1 //===- LazyValueInfo.cpp - Value constraint analysis ------------*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines the interface for lazy computation of value constraint
11 // information.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "llvm/Analysis/LazyValueInfo.h"
16 #include "llvm/ADT/DenseSet.h"
17 #include "llvm/ADT/STLExtras.h"
18 #include "llvm/Analysis/AssumptionCache.h"
19 #include "llvm/Analysis/ConstantFolding.h"
20 #include "llvm/Analysis/TargetLibraryInfo.h"
21 #include "llvm/Analysis/ValueTracking.h"
22 #include "llvm/IR/CFG.h"
23 #include "llvm/IR/ConstantRange.h"
24 #include "llvm/IR/Constants.h"
25 #include "llvm/IR/DataLayout.h"
26 #include "llvm/IR/Dominators.h"
27 #include "llvm/IR/Instructions.h"
28 #include "llvm/IR/IntrinsicInst.h"
29 #include "llvm/IR/PatternMatch.h"
30 #include "llvm/IR/ValueHandle.h"
31 #include "llvm/Support/Debug.h"
32 #include "llvm/Support/raw_ostream.h"
33 #include <map>
34 #include <stack>
35 using namespace llvm;
36 using namespace PatternMatch;
37 
38 #define DEBUG_TYPE "lazy-value-info"
39 
40 char LazyValueInfo::ID = 0;
41 INITIALIZE_PASS_BEGIN(LazyValueInfo, "lazy-value-info",
42                 "Lazy Value Information Analysis", false, true)
43 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
44 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
45 INITIALIZE_PASS_END(LazyValueInfo, "lazy-value-info",
46                 "Lazy Value Information Analysis", false, true)
47 
48 namespace llvm {
createLazyValueInfoPass()49   FunctionPass *createLazyValueInfoPass() { return new LazyValueInfo(); }
50 }
51 
52 
53 //===----------------------------------------------------------------------===//
54 //                               LVILatticeVal
55 //===----------------------------------------------------------------------===//
56 
57 /// This is the information tracked by LazyValueInfo for each value.
58 ///
59 /// FIXME: This is basically just for bringup, this can be made a lot more rich
60 /// in the future.
61 ///
62 namespace {
63 class LVILatticeVal {
64   enum LatticeValueTy {
65     /// This Value has no known value yet.
66     undefined,
67 
68     /// This Value has a specific constant value.
69     constant,
70 
71     /// This Value is known to not have the specified value.
72     notconstant,
73 
74     /// The Value falls within this range.
75     constantrange,
76 
77     /// This value is not known to be constant, and we know that it has a value.
78     overdefined
79   };
80 
81   /// Val: This stores the current lattice value along with the Constant* for
82   /// the constant if this is a 'constant' or 'notconstant' value.
83   LatticeValueTy Tag;
84   Constant *Val;
85   ConstantRange Range;
86 
87 public:
LVILatticeVal()88   LVILatticeVal() : Tag(undefined), Val(nullptr), Range(1, true) {}
89 
get(Constant * C)90   static LVILatticeVal get(Constant *C) {
91     LVILatticeVal Res;
92     if (!isa<UndefValue>(C))
93       Res.markConstant(C);
94     return Res;
95   }
getNot(Constant * C)96   static LVILatticeVal getNot(Constant *C) {
97     LVILatticeVal Res;
98     if (!isa<UndefValue>(C))
99       Res.markNotConstant(C);
100     return Res;
101   }
getRange(ConstantRange CR)102   static LVILatticeVal getRange(ConstantRange CR) {
103     LVILatticeVal Res;
104     Res.markConstantRange(CR);
105     return Res;
106   }
107 
isUndefined() const108   bool isUndefined() const     { return Tag == undefined; }
isConstant() const109   bool isConstant() const      { return Tag == constant; }
isNotConstant() const110   bool isNotConstant() const   { return Tag == notconstant; }
isConstantRange() const111   bool isConstantRange() const { return Tag == constantrange; }
isOverdefined() const112   bool isOverdefined() const   { return Tag == overdefined; }
113 
getConstant() const114   Constant *getConstant() const {
115     assert(isConstant() && "Cannot get the constant of a non-constant!");
116     return Val;
117   }
118 
getNotConstant() const119   Constant *getNotConstant() const {
120     assert(isNotConstant() && "Cannot get the constant of a non-notconstant!");
121     return Val;
122   }
123 
getConstantRange() const124   ConstantRange getConstantRange() const {
125     assert(isConstantRange() &&
126            "Cannot get the constant-range of a non-constant-range!");
127     return Range;
128   }
129 
130   /// Return true if this is a change in status.
markOverdefined()131   bool markOverdefined() {
132     if (isOverdefined())
133       return false;
134     Tag = overdefined;
135     return true;
136   }
137 
138   /// Return true if this is a change in status.
markConstant(Constant * V)139   bool markConstant(Constant *V) {
140     assert(V && "Marking constant with NULL");
141     if (ConstantInt *CI = dyn_cast<ConstantInt>(V))
142       return markConstantRange(ConstantRange(CI->getValue()));
143     if (isa<UndefValue>(V))
144       return false;
145 
146     assert((!isConstant() || getConstant() == V) &&
147            "Marking constant with different value");
148     assert(isUndefined());
149     Tag = constant;
150     Val = V;
151     return true;
152   }
153 
154   /// Return true if this is a change in status.
markNotConstant(Constant * V)155   bool markNotConstant(Constant *V) {
156     assert(V && "Marking constant with NULL");
157     if (ConstantInt *CI = dyn_cast<ConstantInt>(V))
158       return markConstantRange(ConstantRange(CI->getValue()+1, CI->getValue()));
159     if (isa<UndefValue>(V))
160       return false;
161 
162     assert((!isConstant() || getConstant() != V) &&
163            "Marking constant !constant with same value");
164     assert((!isNotConstant() || getNotConstant() == V) &&
165            "Marking !constant with different value");
166     assert(isUndefined() || isConstant());
167     Tag = notconstant;
168     Val = V;
169     return true;
170   }
171 
172   /// Return true if this is a change in status.
markConstantRange(const ConstantRange NewR)173   bool markConstantRange(const ConstantRange NewR) {
174     if (isConstantRange()) {
175       if (NewR.isEmptySet())
176         return markOverdefined();
177 
178       bool changed = Range != NewR;
179       Range = NewR;
180       return changed;
181     }
182 
183     assert(isUndefined());
184     if (NewR.isEmptySet())
185       return markOverdefined();
186 
187     Tag = constantrange;
188     Range = NewR;
189     return true;
190   }
191 
192   /// Merge the specified lattice value into this one, updating this
193   /// one and returning true if anything changed.
mergeIn(const LVILatticeVal & RHS,const DataLayout & DL)194   bool mergeIn(const LVILatticeVal &RHS, const DataLayout &DL) {
195     if (RHS.isUndefined() || isOverdefined()) return false;
196     if (RHS.isOverdefined()) return markOverdefined();
197 
198     if (isUndefined()) {
199       Tag = RHS.Tag;
200       Val = RHS.Val;
201       Range = RHS.Range;
202       return true;
203     }
204 
205     if (isConstant()) {
206       if (RHS.isConstant()) {
207         if (Val == RHS.Val)
208           return false;
209         return markOverdefined();
210       }
211 
212       if (RHS.isNotConstant()) {
213         if (Val == RHS.Val)
214           return markOverdefined();
215 
216         // Unless we can prove that the two Constants are different, we must
217         // move to overdefined.
