1 //===- LazyValueInfo.cpp - Value constraint analysis ------------*- C++ -*-===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines the interface for lazy computation of value constraint
11 // information.
12 //
13 //===----------------------------------------------------------------------===//
14
15 #include "llvm/Analysis/LazyValueInfo.h"
16 #include "llvm/ADT/DenseSet.h"
17 #include "llvm/ADT/STLExtras.h"
18 #include "llvm/Analysis/AssumptionCache.h"
19 #include "llvm/Analysis/ConstantFolding.h"
20 #include "llvm/Analysis/TargetLibraryInfo.h"
21 #include "llvm/Analysis/ValueTracking.h"
22 #include "llvm/IR/CFG.h"
23 #include "llvm/IR/ConstantRange.h"
24 #include "llvm/IR/Constants.h"
25 #include "llvm/IR/DataLayout.h"
26 #include "llvm/IR/Dominators.h"
27 #include "llvm/IR/Instructions.h"
28 #include "llvm/IR/IntrinsicInst.h"
29 #include "llvm/IR/PatternMatch.h"
30 #include "llvm/IR/ValueHandle.h"
31 #include "llvm/Support/Debug.h"
32 #include "llvm/Support/raw_ostream.h"
33 #include <map>
34 #include <stack>
35 using namespace llvm;
36 using namespace PatternMatch;
37
38 #define DEBUG_TYPE "lazy-value-info"
39
40 char LazyValueInfo::ID = 0;
41 INITIALIZE_PASS_BEGIN(LazyValueInfo, "lazy-value-info",
42 "Lazy Value Information Analysis", false, true)
43 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
44 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
45 INITIALIZE_PASS_END(LazyValueInfo, "lazy-value-info",
46 "Lazy Value Information Analysis", false, true)
47
48 namespace llvm {
createLazyValueInfoPass()49 FunctionPass *createLazyValueInfoPass() { return new LazyValueInfo(); }
50 }
51
52
53 //===----------------------------------------------------------------------===//
54 // LVILatticeVal
55 //===----------------------------------------------------------------------===//
56
57 /// This is the information tracked by LazyValueInfo for each value.
58 ///
59 /// FIXME: This is basically just for bringup, this can be made a lot more rich
60 /// in the future.
61 ///
62 namespace {
63 class LVILatticeVal {
64 enum LatticeValueTy {
65 /// This Value has no known value yet.
66 undefined,
67
68 /// This Value has a specific constant value.
69 constant,
70
71 /// This Value is known to not have the specified value.
72 notconstant,
73
74 /// The Value falls within this range.
75 constantrange,
76
77 /// This value is not known to be constant, and we know that it has a value.
78 overdefined
79 };
80
81 /// Val: This stores the current lattice value along with the Constant* for
82 /// the constant if this is a 'constant' or 'notconstant' value.
83 LatticeValueTy Tag;
84 Constant *Val;
85 ConstantRange Range;
86
87 public:
LVILatticeVal()88 LVILatticeVal() : Tag(undefined), Val(nullptr), Range(1, true) {}
89
get(Constant * C)90 static LVILatticeVal get(Constant *C) {
91 LVILatticeVal Res;
92 if (!isa<UndefValue>(C))
93 Res.markConstant(C);
94 return Res;
95 }
getNot(Constant * C)96 static LVILatticeVal getNot(Constant *C) {
97 LVILatticeVal Res;
98 if (!isa<UndefValue>(C))
99 Res.markNotConstant(C);
100 return Res;
101 }
getRange(ConstantRange CR)102 static LVILatticeVal getRange(ConstantRange CR) {
103 LVILatticeVal Res;
104 Res.markConstantRange(CR);
105 return Res;
106 }
107
isUndefined() const108 bool isUndefined() const { return Tag == undefined; }
isConstant() const109 bool isConstant() const { return Tag == constant; }
isNotConstant() const110 bool isNotConstant() const { return Tag == notconstant; }
isConstantRange() const111 bool isConstantRange() const { return Tag == constantrange; }
isOverdefined() const112 bool isOverdefined() const { return Tag == overdefined; }
113
getConstant() const114 Constant *getConstant() const {
115 assert(isConstant() && "Cannot get the constant of a non-constant!");
116 return Val;
117 }
118
getNotConstant() const119 Constant *getNotConstant() const {
120 assert(isNotConstant() && "Cannot get the constant of a non-notconstant!");
121 return Val;
122 }
123
getConstantRange() const124 ConstantRange getConstantRange() const {
125 assert(isConstantRange() &&
126 "Cannot get the constant-range of a non-constant-range!");
127 return Range;
128 }
129
130 /// Return true if this is a change in status.
markOverdefined()131 bool markOverdefined() {
132 if (isOverdefined())
133 return false;
134 Tag = overdefined;
135 return true;
136 }
137
138 /// Return true if this is a change in status.
markConstant(Constant * V)139 bool markConstant(Constant *V) {
140 assert(V && "Marking constant with NULL");
141 if (ConstantInt *CI = dyn_cast<ConstantInt>(V))
142 return markConstantRange(ConstantRange(CI->getValue()));
143 if (isa<UndefValue>(V))
144 return false;
145
146 assert((!isConstant() || getConstant() == V) &&
147 "Marking constant with different value");
148 assert(isUndefined());
149 Tag = constant;
150 Val = V;
151 return true;
152 }
153
154 /// Return true if this is a change in status.
markNotConstant(Constant * V)155 bool markNotConstant(Constant *V) {
156 assert(V && "Marking constant with NULL");
157 if (ConstantInt *CI = dyn_cast<ConstantInt>(V))
158 return markConstantRange(ConstantRange(CI->getValue()+1, CI->getValue()));
159 if (isa<UndefValue>(V))
160 return false;
161
162 assert((!isConstant() || getConstant() != V) &&
163 "Marking constant !constant with same value");
164 assert((!isNotConstant() || getNotConstant() == V) &&
165 "Marking !constant with different value");
166 assert(isUndefined() || isConstant());
167 Tag = notconstant;
168 Val = V;
169 return true;
170 }
171
172 /// Return true if this is a change in status.
markConstantRange(const ConstantRange NewR)173 bool markConstantRange(const ConstantRange NewR) {
174 if (isConstantRange()) {
175 if (NewR.isEmptySet())
176 return markOverdefined();
177
178 bool changed = Range != NewR;
179 Range = NewR;
180 return changed;
181 }
182
183 assert(isUndefined());
184 if (NewR.isEmptySet())
185 return markOverdefined();
186
187 Tag = constantrange;
188 Range = NewR;
189 return true;
190 }
191
192 /// Merge the specified lattice value into this one, updating this
193 /// one and returning true if anything changed.
mergeIn(const LVILatticeVal & RHS,const DataLayout & DL)194 bool mergeIn(const LVILatticeVal &RHS, const DataLayout &DL) {
195 if (RHS.isUndefined() || isOverdefined()) return false;
196 if (RHS.isOverdefined()) return markOverdefined();
197
198 if (isUndefined()) {
199 Tag = RHS.Tag;
200 Val = RHS.Val;
201 Range = RHS.Range;
202 return true;
203 }
204
205 if (isConstant()) {
206 if (RHS.isConstant()) {
207 if (Val == RHS.Val)
208 return false;
209 return markOverdefined();
210 }
211
212 if (RHS.isNotConstant()) {
213 if (Val == RHS.Val)
214 return markOverdefined();
215
216 // Unless we can prove that the two Constants are different, we must
217 // move to overdefined.
