1 //===---- LiveRangeCalc.cpp - Calculate live ranges -----------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // Implementation of the LiveRangeCalc class.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "LiveRangeCalc.h"
15 #include "llvm/CodeGen/MachineDominators.h"
16 #include "llvm/CodeGen/MachineRegisterInfo.h"
17 
18 using namespace llvm;
19 
20 #define DEBUG_TYPE "regalloc"
21 
resetLiveOutMap()22 void LiveRangeCalc::resetLiveOutMap() {
23   unsigned NumBlocks = MF->getNumBlockIDs();
24   Seen.clear();
25   Seen.resize(NumBlocks);
26   Map.resize(NumBlocks);
27 }
28 
reset(const MachineFunction * mf,SlotIndexes * SI,MachineDominatorTree * MDT,VNInfo::Allocator * VNIA)29 void LiveRangeCalc::reset(const MachineFunction *mf,
30                           SlotIndexes *SI,
31                           MachineDominatorTree *MDT,
32                           VNInfo::Allocator *VNIA) {
33   MF = mf;
34   MRI = &MF->getRegInfo();
35   Indexes = SI;
36   DomTree = MDT;
37   Alloc = VNIA;
38   resetLiveOutMap();
39   LiveIn.clear();
40 }
41 
42 
createDeadDef(SlotIndexes & Indexes,VNInfo::Allocator & Alloc,LiveRange & LR,const MachineOperand & MO)43 static void createDeadDef(SlotIndexes &Indexes, VNInfo::Allocator &Alloc,
44                           LiveRange &LR, const MachineOperand &MO) {
45     const MachineInstr *MI = MO.getParent();
46     SlotIndex DefIdx =
47         Indexes.getInstructionIndex(MI).getRegSlot(MO.isEarlyClobber());
48 
49     // Create the def in LR. This may find an existing def.
50     LR.createDeadDef(DefIdx, Alloc);
51 }
52 
calculate(LiveInterval & LI,bool TrackSubRegs)53 void LiveRangeCalc::calculate(LiveInterval &LI, bool TrackSubRegs) {
54   assert(MRI && Indexes && "call reset() first");
55 
56   // Step 1: Create minimal live segments for every definition of Reg.
57   // Visit all def operands. If the same instruction has multiple defs of Reg,
58   // createDeadDef() will deduplicate.
59   const TargetRegisterInfo &TRI = *MRI->getTargetRegisterInfo();
60   unsigned Reg = LI.reg;
61   for (const MachineOperand &MO : MRI->reg_nodbg_operands(Reg)) {
62     if (!MO.isDef() && !MO.readsReg())
63       continue;
64 
65     unsigned SubReg = MO.getSubReg();
66     if (LI.hasSubRanges() || (SubReg != 0 && TrackSubRegs)) {
67       unsigned Mask = SubReg != 0 ? TRI.getSubRegIndexLaneMask(SubReg)
68                                   : MRI->getMaxLaneMaskForVReg(Reg);
69 
70       // If this is the first time we see a subregister def, initialize
71       // subranges by creating a copy of the main range.
72       if (!LI.hasSubRanges() && !LI.empty()) {
73         unsigned ClassMask = MRI->getMaxLaneMaskForVReg(Reg);
74         LI.createSubRangeFrom(*Alloc, ClassMask, LI);
75       }
76 
77       for (LiveInterval::SubRange &S : LI.subranges()) {
78         // A Mask for subregs common to the existing subrange and current def.
79         unsigned Common = S.LaneMask & Mask;
80         if (Common == 0)
81           continue;
82         // A Mask for subregs covered by the subrange but not the current def.
83         unsigned LRest = S.LaneMask & ~Mask;
84         LiveInterval::SubRange *CommonRange;
85         if (LRest != 0) {
86           // Split current subrange into Common and LRest ranges.
