1 //===-- MachineBlockPlacement.cpp - Basic Block Code Layout optimization --===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements basic block placement transformations using the CFG
11 // structure and branch probability estimates.
12 //
13 // The pass strives to preserve the structure of the CFG (that is, retain
14 // a topological ordering of basic blocks) in the absence of a *strong* signal
15 // to the contrary from probabilities. However, within the CFG structure, it
16 // attempts to choose an ordering which favors placing more likely sequences of
17 // blocks adjacent to each other.
18 //
19 // The algorithm works from the inner-most loop within a function outward, and
20 // at each stage walks through the basic blocks, trying to coalesce them into
21 // sequential chains where allowed by the CFG (or demanded by heavy
22 // probabilities). Finally, it walks the blocks in topological order, and the
23 // first time it reaches a chain of basic blocks, it schedules them in the
24 // function in-order.
25 //
26 //===----------------------------------------------------------------------===//
27 
28 #include "llvm/CodeGen/Passes.h"
29 #include "llvm/ADT/DenseMap.h"
30 #include "llvm/ADT/SmallPtrSet.h"
31 #include "llvm/ADT/SmallVector.h"
32 #include "llvm/ADT/Statistic.h"
33 #include "llvm/CodeGen/MachineBasicBlock.h"
34 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
35 #include "llvm/CodeGen/MachineBranchProbabilityInfo.h"
36 #include "llvm/CodeGen/MachineDominators.h"
37 #include "llvm/CodeGen/MachineFunction.h"
38 #include "llvm/CodeGen/MachineFunctionPass.h"
39 #include "llvm/CodeGen/MachineLoopInfo.h"
40 #include "llvm/CodeGen/MachineModuleInfo.h"
41 #include "llvm/Support/Allocator.h"
42 #include "llvm/Support/CommandLine.h"
43 #include "llvm/Support/Debug.h"
44 #include "llvm/Support/raw_ostream.h"
45 #include "llvm/Target/TargetInstrInfo.h"
46 #include "llvm/Target/TargetLowering.h"
47 #include "llvm/Target/TargetSubtargetInfo.h"
48 #include <algorithm>
49 using namespace llvm;
50 
51 #define DEBUG_TYPE "block-placement"
52 
53 STATISTIC(NumCondBranches, "Number of conditional branches");
54 STATISTIC(NumUncondBranches, "Number of uncondittional branches");
55 STATISTIC(CondBranchTakenFreq,
56           "Potential frequency of taking conditional branches");
57 STATISTIC(UncondBranchTakenFreq,
58           "Potential frequency of taking unconditional branches");
59 
60 static cl::opt<unsigned> AlignAllBlock("align-all-blocks",
61                                        cl::desc("Force the alignment of all "
62                                                 "blocks in the function."),
63                                        cl::init(0), cl::Hidden);
64 
65 // FIXME: Find a good default for this flag and remove the flag.
66 static cl::opt<unsigned> ExitBlockBias(
67     "block-placement-exit-block-bias",
68     cl::desc("Block frequency percentage a loop exit block needs "
69              "over the original exit to be considered the new exit."),
70     cl::init(0), cl::Hidden);
71 
72 static cl::opt<bool> OutlineOptionalBranches(
73     "outline-optional-branches",
74     cl::desc("Put completely optional branches, i.e. branches with a common "
75              "post dominator, out of line."),
76     cl::init(false), cl::Hidden);
77 
78 static cl::opt<unsigned> OutlineOptionalThreshold(
79     "outline-optional-threshold",
80     cl::desc("Don't outline optional branches that are a single block with an "
81              "instruction count below this threshold"),
82     cl::init(4), cl::Hidden);
83 
84 namespace {
85 class BlockChain;
86 /// \brief Type for our function-wide basic block -> block chain mapping.
87 typedef DenseMap<MachineBasicBlock *, BlockChain *> BlockToChainMapType;
88 }
89 
90 namespace {
91 /// \brief A chain of blocks which will be laid out contiguously.
92 ///
93 /// This is the datastructure representing a chain of consecutive blocks that
94 /// are profitable to layout together in order to maximize fallthrough
95 /// probabilities and code locality. We also can use a block chain to represent
96 /// a sequence of basic blocks which have some external (correctness)
97 /// requirement for sequential layout.
98 ///
99 /// Chains can be built around a single basic block and can be merged to grow
100 /// them. They participate in a block-to-chain mapping, which is updated
101 /// automatically as chains are merged together.