218         if (ConstantInt *Res =
219                 dyn_cast<ConstantInt>(ConstantFoldCompareInstOperands(
220                     CmpInst::ICMP_NE, getConstant(), RHS.getNotConstant(), DL)))
221           if (Res->isOne())
222             return markNotConstant(RHS.getNotConstant());
223 
224         return markOverdefined();
225       }
226 
227       // RHS is a ConstantRange, LHS is a non-integer Constant.
228 
229       // FIXME: consider the case where RHS is a range [1, 0) and LHS is
230       // a function. The correct result is to pick up RHS.
231 
232       return markOverdefined();
233     }
234 
235     if (isNotConstant()) {
236       if (RHS.isConstant()) {
237         if (Val == RHS.Val)
238           return markOverdefined();
239 
240         // Unless we can prove that the two Constants are different, we must
241         // move to overdefined.
242         if (ConstantInt *Res =
243                 dyn_cast<ConstantInt>(ConstantFoldCompareInstOperands(
244                     CmpInst::ICMP_NE, getNotConstant(), RHS.getConstant(), DL)))
245           if (Res->isOne())
246             return false;
247 
248         return markOverdefined();
249       }
250 
251       if (RHS.isNotConstant()) {
252         if (Val == RHS.Val)
253           return false;
254         return markOverdefined();
255       }
256 
257       return markOverdefined();
258     }
259 
260     assert(isConstantRange() && "New LVILattice type?");
261     if (!RHS.isConstantRange())
262       return markOverdefined();
263 
264     ConstantRange NewR = Range.unionWith(RHS.getConstantRange());
265     if (NewR.isFullSet())
266       return markOverdefined();
267     return markConstantRange(NewR);
268   }
269 };
270 
271 } // end anonymous namespace.
272 
273 namespace llvm {
274 raw_ostream &operator<<(raw_ostream &OS, const LVILatticeVal &Val)
275     LLVM_ATTRIBUTE_USED;
operator <<(raw_ostream & OS,const LVILatticeVal & Val)276 raw_ostream &operator<<(raw_ostream &OS, const LVILatticeVal &Val) {
277   if (Val.isUndefined())
278     return OS << "undefined";
279   if (Val.isOverdefined())
280     return OS << "overdefined";
281 
282   if (Val.isNotConstant())
283     return OS << "notconstant<" << *Val.getNotConstant() << '>';
284   else if (Val.isConstantRange())
285     return OS << "constantrange<" << Val.getConstantRange().getLower() << ", "
286               << Val.getConstantRange().getUpper() << '>';
287   return OS << "constant<" << *Val.getConstant() << '>';
288 }
289 }
290 
291 //===----------------------------------------------------------------------===//
292 //                          LazyValueInfoCache Decl
293 //===----------------------------------------------------------------------===//
294 
295 namespace {
296   /// A callback value handle updates the cache when values are erased.
297   class LazyValueInfoCache;
298   struct LVIValueHandle : public CallbackVH {
299     LazyValueInfoCache *Parent;
300 
LVIValueHandle__anon33ceafee0211::LVIValueHandle301     LVIValueHandle(Value *V, LazyValueInfoCache *P)
302       : CallbackVH(V), Parent(P) { }
303 
304     void deleted() override;
allUsesReplacedWith__anon33ceafee0211::LVIValueHandle305     void allUsesReplacedWith(Value *V) override {
306       deleted();
307     }
308   };
309 }
310 
311 namespace {
312   /// This is the cache kept by LazyValueInfo which
313   /// maintains information about queries across the clients' queries.
314   class LazyValueInfoCache {
315     /// This is all of the cached block information for exactly one Value*.
316     /// The entries are sorted by the BasicBlock* of the
317     /// entries, allowing us to do a lookup with a binary search.
318     typedef std::map<AssertingVH<BasicBlock>, LVILatticeVal> ValueCacheEntryTy;
319 
320     /// This is all of the cached information for all values,
321     /// mapped from Value* to key information.
322     std::map<LVIValueHandle, ValueCacheEntryTy> ValueCache;
323 
324     /// This tracks, on a per-block basis, the set of values that are
325     /// over-defined at the end of that block.  This is required
326     /// for cache updating.
327     typedef std::pair<AssertingVH<BasicBlock>, Value*> OverDefinedPairTy;
328     DenseSet<OverDefinedPairTy> OverDefinedCache;
329 
330     /// Keep track of all blocks that we have ever seen, so we
331     /// don't spend time removing unused blocks from our caches.
332     DenseSet<AssertingVH<BasicBlock> > SeenBlocks;
333 
334     /// This stack holds the state of the value solver during a query.
335     /// It basically emulates the callstack of the naive
336     /// recursive value lookup process.
337     std::stack<std::pair<BasicBlock*, Value*> > BlockValueStack;
338 
339     /// Keeps track of which block-value pairs are in BlockValueStack.
340     DenseSet<std::pair<BasicBlock*, Value*> > BlockValueSet;
341 
342     /// Push BV onto BlockValueStack unless it's already in there.
343     /// Returns true on success.
pushBlockValue(const std::pair<BasicBlock *,Value * > & BV)344     bool pushBlockValue(const std::pair<BasicBlock *, Value *> &BV) {
345       if (!BlockValueSet.insert(BV).second)
346         return false;  // It's already in the stack.
347 
348       BlockValueStack.push(BV);
349       return true;
350     }
351 
352     AssumptionCache *AC;  ///< A pointer to the cache of @llvm.assume calls.
353     const DataLayout &DL; ///< A mandatory DataLayout
354     DominatorTree *DT;    ///< An optional DT pointer.
355 
356     friend struct LVIValueHandle;
357 
insertResult(Value * Val,BasicBlock * BB,const LVILatticeVal & Result)358     void insertResult(Value *Val, BasicBlock *BB, const LVILatticeVal &Result) {
359       SeenBlocks.insert(BB);
360       lookup(Val)[BB] = Result;
361       if (Result.isOverdefined())
362         OverDefinedCache.insert(std::make_pair(BB, Val));
363     }
364 
365     LVILatticeVal getBlockValue(Value *Val, BasicBlock *BB);
366     bool getEdgeValue(Value *V, BasicBlock *F, BasicBlock *T,
367                       LVILatticeVal &Result,
368                       Instruction *CxtI = nullptr);
369     bool hasBlockValue(Value *Val, BasicBlock *BB);
370 
371     // These methods process one work item and may add more. A false value
372     // returned means that the work item was not completely processed and must
373     // be revisited after going through the new items.