87           S.LaneMask = LRest;
88           CommonRange = LI.createSubRangeFrom(*Alloc, Common, S);
89         } else {
90           assert(Common == S.LaneMask);
91           CommonRange = &S;
92         }
93         if (MO.isDef())
94           createDeadDef(*Indexes, *Alloc, *CommonRange, MO);
95         Mask &= ~Common;
96       }
97       // Create a new SubRange for subregs we did not cover yet.
98       if (Mask != 0) {
99         LiveInterval::SubRange *NewRange = LI.createSubRange(*Alloc, Mask);
100         if (MO.isDef())
101           createDeadDef(*Indexes, *Alloc, *NewRange, MO);
102       }
103     }
104 
105     // Create the def in the main liverange. We do not have to do this if
106     // subranges are tracked as we recreate the main range later in this case.
107     if (MO.isDef() && !LI.hasSubRanges())
108       createDeadDef(*Indexes, *Alloc, LI, MO);
109   }
110 
111   // We may have created empty live ranges for partially undefined uses, we
112   // can't keep them because we won't find defs in them later.
113   LI.removeEmptySubRanges();
114 
115   // Step 2: Extend live segments to all uses, constructing SSA form as
116   // necessary.
117   if (LI.hasSubRanges()) {
118     for (LiveInterval::SubRange &S : LI.subranges()) {
119       resetLiveOutMap();
120       extendToUses(S, Reg, S.LaneMask);
121     }
122     LI.clear();
123     LI.constructMainRangeFromSubranges(*Indexes, *Alloc);
124   } else {
125     resetLiveOutMap();
126     extendToUses(LI, Reg, ~0u);
127   }
128 }
129 
130 
createDeadDefs(LiveRange & LR,unsigned Reg)131 void LiveRangeCalc::createDeadDefs(LiveRange &LR, unsigned Reg) {
132   assert(MRI && Indexes && "call reset() first");
133 
134   // Visit all def operands. If the same instruction has multiple defs of Reg,
135   // LR.createDeadDef() will deduplicate.
136   for (MachineOperand &MO : MRI->def_operands(Reg))
137     createDeadDef(*Indexes, *Alloc, LR, MO);
138 }
139 
140 
extendToUses(LiveRange & LR,unsigned Reg,unsigned Mask)141 void LiveRangeCalc::extendToUses(LiveRange &LR, unsigned Reg, unsigned Mask) {
142   // Visit all operands that read Reg. This may include partial defs.
143   const TargetRegisterInfo &TRI = *MRI->getTargetRegisterInfo();
144   for (MachineOperand &MO : MRI->reg_nodbg_operands(Reg)) {
145     // Clear all kill flags. They will be reinserted after register allocation
146     // by LiveIntervalAnalysis::addKillFlags().
147     if (MO.isUse())
148       MO.setIsKill(false);
149     else {
150       // We only care about uses, but on the main range (mask ~0u) this includes
151       // the "virtual" reads happening for subregister defs.
152       if (Mask != ~0u)
153         continue;
154     }
155 
156     if (!MO.readsReg())
157       continue;
158     unsigned SubReg = MO.getSubReg();
159     if (SubReg != 0) {
160       unsigned SubRegMask = TRI.getSubRegIndexLaneMask(SubReg);
161       // Ignore uses not covering the current subrange.
162       if ((SubRegMask & Mask) == 0)
163         continue;
164     }
165 
166     // Determine the actual place of the use.
167     const MachineInstr *MI = MO.getParent();
168     unsigned OpNo = (&MO - &MI->getOperand(0));
169     SlotIndex UseIdx;
170     if (MI->isPHI()) {
171       assert(!MO.isDef() && "Cannot handle PHI def of partial register.");
172       // The actual place where a phi operand is used is the end of the pred
173       // MBB. PHI operands are paired: (Reg, PredMBB).
174       UseIdx = Indexes->getMBBEndIdx(MI->getOperand(OpNo+1).getMBB());
175     } else {
176       // Check for early-clobber redefs.
