1 //===---- LiveRangeCalc.cpp - Calculate live ranges -----------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // Implementation of the LiveRangeCalc class.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "LiveRangeCalc.h"
15 #include "llvm/CodeGen/MachineDominators.h"
16 #include "llvm/CodeGen/MachineRegisterInfo.h"
17
18 using namespace llvm;
19
20 #define DEBUG_TYPE "regalloc"
21
resetLiveOutMap()22 void LiveRangeCalc::resetLiveOutMap() {
23 unsigned NumBlocks = MF->getNumBlockIDs();
24 Seen.clear();
25 Seen.resize(NumBlocks);
26 Map.resize(NumBlocks);
27 }
28
reset(const MachineFunction * mf,SlotIndexes * SI,MachineDominatorTree * MDT,VNInfo::Allocator * VNIA)29 void LiveRangeCalc::reset(const MachineFunction *mf,
30 SlotIndexes *SI,
31 MachineDominatorTree *MDT,
32 VNInfo::Allocator *VNIA) {
33 MF = mf;
34 MRI = &MF->getRegInfo();
35 Indexes = SI;
36 DomTree = MDT;
37 Alloc = VNIA;
38 resetLiveOutMap();
39 LiveIn.clear();
40 }
41
42
createDeadDef(SlotIndexes & Indexes,VNInfo::Allocator & Alloc,LiveRange & LR,const MachineOperand & MO)43 static void createDeadDef(SlotIndexes &Indexes, VNInfo::Allocator &Alloc,
44 LiveRange &LR, const MachineOperand &MO) {
45 const MachineInstr *MI = MO.getParent();
46 SlotIndex DefIdx =
47 Indexes.getInstructionIndex(MI).getRegSlot(MO.isEarlyClobber());
48
49 // Create the def in LR. This may find an existing def.
50 LR.createDeadDef(DefIdx, Alloc);
51 }
52
calculate(LiveInterval & LI,bool TrackSubRegs)53 void LiveRangeCalc::calculate(LiveInterval &LI, bool TrackSubRegs) {
54 assert(MRI && Indexes && "call reset() first");
55
56 // Step 1: Create minimal live segments for every definition of Reg.
57 // Visit all def operands. If the same instruction has multiple defs of Reg,
58 // createDeadDef() will deduplicate.
59 const TargetRegisterInfo &TRI = *MRI->getTargetRegisterInfo();
60 unsigned Reg = LI.reg;
61 for (const MachineOperand &MO : MRI->reg_nodbg_operands(Reg)) {
62 if (!MO.isDef() && !MO.readsReg())
63 continue;
64
65 unsigned SubReg = MO.getSubReg();
66 if (LI.hasSubRanges() || (SubReg != 0 && TrackSubRegs)) {
67 unsigned Mask = SubReg != 0 ? TRI.getSubRegIndexLaneMask(SubReg)
68 : MRI->getMaxLaneMaskForVReg(Reg);
69
70 // If this is the first time we see a subregister def, initialize
71 // subranges by creating a copy of the main range.
72 if (!LI.hasSubRanges() && !LI.empty()) {
73 unsigned ClassMask = MRI->getMaxLaneMaskForVReg(Reg);
74 LI.createSubRangeFrom(*Alloc, ClassMask, LI);
75 }
76
77 for (LiveInterval::SubRange &S : LI.subranges()) {
78 // A Mask for subregs common to the existing subrange and current def.
79 unsigned Common = S.LaneMask & Mask;
80 if (Common == 0)
81 continue;
82 // A Mask for subregs covered by the subrange but not the current def.
83 unsigned LRest = S.LaneMask & ~Mask;
84 LiveInterval::SubRange *CommonRange;
85 if (LRest != 0) {
86 // Split current subrange into Common and LRest ranges.