102 class BlockChain {
103   /// \brief The sequence of blocks belonging to this chain.
104   ///
105   /// This is the sequence of blocks for a particular chain. These will be laid
106   /// out in-order within the function.
107   SmallVector<MachineBasicBlock *, 4> Blocks;
108 
109   /// \brief A handle to the function-wide basic block to block chain mapping.
110   ///
111   /// This is retained in each block chain to simplify the computation of child
112   /// block chains for SCC-formation and iteration. We store the edges to child
113   /// basic blocks, and map them back to their associated chains using this
114   /// structure.
115   BlockToChainMapType &BlockToChain;
116 
117 public:
118   /// \brief Construct a new BlockChain.
119   ///
120   /// This builds a new block chain representing a single basic block in the
121   /// function. It also registers itself as the chain that block participates
122   /// in with the BlockToChain mapping.
BlockChain(BlockToChainMapType & BlockToChain,MachineBasicBlock * BB)123   BlockChain(BlockToChainMapType &BlockToChain, MachineBasicBlock *BB)
124       : Blocks(1, BB), BlockToChain(BlockToChain), LoopPredecessors(0) {
125     assert(BB && "Cannot create a chain with a null basic block");
126     BlockToChain[BB] = this;
127   }
128 
129   /// \brief Iterator over blocks within the chain.
130   typedef SmallVectorImpl<MachineBasicBlock *>::iterator iterator;
131 
132   /// \brief Beginning of blocks within the chain.
begin()133   iterator begin() { return Blocks.begin(); }
134 
135   /// \brief End of blocks within the chain.
end()136   iterator end() { return Blocks.end(); }
137 
138   /// \brief Merge a block chain into this one.
139   ///
140   /// This routine merges a block chain into this one. It takes care of forming
141   /// a contiguous sequence of basic blocks, updating the edge list, and
142   /// updating the block -> chain mapping. It does not free or tear down the
143   /// old chain, but the old chain's block list is no longer valid.
merge(MachineBasicBlock * BB,BlockChain * Chain)144   void merge(MachineBasicBlock *BB, BlockChain *Chain) {
145     assert(BB);
146     assert(!Blocks.empty());
147 
148     // Fast path in case we don't have a chain already.
149     if (!Chain) {
150       assert(!BlockToChain[BB]);
151       Blocks.push_back(BB);
152       BlockToChain[BB] = this;
153       return;
154     }
155 
156     assert(BB == *Chain->begin());
157     assert(Chain->begin() != Chain->end());
158 
159     // Update the incoming blocks to point to this chain, and add them to the
160     // chain structure.
161     for (MachineBasicBlock *ChainBB : *Chain) {
162       Blocks.push_back(ChainBB);
163       assert(BlockToChain[ChainBB] == Chain && "Incoming blocks not in chain");
164       BlockToChain[ChainBB] = this;
165     }
166   }
167 
168 #ifndef NDEBUG
169   /// \brief Dump the blocks in this chain.
dump()170   LLVM_DUMP_METHOD void dump() {
171     for (MachineBasicBlock *MBB : *this)
172       MBB->dump();
173   }
174 #endif // NDEBUG
175 
176   /// \brief Count of predecessors within the loop currently being processed.
177   ///
178   /// This count is updated at each loop we process to represent the number of
179   /// in-loop predecessors of this chain.
180   unsigned LoopPredecessors;
181 };
182 }
183 
184 namespace {
185 class MachineBlockPlacement : public MachineFunctionPass {
186   /// \brief A typedef for a block filter set.
187   typedef SmallPtrSet<MachineBasicBlock *, 16> BlockFilterSet;
188 
189   /// \brief A handle to the branch probability pass.
190   const MachineBranchProbabilityInfo *MBPI;
191 
192   /// \brief A handle to the function-wide block frequency pass.
193   const MachineBlockFrequencyInfo *MBFI;
194 
195   /// \brief A handle to the loop info.
196   const MachineLoopInfo *MLI;
197 
198   /// \brief A handle to the target's instruction info.
199   const TargetInstrInfo *TII;
200 
201   /// \brief A handle to the target's lowering info.
202   const TargetLoweringBase *TLI;
203 
204   /// \brief A handle to the post dominator tree.
205   MachineDominatorTree *MDT;
206 
207   /// \brief A set of blocks that are unavoidably execute, i.e. they dominate
208   /// all terminators of the MachineFunction.