177       bool isEarlyClobber = false;
178       unsigned DefIdx;
179       if (MO.isDef())
180         isEarlyClobber = MO.isEarlyClobber();
181       else if (MI->isRegTiedToDefOperand(OpNo, &DefIdx)) {
182         // FIXME: This would be a lot easier if tied early-clobber uses also
183         // had an early-clobber flag.
184         isEarlyClobber = MI->getOperand(DefIdx).isEarlyClobber();
185       }
186       UseIdx = Indexes->getInstructionIndex(MI).getRegSlot(isEarlyClobber);
187     }
188 
189     // MI is reading Reg. We may have visited MI before if it happens to be
190     // reading Reg multiple times. That is OK, extend() is idempotent.
191     extend(LR, UseIdx, Reg);
192   }
193 }
194 
195 
updateFromLiveIns()196 void LiveRangeCalc::updateFromLiveIns() {
197   LiveRangeUpdater Updater;
198   for (const LiveInBlock &I : LiveIn) {
199     if (!I.DomNode)
200       continue;
201     MachineBasicBlock *MBB = I.DomNode->getBlock();
202     assert(I.Value && "No live-in value found");
203     SlotIndex Start, End;
204     std::tie(Start, End) = Indexes->getMBBRange(MBB);
205 
206     if (I.Kill.isValid())
207       // Value is killed inside this block.
208       End = I.Kill;
209     else {
210       // The value is live-through, update LiveOut as well.
211       // Defer the Domtree lookup until it is needed.
212       assert(Seen.test(MBB->getNumber()));
213       Map[MBB] = LiveOutPair(I.Value, nullptr);
214     }
215     Updater.setDest(&I.LR);
216     Updater.add(Start, End, I.Value);
217   }
218   LiveIn.clear();
219 }
220 
221 
extend(LiveRange & LR,SlotIndex Use,unsigned PhysReg)222 void LiveRangeCalc::extend(LiveRange &LR, SlotIndex Use, unsigned PhysReg) {
223   assert(Use.isValid() && "Invalid SlotIndex");
224   assert(Indexes && "Missing SlotIndexes");
225   assert(DomTree && "Missing dominator tree");
226 
227   MachineBasicBlock *UseMBB = Indexes->getMBBFromIndex(Use.getPrevSlot());
228   assert(UseMBB && "No MBB at Use");
229 
230   // Is there a def in the same MBB we can extend?
231   if (LR.extendInBlock(Indexes->getMBBStartIdx(UseMBB), Use))
232     return;
233 
234   // Find the single reaching def, or determine if Use is jointly dominated by
235   // multiple values, and we may need to create even more phi-defs to preserve
236   // VNInfo SSA form.  Perform a search for all predecessor blocks where we
237   // know the dominating VNInfo.
238   if (findReachingDefs(LR, *UseMBB, Use, PhysReg))
239     return;
240 
241   // When there were multiple different values, we may need new PHIs.
242   calculateValues();
243 }
244 
245 
246 // This function is called by a client after using the low-level API to add
247 // live-out and live-in blocks.  The unique value optimization is not
248 // available, SplitEditor::transferValues handles that case directly anyway.
calculateValues()249 void LiveRangeCalc::calculateValues() {
250   assert(Indexes && "Missing SlotIndexes");
251   assert(DomTree && "Missing dominator tree");
252   updateSSA();
253   updateFromLiveIns();
254 }
255 
256 
findReachingDefs(LiveRange & LR,MachineBasicBlock & UseMBB,SlotIndex Use,unsigned PhysReg)257 bool LiveRangeCalc::findReachingDefs(LiveRange &LR, MachineBasicBlock &UseMBB,
258                                      SlotIndex Use, unsigned PhysReg) {
259   unsigned UseMBBNum = UseMBB.getNumber();
260 
261   // Block numbers where LR should be live-in.
262   SmallVector<unsigned, 16> WorkList(1, UseMBBNum);
263 
264   // Remember if we have seen more than one value.
265   bool UniqueVNI = true;
266   VNInfo *TheVNI = nullptr;
267 
268   // Using Seen as a visited set, perform a BFS for all reaching defs.