87 S.LaneMask = LRest;
88 CommonRange = LI.createSubRangeFrom(*Alloc, Common, S);
89 } else {
90 assert(Common == S.LaneMask);
91 CommonRange = &S;
92 }
93 if (MO.isDef())
94 createDeadDef(*Indexes, *Alloc, *CommonRange, MO);
95 Mask &= ~Common;
96 }
97 // Create a new SubRange for subregs we did not cover yet.
98 if (Mask != 0) {
99 LiveInterval::SubRange *NewRange = LI.createSubRange(*Alloc, Mask);
100 if (MO.isDef())
101 createDeadDef(*Indexes, *Alloc, *NewRange, MO);
102 }
103 }
104
105 // Create the def in the main liverange. We do not have to do this if
106 // subranges are tracked as we recreate the main range later in this case.
107 if (MO.isDef() && !LI.hasSubRanges())
108 createDeadDef(*Indexes, *Alloc, LI, MO);
109 }
110
111 // We may have created empty live ranges for partially undefined uses, we
112 // can't keep them because we won't find defs in them later.
113 LI.removeEmptySubRanges();
114
115 // Step 2: Extend live segments to all uses, constructing SSA form as
116 // necessary.
117 if (LI.hasSubRanges()) {
118 for (LiveInterval::SubRange &S : LI.subranges()) {
119 resetLiveOutMap();
120 extendToUses(S, Reg, S.LaneMask);
121 }
122 LI.clear();
123 LI.constructMainRangeFromSubranges(*Indexes, *Alloc);
124 } else {
125 resetLiveOutMap();
126 extendToUses(LI, Reg, ~0u);
127 }
128 }
129
130
createDeadDefs(LiveRange & LR,unsigned Reg)131 void LiveRangeCalc::createDeadDefs(LiveRange &LR, unsigned Reg) {
132 assert(MRI && Indexes && "call reset() first");
133
134 // Visit all def operands. If the same instruction has multiple defs of Reg,
135 // LR.createDeadDef() will deduplicate.
136 for (MachineOperand &MO : MRI->def_operands(Reg))
137 createDeadDef(*Indexes, *Alloc, LR, MO);
138 }
139
140
extendToUses(LiveRange & LR,unsigned Reg,unsigned Mask)141 void LiveRangeCalc::extendToUses(LiveRange &LR, unsigned Reg, unsigned Mask) {
142 // Visit all operands that read Reg. This may include partial defs.
143 const TargetRegisterInfo &TRI = *MRI->getTargetRegisterInfo();
144 for (MachineOperand &MO : MRI->reg_nodbg_operands(Reg)) {
145 // Clear all kill flags. They will be reinserted after register allocation
146 // by LiveIntervalAnalysis::addKillFlags().
147 if (MO.isUse())
148 MO.setIsKill(false);
149 else {
150 // We only care about uses, but on the main range (mask ~0u) this includes
151 // the "virtual" reads happening for subregister defs.
152 if (Mask != ~0u)
153 continue;
154 }
155
156 if (!MO.readsReg())
157 continue;
158 unsigned SubReg = MO.getSubReg();
159 if (SubReg != 0) {
160 unsigned SubRegMask = TRI.getSubRegIndexLaneMask(SubReg);
161 // Ignore uses not covering the current subrange.
162 if ((SubRegMask & Mask) == 0)
163 continue;
164 }
165
166 // Determine the actual place of the use.
167 const MachineInstr *MI = MO.getParent();
168 unsigned OpNo = (&MO - &MI->getOperand(0));
169 SlotIndex UseIdx;
170 if (MI->isPHI()) {
171 assert(!MO.isDef() && "Cannot handle PHI def of partial register.");
172 // The actual place where a phi operand is used is the end of the pred
173 // MBB. PHI operands are paired: (Reg, PredMBB).
174 UseIdx = Indexes->getMBBEndIdx(MI->getOperand(OpNo+1).getMBB());
175 } else {
176 // Check for early-clobber redefs.