209   SmallPtrSet<MachineBasicBlock *, 4> UnavoidableBlocks;
210 
211   /// \brief Allocator and owner of BlockChain structures.
212   ///
213   /// We build BlockChains lazily while processing the loop structure of
214   /// a function. To reduce malloc traffic, we allocate them using this
215   /// slab-like allocator, and destroy them after the pass completes. An
216   /// important guarantee is that this allocator produces stable pointers to
217   /// the chains.
218   SpecificBumpPtrAllocator<BlockChain> ChainAllocator;
219 
220   /// \brief Function wide BasicBlock to BlockChain mapping.
221   ///
222   /// This mapping allows efficiently moving from any given basic block to the
223   /// BlockChain it participates in, if any. We use it to, among other things,
224   /// allow implicitly defining edges between chains as the existing edges
225   /// between basic blocks.
226   DenseMap<MachineBasicBlock *, BlockChain *> BlockToChain;
227 
228   void markChainSuccessors(BlockChain &Chain, MachineBasicBlock *LoopHeaderBB,
229                            SmallVectorImpl<MachineBasicBlock *> &BlockWorkList,
230                            const BlockFilterSet *BlockFilter = nullptr);
231   MachineBasicBlock *selectBestSuccessor(MachineBasicBlock *BB,
232                                          BlockChain &Chain,
233                                          const BlockFilterSet *BlockFilter);
234   MachineBasicBlock *
235   selectBestCandidateBlock(BlockChain &Chain,
236                            SmallVectorImpl<MachineBasicBlock *> &WorkList,
237                            const BlockFilterSet *BlockFilter);
238   MachineBasicBlock *
239   getFirstUnplacedBlock(MachineFunction &F, const BlockChain &PlacedChain,
240                         MachineFunction::iterator &PrevUnplacedBlockIt,
241                         const BlockFilterSet *BlockFilter);
242   void buildChain(MachineBasicBlock *BB, BlockChain &Chain,
243                   SmallVectorImpl<MachineBasicBlock *> &BlockWorkList,
244                   const BlockFilterSet *BlockFilter = nullptr);
245   MachineBasicBlock *findBestLoopTop(MachineLoop &L,
246                                      const BlockFilterSet &LoopBlockSet);
247   MachineBasicBlock *findBestLoopExit(MachineFunction &F, MachineLoop &L,
248                                       const BlockFilterSet &LoopBlockSet);
249   void buildLoopChains(MachineFunction &F, MachineLoop &L);
250   void rotateLoop(BlockChain &LoopChain, MachineBasicBlock *ExitingBB,
251                   const BlockFilterSet &LoopBlockSet);
252   void buildCFGChains(MachineFunction &F);
253 
254 public:
255   static char ID; // Pass identification, replacement for typeid
MachineBlockPlacement()256   MachineBlockPlacement() : MachineFunctionPass(ID) {
257     initializeMachineBlockPlacementPass(*PassRegistry::getPassRegistry());
258   }
259 
260   bool runOnMachineFunction(MachineFunction &F) override;
261 
getAnalysisUsage(AnalysisUsage & AU) const262   void getAnalysisUsage(AnalysisUsage &AU) const override {
263     AU.addRequired<MachineBranchProbabilityInfo>();
264     AU.addRequired<MachineBlockFrequencyInfo>();
265     AU.addRequired<MachineDominatorTree>();
266     AU.addRequired<MachineLoopInfo>();
267     MachineFunctionPass::getAnalysisUsage(AU);
268   }
269 };
270 }
271 
272 char MachineBlockPlacement::ID = 0;
273 char &llvm::MachineBlockPlacementID = MachineBlockPlacement::ID;
274 INITIALIZE_PASS_BEGIN(MachineBlockPlacement, "block-placement",
275                       "Branch Probability Basic Block Placement", false, false)
INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfo)276 INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfo)
277 INITIALIZE_PASS_DEPENDENCY(MachineBlockFrequencyInfo)
278 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
279 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
280 INITIALIZE_PASS_END(MachineBlockPlacement, "block-placement",
281                     "Branch Probability Basic Block Placement", false, false)
282 
283 #ifndef NDEBUG
284 /// \brief Helper to print the name of a MBB.
285 ///
286 /// Only used by debug logging.
287 static std::string getBlockName(MachineBasicBlock *BB) {
288   std::string Result;
289   raw_string_ostream OS(Result);
290   OS << "BB#" << BB->getNumber();
291   OS << " (derived from LLVM BB '" << BB->getName() << "')";
292   OS.flush();
293   return Result;
294 }
295 
296 /// \brief Helper to print the number of a MBB.