269   for (unsigned i = 0; i != WorkList.size(); ++i) {
270     MachineBasicBlock *MBB = MF->getBlockNumbered(WorkList[i]);
271 
272 #ifndef NDEBUG
273     if (MBB->pred_empty()) {
274       MBB->getParent()->verify();
275       llvm_unreachable("Use not jointly dominated by defs.");
276     }
277 
278     if (TargetRegisterInfo::isPhysicalRegister(PhysReg) &&
279         !MBB->isLiveIn(PhysReg)) {
280       MBB->getParent()->verify();
281       errs() << "The register needs to be live in to BB#" << MBB->getNumber()
282              << ", but is missing from the live-in list.\n";
283       llvm_unreachable("Invalid global physical register");
284     }
285 #endif
286 
287     for (MachineBasicBlock::pred_iterator PI = MBB->pred_begin(),
288          PE = MBB->pred_end(); PI != PE; ++PI) {
289        MachineBasicBlock *Pred = *PI;
290 
291        // Is this a known live-out block?
292        if (Seen.test(Pred->getNumber())) {
293          if (VNInfo *VNI = Map[Pred].first) {
294            if (TheVNI && TheVNI != VNI)
295              UniqueVNI = false;
296            TheVNI = VNI;
297          }
298          continue;
299        }
300 
301        SlotIndex Start, End;
302        std::tie(Start, End) = Indexes->getMBBRange(Pred);
303 
304        // First time we see Pred.  Try to determine the live-out value, but set
305        // it as null if Pred is live-through with an unknown value.
306        VNInfo *VNI = LR.extendInBlock(Start, End);
307        setLiveOutValue(Pred, VNI);
308        if (VNI) {
309          if (TheVNI && TheVNI != VNI)
310            UniqueVNI = false;
311          TheVNI = VNI;
312          continue;
313        }
314 
315        // No, we need a live-in value for Pred as well
316        if (Pred != &UseMBB)
317           WorkList.push_back(Pred->getNumber());
318        else
319           // Loopback to UseMBB, so value is really live through.
320          Use = SlotIndex();
321     }
322   }
323 
324   LiveIn.clear();
325 
326   // Both updateSSA() and LiveRangeUpdater benefit from ordered blocks, but
327   // neither require it. Skip the sorting overhead for small updates.
328   if (WorkList.size() > 4)
329     array_pod_sort(WorkList.begin(), WorkList.end());
330 
331   // If a unique reaching def was found, blit in the live ranges immediately.
332   if (UniqueVNI) {
333     LiveRangeUpdater Updater(&LR);
334     for (SmallVectorImpl<unsigned>::const_iterator I = WorkList.begin(),
335          E = WorkList.end(); I != E; ++I) {
336        SlotIndex Start, End;
337        std::tie(Start, End) = Indexes->getMBBRange(*I);
338        // Trim the live range in UseMBB.
339        if (*I == UseMBBNum && Use.isValid())
340          End = Use;
341        else
342          Map[MF->getBlockNumbered(*I)] = LiveOutPair(TheVNI, nullptr);
343        Updater.add(Start, End, TheVNI);
344     }
345     return true;
346   }
347 
348   // Multiple values were found, so transfer the work list to the LiveIn array
349   // where UpdateSSA will use it as a work list.
350   LiveIn.reserve(WorkList.size());
351   for (SmallVectorImpl<unsigned>::const_iterator
352        I = WorkList.begin(), E = WorkList.end(); I != E; ++I) {
353     MachineBasicBlock *MBB = MF->getBlockNumbered(*I);
354     addLiveInBlock(LR, DomTree->getNode(MBB));
355     if (MBB == &UseMBB)
356       LiveIn.back().Kill = Use;
357   }
358 
359   return false;
360 }
361 
362 
363 // This is essentially the same iterative algorithm that SSAUpdater uses,
364 // except we already have a dominator tree, so we don't have to recompute it.
updateSSA()365 void LiveRangeCalc::updateSSA() {
366   assert(Indexes && "Missing SlotIndexes");
367   assert(DomTree && "Missing dominator tree");
368 
369   // Interate until convergence.