177 bool isEarlyClobber = false;
178 unsigned DefIdx;
179 if (MO.isDef())
180 isEarlyClobber = MO.isEarlyClobber();
181 else if (MI->isRegTiedToDefOperand(OpNo, &DefIdx)) {
182 // FIXME: This would be a lot easier if tied early-clobber uses also
183 // had an early-clobber flag.
184 isEarlyClobber = MI->getOperand(DefIdx).isEarlyClobber();
185 }
186 UseIdx = Indexes->getInstructionIndex(MI).getRegSlot(isEarlyClobber);
187 }
188
189 // MI is reading Reg. We may have visited MI before if it happens to be
190 // reading Reg multiple times. That is OK, extend() is idempotent.
191 extend(LR, UseIdx, Reg);
192 }
193 }
194
195
updateFromLiveIns()196 void LiveRangeCalc::updateFromLiveIns() {
197 LiveRangeUpdater Updater;
198 for (const LiveInBlock &I : LiveIn) {
199 if (!I.DomNode)
200 continue;
201 MachineBasicBlock *MBB = I.DomNode->getBlock();
202 assert(I.Value && "No live-in value found");
203 SlotIndex Start, End;
204 std::tie(Start, End) = Indexes->getMBBRange(MBB);
205
206 if (I.Kill.isValid())
207 // Value is killed inside this block.
208 End = I.Kill;
209 else {
210 // The value is live-through, update LiveOut as well.
211 // Defer the Domtree lookup until it is needed.
212 assert(Seen.test(MBB->getNumber()));
213 Map[MBB] = LiveOutPair(I.Value, nullptr);
214 }
215 Updater.setDest(&I.LR);
216 Updater.add(Start, End, I.Value);
217 }
218 LiveIn.clear();
219 }
220
221
extend(LiveRange & LR,SlotIndex Use,unsigned PhysReg)222 void LiveRangeCalc::extend(LiveRange &LR, SlotIndex Use, unsigned PhysReg) {
223 assert(Use.isValid() && "Invalid SlotIndex");
224 assert(Indexes && "Missing SlotIndexes");
225 assert(DomTree && "Missing dominator tree");
226
227 MachineBasicBlock *UseMBB = Indexes->getMBBFromIndex(Use.getPrevSlot());
228 assert(UseMBB && "No MBB at Use");
229
230 // Is there a def in the same MBB we can extend?
231 if (LR.extendInBlock(Indexes->getMBBStartIdx(UseMBB), Use))
232 return;
233
234 // Find the single reaching def, or determine if Use is jointly dominated by
235 // multiple values, and we may need to create even more phi-defs to preserve
236 // VNInfo SSA form. Perform a search for all predecessor blocks where we
237 // know the dominating VNInfo.
238 if (findReachingDefs(LR, *UseMBB, Use, PhysReg))
239 return;
240
241 // When there were multiple different values, we may need new PHIs.
242 calculateValues();
243 }
244
245
246 // This function is called by a client after using the low-level API to add
247 // live-out and live-in blocks. The unique value optimization is not
248 // available, SplitEditor::transferValues handles that case directly anyway.
calculateValues()249 void LiveRangeCalc::calculateValues() {
250 assert(Indexes && "Missing SlotIndexes");
251 assert(DomTree && "Missing dominator tree");
252 updateSSA();
253 updateFromLiveIns();
254 }
255
256
findReachingDefs(LiveRange & LR,MachineBasicBlock & UseMBB,SlotIndex Use,unsigned PhysReg)257 bool LiveRangeCalc::findReachingDefs(LiveRange &LR, MachineBasicBlock &UseMBB,
258 SlotIndex Use, unsigned PhysReg) {
259 unsigned UseMBBNum = UseMBB.getNumber();
260
261 // Block numbers where LR should be live-in.
262 SmallVector<unsigned, 16> WorkList(1, UseMBBNum);
263
264 // Remember if we have seen more than one value.
265 bool UniqueVNI = true;
266 VNInfo *TheVNI = nullptr;
267
268 // Using Seen as a visited set, perform a BFS for all reaching defs.