297 ///
298 /// Only used by debug logging.
getBlockNum(MachineBasicBlock * BB)299 static std::string getBlockNum(MachineBasicBlock *BB) {
300   std::string Result;
301   raw_string_ostream OS(Result);
302   OS << "BB#" << BB->getNumber();
303   OS.flush();
304   return Result;
305 }
306 #endif
307 
308 /// \brief Mark a chain's successors as having one fewer preds.
309 ///
310 /// When a chain is being merged into the "placed" chain, this routine will
311 /// quickly walk the successors of each block in the chain and mark them as
312 /// having one fewer active predecessor. It also adds any successors of this
313 /// chain which reach the zero-predecessor state to the worklist passed in.
markChainSuccessors(BlockChain & Chain,MachineBasicBlock * LoopHeaderBB,SmallVectorImpl<MachineBasicBlock * > & BlockWorkList,const BlockFilterSet * BlockFilter)314 void MachineBlockPlacement::markChainSuccessors(
315     BlockChain &Chain, MachineBasicBlock *LoopHeaderBB,
316     SmallVectorImpl<MachineBasicBlock *> &BlockWorkList,
317     const BlockFilterSet *BlockFilter) {
318   // Walk all the blocks in this chain, marking their successors as having
319   // a predecessor placed.
320   for (MachineBasicBlock *MBB : Chain) {
321     // Add any successors for which this is the only un-placed in-loop
322     // predecessor to the worklist as a viable candidate for CFG-neutral
323     // placement. No subsequent placement of this block will violate the CFG
324     // shape, so we get to use heuristics to choose a favorable placement.
325     for (MachineBasicBlock *Succ : MBB->successors()) {
326       if (BlockFilter && !BlockFilter->count(Succ))
327         continue;
328       BlockChain &SuccChain = *BlockToChain[Succ];
329       // Disregard edges within a fixed chain, or edges to the loop header.
330       if (&Chain == &SuccChain || Succ == LoopHeaderBB)
331         continue;
332 
333       // This is a cross-chain edge that is within the loop, so decrement the
334       // loop predecessor count of the destination chain.
335       if (SuccChain.LoopPredecessors > 0 && --SuccChain.LoopPredecessors == 0)
336         BlockWorkList.push_back(*SuccChain.begin());
337     }
338   }
339 }
340 
341 /// \brief Select the best successor for a block.
342 ///
343 /// This looks across all successors of a particular block and attempts to
344 /// select the "best" one to be the layout successor. It only considers direct
345 /// successors which also pass the block filter. It will attempt to avoid
346 /// breaking CFG structure, but cave and break such structures in the case of
347 /// very hot successor edges.
348 ///
349 /// \returns The best successor block found, or null if none are viable.
350 MachineBasicBlock *
selectBestSuccessor(MachineBasicBlock * BB,BlockChain & Chain,const BlockFilterSet * BlockFilter)351 MachineBlockPlacement::selectBestSuccessor(MachineBasicBlock *BB,
352                                            BlockChain &Chain,
353                                            const BlockFilterSet *BlockFilter) {
354   const BranchProbability HotProb(4, 5); // 80%
355 
356   MachineBasicBlock *BestSucc = nullptr;
357   // FIXME: Due to the performance of the probability and weight routines in
358   // the MBPI analysis, we manually compute probabilities using the edge
359   // weights. This is suboptimal as it means that the somewhat subtle
360   // definition of edge weight semantics is encoded here as well. We should
361   // improve the MBPI interface to efficiently support query patterns such as
362   // this.
363   uint32_t BestWeight = 0;
364   uint32_t WeightScale = 0;
365   uint32_t SumWeight = MBPI->getSumForBlock(BB, WeightScale);
366   DEBUG(dbgs() << "Attempting merge from: " << getBlockName(BB) << "\n");
367   for (MachineBasicBlock *Succ : BB->successors()) {
368     if (BlockFilter && !BlockFilter->count(Succ))
369       continue;
370     BlockChain &SuccChain = *BlockToChain[Succ];
371     if (&SuccChain == &Chain) {
372       DEBUG(dbgs() << "    " << getBlockName(Succ) << " -> Already merged!\n");
373       continue;
374     }
375     if (Succ != *SuccChain.begin()) {
376       DEBUG(dbgs() << "    " << getBlockName(Succ) << " -> Mid chain!\n");
377       continue;
378     }
379 
380     uint32_t SuccWeight = MBPI->getEdgeWeight(BB, Succ);
381     BranchProbability SuccProb(SuccWeight / WeightScale, SumWeight);
382 
383     // If we outline optional branches, look whether Succ is unavoidable, i.e.