218 if (ConstantInt *Res =
219 dyn_cast<ConstantInt>(ConstantFoldCompareInstOperands(
220 CmpInst::ICMP_NE, getConstant(), RHS.getNotConstant(), DL)))
221 if (Res->isOne())
222 return markNotConstant(RHS.getNotConstant());
223
224 return markOverdefined();
225 }
226
227 // RHS is a ConstantRange, LHS is a non-integer Constant.
228
229 // FIXME: consider the case where RHS is a range [1, 0) and LHS is
230 // a function. The correct result is to pick up RHS.
231
232 return markOverdefined();
233 }
234
235 if (isNotConstant()) {
236 if (RHS.isConstant()) {
237 if (Val == RHS.Val)
238 return markOverdefined();
239
240 // Unless we can prove that the two Constants are different, we must
241 // move to overdefined.
242 if (ConstantInt *Res =
243 dyn_cast<ConstantInt>(ConstantFoldCompareInstOperands(
244 CmpInst::ICMP_NE, getNotConstant(), RHS.getConstant(), DL)))
245 if (Res->isOne())
246 return false;
247
248 return markOverdefined();
249 }
250
251 if (RHS.isNotConstant()) {
252 if (Val == RHS.Val)
253 return false;
254 return markOverdefined();
255 }
256
257 return markOverdefined();
258 }
259
260 assert(isConstantRange() && "New LVILattice type?");
261 if (!RHS.isConstantRange())
262 return markOverdefined();
263
264 ConstantRange NewR = Range.unionWith(RHS.getConstantRange());
265 if (NewR.isFullSet())
266 return markOverdefined();
267 return markConstantRange(NewR);
268 }
269 };
270
271 } // end anonymous namespace.
272
273 namespace llvm {
274 raw_ostream &operator<<(raw_ostream &OS, const LVILatticeVal &Val)
275 LLVM_ATTRIBUTE_USED;
operator <<(raw_ostream & OS,const LVILatticeVal & Val)276 raw_ostream &operator<<(raw_ostream &OS, const LVILatticeVal &Val) {
277 if (Val.isUndefined())
278 return OS << "undefined";
279 if (Val.isOverdefined())
280 return OS << "overdefined";
281
282 if (Val.isNotConstant())
283 return OS << "notconstant<" << *Val.getNotConstant() << '>';
284 else if (Val.isConstantRange())
285 return OS << "constantrange<" << Val.getConstantRange().getLower() << ", "
286 << Val.getConstantRange().getUpper() << '>';
287 return OS << "constant<" << *Val.getConstant() << '>';
288 }
289 }
290
291 //===----------------------------------------------------------------------===//
292 // LazyValueInfoCache Decl
293 //===----------------------------------------------------------------------===//
294
295 namespace {
296 /// A callback value handle updates the cache when values are erased.
297 class LazyValueInfoCache;
298 struct LVIValueHandle : public CallbackVH {
299 LazyValueInfoCache *Parent;
300
LVIValueHandle__anon33ceafee0211::LVIValueHandle301 LVIValueHandle(Value *V, LazyValueInfoCache *P)
302 : CallbackVH(V), Parent(P) { }
303
304 void deleted() override;
allUsesReplacedWith__anon33ceafee0211::LVIValueHandle305 void allUsesReplacedWith(Value *V) override {
306 deleted();
307 }
308 };
309 }
310
311 namespace {
312 /// This is the cache kept by LazyValueInfo which
313 /// maintains information about queries across the clients' queries.
314 class LazyValueInfoCache {
315 /// This is all of the cached block information for exactly one Value*.
316 /// The entries are sorted by the BasicBlock* of the
317 /// entries, allowing us to do a lookup with a binary search.
318 typedef std::map<AssertingVH<BasicBlock>, LVILatticeVal> ValueCacheEntryTy;
319
320 /// This is all of the cached information for all values,
321 /// mapped from Value* to key information.
322 std::map<LVIValueHandle, ValueCacheEntryTy> ValueCache;
323
324 /// This tracks, on a per-block basis, the set of values that are
325 /// over-defined at the end of that block. This is required
326 /// for cache updating.
327 typedef std::pair<AssertingVH<BasicBlock>, Value*> OverDefinedPairTy;
328 DenseSet<OverDefinedPairTy> OverDefinedCache;
329
330 /// Keep track of all blocks that we have ever seen, so we
331 /// don't spend time removing unused blocks from our caches.
332 DenseSet<AssertingVH<BasicBlock> > SeenBlocks;
333
334 /// This stack holds the state of the value solver during a query.
335 /// It basically emulates the callstack of the naive
336 /// recursive value lookup process.
337 std::stack<std::pair<BasicBlock*, Value*> > BlockValueStack;
338
339 /// Keeps track of which block-value pairs are in BlockValueStack.
340 DenseSet<std::pair<BasicBlock*, Value*> > BlockValueSet;
341
342 /// Push BV onto BlockValueStack unless it's already in there.
343 /// Returns true on success.
pushBlockValue(const std::pair<BasicBlock *,Value * > & BV)344 bool pushBlockValue(const std::pair<BasicBlock *, Value *> &BV) {
345 if (!BlockValueSet.insert(BV).second)
346 return false; // It's already in the stack.
347
348 BlockValueStack.push(BV);
349 return true;
350 }
351
352 AssumptionCache *AC; ///< A pointer to the cache of @llvm.assume calls.
353 const DataLayout &DL; ///< A mandatory DataLayout
354 DominatorTree *DT; ///< An optional DT pointer.
355
356 friend struct LVIValueHandle;
357
insertResult(Value * Val,BasicBlock * BB,const LVILatticeVal & Result)358 void insertResult(Value *Val, BasicBlock *BB, const LVILatticeVal &Result) {
359 SeenBlocks.insert(BB);
360 lookup(Val)[BB] = Result;
361 if (Result.isOverdefined())
362 OverDefinedCache.insert(std::make_pair(BB, Val));
363 }
364
365 LVILatticeVal getBlockValue(Value *Val, BasicBlock *BB);
366 bool getEdgeValue(Value *V, BasicBlock *F, BasicBlock *T,
367 LVILatticeVal &Result,
368 Instruction *CxtI = nullptr);
369 bool hasBlockValue(Value *Val, BasicBlock *BB);
370
371 // These methods process one work item and may add more. A false value
372 // returned means that the work item was not completely processed and must
373 // be revisited after going through the new items.