269 for (unsigned i = 0; i != WorkList.size(); ++i) {
270 MachineBasicBlock *MBB = MF->getBlockNumbered(WorkList[i]);
271
272 #ifndef NDEBUG
273 if (MBB->pred_empty()) {
274 MBB->getParent()->verify();
275 llvm_unreachable("Use not jointly dominated by defs.");
276 }
277
278 if (TargetRegisterInfo::isPhysicalRegister(PhysReg) &&
279 !MBB->isLiveIn(PhysReg)) {
280 MBB->getParent()->verify();
281 errs() << "The register needs to be live in to BB#" << MBB->getNumber()
282 << ", but is missing from the live-in list.\n";
283 llvm_unreachable("Invalid global physical register");
284 }
285 #endif
286
287 for (MachineBasicBlock::pred_iterator PI = MBB->pred_begin(),
288 PE = MBB->pred_end(); PI != PE; ++PI) {
289 MachineBasicBlock *Pred = *PI;
290
291 // Is this a known live-out block?
292 if (Seen.test(Pred->getNumber())) {
293 if (VNInfo *VNI = Map[Pred].first) {
294 if (TheVNI && TheVNI != VNI)
295 UniqueVNI = false;
296 TheVNI = VNI;
297 }
298 continue;
299 }
300
301 SlotIndex Start, End;
302 std::tie(Start, End) = Indexes->getMBBRange(Pred);
303
304 // First time we see Pred. Try to determine the live-out value, but set
305 // it as null if Pred is live-through with an unknown value.
306 VNInfo *VNI = LR.extendInBlock(Start, End);
307 setLiveOutValue(Pred, VNI);
308 if (VNI) {
309 if (TheVNI && TheVNI != VNI)
310 UniqueVNI = false;
311 TheVNI = VNI;
312 continue;
313 }
314
315 // No, we need a live-in value for Pred as well
316 if (Pred != &UseMBB)
317 WorkList.push_back(Pred->getNumber());
318 else
319 // Loopback to UseMBB, so value is really live through.
320 Use = SlotIndex();
321 }
322 }
323
324 LiveIn.clear();
325
326 // Both updateSSA() and LiveRangeUpdater benefit from ordered blocks, but
327 // neither require it. Skip the sorting overhead for small updates.
328 if (WorkList.size() > 4)
329 array_pod_sort(WorkList.begin(), WorkList.end());
330
331 // If a unique reaching def was found, blit in the live ranges immediately.
332 if (UniqueVNI) {
333 LiveRangeUpdater Updater(&LR);
334 for (SmallVectorImpl<unsigned>::const_iterator I = WorkList.begin(),
335 E = WorkList.end(); I != E; ++I) {
336 SlotIndex Start, End;
337 std::tie(Start, End) = Indexes->getMBBRange(*I);
338 // Trim the live range in UseMBB.
339 if (*I == UseMBBNum && Use.isValid())
340 End = Use;
341 else
342 Map[MF->getBlockNumbered(*I)] = LiveOutPair(TheVNI, nullptr);
343 Updater.add(Start, End, TheVNI);
344 }
345 return true;
346 }
347
348 // Multiple values were found, so transfer the work list to the LiveIn array
349 // where UpdateSSA will use it as a work list.
350 LiveIn.reserve(WorkList.size());
351 for (SmallVectorImpl<unsigned>::const_iterator
352 I = WorkList.begin(), E = WorkList.end(); I != E; ++I) {
353 MachineBasicBlock *MBB = MF->getBlockNumbered(*I);
354 addLiveInBlock(LR, DomTree->getNode(MBB));
355 if (MBB == &UseMBB)
356 LiveIn.back().Kill = Use;
357 }
358
359 return false;
360 }
361
362
363 // This is essentially the same iterative algorithm that SSAUpdater uses,
364 // except we already have a dominator tree, so we don't have to recompute it.
updateSSA()365 void LiveRangeCalc::updateSSA() {
366 assert(Indexes && "Missing SlotIndexes");
367 assert(DomTree && "Missing dominator tree");
368
369 // Interate until convergence.