370   unsigned Changes;
371   do {
372     Changes = 0;
373     // Propagate live-out values down the dominator tree, inserting phi-defs
374     // when necessary.
375     for (LiveInBlock &I : LiveIn) {
376       MachineDomTreeNode *Node = I.DomNode;
377       // Skip block if the live-in value has already been determined.
378       if (!Node)
379         continue;
380       MachineBasicBlock *MBB = Node->getBlock();
381       MachineDomTreeNode *IDom = Node->getIDom();
382       LiveOutPair IDomValue;
383 
384       // We need a live-in value to a block with no immediate dominator?
385       // This is probably an unreachable block that has survived somehow.
386       bool needPHI = !IDom || !Seen.test(IDom->getBlock()->getNumber());
387 
388       // IDom dominates all of our predecessors, but it may not be their
389       // immediate dominator. Check if any of them have live-out values that are
390       // properly dominated by IDom. If so, we need a phi-def here.
391       if (!needPHI) {
392         IDomValue = Map[IDom->getBlock()];
393 
394         // Cache the DomTree node that defined the value.
395         if (IDomValue.first && !IDomValue.second)
396           Map[IDom->getBlock()].second = IDomValue.second =
397             DomTree->getNode(Indexes->getMBBFromIndex(IDomValue.first->def));
398 
399         for (MachineBasicBlock::pred_iterator PI = MBB->pred_begin(),
400                PE = MBB->pred_end(); PI != PE; ++PI) {
401           LiveOutPair &Value = Map[*PI];
402           if (!Value.first || Value.first == IDomValue.first)
403             continue;
404 
405           // Cache the DomTree node that defined the value.
406           if (!Value.second)
407             Value.second =
408               DomTree->getNode(Indexes->getMBBFromIndex(Value.first->def));
409 
410           // This predecessor is carrying something other than IDomValue.
411           // It could be because IDomValue hasn't propagated yet, or it could be
412           // because MBB is in the dominance frontier of that value.
413           if (DomTree->dominates(IDom, Value.second)) {
414             needPHI = true;
415             break;
416           }
417         }
418       }
419 
420       // The value may be live-through even if Kill is set, as can happen when
421       // we are called from extendRange. In that case LiveOutSeen is true, and
422       // LiveOut indicates a foreign or missing value.
423       LiveOutPair &LOP = Map[MBB];
424 
425       // Create a phi-def if required.
426       if (needPHI) {
427         ++Changes;
428         assert(Alloc && "Need VNInfo allocator to create PHI-defs");
429         SlotIndex Start, End;
430         std::tie(Start, End) = Indexes->getMBBRange(MBB);
431         LiveRange &LR = I.LR;
432         VNInfo *VNI = LR.getNextValue(Start, *Alloc);
433         I.Value = VNI;
434         // This block is done, we know the final value.
435         I.DomNode = nullptr;
436 
437         // Add liveness since updateFromLiveIns now skips this node.
438         if (I.Kill.isValid())
439           LR.addSegment(LiveInterval::Segment(Start, I.Kill, VNI));
440         else {
441           LR.addSegment(LiveInterval::Segment(Start, End, VNI));
442           LOP = LiveOutPair(VNI, Node);
443         }
444       } else if (IDomValue.first) {
445         // No phi-def here. Remember incoming value.
446         I.Value = IDomValue.first;
447 
448         // If the IDomValue is killed in the block, don't propagate through.
449         if (I.Kill.isValid())
450           continue;
451 
452         // Propagate IDomValue if it isn't killed:
453         // MBB is live-out and doesn't define its own value.
454         if (LOP.first == IDomValue.first)
455           continue;
456         ++Changes;
457         LOP = IDomValue;
458       }
459     }
460   } while (Changes);
461 }
462