374     bool solveBlockValue(Value *Val, BasicBlock *BB);
375     bool solveBlockValueNonLocal(LVILatticeVal &BBLV,
376                                  Value *Val, BasicBlock *BB);
377     bool solveBlockValuePHINode(LVILatticeVal &BBLV,
378                                 PHINode *PN, BasicBlock *BB);
379     bool solveBlockValueConstantRange(LVILatticeVal &BBLV,
380                                       Instruction *BBI, BasicBlock *BB);
381     void mergeAssumeBlockValueConstantRange(Value *Val, LVILatticeVal &BBLV,
382                                             Instruction *BBI);
383 
384     void solve();
385 
lookup(Value * V)386     ValueCacheEntryTy &lookup(Value *V) {
387       return ValueCache[LVIValueHandle(V, this)];
388     }
389 
390   public:
391     /// This is the query interface to determine the lattice
392     /// value for the specified Value* at the end of the specified block.
393     LVILatticeVal getValueInBlock(Value *V, BasicBlock *BB,
394                                   Instruction *CxtI = nullptr);
395 
396     /// This is the query interface to determine the lattice
397     /// value for the specified Value* at the specified instruction (generally
398     /// from an assume intrinsic).
399     LVILatticeVal getValueAt(Value *V, Instruction *CxtI);
400 
401     /// This is the query interface to determine the lattice
402     /// value for the specified Value* that is true on the specified edge.
403     LVILatticeVal getValueOnEdge(Value *V, BasicBlock *FromBB,BasicBlock *ToBB,
404                                  Instruction *CxtI = nullptr);
405 
406     /// This is the update interface to inform the cache that an edge from
407     /// PredBB to OldSucc has been threaded to be from PredBB to NewSucc.
408     void threadEdge(BasicBlock *PredBB,BasicBlock *OldSucc,BasicBlock *NewSucc);
409 
410     /// This is part of the update interface to inform the cache
411     /// that a block has been deleted.
412     void eraseBlock(BasicBlock *BB);
413 
414     /// clear - Empty the cache.
clear()415     void clear() {
416       SeenBlocks.clear();
417       ValueCache.clear();
418       OverDefinedCache.clear();
419     }
420 
LazyValueInfoCache(AssumptionCache * AC,const DataLayout & DL,DominatorTree * DT=nullptr)421     LazyValueInfoCache(AssumptionCache *AC, const DataLayout &DL,
422                        DominatorTree *DT = nullptr)
423         : AC(AC), DL(DL), DT(DT) {}
424   };
425 } // end anonymous namespace
426 
deleted()427 void LVIValueHandle::deleted() {
428   typedef std::pair<AssertingVH<BasicBlock>, Value*> OverDefinedPairTy;
429 
430   SmallVector<OverDefinedPairTy, 4> ToErase;
431   for (const OverDefinedPairTy &P : Parent->OverDefinedCache)
432     if (P.second == getValPtr())
433       ToErase.push_back(P);
434   for (const OverDefinedPairTy &P : ToErase)
435     Parent->OverDefinedCache.erase(P);
436 
437   // This erasure deallocates *this, so it MUST happen after we're done
438   // using any and all members of *this.
439   Parent->ValueCache.erase(*this);
440 }
441 
eraseBlock(BasicBlock * BB)442 void LazyValueInfoCache::eraseBlock(BasicBlock *BB) {
443   // Shortcut if we have never seen this block.
444   DenseSet<AssertingVH<BasicBlock> >::iterator I = SeenBlocks.find(BB);
445   if (I == SeenBlocks.end())
446     return;
447   SeenBlocks.erase(I);
448 
449   SmallVector<OverDefinedPairTy, 4> ToErase;
450   for (const OverDefinedPairTy& P : OverDefinedCache)
451     if (P.first == BB)
452       ToErase.push_back(P);
453   for (const OverDefinedPairTy &P : ToErase)
454     OverDefinedCache.erase(P);
455 
456   for (std::map<LVIValueHandle, ValueCacheEntryTy>::iterator
457        I = ValueCache.begin(), E = ValueCache.end(); I != E; ++I)
458     I->second.erase(BB);
459 }
460 
solve()461 void LazyValueInfoCache::solve() {
462   while (!BlockValueStack.empty()) {
463     std::pair<BasicBlock*, Value*> &e = BlockValueStack.top();
464     assert(BlockValueSet.count(e) && "Stack value should be in BlockValueSet!");
465 
466     if (solveBlockValue(e.second, e.first)) {
467       // The work item was completely processed.
468       assert(BlockValueStack.top() == e && "Nothing should have been pushed!");
469       assert(lookup(e.second).count(e.first) && "Result should be in cache!");
470 
471       BlockValueStack.pop();
472       BlockValueSet.erase(e);
473     } else {
474       // More work needs to be done before revisiting.
475       assert(BlockValueStack.top() != e && "Stack should have been pushed!");
476     }
477   }
478 }
479 
hasBlockValue(Value * Val,BasicBlock * BB)480 bool LazyValueInfoCache::hasBlockValue(Value *Val, BasicBlock *BB) {
481   // If already a constant, there is nothing to compute.
482   if (isa<Constant>(Val))
483     return true;
484 
485   LVIValueHandle ValHandle(Val, this);
486   std::map<LVIValueHandle, ValueCacheEntryTy>::iterator I =
487     ValueCache.find(ValHandle);
488   if (I == ValueCache.end()) return false;
489   return I->second.count(BB);
490 }
491 
getBlockValue(Value * Val,BasicBlock * BB)492 LVILatticeVal LazyValueInfoCache::getBlockValue(Value *Val, BasicBlock *BB) {
493   // If already a constant, there is nothing to compute.
494   if (Constant *VC = dyn_cast<Constant>(Val))
495     return LVILatticeVal::get(VC);
496 
497   SeenBlocks.insert(BB);
498   return lookup(Val)[BB];
499 }
500 
solveBlockValue(Value * Val,BasicBlock * BB)501 bool LazyValueInfoCache::solveBlockValue(Value *Val, BasicBlock *BB) {
502   if (isa<Constant>(Val))
503     return true;
504 
505   if (lookup(Val).count(BB)) {
506     // If we have a cached value, use that.
507     DEBUG(dbgs() << "  reuse BB '" << BB->getName()
508                  << "' val=" << lookup(Val)[BB] << '\n');
509 
510     // Since we're reusing a cached value, we don't need to update the
511     // OverDefinedCache. The cache will have been properly updated whenever the
512     // cached value was inserted.
513     return true;
514   }
515 
516   // Hold off inserting this value into the Cache in case we have to return
517   // false and come back later.