374 bool solveBlockValue(Value *Val, BasicBlock *BB);
375 bool solveBlockValueNonLocal(LVILatticeVal &BBLV,
376 Value *Val, BasicBlock *BB);
377 bool solveBlockValuePHINode(LVILatticeVal &BBLV,
378 PHINode *PN, BasicBlock *BB);
379 bool solveBlockValueConstantRange(LVILatticeVal &BBLV,
380 Instruction *BBI, BasicBlock *BB);
381 void mergeAssumeBlockValueConstantRange(Value *Val, LVILatticeVal &BBLV,
382 Instruction *BBI);
383
384 void solve();
385
lookup(Value * V)386 ValueCacheEntryTy &lookup(Value *V) {
387 return ValueCache[LVIValueHandle(V, this)];
388 }
389
390 public:
391 /// This is the query interface to determine the lattice
392 /// value for the specified Value* at the end of the specified block.
393 LVILatticeVal getValueInBlock(Value *V, BasicBlock *BB,
394 Instruction *CxtI = nullptr);
395
396 /// This is the query interface to determine the lattice
397 /// value for the specified Value* at the specified instruction (generally
398 /// from an assume intrinsic).
399 LVILatticeVal getValueAt(Value *V, Instruction *CxtI);
400
401 /// This is the query interface to determine the lattice
402 /// value for the specified Value* that is true on the specified edge.
403 LVILatticeVal getValueOnEdge(Value *V, BasicBlock *FromBB,BasicBlock *ToBB,
404 Instruction *CxtI = nullptr);
405
406 /// This is the update interface to inform the cache that an edge from
407 /// PredBB to OldSucc has been threaded to be from PredBB to NewSucc.
408 void threadEdge(BasicBlock *PredBB,BasicBlock *OldSucc,BasicBlock *NewSucc);
409
410 /// This is part of the update interface to inform the cache
411 /// that a block has been deleted.
412 void eraseBlock(BasicBlock *BB);
413
414 /// clear - Empty the cache.
clear()415 void clear() {
416 SeenBlocks.clear();
417 ValueCache.clear();
418 OverDefinedCache.clear();
419 }
420
LazyValueInfoCache(AssumptionCache * AC,const DataLayout & DL,DominatorTree * DT=nullptr)421 LazyValueInfoCache(AssumptionCache *AC, const DataLayout &DL,
422 DominatorTree *DT = nullptr)
423 : AC(AC), DL(DL), DT(DT) {}
424 };
425 } // end anonymous namespace
426
deleted()427 void LVIValueHandle::deleted() {
428 typedef std::pair<AssertingVH<BasicBlock>, Value*> OverDefinedPairTy;
429
430 SmallVector<OverDefinedPairTy, 4> ToErase;
431 for (const OverDefinedPairTy &P : Parent->OverDefinedCache)
432 if (P.second == getValPtr())
433 ToErase.push_back(P);
434 for (const OverDefinedPairTy &P : ToErase)
435 Parent->OverDefinedCache.erase(P);
436
437 // This erasure deallocates *this, so it MUST happen after we're done
438 // using any and all members of *this.
439 Parent->ValueCache.erase(*this);
440 }
441
eraseBlock(BasicBlock * BB)442 void LazyValueInfoCache::eraseBlock(BasicBlock *BB) {
443 // Shortcut if we have never seen this block.
444 DenseSet<AssertingVH<BasicBlock> >::iterator I = SeenBlocks.find(BB);
445 if (I == SeenBlocks.end())
446 return;
447 SeenBlocks.erase(I);
448
449 SmallVector<OverDefinedPairTy, 4> ToErase;
450 for (const OverDefinedPairTy& P : OverDefinedCache)
451 if (P.first == BB)
452 ToErase.push_back(P);
453 for (const OverDefinedPairTy &P : ToErase)
454 OverDefinedCache.erase(P);
455
456 for (std::map<LVIValueHandle, ValueCacheEntryTy>::iterator
457 I = ValueCache.begin(), E = ValueCache.end(); I != E; ++I)
458 I->second.erase(BB);
459 }
460
solve()461 void LazyValueInfoCache::solve() {
462 while (!BlockValueStack.empty()) {
463 std::pair<BasicBlock*, Value*> &e = BlockValueStack.top();
464 assert(BlockValueSet.count(e) && "Stack value should be in BlockValueSet!");
465
466 if (solveBlockValue(e.second, e.first)) {
467 // The work item was completely processed.
468 assert(BlockValueStack.top() == e && "Nothing should have been pushed!");
469 assert(lookup(e.second).count(e.first) && "Result should be in cache!");
470
471 BlockValueStack.pop();
472 BlockValueSet.erase(e);
473 } else {
474 // More work needs to be done before revisiting.
475 assert(BlockValueStack.top() != e && "Stack should have been pushed!");
476 }
477 }
478 }
479
hasBlockValue(Value * Val,BasicBlock * BB)480 bool LazyValueInfoCache::hasBlockValue(Value *Val, BasicBlock *BB) {
481 // If already a constant, there is nothing to compute.
482 if (isa<Constant>(Val))
483 return true;
484
485 LVIValueHandle ValHandle(Val, this);
486 std::map<LVIValueHandle, ValueCacheEntryTy>::iterator I =
487 ValueCache.find(ValHandle);
488 if (I == ValueCache.end()) return false;
489 return I->second.count(BB);
490 }
491
getBlockValue(Value * Val,BasicBlock * BB)492 LVILatticeVal LazyValueInfoCache::getBlockValue(Value *Val, BasicBlock *BB) {
493 // If already a constant, there is nothing to compute.
494 if (Constant *VC = dyn_cast<Constant>(Val))
495 return LVILatticeVal::get(VC);
496
497 SeenBlocks.insert(BB);
498 return lookup(Val)[BB];
499 }
500
solveBlockValue(Value * Val,BasicBlock * BB)501 bool LazyValueInfoCache::solveBlockValue(Value *Val, BasicBlock *BB) {
502 if (isa<Constant>(Val))
503 return true;
504
505 if (lookup(Val).count(BB)) {
506 // If we have a cached value, use that.
507 DEBUG(dbgs() << " reuse BB '" << BB->getName()
508 << "' val=" << lookup(Val)[BB] << '\n');
509
510 // Since we're reusing a cached value, we don't need to update the
511 // OverDefinedCache. The cache will have been properly updated whenever the
512 // cached value was inserted.
513 return true;
514 }
515
516 // Hold off inserting this value into the Cache in case we have to return
517 // false and come back later.