384     // dominates all terminators of the MachineFunction. If it does, other
385     // successors must be optional. Don't do this for cold branches.
386     if (OutlineOptionalBranches && SuccProb > HotProb.getCompl() &&
387         UnavoidableBlocks.count(Succ) > 0) {
388       auto HasShortOptionalBranch = [&]() {
389         for (MachineBasicBlock *Pred : Succ->predecessors()) {
390           // Check whether there is an unplaced optional branch.
391           if (Pred == Succ || (BlockFilter && !BlockFilter->count(Pred)) ||
392               BlockToChain[Pred] == &Chain)
393             continue;
394           // Check whether the optional branch has exactly one BB.
395           if (Pred->pred_size() > 1 || *Pred->pred_begin() != BB)
396             continue;
397           // Check whether the optional branch is small.
398           if (Pred->size() < OutlineOptionalThreshold)
399             return true;
400         }
401         return false;
402       };
403       if (!HasShortOptionalBranch())
404         return Succ;
405     }
406 
407     // Only consider successors which are either "hot", or wouldn't violate
408     // any CFG constraints.
409     if (SuccChain.LoopPredecessors != 0) {
410       if (SuccProb < HotProb) {
411         DEBUG(dbgs() << "    " << getBlockName(Succ) << " -> " << SuccProb
412                      << " (prob) (CFG conflict)\n");
413         continue;
414       }
415 
416       // Make sure that a hot successor doesn't have a globally more
417       // important predecessor.
418       BlockFrequency CandidateEdgeFreq =
419           MBFI->getBlockFreq(BB) * SuccProb * HotProb.getCompl();
420       bool BadCFGConflict = false;
421       for (MachineBasicBlock *Pred : Succ->predecessors()) {
422         if (Pred == Succ || (BlockFilter && !BlockFilter->count(Pred)) ||
423             BlockToChain[Pred] == &Chain)
424           continue;
425         BlockFrequency PredEdgeFreq =
426             MBFI->getBlockFreq(Pred) * MBPI->getEdgeProbability(Pred, Succ);
427         if (PredEdgeFreq >= CandidateEdgeFreq) {
428           BadCFGConflict = true;
429           break;
430         }
431       }
432       if (BadCFGConflict) {
433         DEBUG(dbgs() << "    " << getBlockName(Succ) << " -> " << SuccProb
434                      << " (prob) (non-cold CFG conflict)\n");
435         continue;
436       }
437     }
438 
439     DEBUG(dbgs() << "    " << getBlockName(Succ) << " -> " << SuccProb
440                  << " (prob)"
441                  << (SuccChain.LoopPredecessors != 0 ? " (CFG break)" : "")
442                  << "\n");
443     if (BestSucc && BestWeight >= SuccWeight)
444       continue;
445     BestSucc = Succ;
446     BestWeight = SuccWeight;
447   }
448   return BestSucc;
449 }
450 
451 /// \brief Select the best block from a worklist.
452 ///
453 /// This looks through the provided worklist as a list of candidate basic
454 /// blocks and select the most profitable one to place. The definition of
455 /// profitable only really makes sense in the context of a loop. This returns
456 /// the most frequently visited block in the worklist, which in the case of
457 /// a loop, is the one most desirable to be physically close to the rest of the
458 /// loop body in order to improve icache behavior.
459 ///
460 /// \returns The best block found, or null if none are viable.
selectBestCandidateBlock(BlockChain & Chain,SmallVectorImpl<MachineBasicBlock * > & WorkList,const BlockFilterSet * BlockFilter)461 MachineBasicBlock *MachineBlockPlacement::selectBestCandidateBlock(
462     BlockChain &Chain, SmallVectorImpl<MachineBasicBlock *> &WorkList,
463     const BlockFilterSet *BlockFilter) {
464   // Once we need to walk the worklist looking for a candidate, cleanup the
465   // worklist of already placed entries.
466   // FIXME: If this shows up on profiles, it could be folded (at the cost of
467   // some code complexity) into the loop below.