518   LVILatticeVal Res;
519 
520   Instruction *BBI = dyn_cast<Instruction>(Val);
521   if (!BBI || BBI->getParent() != BB) {
522     if (!solveBlockValueNonLocal(Res, Val, BB))
523       return false;
524    insertResult(Val, BB, Res);
525    return true;
526   }
527 
528   if (PHINode *PN = dyn_cast<PHINode>(BBI)) {
529     if (!solveBlockValuePHINode(Res, PN, BB))
530       return false;
531     insertResult(Val, BB, Res);
532     return true;
533   }
534 
535   if (AllocaInst *AI = dyn_cast<AllocaInst>(BBI)) {
536     Res = LVILatticeVal::getNot(ConstantPointerNull::get(AI->getType()));
537     insertResult(Val, BB, Res);
538     return true;
539   }
540 
541   // We can only analyze the definitions of certain classes of instructions
542   // (integral binops and casts at the moment), so bail if this isn't one.
543   LVILatticeVal Result;
544   if ((!isa<BinaryOperator>(BBI) && !isa<CastInst>(BBI)) ||
545      !BBI->getType()->isIntegerTy()) {
546     DEBUG(dbgs() << " compute BB '" << BB->getName()
547                  << "' - overdefined because inst def found.\n");
548     Res.markOverdefined();
549     insertResult(Val, BB, Res);
550     return true;
551   }
552 
553   // FIXME: We're currently limited to binops with a constant RHS.  This should
554   // be improved.
555   BinaryOperator *BO = dyn_cast<BinaryOperator>(BBI);
556   if (BO && !isa<ConstantInt>(BO->getOperand(1))) {
557     DEBUG(dbgs() << " compute BB '" << BB->getName()
558                  << "' - overdefined because inst def found.\n");
559 
560     Res.markOverdefined();
561     insertResult(Val, BB, Res);
562     return true;
563   }
564 
565   if (!solveBlockValueConstantRange(Res, BBI, BB))
566     return false;
567   insertResult(Val, BB, Res);
568   return true;
569 }
570 
InstructionDereferencesPointer(Instruction * I,Value * Ptr)571 static bool InstructionDereferencesPointer(Instruction *I, Value *Ptr) {
572   if (LoadInst *L = dyn_cast<LoadInst>(I)) {
573     return L->getPointerAddressSpace() == 0 &&
574            GetUnderlyingObject(L->getPointerOperand(),
575                                L->getModule()->getDataLayout()) == Ptr;
576   }
577   if (StoreInst *S = dyn_cast<StoreInst>(I)) {
578     return S->getPointerAddressSpace() == 0 &&
579            GetUnderlyingObject(S->getPointerOperand(),
580                                S->getModule()->getDataLayout()) == Ptr;
581   }
582   if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(I)) {
583     if (MI->isVolatile()) return false;
584 
585     // FIXME: check whether it has a valuerange that excludes zero?
586     ConstantInt *Len = dyn_cast<ConstantInt>(MI->getLength());
587     if (!Len || Len->isZero()) return false;
588 
589     if (MI->getDestAddressSpace() == 0)
590       if (GetUnderlyingObject(MI->getRawDest(),
591                               MI->getModule()->getDataLayout()) == Ptr)
592         return true;
593     if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(MI))
594       if (MTI->getSourceAddressSpace() == 0)
595         if (GetUnderlyingObject(MTI->getRawSource(),
596                                 MTI->getModule()->getDataLayout()) == Ptr)
597           return true;
598   }
599   return false;
600 }
601 
solveBlockValueNonLocal(LVILatticeVal & BBLV,Value * Val,BasicBlock * BB)602 bool LazyValueInfoCache::solveBlockValueNonLocal(LVILatticeVal &BBLV,
603                                                  Value *Val, BasicBlock *BB) {
604   LVILatticeVal Result;  // Start Undefined.
605 
606   // If this is a pointer, and there's a load from that pointer in this BB,
607   // then we know that the pointer can't be NULL.
608   bool NotNull = false;
609   if (Val->getType()->isPointerTy()) {
610     if (isKnownNonNull(Val)) {
611       NotNull = true;
612     } else {
613       const DataLayout &DL = BB->getModule()->getDataLayout();
614       Value *UnderlyingVal = GetUnderlyingObject(Val, DL);
615       // If 'GetUnderlyingObject' didn't converge, skip it. It won't converge
616       // inside InstructionDereferencesPointer either.
617       if (UnderlyingVal == GetUnderlyingObject(UnderlyingVal, DL, 1)) {
618         for (Instruction &I : *BB) {
619           if (InstructionDereferencesPointer(&I, UnderlyingVal)) {
620             NotNull = true;
621             break;
622           }
623         }
624       }
625     }
626   }
627 
628   // If this is the entry block, we must be asking about an argument.  The
629   // value is overdefined.
630   if (BB == &BB->getParent()->getEntryBlock()) {
631     assert(isa<Argument>(Val) && "Unknown live-in to the entry block");
632     if (NotNull) {
633       PointerType *PTy = cast<PointerType>(Val->getType());
634       Result = LVILatticeVal::getNot(ConstantPointerNull::get(PTy));
635     } else {
636       Result.markOverdefined();
637     }
638     BBLV = Result;
639     return true;
640   }
641 
642   // Loop over all of our predecessors, merging what we know from them into
643   // result.
644   bool EdgesMissing = false;
645   for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
646     LVILatticeVal EdgeResult;
647     EdgesMissing |= !getEdgeValue(Val, *PI, BB, EdgeResult);
648     if (EdgesMissing)
649       continue;
650 
651     Result.mergeIn(EdgeResult, DL);
652 
653     // If we hit overdefined, exit early.  The BlockVals entry is already set
654     // to overdefined.
655     if (Result.isOverdefined()) {
656       DEBUG(dbgs() << " compute BB '" << BB->getName()
657             << "' - overdefined because of pred.\n");
658       // If we previously determined that this is a pointer that can't be null
659       // then return that rather than giving up entirely.
660       if (NotNull) {
661         PointerType *PTy = cast<PointerType>(Val->getType());
662         Result = LVILatticeVal::getNot(ConstantPointerNull::get(PTy));
663       }
664 
665       BBLV = Result;
666       return true;
667     }
668   }
669   if (EdgesMissing)
670     return false;
671 
672   // Return the merged value, which is more precise than 'overdefined'.
673   assert(!Result.isOverdefined());
674   BBLV = Result;
675   return true;
676 }
677 
solveBlockValuePHINode(LVILatticeVal & BBLV,PHINode * PN,BasicBlock * BB)678 bool LazyValueInfoCache::solveBlockValuePHINode(LVILatticeVal &BBLV,
679                                                 PHINode *PN, BasicBlock *BB) {
680   LVILatticeVal Result;  // Start Undefined.
681 
682   // Loop over all of our predecessors, merging what we know from them into
683   // result.
684   bool EdgesMissing = false;
685   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
686     BasicBlock *PhiBB = PN->getIncomingBlock(i);
687     Value *PhiVal = PN->getIncomingValue(i);
688     LVILatticeVal EdgeResult;
689     // Note that we can provide PN as the context value to getEdgeValue, even
690     // though the results will be cached, because PN is the value being used as
691     // the cache key in the caller.