518 LVILatticeVal Res;
519
520 Instruction *BBI = dyn_cast<Instruction>(Val);
521 if (!BBI || BBI->getParent() != BB) {
522 if (!solveBlockValueNonLocal(Res, Val, BB))
523 return false;
524 insertResult(Val, BB, Res);
525 return true;
526 }
527
528 if (PHINode *PN = dyn_cast<PHINode>(BBI)) {
529 if (!solveBlockValuePHINode(Res, PN, BB))
530 return false;
531 insertResult(Val, BB, Res);
532 return true;
533 }
534
535 if (AllocaInst *AI = dyn_cast<AllocaInst>(BBI)) {
536 Res = LVILatticeVal::getNot(ConstantPointerNull::get(AI->getType()));
537 insertResult(Val, BB, Res);
538 return true;
539 }
540
541 // We can only analyze the definitions of certain classes of instructions
542 // (integral binops and casts at the moment), so bail if this isn't one.
543 LVILatticeVal Result;
544 if ((!isa<BinaryOperator>(BBI) && !isa<CastInst>(BBI)) ||
545 !BBI->getType()->isIntegerTy()) {
546 DEBUG(dbgs() << " compute BB '" << BB->getName()
547 << "' - overdefined because inst def found.\n");
548 Res.markOverdefined();
549 insertResult(Val, BB, Res);
550 return true;
551 }
552
553 // FIXME: We're currently limited to binops with a constant RHS. This should
554 // be improved.
555 BinaryOperator *BO = dyn_cast<BinaryOperator>(BBI);
556 if (BO && !isa<ConstantInt>(BO->getOperand(1))) {
557 DEBUG(dbgs() << " compute BB '" << BB->getName()
558 << "' - overdefined because inst def found.\n");
559
560 Res.markOverdefined();
561 insertResult(Val, BB, Res);
562 return true;
563 }
564
565 if (!solveBlockValueConstantRange(Res, BBI, BB))
566 return false;
567 insertResult(Val, BB, Res);
568 return true;
569 }
570
InstructionDereferencesPointer(Instruction * I,Value * Ptr)571 static bool InstructionDereferencesPointer(Instruction *I, Value *Ptr) {
572 if (LoadInst *L = dyn_cast<LoadInst>(I)) {
573 return L->getPointerAddressSpace() == 0 &&
574 GetUnderlyingObject(L->getPointerOperand(),
575 L->getModule()->getDataLayout()) == Ptr;
576 }
577 if (StoreInst *S = dyn_cast<StoreInst>(I)) {
578 return S->getPointerAddressSpace() == 0 &&
579 GetUnderlyingObject(S->getPointerOperand(),
580 S->getModule()->getDataLayout()) == Ptr;
581 }
582 if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(I)) {
583 if (MI->isVolatile()) return false;
584
585 // FIXME: check whether it has a valuerange that excludes zero?
586 ConstantInt *Len = dyn_cast<ConstantInt>(MI->getLength());
587 if (!Len || Len->isZero()) return false;
588
589 if (MI->getDestAddressSpace() == 0)
590 if (GetUnderlyingObject(MI->getRawDest(),
591 MI->getModule()->getDataLayout()) == Ptr)
592 return true;
593 if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(MI))
594 if (MTI->getSourceAddressSpace() == 0)
595 if (GetUnderlyingObject(MTI->getRawSource(),
596 MTI->getModule()->getDataLayout()) == Ptr)
597 return true;
598 }
599 return false;
600 }
601
solveBlockValueNonLocal(LVILatticeVal & BBLV,Value * Val,BasicBlock * BB)602 bool LazyValueInfoCache::solveBlockValueNonLocal(LVILatticeVal &BBLV,
603 Value *Val, BasicBlock *BB) {
604 LVILatticeVal Result; // Start Undefined.
605
606 // If this is a pointer, and there's a load from that pointer in this BB,
607 // then we know that the pointer can't be NULL.
608 bool NotNull = false;
609 if (Val->getType()->isPointerTy()) {
610 if (isKnownNonNull(Val)) {
611 NotNull = true;
612 } else {
613 const DataLayout &DL = BB->getModule()->getDataLayout();
614 Value *UnderlyingVal = GetUnderlyingObject(Val, DL);
615 // If 'GetUnderlyingObject' didn't converge, skip it. It won't converge
616 // inside InstructionDereferencesPointer either.
617 if (UnderlyingVal == GetUnderlyingObject(UnderlyingVal, DL, 1)) {
618 for (Instruction &I : *BB) {
619 if (InstructionDereferencesPointer(&I, UnderlyingVal)) {
620 NotNull = true;
621 break;
622 }
623 }
624 }
625 }
626 }
627
628 // If this is the entry block, we must be asking about an argument. The
629 // value is overdefined.
630 if (BB == &BB->getParent()->getEntryBlock()) {
631 assert(isa<Argument>(Val) && "Unknown live-in to the entry block");
632 if (NotNull) {
633 PointerType *PTy = cast<PointerType>(Val->getType());
634 Result = LVILatticeVal::getNot(ConstantPointerNull::get(PTy));
635 } else {
636 Result.markOverdefined();
637 }
638 BBLV = Result;
639 return true;
640 }
641
642 // Loop over all of our predecessors, merging what we know from them into
643 // result.
644 bool EdgesMissing = false;
645 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
646 LVILatticeVal EdgeResult;
647 EdgesMissing |= !getEdgeValue(Val, *PI, BB, EdgeResult);
648 if (EdgesMissing)
649 continue;
650
651 Result.mergeIn(EdgeResult, DL);
652
653 // If we hit overdefined, exit early. The BlockVals entry is already set
654 // to overdefined.
655 if (Result.isOverdefined()) {
656 DEBUG(dbgs() << " compute BB '" << BB->getName()
657 << "' - overdefined because of pred.\n");
658 // If we previously determined that this is a pointer that can't be null
659 // then return that rather than giving up entirely.
660 if (NotNull) {
661 PointerType *PTy = cast<PointerType>(Val->getType());
662 Result = LVILatticeVal::getNot(ConstantPointerNull::get(PTy));
663 }
664
665 BBLV = Result;
666 return true;
667 }
668 }
669 if (EdgesMissing)
670 return false;
671
672 // Return the merged value, which is more precise than 'overdefined'.
673 assert(!Result.isOverdefined());
674 BBLV = Result;
675 return true;
676 }
677
solveBlockValuePHINode(LVILatticeVal & BBLV,PHINode * PN,BasicBlock * BB)678 bool LazyValueInfoCache::solveBlockValuePHINode(LVILatticeVal &BBLV,
679 PHINode *PN, BasicBlock *BB) {
680 LVILatticeVal Result; // Start Undefined.
681
682 // Loop over all of our predecessors, merging what we know from them into
683 // result.
684 bool EdgesMissing = false;
685 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
686 BasicBlock *PhiBB = PN->getIncomingBlock(i);
687 Value *PhiVal = PN->getIncomingValue(i);
688 LVILatticeVal EdgeResult;
689 // Note that we can provide PN as the context value to getEdgeValue, even
690 // though the results will be cached, because PN is the value being used as
691 // the cache key in the caller.