468   WorkList.erase(std::remove_if(WorkList.begin(), WorkList.end(),
469                                 [&](MachineBasicBlock *BB) {
470                                   return BlockToChain.lookup(BB) == &Chain;
471                                 }),
472                  WorkList.end());
473 
474   MachineBasicBlock *BestBlock = nullptr;
475   BlockFrequency BestFreq;
476   for (MachineBasicBlock *MBB : WorkList) {
477     BlockChain &SuccChain = *BlockToChain[MBB];
478     if (&SuccChain == &Chain) {
479       DEBUG(dbgs() << "    " << getBlockName(MBB) << " -> Already merged!\n");
480       continue;
481     }
482     assert(SuccChain.LoopPredecessors == 0 && "Found CFG-violating block");
483 
484     BlockFrequency CandidateFreq = MBFI->getBlockFreq(MBB);
485     DEBUG(dbgs() << "    " << getBlockName(MBB) << " -> ";
486           MBFI->printBlockFreq(dbgs(), CandidateFreq) << " (freq)\n");
487     if (BestBlock && BestFreq >= CandidateFreq)
488       continue;
489     BestBlock = MBB;
490     BestFreq = CandidateFreq;
491   }
492   return BestBlock;
493 }
494 
495 /// \brief Retrieve the first unplaced basic block.
496 ///
497 /// This routine is called when we are unable to use the CFG to walk through
498 /// all of the basic blocks and form a chain due to unnatural loops in the CFG.
499 /// We walk through the function's blocks in order, starting from the
500 /// LastUnplacedBlockIt. We update this iterator on each call to avoid
501 /// re-scanning the entire sequence on repeated calls to this routine.
getFirstUnplacedBlock(MachineFunction & F,const BlockChain & PlacedChain,MachineFunction::iterator & PrevUnplacedBlockIt,const BlockFilterSet * BlockFilter)502 MachineBasicBlock *MachineBlockPlacement::getFirstUnplacedBlock(
503     MachineFunction &F, const BlockChain &PlacedChain,
504     MachineFunction::iterator &PrevUnplacedBlockIt,
505     const BlockFilterSet *BlockFilter) {
506   for (MachineFunction::iterator I = PrevUnplacedBlockIt, E = F.end(); I != E;
507        ++I) {
508     if (BlockFilter && !BlockFilter->count(I))
509       continue;
510     if (BlockToChain[I] != &PlacedChain) {
511       PrevUnplacedBlockIt = I;
512       // Now select the head of the chain to which the unplaced block belongs
513       // as the block to place. This will force the entire chain to be placed,
514       // and satisfies the requirements of merging chains.
515       return *BlockToChain[I]->begin();
516     }
517   }
518   return nullptr;
519 }
520 
buildChain(MachineBasicBlock * BB,BlockChain & Chain,SmallVectorImpl<MachineBasicBlock * > & BlockWorkList,const BlockFilterSet * BlockFilter)521 void MachineBlockPlacement::buildChain(
522     MachineBasicBlock *BB, BlockChain &Chain,
523     SmallVectorImpl<MachineBasicBlock *> &BlockWorkList,
524     const BlockFilterSet *BlockFilter) {
525   assert(BB);
526   assert(BlockToChain[BB] == &Chain);
527   MachineFunction &F = *BB->getParent();
528   MachineFunction::iterator PrevUnplacedBlockIt = F.begin();
529 
530   MachineBasicBlock *LoopHeaderBB = BB;
531   markChainSuccessors(Chain, LoopHeaderBB, BlockWorkList, BlockFilter);
532   BB = *std::prev(Chain.end());
533   for (;;) {
534     assert(BB);
535     assert(BlockToChain[BB] == &Chain);
536     assert(*std::prev(Chain.end()) == BB);
537 
538     // Look for the best viable successor if there is one to place immediately
539     // after this block.
540     MachineBasicBlock *BestSucc = selectBestSuccessor(BB, Chain, BlockFilter);
541 
542     // If an immediate successor isn't available, look for the best viable
543     // block among those we've identified as not violating the loop's CFG at
544     // this point. This won't be a fallthrough, but it will increase locality.
545     if (!BestSucc)
546       BestSucc = selectBestCandidateBlock(Chain, BlockWorkList, BlockFilter);
547 
548     if (!BestSucc) {
549       BestSucc =
550           getFirstUnplacedBlock(F, Chain, PrevUnplacedBlockIt, BlockFilter);
551       if (!BestSucc)
552         break;
553 
554       DEBUG(dbgs() << "Unnatural loop CFG detected, forcibly merging the "
555                       "layout successor until the CFG reduces\n");
556     }
557 
558     // Place this block, updating the datastructures to reflect its placement.