692     EdgesMissing |= !getEdgeValue(PhiVal, PhiBB, BB, EdgeResult, PN);
693     if (EdgesMissing)
694       continue;
695 
696     Result.mergeIn(EdgeResult, DL);
697 
698     // If we hit overdefined, exit early.  The BlockVals entry is already set
699     // to overdefined.
700     if (Result.isOverdefined()) {
701       DEBUG(dbgs() << " compute BB '" << BB->getName()
702             << "' - overdefined because of pred.\n");
703 
704       BBLV = Result;
705       return true;
706     }
707   }
708   if (EdgesMissing)
709     return false;
710 
711   // Return the merged value, which is more precise than 'overdefined'.
712   assert(!Result.isOverdefined() && "Possible PHI in entry block?");
713   BBLV = Result;
714   return true;
715 }
716 
717 static bool getValueFromFromCondition(Value *Val, ICmpInst *ICI,
718                                       LVILatticeVal &Result,
719                                       bool isTrueDest = true);
720 
721 // If we can determine a constant range for the value Val in the context
722 // provided by the instruction BBI, then merge it into BBLV. If we did find a
723 // constant range, return true.
mergeAssumeBlockValueConstantRange(Value * Val,LVILatticeVal & BBLV,Instruction * BBI)724 void LazyValueInfoCache::mergeAssumeBlockValueConstantRange(Value *Val,
725                                                             LVILatticeVal &BBLV,
726                                                             Instruction *BBI) {
727   BBI = BBI ? BBI : dyn_cast<Instruction>(Val);
728   if (!BBI)
729     return;
730 
731   for (auto &AssumeVH : AC->assumptions()) {
732     if (!AssumeVH)
733       continue;
734     auto *I = cast<CallInst>(AssumeVH);
735     if (!isValidAssumeForContext(I, BBI, DT))
736       continue;
737 
738     Value *C = I->getArgOperand(0);
739     if (ICmpInst *ICI = dyn_cast<ICmpInst>(C)) {
740       LVILatticeVal Result;
741       if (getValueFromFromCondition(Val, ICI, Result)) {
742         if (BBLV.isOverdefined())
743           BBLV = Result;
744         else
745           BBLV.mergeIn(Result, DL);
746       }
747     }
748   }
749 }
750 
solveBlockValueConstantRange(LVILatticeVal & BBLV,Instruction * BBI,BasicBlock * BB)751 bool LazyValueInfoCache::solveBlockValueConstantRange(LVILatticeVal &BBLV,
752                                                       Instruction *BBI,
753                                                       BasicBlock *BB) {
754   // Figure out the range of the LHS.  If that fails, bail.
755   if (!hasBlockValue(BBI->getOperand(0), BB)) {
756     if (pushBlockValue(std::make_pair(BB, BBI->getOperand(0))))
757       return false;
758     BBLV.markOverdefined();
759     return true;
760   }
761 
762   LVILatticeVal LHSVal = getBlockValue(BBI->getOperand(0), BB);
763   mergeAssumeBlockValueConstantRange(BBI->getOperand(0), LHSVal, BBI);
764   if (!LHSVal.isConstantRange()) {
765     BBLV.markOverdefined();
766     return true;
767   }
768 
769   ConstantRange LHSRange = LHSVal.getConstantRange();
770   ConstantRange RHSRange(1);
771   IntegerType *ResultTy = cast<IntegerType>(BBI->getType());
772   if (isa<BinaryOperator>(BBI)) {
773     if (ConstantInt *RHS = dyn_cast<ConstantInt>(BBI->getOperand(1))) {
774       RHSRange = ConstantRange(RHS->getValue());
775     } else {
776       BBLV.markOverdefined();
777       return true;
778     }
779   }
780 
781   // NOTE: We're currently limited by the set of operations that ConstantRange
782   // can evaluate symbolically.  Enhancing that set will allows us to analyze
783   // more definitions.
784   LVILatticeVal Result;
785   switch (BBI->getOpcode()) {
786   case Instruction::Add:
787     Result.markConstantRange(LHSRange.add(RHSRange));
788     break;
789   case Instruction::Sub:
790     Result.markConstantRange(LHSRange.sub(RHSRange));
791     break;
792   case Instruction::Mul:
793     Result.markConstantRange(LHSRange.multiply(RHSRange));
794     break;
795   case Instruction::UDiv:
796     Result.markConstantRange(LHSRange.udiv(RHSRange));
797     break;
798   case Instruction::Shl:
799     Result.markConstantRange(LHSRange.shl(RHSRange));
800     break;
801   case Instruction::LShr:
802     Result.markConstantRange(LHSRange.lshr(RHSRange));
803     break;
804   case Instruction::Trunc:
805     Result.markConstantRange(LHSRange.truncate(ResultTy->getBitWidth()));
806     break;
807   case Instruction::SExt:
808     Result.markConstantRange(LHSRange.signExtend(ResultTy->getBitWidth()));
809     break;
810   case Instruction::ZExt:
811     Result.markConstantRange(LHSRange.zeroExtend(ResultTy->getBitWidth()));
812     break;
813   case Instruction::BitCast:
814     Result.markConstantRange(LHSRange);
815     break;
816   case Instruction::And:
817     Result.markConstantRange(LHSRange.binaryAnd(RHSRange));
818     break;
819   case Instruction::Or:
820     Result.markConstantRange(LHSRange.binaryOr(RHSRange));
821     break;
822 
823   // Unhandled instructions are overdefined.
824   default:
825     DEBUG(dbgs() << " compute BB '" << BB->getName()
826                  << "' - overdefined because inst def found.\n");
827     Result.markOverdefined();
828     break;
829   }
830 
831   BBLV = Result;
832   return true;
833 }
834 
getValueFromFromCondition(Value * Val,ICmpInst * ICI,LVILatticeVal & Result,bool isTrueDest)835 bool getValueFromFromCondition(Value *Val, ICmpInst *ICI,
836                                LVILatticeVal &Result, bool isTrueDest) {
837   if (ICI && isa<Constant>(ICI->getOperand(1))) {
838     if (ICI->isEquality() && ICI->getOperand(0) == Val) {
839       // We know that V has the RHS constant if this is a true SETEQ or
840       // false SETNE.
841       if (isTrueDest == (ICI->getPredicate() == ICmpInst::ICMP_EQ))
842         Result = LVILatticeVal::get(cast<Constant>(ICI->getOperand(1)));
843       else
844         Result = LVILatticeVal::getNot(cast<Constant>(ICI->getOperand(1)));
845       return true;
846     }
847 
848     // Recognize the range checking idiom that InstCombine produces.
849     // (X-C1) u< C2 --> [C1, C1+C2)
850     ConstantInt *NegOffset = nullptr;
851     if (ICI->getPredicate() == ICmpInst::ICMP_ULT)
852       match(ICI->getOperand(0), m_Add(m_Specific(Val),
853                                       m_ConstantInt(NegOffset)));
854 
855     ConstantInt *CI = dyn_cast<ConstantInt>(ICI->getOperand(1));
856     if (CI && (ICI->getOperand(0) == Val || NegOffset)) {
857       // Calculate the range of values that are allowed by the comparison
858       ConstantRange CmpRange(CI->getValue());
859       ConstantRange TrueValues =
860           ConstantRange::makeAllowedICmpRegion(ICI->getPredicate(), CmpRange);
861 
862       if (NegOffset) // Apply the offset from above.