692 EdgesMissing |= !getEdgeValue(PhiVal, PhiBB, BB, EdgeResult, PN);
693 if (EdgesMissing)
694 continue;
695
696 Result.mergeIn(EdgeResult, DL);
697
698 // If we hit overdefined, exit early. The BlockVals entry is already set
699 // to overdefined.
700 if (Result.isOverdefined()) {
701 DEBUG(dbgs() << " compute BB '" << BB->getName()
702 << "' - overdefined because of pred.\n");
703
704 BBLV = Result;
705 return true;
706 }
707 }
708 if (EdgesMissing)
709 return false;
710
711 // Return the merged value, which is more precise than 'overdefined'.
712 assert(!Result.isOverdefined() && "Possible PHI in entry block?");
713 BBLV = Result;
714 return true;
715 }
716
717 static bool getValueFromFromCondition(Value *Val, ICmpInst *ICI,
718 LVILatticeVal &Result,
719 bool isTrueDest = true);
720
721 // If we can determine a constant range for the value Val in the context
722 // provided by the instruction BBI, then merge it into BBLV. If we did find a
723 // constant range, return true.
mergeAssumeBlockValueConstantRange(Value * Val,LVILatticeVal & BBLV,Instruction * BBI)724 void LazyValueInfoCache::mergeAssumeBlockValueConstantRange(Value *Val,
725 LVILatticeVal &BBLV,
726 Instruction *BBI) {
727 BBI = BBI ? BBI : dyn_cast<Instruction>(Val);
728 if (!BBI)
729 return;
730
731 for (auto &AssumeVH : AC->assumptions()) {
732 if (!AssumeVH)
733 continue;
734 auto *I = cast<CallInst>(AssumeVH);
735 if (!isValidAssumeForContext(I, BBI, DT))
736 continue;
737
738 Value *C = I->getArgOperand(0);
739 if (ICmpInst *ICI = dyn_cast<ICmpInst>(C)) {
740 LVILatticeVal Result;
741 if (getValueFromFromCondition(Val, ICI, Result)) {
742 if (BBLV.isOverdefined())
743 BBLV = Result;
744 else
745 BBLV.mergeIn(Result, DL);
746 }
747 }
748 }
749 }
750
solveBlockValueConstantRange(LVILatticeVal & BBLV,Instruction * BBI,BasicBlock * BB)751 bool LazyValueInfoCache::solveBlockValueConstantRange(LVILatticeVal &BBLV,
752 Instruction *BBI,
753 BasicBlock *BB) {
754 // Figure out the range of the LHS. If that fails, bail.
755 if (!hasBlockValue(BBI->getOperand(0), BB)) {
756 if (pushBlockValue(std::make_pair(BB, BBI->getOperand(0))))
757 return false;
758 BBLV.markOverdefined();
759 return true;
760 }
761
762 LVILatticeVal LHSVal = getBlockValue(BBI->getOperand(0), BB);
763 mergeAssumeBlockValueConstantRange(BBI->getOperand(0), LHSVal, BBI);
764 if (!LHSVal.isConstantRange()) {
765 BBLV.markOverdefined();
766 return true;
767 }
768
769 ConstantRange LHSRange = LHSVal.getConstantRange();
770 ConstantRange RHSRange(1);
771 IntegerType *ResultTy = cast<IntegerType>(BBI->getType());
772 if (isa<BinaryOperator>(BBI)) {
773 if (ConstantInt *RHS = dyn_cast<ConstantInt>(BBI->getOperand(1))) {
774 RHSRange = ConstantRange(RHS->getValue());
775 } else {
776 BBLV.markOverdefined();
777 return true;
778 }
779 }
780
781 // NOTE: We're currently limited by the set of operations that ConstantRange
782 // can evaluate symbolically. Enhancing that set will allows us to analyze
783 // more definitions.
784 LVILatticeVal Result;
785 switch (BBI->getOpcode()) {
786 case Instruction::Add:
787 Result.markConstantRange(LHSRange.add(RHSRange));
788 break;
789 case Instruction::Sub:
790 Result.markConstantRange(LHSRange.sub(RHSRange));
791 break;
792 case Instruction::Mul:
793 Result.markConstantRange(LHSRange.multiply(RHSRange));
794 break;
795 case Instruction::UDiv:
796 Result.markConstantRange(LHSRange.udiv(RHSRange));
797 break;
798 case Instruction::Shl:
799 Result.markConstantRange(LHSRange.shl(RHSRange));
800 break;
801 case Instruction::LShr:
802 Result.markConstantRange(LHSRange.lshr(RHSRange));
803 break;
804 case Instruction::Trunc:
805 Result.markConstantRange(LHSRange.truncate(ResultTy->getBitWidth()));
806 break;
807 case Instruction::SExt:
808 Result.markConstantRange(LHSRange.signExtend(ResultTy->getBitWidth()));
809 break;
810 case Instruction::ZExt:
811 Result.markConstantRange(LHSRange.zeroExtend(ResultTy->getBitWidth()));
812 break;
813 case Instruction::BitCast:
814 Result.markConstantRange(LHSRange);
815 break;
816 case Instruction::And:
817 Result.markConstantRange(LHSRange.binaryAnd(RHSRange));
818 break;
819 case Instruction::Or:
820 Result.markConstantRange(LHSRange.binaryOr(RHSRange));
821 break;
822
823 // Unhandled instructions are overdefined.
824 default:
825 DEBUG(dbgs() << " compute BB '" << BB->getName()
826 << "' - overdefined because inst def found.\n");
827 Result.markOverdefined();
828 break;
829 }
830
831 BBLV = Result;
832 return true;
833 }
834
getValueFromFromCondition(Value * Val,ICmpInst * ICI,LVILatticeVal & Result,bool isTrueDest)835 bool getValueFromFromCondition(Value *Val, ICmpInst *ICI,
836 LVILatticeVal &Result, bool isTrueDest) {
837 if (ICI && isa<Constant>(ICI->getOperand(1))) {
838 if (ICI->isEquality() && ICI->getOperand(0) == Val) {
839 // We know that V has the RHS constant if this is a true SETEQ or
840 // false SETNE.
841 if (isTrueDest == (ICI->getPredicate() == ICmpInst::ICMP_EQ))
842 Result = LVILatticeVal::get(cast<Constant>(ICI->getOperand(1)));
843 else
844 Result = LVILatticeVal::getNot(cast<Constant>(ICI->getOperand(1)));
845 return true;
846 }
847
848 // Recognize the range checking idiom that InstCombine produces.
849 // (X-C1) u< C2 --> [C1, C1+C2)
850 ConstantInt *NegOffset = nullptr;
851 if (ICI->getPredicate() == ICmpInst::ICMP_ULT)
852 match(ICI->getOperand(0), m_Add(m_Specific(Val),
853 m_ConstantInt(NegOffset)));
854
855 ConstantInt *CI = dyn_cast<ConstantInt>(ICI->getOperand(1));
856 if (CI && (ICI->getOperand(0) == Val || NegOffset)) {
857 // Calculate the range of values that are allowed by the comparison
858 ConstantRange CmpRange(CI->getValue());
859 ConstantRange TrueValues =
860 ConstantRange::makeAllowedICmpRegion(ICI->getPredicate(), CmpRange);
861
862 if (NegOffset) // Apply the offset from above.