370 unsigned Changes;
371 do {
372 Changes = 0;
373 // Propagate live-out values down the dominator tree, inserting phi-defs
374 // when necessary.
375 for (LiveInBlock &I : LiveIn) {
376 MachineDomTreeNode *Node = I.DomNode;
377 // Skip block if the live-in value has already been determined.
378 if (!Node)
379 continue;
380 MachineBasicBlock *MBB = Node->getBlock();
381 MachineDomTreeNode *IDom = Node->getIDom();
382 LiveOutPair IDomValue;
383
384 // We need a live-in value to a block with no immediate dominator?
385 // This is probably an unreachable block that has survived somehow.
386 bool needPHI = !IDom || !Seen.test(IDom->getBlock()->getNumber());
387
388 // IDom dominates all of our predecessors, but it may not be their
389 // immediate dominator. Check if any of them have live-out values that are
390 // properly dominated by IDom. If so, we need a phi-def here.
391 if (!needPHI) {
392 IDomValue = Map[IDom->getBlock()];
393
394 // Cache the DomTree node that defined the value.
395 if (IDomValue.first && !IDomValue.second)
396 Map[IDom->getBlock()].second = IDomValue.second =
397 DomTree->getNode(Indexes->getMBBFromIndex(IDomValue.first->def));
398
399 for (MachineBasicBlock::pred_iterator PI = MBB->pred_begin(),
400 PE = MBB->pred_end(); PI != PE; ++PI) {
401 LiveOutPair &Value = Map[*PI];
402 if (!Value.first || Value.first == IDomValue.first)
403 continue;
404
405 // Cache the DomTree node that defined the value.
406 if (!Value.second)
407 Value.second =
408 DomTree->getNode(Indexes->getMBBFromIndex(Value.first->def));
409
410 // This predecessor is carrying something other than IDomValue.
411 // It could be because IDomValue hasn't propagated yet, or it could be
412 // because MBB is in the dominance frontier of that value.
413 if (DomTree->dominates(IDom, Value.second)) {
414 needPHI = true;
415 break;
416 }
417 }
418 }
419
420 // The value may be live-through even if Kill is set, as can happen when
421 // we are called from extendRange. In that case LiveOutSeen is true, and
422 // LiveOut indicates a foreign or missing value.
423 LiveOutPair &LOP = Map[MBB];
424
425 // Create a phi-def if required.
426 if (needPHI) {
427 ++Changes;
428 assert(Alloc && "Need VNInfo allocator to create PHI-defs");
429 SlotIndex Start, End;
430 std::tie(Start, End) = Indexes->getMBBRange(MBB);
431 LiveRange &LR = I.LR;
432 VNInfo *VNI = LR.getNextValue(Start, *Alloc);
433 I.Value = VNI;
434 // This block is done, we know the final value.
435 I.DomNode = nullptr;
436
437 // Add liveness since updateFromLiveIns now skips this node.
438 if (I.Kill.isValid())
439 LR.addSegment(LiveInterval::Segment(Start, I.Kill, VNI));
440 else {
441 LR.addSegment(LiveInterval::Segment(Start, End, VNI));
442 LOP = LiveOutPair(VNI, Node);
443 }
444 } else if (IDomValue.first) {
445 // No phi-def here. Remember incoming value.
446 I.Value = IDomValue.first;
447
448 // If the IDomValue is killed in the block, don't propagate through.
449 if (I.Kill.isValid())
450 continue;
451
452 // Propagate IDomValue if it isn't killed:
453 // MBB is live-out and doesn't define its own value.
454 if (LOP.first == IDomValue.first)
455 continue;
456 ++Changes;
457 LOP = IDomValue;
458 }
459 }
460 } while (Changes);
461 }
462