863         TrueValues = TrueValues.subtract(NegOffset->getValue());
864 
865       // If we're interested in the false dest, invert the condition.
866       if (!isTrueDest) TrueValues = TrueValues.inverse();
867 
868       Result = LVILatticeVal::getRange(TrueValues);
869       return true;
870     }
871   }
872 
873   return false;
874 }
875 
876 /// \brief Compute the value of Val on the edge BBFrom -> BBTo. Returns false if
877 /// Val is not constrained on the edge.
getEdgeValueLocal(Value * Val,BasicBlock * BBFrom,BasicBlock * BBTo,LVILatticeVal & Result)878 static bool getEdgeValueLocal(Value *Val, BasicBlock *BBFrom,
879                               BasicBlock *BBTo, LVILatticeVal &Result) {
880   // TODO: Handle more complex conditionals.  If (v == 0 || v2 < 1) is false, we
881   // know that v != 0.
882   if (BranchInst *BI = dyn_cast<BranchInst>(BBFrom->getTerminator())) {
883     // If this is a conditional branch and only one successor goes to BBTo, then
884     // we may be able to infer something from the condition.
885     if (BI->isConditional() &&
886         BI->getSuccessor(0) != BI->getSuccessor(1)) {
887       bool isTrueDest = BI->getSuccessor(0) == BBTo;
888       assert(BI->getSuccessor(!isTrueDest) == BBTo &&
889              "BBTo isn't a successor of BBFrom");
890 
891       // If V is the condition of the branch itself, then we know exactly what
892       // it is.
893       if (BI->getCondition() == Val) {
894         Result = LVILatticeVal::get(ConstantInt::get(
895                               Type::getInt1Ty(Val->getContext()), isTrueDest));
896         return true;
897       }
898 
899       // If the condition of the branch is an equality comparison, we may be
900       // able to infer the value.
901       if (ICmpInst *ICI = dyn_cast<ICmpInst>(BI->getCondition()))
902         if (getValueFromFromCondition(Val, ICI, Result, isTrueDest))
903           return true;
904     }
905   }
906 
907   // If the edge was formed by a switch on the value, then we may know exactly
908   // what it is.
909   if (SwitchInst *SI = dyn_cast<SwitchInst>(BBFrom->getTerminator())) {
910     if (SI->getCondition() != Val)
911       return false;
912 
913     bool DefaultCase = SI->getDefaultDest() == BBTo;
914     unsigned BitWidth = Val->getType()->getIntegerBitWidth();
915     ConstantRange EdgesVals(BitWidth, DefaultCase/*isFullSet*/);
916 
917     for (SwitchInst::CaseIt i : SI->cases()) {
918       ConstantRange EdgeVal(i.getCaseValue()->getValue());
919       if (DefaultCase) {
920         // It is possible that the default destination is the destination of
921         // some cases. There is no need to perform difference for those cases.
922         if (i.getCaseSuccessor() != BBTo)
923           EdgesVals = EdgesVals.difference(EdgeVal);
924       } else if (i.getCaseSuccessor() == BBTo)
925         EdgesVals = EdgesVals.unionWith(EdgeVal);
926     }
927     Result = LVILatticeVal::getRange(EdgesVals);
928     return true;
929   }
930   return false;
931 }
932 
933 /// \brief Compute the value of Val on the edge BBFrom -> BBTo or the value at
934 /// the basic block if the edge does not constrain Val.
getEdgeValue(Value * Val,BasicBlock * BBFrom,BasicBlock * BBTo,LVILatticeVal & Result,Instruction * CxtI)935 bool LazyValueInfoCache::getEdgeValue(Value *Val, BasicBlock *BBFrom,
936                                       BasicBlock *BBTo, LVILatticeVal &Result,
937                                       Instruction *CxtI) {
938   // If already a constant, there is nothing to compute.
939   if (Constant *VC = dyn_cast<Constant>(Val)) {
940     Result = LVILatticeVal::get(VC);
941     return true;
942   }
943 
944   if (getEdgeValueLocal(Val, BBFrom, BBTo, Result)) {
945     if (!Result.isConstantRange() ||
946         Result.getConstantRange().getSingleElement())
947       return true;
948 
949     // FIXME: this check should be moved to the beginning of the function when
950     // LVI better supports recursive values. Even for the single value case, we
951     // can intersect to detect dead code (an empty range).
952     if (!hasBlockValue(Val, BBFrom)) {
953       if (pushBlockValue(std::make_pair(BBFrom, Val)))
954         return false;
955       Result.markOverdefined();
956       return true;
957     }
958 
959     // Try to intersect ranges of the BB and the constraint on the edge.
960     LVILatticeVal InBlock = getBlockValue(Val, BBFrom);
961     mergeAssumeBlockValueConstantRange(Val, InBlock, BBFrom->getTerminator());
962     // See note on the use of the CxtI with mergeAssumeBlockValueConstantRange,
963     // and caching, below.
964     mergeAssumeBlockValueConstantRange(Val, InBlock, CxtI);
965     if (!InBlock.isConstantRange())
966       return true;
967 
968     ConstantRange Range =
969       Result.getConstantRange().intersectWith(InBlock.getConstantRange());
970     Result = LVILatticeVal::getRange(Range);
971     return true;
972   }
973 
974   if (!hasBlockValue(Val, BBFrom)) {
975     if (pushBlockValue(std::make_pair(BBFrom, Val)))
976       return false;
977     Result.markOverdefined();
978     return true;
979   }
980 
981   // If we couldn't compute the value on the edge, use the value from the BB.
982   Result = getBlockValue(Val, BBFrom);
983   mergeAssumeBlockValueConstantRange(Val, Result, BBFrom->getTerminator());
984   // We can use the context instruction (generically the ultimate instruction
985   // the calling pass is trying to simplify) here, even though the result of
986   // this function is generally cached when called from the solve* functions
987   // (and that cached result might be used with queries using a different
988   // context instruction), because when this function is called from the solve*
989   // functions, the context instruction is not provided. When called from
990   // LazyValueInfoCache::getValueOnEdge, the context instruction is provided,
991   // but then the result is not cached.