863 TrueValues = TrueValues.subtract(NegOffset->getValue());
864
865 // If we're interested in the false dest, invert the condition.
866 if (!isTrueDest) TrueValues = TrueValues.inverse();
867
868 Result = LVILatticeVal::getRange(TrueValues);
869 return true;
870 }
871 }
872
873 return false;
874 }
875
876 /// \brief Compute the value of Val on the edge BBFrom -> BBTo. Returns false if
877 /// Val is not constrained on the edge.
getEdgeValueLocal(Value * Val,BasicBlock * BBFrom,BasicBlock * BBTo,LVILatticeVal & Result)878 static bool getEdgeValueLocal(Value *Val, BasicBlock *BBFrom,
879 BasicBlock *BBTo, LVILatticeVal &Result) {
880 // TODO: Handle more complex conditionals. If (v == 0 || v2 < 1) is false, we
881 // know that v != 0.
882 if (BranchInst *BI = dyn_cast<BranchInst>(BBFrom->getTerminator())) {
883 // If this is a conditional branch and only one successor goes to BBTo, then
884 // we may be able to infer something from the condition.
885 if (BI->isConditional() &&
886 BI->getSuccessor(0) != BI->getSuccessor(1)) {
887 bool isTrueDest = BI->getSuccessor(0) == BBTo;
888 assert(BI->getSuccessor(!isTrueDest) == BBTo &&
889 "BBTo isn't a successor of BBFrom");
890
891 // If V is the condition of the branch itself, then we know exactly what
892 // it is.
893 if (BI->getCondition() == Val) {
894 Result = LVILatticeVal::get(ConstantInt::get(
895 Type::getInt1Ty(Val->getContext()), isTrueDest));
896 return true;
897 }
898
899 // If the condition of the branch is an equality comparison, we may be
900 // able to infer the value.
901 if (ICmpInst *ICI = dyn_cast<ICmpInst>(BI->getCondition()))
902 if (getValueFromFromCondition(Val, ICI, Result, isTrueDest))
903 return true;
904 }
905 }
906
907 // If the edge was formed by a switch on the value, then we may know exactly
908 // what it is.
909 if (SwitchInst *SI = dyn_cast<SwitchInst>(BBFrom->getTerminator())) {
910 if (SI->getCondition() != Val)
911 return false;
912
913 bool DefaultCase = SI->getDefaultDest() == BBTo;
914 unsigned BitWidth = Val->getType()->getIntegerBitWidth();
915 ConstantRange EdgesVals(BitWidth, DefaultCase/*isFullSet*/);
916
917 for (SwitchInst::CaseIt i : SI->cases()) {
918 ConstantRange EdgeVal(i.getCaseValue()->getValue());
919 if (DefaultCase) {
920 // It is possible that the default destination is the destination of
921 // some cases. There is no need to perform difference for those cases.
922 if (i.getCaseSuccessor() != BBTo)
923 EdgesVals = EdgesVals.difference(EdgeVal);
924 } else if (i.getCaseSuccessor() == BBTo)
925 EdgesVals = EdgesVals.unionWith(EdgeVal);
926 }
927 Result = LVILatticeVal::getRange(EdgesVals);
928 return true;
929 }
930 return false;
931 }
932
933 /// \brief Compute the value of Val on the edge BBFrom -> BBTo or the value at
934 /// the basic block if the edge does not constrain Val.
getEdgeValue(Value * Val,BasicBlock * BBFrom,BasicBlock * BBTo,LVILatticeVal & Result,Instruction * CxtI)935 bool LazyValueInfoCache::getEdgeValue(Value *Val, BasicBlock *BBFrom,
936 BasicBlock *BBTo, LVILatticeVal &Result,
937 Instruction *CxtI) {
938 // If already a constant, there is nothing to compute.
939 if (Constant *VC = dyn_cast<Constant>(Val)) {
940 Result = LVILatticeVal::get(VC);
941 return true;
942 }
943
944 if (getEdgeValueLocal(Val, BBFrom, BBTo, Result)) {
945 if (!Result.isConstantRange() ||
946 Result.getConstantRange().getSingleElement())
947 return true;
948
949 // FIXME: this check should be moved to the beginning of the function when
950 // LVI better supports recursive values. Even for the single value case, we
951 // can intersect to detect dead code (an empty range).
952 if (!hasBlockValue(Val, BBFrom)) {
953 if (pushBlockValue(std::make_pair(BBFrom, Val)))
954 return false;
955 Result.markOverdefined();
956 return true;
957 }
958
959 // Try to intersect ranges of the BB and the constraint on the edge.
960 LVILatticeVal InBlock = getBlockValue(Val, BBFrom);
961 mergeAssumeBlockValueConstantRange(Val, InBlock, BBFrom->getTerminator());
962 // See note on the use of the CxtI with mergeAssumeBlockValueConstantRange,
963 // and caching, below.
964 mergeAssumeBlockValueConstantRange(Val, InBlock, CxtI);
965 if (!InBlock.isConstantRange())
966 return true;
967
968 ConstantRange Range =
969 Result.getConstantRange().intersectWith(InBlock.getConstantRange());
970 Result = LVILatticeVal::getRange(Range);
971 return true;
972 }
973
974 if (!hasBlockValue(Val, BBFrom)) {
975 if (pushBlockValue(std::make_pair(BBFrom, Val)))
976 return false;
977 Result.markOverdefined();
978 return true;
979 }
980
981 // If we couldn't compute the value on the edge, use the value from the BB.
982 Result = getBlockValue(Val, BBFrom);
983 mergeAssumeBlockValueConstantRange(Val, Result, BBFrom->getTerminator());
984 // We can use the context instruction (generically the ultimate instruction
985 // the calling pass is trying to simplify) here, even though the result of
986 // this function is generally cached when called from the solve* functions
987 // (and that cached result might be used with queries using a different
988 // context instruction), because when this function is called from the solve*
989 // functions, the context instruction is not provided. When called from
990 // LazyValueInfoCache::getValueOnEdge, the context instruction is provided,
991 // but then the result is not cached.