559     BlockChain &SuccChain = *BlockToChain[BestSucc];
560     // Zero out LoopPredecessors for the successor we're about to merge in case
561     // we selected a successor that didn't fit naturally into the CFG.
562     SuccChain.LoopPredecessors = 0;
563     DEBUG(dbgs() << "Merging from " << getBlockNum(BB) << " to "
564                  << getBlockNum(BestSucc) << "\n");
565     markChainSuccessors(SuccChain, LoopHeaderBB, BlockWorkList, BlockFilter);
566     Chain.merge(BestSucc, &SuccChain);
567     BB = *std::prev(Chain.end());
568   }
569 
570   DEBUG(dbgs() << "Finished forming chain for header block "
571                << getBlockNum(*Chain.begin()) << "\n");
572 }
573 
574 /// \brief Find the best loop top block for layout.
575 ///
576 /// Look for a block which is strictly better than the loop header for laying
577 /// out at the top of the loop. This looks for one and only one pattern:
578 /// a latch block with no conditional exit. This block will cause a conditional
579 /// jump around it or will be the bottom of the loop if we lay it out in place,
580 /// but if it it doesn't end up at the bottom of the loop for any reason,
581 /// rotation alone won't fix it. Because such a block will always result in an
582 /// unconditional jump (for the backedge) rotating it in front of the loop
583 /// header is always profitable.
584 MachineBasicBlock *
findBestLoopTop(MachineLoop & L,const BlockFilterSet & LoopBlockSet)585 MachineBlockPlacement::findBestLoopTop(MachineLoop &L,
586                                        const BlockFilterSet &LoopBlockSet) {
587   // Check that the header hasn't been fused with a preheader block due to
588   // crazy branches. If it has, we need to start with the header at the top to
589   // prevent pulling the preheader into the loop body.
590   BlockChain &HeaderChain = *BlockToChain[L.getHeader()];
591   if (!LoopBlockSet.count(*HeaderChain.begin()))
592     return L.getHeader();
593 
594   DEBUG(dbgs() << "Finding best loop top for: " << getBlockName(L.getHeader())
595                << "\n");
596 
597   BlockFrequency BestPredFreq;
598   MachineBasicBlock *BestPred = nullptr;
599   for (MachineBasicBlock *Pred : L.getHeader()->predecessors()) {
600     if (!LoopBlockSet.count(Pred))
601       continue;
602     DEBUG(dbgs() << "    header pred: " << getBlockName(Pred) << ", "
603                  << Pred->succ_size() << " successors, ";
604           MBFI->printBlockFreq(dbgs(), Pred) << " freq\n");
605     if (Pred->succ_size() > 1)
606       continue;
607 
608     BlockFrequency PredFreq = MBFI->getBlockFreq(Pred);
609     if (!BestPred || PredFreq > BestPredFreq ||
610         (!(PredFreq < BestPredFreq) &&
611          Pred->isLayoutSuccessor(L.getHeader()))) {
612       BestPred = Pred;
613       BestPredFreq = PredFreq;
614     }
615   }
616 
617   // If no direct predecessor is fine, just use the loop header.
618   if (!BestPred)
619     return L.getHeader();
620 
621   // Walk backwards through any straight line of predecessors.
622   while (BestPred->pred_size() == 1 &&
623          (*BestPred->pred_begin())->succ_size() == 1 &&
624          *BestPred->pred_begin() != L.getHeader())
625     BestPred = *BestPred->pred_begin();
626 
627   DEBUG(dbgs() << "    final top: " << getBlockName(BestPred) << "\n");
628   return BestPred;
629 }
630 
631 /// \brief Find the best loop exiting block for layout.
632 ///
633 /// This routine implements the logic to analyze the loop looking for the best
634 /// block to layout at the top of the loop. Typically this is done to maximize
635 /// fallthrough opportunities.
636 MachineBasicBlock *
findBestLoopExit(MachineFunction & F,MachineLoop & L,const BlockFilterSet & LoopBlockSet)637 MachineBlockPlacement::findBestLoopExit(MachineFunction &F, MachineLoop &L,
638                                         const BlockFilterSet &LoopBlockSet) {
639   // We don't want to layout the loop linearly in all cases. If the loop header
640   // is just a normal basic block in the loop, we want to look for what block
641   // within the loop is the best one to layout at the top. However, if the loop
642   // header has be pre-merged into a chain due to predecessors not having
643   // analyzable branches, *and* the predecessor it is merged with is *not* part
644   // of the loop, rotating the header into the middle of the loop will create
645   // a non-contiguous range of blocks which is Very Bad. So start with the
646   // header and only rotate if safe.