992   mergeAssumeBlockValueConstantRange(Val, Result, CxtI);
993   return true;
994 }
995 
getValueInBlock(Value * V,BasicBlock * BB,Instruction * CxtI)996 LVILatticeVal LazyValueInfoCache::getValueInBlock(Value *V, BasicBlock *BB,
997                                                   Instruction *CxtI) {
998   DEBUG(dbgs() << "LVI Getting block end value " << *V << " at '"
999         << BB->getName() << "'\n");
1000 
1001   assert(BlockValueStack.empty() && BlockValueSet.empty());
1002   pushBlockValue(std::make_pair(BB, V));
1003 
1004   solve();
1005   LVILatticeVal Result = getBlockValue(V, BB);
1006   mergeAssumeBlockValueConstantRange(V, Result, CxtI);
1007 
1008   DEBUG(dbgs() << "  Result = " << Result << "\n");
1009   return Result;
1010 }
1011 
getValueAt(Value * V,Instruction * CxtI)1012 LVILatticeVal LazyValueInfoCache::getValueAt(Value *V, Instruction *CxtI) {
1013   DEBUG(dbgs() << "LVI Getting value " << *V << " at '"
1014         << CxtI->getName() << "'\n");
1015 
1016   LVILatticeVal Result;
1017   mergeAssumeBlockValueConstantRange(V, Result, CxtI);
1018 
1019   DEBUG(dbgs() << "  Result = " << Result << "\n");
1020   return Result;
1021 }
1022 
1023 LVILatticeVal LazyValueInfoCache::
getValueOnEdge(Value * V,BasicBlock * FromBB,BasicBlock * ToBB,Instruction * CxtI)1024 getValueOnEdge(Value *V, BasicBlock *FromBB, BasicBlock *ToBB,
1025                Instruction *CxtI) {
1026   DEBUG(dbgs() << "LVI Getting edge value " << *V << " from '"
1027         << FromBB->getName() << "' to '" << ToBB->getName() << "'\n");
1028 
1029   LVILatticeVal Result;
1030   if (!getEdgeValue(V, FromBB, ToBB, Result, CxtI)) {
1031     solve();
1032     bool WasFastQuery = getEdgeValue(V, FromBB, ToBB, Result, CxtI);
1033     (void)WasFastQuery;
1034     assert(WasFastQuery && "More work to do after problem solved?");
1035   }
1036 
1037   DEBUG(dbgs() << "  Result = " << Result << "\n");
1038   return Result;
1039 }
1040 
threadEdge(BasicBlock * PredBB,BasicBlock * OldSucc,BasicBlock * NewSucc)1041 void LazyValueInfoCache::threadEdge(BasicBlock *PredBB, BasicBlock *OldSucc,
1042                                     BasicBlock *NewSucc) {
1043   // When an edge in the graph has been threaded, values that we could not
1044   // determine a value for before (i.e. were marked overdefined) may be possible
1045   // to solve now.  We do NOT try to proactively update these values.  Instead,
1046   // we clear their entries from the cache, and allow lazy updating to recompute
1047   // them when needed.
1048 
1049   // The updating process is fairly simple: we need to drop cached info
1050   // for all values that were marked overdefined in OldSucc, and for those same
1051   // values in any successor of OldSucc (except NewSucc) in which they were
1052   // also marked overdefined.
1053   std::vector<BasicBlock*> worklist;
1054   worklist.push_back(OldSucc);
1055 
1056   DenseSet<Value*> ClearSet;
1057   for (OverDefinedPairTy &P : OverDefinedCache)
1058     if (P.first == OldSucc)
1059       ClearSet.insert(P.second);
1060 
1061   // Use a worklist to perform a depth-first search of OldSucc's successors.
1062   // NOTE: We do not need a visited list since any blocks we have already
1063   // visited will have had their overdefined markers cleared already, and we
1064   // thus won't loop to their successors.
1065   while (!worklist.empty()) {
1066     BasicBlock *ToUpdate = worklist.back();
1067     worklist.pop_back();
1068 
1069     // Skip blocks only accessible through NewSucc.
1070     if (ToUpdate == NewSucc) continue;
1071 
1072     bool changed = false;
1073     for (Value *V : ClearSet) {
1074       // If a value was marked overdefined in OldSucc, and is here too...
1075       DenseSet<OverDefinedPairTy>::iterator OI =
1076         OverDefinedCache.find(std::make_pair(ToUpdate, V));
1077       if (OI == OverDefinedCache.end()) continue;
1078 
1079       // Remove it from the caches.
1080       ValueCacheEntryTy &Entry = ValueCache[LVIValueHandle(V, this)];
1081       ValueCacheEntryTy::iterator CI = Entry.find(ToUpdate);
1082 
1083       assert(CI != Entry.end() && "Couldn't find entry to update?");
1084       Entry.erase(CI);
1085       OverDefinedCache.erase(OI);
1086 
1087       // If we removed anything, then we potentially need to update
1088       // blocks successors too.
1089       changed = true;
1090     }
1091 
1092     if (!changed) continue;
1093 
1094     worklist.insert(worklist.end(), succ_begin(ToUpdate), succ_end(ToUpdate));
1095   }
1096 }
1097 
1098 //===----------------------------------------------------------------------===//
1099 //                            LazyValueInfo Impl
1100 //===----------------------------------------------------------------------===//
1101 
1102 /// This lazily constructs the LazyValueInfoCache.
getCache(void * & PImpl,AssumptionCache * AC,const DataLayout * DL,DominatorTree * DT=nullptr)1103 static LazyValueInfoCache &getCache(void *&PImpl, AssumptionCache *AC,
1104                                     const DataLayout *DL,
1105                                     DominatorTree *DT = nullptr) {
1106   if (!PImpl) {
1107     assert(DL && "getCache() called with a null DataLayout");
1108     PImpl = new LazyValueInfoCache(AC, *DL, DT);
1109   }
1110   return *static_cast<LazyValueInfoCache*>(PImpl);
1111 }
1112 
runOnFunction(Function & F)1113 bool LazyValueInfo::runOnFunction(Function &F) {
1114   AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
1115   const DataLayout &DL = F.getParent()->getDataLayout();
1116 
1117   DominatorTreeWrapperPass *DTWP =
1118       getAnalysisIfAvailable<DominatorTreeWrapperPass>();
1119   DT = DTWP ? &DTWP->getDomTree() : nullptr;
1120 
1121   TLI = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI();
1122 
1123   if (PImpl)
1124     getCache(PImpl, AC, &DL, DT).clear();
1125 
1126   // Fully lazy.
1127   return false;
1128 }
1129 
getAnalysisUsage(AnalysisUsage & AU) const1130 void LazyValueInfo::getAnalysisUsage(AnalysisUsage &AU) const {
1131   AU.setPreservesAll();
1132   AU.addRequired<AssumptionCacheTracker>();
1133   AU.addRequired<TargetLibraryInfoWrapperPass>();
1134 }
1135 
releaseMemory()1136 void LazyValueInfo::releaseMemory() {
1137   // If the cache was allocated, free it.