992 mergeAssumeBlockValueConstantRange(Val, Result, CxtI);
993 return true;
994 }
995
getValueInBlock(Value * V,BasicBlock * BB,Instruction * CxtI)996 LVILatticeVal LazyValueInfoCache::getValueInBlock(Value *V, BasicBlock *BB,
997 Instruction *CxtI) {
998 DEBUG(dbgs() << "LVI Getting block end value " << *V << " at '"
999 << BB->getName() << "'\n");
1000
1001 assert(BlockValueStack.empty() && BlockValueSet.empty());
1002 pushBlockValue(std::make_pair(BB, V));
1003
1004 solve();
1005 LVILatticeVal Result = getBlockValue(V, BB);
1006 mergeAssumeBlockValueConstantRange(V, Result, CxtI);
1007
1008 DEBUG(dbgs() << " Result = " << Result << "\n");
1009 return Result;
1010 }
1011
getValueAt(Value * V,Instruction * CxtI)1012 LVILatticeVal LazyValueInfoCache::getValueAt(Value *V, Instruction *CxtI) {
1013 DEBUG(dbgs() << "LVI Getting value " << *V << " at '"
1014 << CxtI->getName() << "'\n");
1015
1016 LVILatticeVal Result;
1017 mergeAssumeBlockValueConstantRange(V, Result, CxtI);
1018
1019 DEBUG(dbgs() << " Result = " << Result << "\n");
1020 return Result;
1021 }
1022
1023 LVILatticeVal LazyValueInfoCache::
getValueOnEdge(Value * V,BasicBlock * FromBB,BasicBlock * ToBB,Instruction * CxtI)1024 getValueOnEdge(Value *V, BasicBlock *FromBB, BasicBlock *ToBB,
1025 Instruction *CxtI) {
1026 DEBUG(dbgs() << "LVI Getting edge value " << *V << " from '"
1027 << FromBB->getName() << "' to '" << ToBB->getName() << "'\n");
1028
1029 LVILatticeVal Result;
1030 if (!getEdgeValue(V, FromBB, ToBB, Result, CxtI)) {
1031 solve();
1032 bool WasFastQuery = getEdgeValue(V, FromBB, ToBB, Result, CxtI);
1033 (void)WasFastQuery;
1034 assert(WasFastQuery && "More work to do after problem solved?");
1035 }
1036
1037 DEBUG(dbgs() << " Result = " << Result << "\n");
1038 return Result;
1039 }
1040
threadEdge(BasicBlock * PredBB,BasicBlock * OldSucc,BasicBlock * NewSucc)1041 void LazyValueInfoCache::threadEdge(BasicBlock *PredBB, BasicBlock *OldSucc,
1042 BasicBlock *NewSucc) {
1043 // When an edge in the graph has been threaded, values that we could not
1044 // determine a value for before (i.e. were marked overdefined) may be possible
1045 // to solve now. We do NOT try to proactively update these values. Instead,
1046 // we clear their entries from the cache, and allow lazy updating to recompute
1047 // them when needed.
1048
1049 // The updating process is fairly simple: we need to drop cached info
1050 // for all values that were marked overdefined in OldSucc, and for those same
1051 // values in any successor of OldSucc (except NewSucc) in which they were
1052 // also marked overdefined.
1053 std::vector<BasicBlock*> worklist;
1054 worklist.push_back(OldSucc);
1055
1056 DenseSet<Value*> ClearSet;
1057 for (OverDefinedPairTy &P : OverDefinedCache)
1058 if (P.first == OldSucc)
1059 ClearSet.insert(P.second);
1060
1061 // Use a worklist to perform a depth-first search of OldSucc's successors.
1062 // NOTE: We do not need a visited list since any blocks we have already
1063 // visited will have had their overdefined markers cleared already, and we
1064 // thus won't loop to their successors.
1065 while (!worklist.empty()) {
1066 BasicBlock *ToUpdate = worklist.back();
1067 worklist.pop_back();
1068
1069 // Skip blocks only accessible through NewSucc.
1070 if (ToUpdate == NewSucc) continue;
1071
1072 bool changed = false;
1073 for (Value *V : ClearSet) {
1074 // If a value was marked overdefined in OldSucc, and is here too...
1075 DenseSet<OverDefinedPairTy>::iterator OI =
1076 OverDefinedCache.find(std::make_pair(ToUpdate, V));
1077 if (OI == OverDefinedCache.end()) continue;
1078
1079 // Remove it from the caches.
1080 ValueCacheEntryTy &Entry = ValueCache[LVIValueHandle(V, this)];
1081 ValueCacheEntryTy::iterator CI = Entry.find(ToUpdate);
1082
1083 assert(CI != Entry.end() && "Couldn't find entry to update?");
1084 Entry.erase(CI);
1085 OverDefinedCache.erase(OI);
1086
1087 // If we removed anything, then we potentially need to update
1088 // blocks successors too.
1089 changed = true;
1090 }
1091
1092 if (!changed) continue;
1093
1094 worklist.insert(worklist.end(), succ_begin(ToUpdate), succ_end(ToUpdate));
1095 }
1096 }
1097
1098 //===----------------------------------------------------------------------===//
1099 // LazyValueInfo Impl
1100 //===----------------------------------------------------------------------===//
1101
1102 /// This lazily constructs the LazyValueInfoCache.
getCache(void * & PImpl,AssumptionCache * AC,const DataLayout * DL,DominatorTree * DT=nullptr)1103 static LazyValueInfoCache &getCache(void *&PImpl, AssumptionCache *AC,
1104 const DataLayout *DL,
1105 DominatorTree *DT = nullptr) {
1106 if (!PImpl) {
1107 assert(DL && "getCache() called with a null DataLayout");
1108 PImpl = new LazyValueInfoCache(AC, *DL, DT);
1109 }
1110 return *static_cast<LazyValueInfoCache*>(PImpl);
1111 }
1112
runOnFunction(Function & F)1113 bool LazyValueInfo::runOnFunction(Function &F) {
1114 AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
1115 const DataLayout &DL = F.getParent()->getDataLayout();
1116
1117 DominatorTreeWrapperPass *DTWP =
1118 getAnalysisIfAvailable<DominatorTreeWrapperPass>();
1119 DT = DTWP ? &DTWP->getDomTree() : nullptr;
1120
1121 TLI = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI();
1122
1123 if (PImpl)
1124 getCache(PImpl, AC, &DL, DT).clear();
1125
1126 // Fully lazy.
1127 return false;
1128 }
1129
getAnalysisUsage(AnalysisUsage & AU) const1130 void LazyValueInfo::getAnalysisUsage(AnalysisUsage &AU) const {
1131 AU.setPreservesAll();
1132 AU.addRequired<AssumptionCacheTracker>();
1133 AU.addRequired<TargetLibraryInfoWrapperPass>();
1134 }
1135
releaseMemory()1136 void LazyValueInfo::releaseMemory() {
1137 // If the cache was allocated, free it.
