------------------------------------------===//
1322
1323 /// putchard - putchar that takes a double and returns 0.
1324 extern "C"
putchard(double X)1325 double putchard(double X) {
1326 putchar((char)X);
1327 return 0;
1328 }
1329
1330 /// printd - printf that takes a double prints it as "%f\n", returning 0.
1331 extern "C"
printd(double X)1332 double printd(double X) {
1333 printf("%f", X);
1334 return 0;
1335 }
1336
1337 extern "C"
printlf()1338 double printlf() {
1339 printf("\n");
1340 return 0;
1341 }
1342
1343 //===----------------------------------------------------------------------===//
1344 // Main driver code.
1345 //===----------------------------------------------------------------------===//
1346
main()1347 int main() {
1348 InitializeNativeTarget();
1349 InitializeNativeTargetAsmPrinter();
1350 InitializeNativeTargetAsmParser();
1351
1352 // Install standard binary operators.
1353 // 1 is lowest precedence.
1354 BinopPrecedence['='] = 2;
1355 BinopPrecedence['<'] = 10;
1356 BinopPrecedence['+'] = 20;
1357 BinopPrecedence['-'] = 20;
1358 BinopPrecedence['/'] = 40;
1359 BinopPrecedence['*'] = 40; // highest.
1360
1361 // Prime the first token.
1362 #ifndef MINIMAL_STDERR_OUTPUT
1363 std::cerr << "ready> ";
1364 #endif
1365 getNextToken();
1366
1367 std::cerr << std::fixed;
1368
1369 // Run the main "interpreter loop" now.
1370 MainLoop();
1371
1372 return 0;
1373 }
1374
1375