1138   if (PImpl) {
1139     delete &getCache(PImpl, AC, nullptr);
1140     PImpl = nullptr;
1141   }
1142 }
1143 
getConstant(Value * V,BasicBlock * BB,Instruction * CxtI)1144 Constant *LazyValueInfo::getConstant(Value *V, BasicBlock *BB,
1145                                      Instruction *CxtI) {
1146   const DataLayout &DL = BB->getModule()->getDataLayout();
1147   LVILatticeVal Result =
1148       getCache(PImpl, AC, &DL, DT).getValueInBlock(V, BB, CxtI);
1149 
1150   if (Result.isConstant())
1151     return Result.getConstant();
1152   if (Result.isConstantRange()) {
1153     ConstantRange CR = Result.getConstantRange();
1154     if (const APInt *SingleVal = CR.getSingleElement())
1155       return ConstantInt::get(V->getContext(), *SingleVal);
1156   }
1157   return nullptr;
1158 }
1159 
1160 /// Determine whether the specified value is known to be a
1161 /// constant on the specified edge.  Return null if not.
getConstantOnEdge(Value * V,BasicBlock * FromBB,BasicBlock * ToBB,Instruction * CxtI)1162 Constant *LazyValueInfo::getConstantOnEdge(Value *V, BasicBlock *FromBB,
1163                                            BasicBlock *ToBB,
1164                                            Instruction *CxtI) {
1165   const DataLayout &DL = FromBB->getModule()->getDataLayout();
1166   LVILatticeVal Result =
1167       getCache(PImpl, AC, &DL, DT).getValueOnEdge(V, FromBB, ToBB, CxtI);
1168 
1169   if (Result.isConstant())
1170     return Result.getConstant();
1171   if (Result.isConstantRange()) {
1172     ConstantRange CR = Result.getConstantRange();
1173     if (const APInt *SingleVal = CR.getSingleElement())
1174       return ConstantInt::get(V->getContext(), *SingleVal);
1175   }
1176   return nullptr;
1177 }
1178 
getPredicateResult(unsigned Pred,Constant * C,LVILatticeVal & Result,const DataLayout & DL,TargetLibraryInfo * TLI)1179 static LazyValueInfo::Tristate getPredicateResult(unsigned Pred, Constant *C,
1180                                                   LVILatticeVal &Result,
1181                                                   const DataLayout &DL,
1182                                                   TargetLibraryInfo *TLI) {
1183 
1184   // If we know the value is a constant, evaluate the conditional.
1185   Constant *Res = nullptr;
1186   if (Result.isConstant()) {
1187     Res = ConstantFoldCompareInstOperands(Pred, Result.getConstant(), C, DL,
1188                                           TLI);
1189     if (ConstantInt *ResCI = dyn_cast<ConstantInt>(Res))
1190       return ResCI->isZero() ? LazyValueInfo::False : LazyValueInfo::True;
1191     return LazyValueInfo::Unknown;
1192   }
1193 
1194   if (Result.isConstantRange()) {
1195     ConstantInt *CI = dyn_cast<ConstantInt>(C);
1196     if (!CI) return LazyValueInfo::Unknown;
1197 
1198     ConstantRange CR = Result.getConstantRange();
1199     if (Pred == ICmpInst::ICMP_EQ) {
1200       if (!CR.contains(CI->getValue()))
1201         return LazyValueInfo::False;
1202 
1203       if (CR.isSingleElement() && CR.contains(CI->getValue()))
1204         return LazyValueInfo::True;
1205     } else if (Pred == ICmpInst::ICMP_NE) {
1206       if (!CR.contains(CI->getValue()))
1207         return LazyValueInfo::True;
1208 
1209       if (CR.isSingleElement() && CR.contains(CI->getValue()))
1210         return LazyValueInfo::False;
1211     }
1212 
1213     // Handle more complex predicates.
1214     ConstantRange TrueValues =
1215         ICmpInst::makeConstantRange((ICmpInst::Predicate)Pred, CI->getValue());
1216     if (TrueValues.contains(CR))
1217       return LazyValueInfo::True;
1218     if (TrueValues.inverse().contains(CR))
1219       return LazyValueInfo::False;
1220     return LazyValueInfo::Unknown;
1221   }
1222 
1223   if (Result.isNotConstant()) {
1224     // If this is an equality comparison, we can try to fold it knowing that
1225     // "V != C1".
1226     if (Pred == ICmpInst::ICMP_EQ) {
1227       // !C1 == C -> false iff C1 == C.
1228       Res = ConstantFoldCompareInstOperands(ICmpInst::ICMP_NE,
1229                                             Result.getNotConstant(), C, DL,
1230                                             TLI);
1231       if (Res->isNullValue())
1232         return LazyValueInfo::False;
1233     } else if (Pred == ICmpInst::ICMP_NE) {
1234       // !C1 != C -> true iff C1 == C.
1235       Res = ConstantFoldCompareInstOperands(ICmpInst::ICMP_NE,
1236                                             Result.getNotConstant(), C, DL,
1237                                             TLI);
1238       if (Res->isNullValue())
1239         return LazyValueInfo::True;
1240     }
1241     return LazyValueInfo::Unknown;
1242   }
1243 
1244   return LazyValueInfo::Unknown;
1245 }
1246 
1247 /// Determine whether the specified value comparison with a constant is known to
1248 /// be true or false on the specified CFG edge. Pred is a CmpInst predicate.
1249 LazyValueInfo::Tristate
getPredicateOnEdge(unsigned Pred,Value * V,Constant * C,BasicBlock * FromBB,BasicBlock * ToBB,Instruction * CxtI)1250 LazyValueInfo::getPredicateOnEdge(unsigned Pred, Value *V, Constant *C,
1251                                   BasicBlock *FromBB, BasicBlock *ToBB,
1252                                   Instruction *CxtI) {
1253   const DataLayout &DL = FromBB->getModule()->getDataLayout();
1254   LVILatticeVal Result =
1255       getCache(PImpl, AC, &DL, DT).getValueOnEdge(V, FromBB, ToBB, CxtI);
1256 
1257   return getPredicateResult(Pred, C, Result, DL, TLI);
1258 }
1259 
1260 LazyValueInfo::Tristate
getPredicateAt(unsigned Pred,Value * V,Constant * C,Instruction * CxtI)1261 LazyValueInfo::getPredicateAt(unsigned Pred, Value *V, Constant *C,
1262                               Instruction *CxtI) {
1263   const DataLayout &DL = CxtI->getModule()->getDataLayout();
1264   LVILatticeVal Result = getCache(PImpl, AC, &DL, DT).getValueAt(V, CxtI);
1265 
1266   return getPredicateResult(Pred, C, Result, DL, TLI);
1267 }
1268 
threadEdge(BasicBlock * PredBB,BasicBlock * OldSucc,BasicBlock * NewSucc)1269 void LazyValueInfo::threadEdge(BasicBlock *PredBB, BasicBlock *OldSucc,
1270                                BasicBlock *NewSucc) {
1271   if (PImpl) {
1272     const DataLayout &DL = PredBB->getModule()->getDataLayout();
1273     getCache(PImpl, AC, &DL, DT).threadEdge(PredBB, OldSucc, NewSucc);
1274   }
1275 }
1276 
eraseBlock(BasicBlock * BB)1277 void LazyValueInfo::eraseBlock(BasicBlock *BB) {
1278   if (PImpl) {
1279     const DataLayout &DL = BB->getModule()->getDataLayout();
1280     getCache(PImpl, AC, &DL, DT).eraseBlock(BB);
1281   }
1282 }
1283