1138 if (PImpl) {
1139 delete &getCache(PImpl, AC, nullptr);
1140 PImpl = nullptr;
1141 }
1142 }
1143
getConstant(Value * V,BasicBlock * BB,Instruction * CxtI)1144 Constant *LazyValueInfo::getConstant(Value *V, BasicBlock *BB,
1145 Instruction *CxtI) {
1146 const DataLayout &DL = BB->getModule()->getDataLayout();
1147 LVILatticeVal Result =
1148 getCache(PImpl, AC, &DL, DT).getValueInBlock(V, BB, CxtI);
1149
1150 if (Result.isConstant())
1151 return Result.getConstant();
1152 if (Result.isConstantRange()) {
1153 ConstantRange CR = Result.getConstantRange();
1154 if (const APInt *SingleVal = CR.getSingleElement())
1155 return ConstantInt::get(V->getContext(), *SingleVal);
1156 }
1157 return nullptr;
1158 }
1159
1160 /// Determine whether the specified value is known to be a
1161 /// constant on the specified edge. Return null if not.
getConstantOnEdge(Value * V,BasicBlock * FromBB,BasicBlock * ToBB,Instruction * CxtI)1162 Constant *LazyValueInfo::getConstantOnEdge(Value *V, BasicBlock *FromBB,
1163 BasicBlock *ToBB,
1164 Instruction *CxtI) {
1165 const DataLayout &DL = FromBB->getModule()->getDataLayout();
1166 LVILatticeVal Result =
1167 getCache(PImpl, AC, &DL, DT).getValueOnEdge(V, FromBB, ToBB, CxtI);
1168
1169 if (Result.isConstant())
1170 return Result.getConstant();
1171 if (Result.isConstantRange()) {
1172 ConstantRange CR = Result.getConstantRange();
1173 if (const APInt *SingleVal = CR.getSingleElement())
1174 return ConstantInt::get(V->getContext(), *SingleVal);
1175 }
1176 return nullptr;
1177 }
1178
getPredicateResult(unsigned Pred,Constant * C,LVILatticeVal & Result,const DataLayout & DL,TargetLibraryInfo * TLI)1179 static LazyValueInfo::Tristate getPredicateResult(unsigned Pred, Constant *C,
1180 LVILatticeVal &Result,
1181 const DataLayout &DL,
1182 TargetLibraryInfo *TLI) {
1183
1184 // If we know the value is a constant, evaluate the conditional.
1185 Constant *Res = nullptr;
1186 if (Result.isConstant()) {
1187 Res = ConstantFoldCompareInstOperands(Pred, Result.getConstant(), C, DL,
1188 TLI);
1189 if (ConstantInt *ResCI = dyn_cast<ConstantInt>(Res))
1190 return ResCI->isZero() ? LazyValueInfo::False : LazyValueInfo::True;
1191 return LazyValueInfo::Unknown;
1192 }
1193
1194 if (Result.isConstantRange()) {
1195 ConstantInt *CI = dyn_cast<ConstantInt>(C);
1196 if (!CI) return LazyValueInfo::Unknown;
1197
1198 ConstantRange CR = Result.getConstantRange();
1199 if (Pred == ICmpInst::ICMP_EQ) {
1200 if (!CR.contains(CI->getValue()))
1201 return LazyValueInfo::False;
1202
1203 if (CR.isSingleElement() && CR.contains(CI->getValue()))
1204 return LazyValueInfo::True;
1205 } else if (Pred == ICmpInst::ICMP_NE) {
1206 if (!CR.contains(CI->getValue()))
1207 return LazyValueInfo::True;
1208
1209 if (CR.isSingleElement() && CR.contains(CI->getValue()))
1210 return LazyValueInfo::False;
1211 }
1212
1213 // Handle more complex predicates.
1214 ConstantRange TrueValues =
1215 ICmpInst::makeConstantRange((ICmpInst::Predicate)Pred, CI->getValue());
1216 if (TrueValues.contains(CR))
1217 return LazyValueInfo::True;
1218 if (TrueValues.inverse().contains(CR))
1219 return LazyValueInfo::False;
1220 return LazyValueInfo::Unknown;
1221 }
1222
1223 if (Result.isNotConstant()) {
1224 // If this is an equality comparison, we can try to fold it knowing that
1225 // "V != C1".
1226 if (Pred == ICmpInst::ICMP_EQ) {
1227 // !C1 == C -> false iff C1 == C.
1228 Res = ConstantFoldCompareInstOperands(ICmpInst::ICMP_NE,
1229 Result.getNotConstant(), C, DL,
1230 TLI);
1231 if (Res->isNullValue())
1232 return LazyValueInfo::False;
1233 } else if (Pred == ICmpInst::ICMP_NE) {
1234 // !C1 != C -> true iff C1 == C.
1235 Res = ConstantFoldCompareInstOperands(ICmpInst::ICMP_NE,
1236 Result.getNotConstant(), C, DL,
1237 TLI);
1238 if (Res->isNullValue())
1239 return LazyValueInfo::True;
1240 }
1241 return LazyValueInfo::Unknown;
1242 }
1243
1244 return LazyValueInfo::Unknown;
1245 }
1246
1247 /// Determine whether the specified value comparison with a constant is known to
1248 /// be true or false on the specified CFG edge. Pred is a CmpInst predicate.
1249 LazyValueInfo::Tristate
getPredicateOnEdge(unsigned Pred,Value * V,Constant * C,BasicBlock * FromBB,BasicBlock * ToBB,Instruction * CxtI)1250 LazyValueInfo::getPredicateOnEdge(unsigned Pred, Value *V, Constant *C,
1251 BasicBlock *FromBB, BasicBlock *ToBB,
1252 Instruction *CxtI) {
1253 const DataLayout &DL = FromBB->getModule()->getDataLayout();
1254 LVILatticeVal Result =
1255 getCache(PImpl, AC, &DL, DT).getValueOnEdge(V, FromBB, ToBB, CxtI);
1256
1257 return getPredicateResult(Pred, C, Result, DL, TLI);
1258 }
1259
1260 LazyValueInfo::Tristate
getPredicateAt(unsigned Pred,Value * V,Constant * C,Instruction * CxtI)1261 LazyValueInfo::getPredicateAt(unsigned Pred, Value *V, Constant *C,
1262 Instruction *CxtI) {
1263 const DataLayout &DL = CxtI->getModule()->getDataLayout();
1264 LVILatticeVal Result = getCache(PImpl, AC, &DL, DT).getValueAt(V, CxtI);
1265
1266 return getPredicateResult(Pred, C, Result, DL, TLI);
1267 }
1268
threadEdge(BasicBlock * PredBB,BasicBlock * OldSucc,BasicBlock * NewSucc)1269 void LazyValueInfo::threadEdge(BasicBlock *PredBB, BasicBlock *OldSucc,
1270 BasicBlock *NewSucc) {
1271 if (PImpl) {
1272 const DataLayout &DL = PredBB->getModule()->getDataLayout();
1273 getCache(PImpl, AC, &DL, DT).threadEdge(PredBB, OldSucc, NewSucc);
1274 }
1275 }
1276
eraseBlock(BasicBlock * BB)1277 void LazyValueInfo::eraseBlock(BasicBlock *BB) {
1278 if (PImpl) {
1279 const DataLayout &DL = BB->getModule()->getDataLayout();
1280 getCache(PImpl, AC, &DL, DT).eraseBlock(BB);
1281 }
1282 }
1283