647   BlockChain &HeaderChain = *BlockToChain[L.getHeader()];
648   if (!LoopBlockSet.count(*HeaderChain.begin()))
649     return nullptr;
650 
651   BlockFrequency BestExitEdgeFreq;
652   unsigned BestExitLoopDepth = 0;
653   MachineBasicBlock *ExitingBB = nullptr;
654   // If there are exits to outer loops, loop rotation can severely limit
655   // fallthrough opportunites unless it selects such an exit. Keep a set of
656   // blocks where rotating to exit with that block will reach an outer loop.
657   SmallPtrSet<MachineBasicBlock *, 4> BlocksExitingToOuterLoop;
658 
659   DEBUG(dbgs() << "Finding best loop exit for: " << getBlockName(L.getHeader())
660                << "\n");
661   for (MachineBasicBlock *MBB : L.getBlocks()) {
662     BlockChain &Chain = *BlockToChain[MBB];
663     // Ensure that this block is at the end of a chain; otherwise it could be
664     // mid-way through an inner loop or a successor of an unanalyzable branch.
665     if (MBB != *std::prev(Chain.end()))
666       continue;
667 
668     // Now walk the successors. We need to establish whether this has a viable
669     // exiting successor and whether it has a viable non-exiting successor.
670     // We store the old exiting state and restore it if a viable looping
671     // successor isn't found.
672     MachineBasicBlock *OldExitingBB = ExitingBB;
673     BlockFrequency OldBestExitEdgeFreq = BestExitEdgeFreq;
674     bool HasLoopingSucc = false;
675     // FIXME: Due to the performance of the probability and weight routines in
676     // the MBPI analysis, we use the internal weights and manually compute the
677     // probabilities to avoid quadratic behavior.
678     uint32_t WeightScale = 0;
679     uint32_t SumWeight = MBPI->getSumForBlock(MBB, WeightScale);
680     for (MachineBasicBlock *Succ : MBB->successors()) {
681       if (Succ->isLandingPad())
682         continue;
683       if (Succ == MBB)
684         continue;
685       BlockChain &SuccChain = *BlockToChain[Succ];
686       // Don't split chains, either this chain or the successor's chain.
687       if (&Chain == &SuccChain) {
688         DEBUG(dbgs() << "    exiting: " << getBlockName(MBB) << " -> "
689                      << getBlockName(Succ) << " (chain conflict)\n");
690         continue;
691       }
692 
693       uint32_t SuccWeight = MBPI->getEdgeWeight(MBB, Succ);
694       if (LoopBlockSet.count(Succ)) {
695         DEBUG(dbgs() << "    looping: " << getBlockName(MBB) << " -> "
696                      << getBlockName(Succ) << " (" << SuccWeight << ")\n");
697         HasLoopingSucc = true;
698         continue;
699       }
700 
701       unsigned SuccLoopDepth = 0;
702       if (MachineLoop *ExitLoop = MLI->getLoopFor(Succ)) {
703         SuccLoopDepth = ExitLoop->getLoopDepth();
704         if (ExitLoop->contains(&L))
705           BlocksExitingToOuterLoop.insert(MBB);
706       }
707 
708       BranchProbability SuccProb(SuccWeight / WeightScale, SumWeight);
709       BlockFrequency ExitEdgeFreq = MBFI->getBlockFreq(MBB) * SuccProb;
710       DEBUG(dbgs() << "    exiting: " << getBlockName(MBB) << " -> "
711                    << getBlockName(Succ) << " [L:" << SuccLoopDepth << "] (";
712             MBFI->printBlockFreq(dbgs(), ExitEdgeFreq) << ")\n");
713       // Note that we bias this toward an existing layout successor to retain
714       // incoming order in the absence of better information. The exit must have
715       // a frequency higher than the current exit before we consider breaking
716       // the layout.
717       BranchProbability Bias(100 - ExitBlockBias, 100);
718       if (!ExitingBB || SuccLoopDepth > BestExitLoopDepth ||
719           ExitEdgeFreq > BestExitEdgeFreq ||
720           (MBB->isLayoutSuccessor(Succ) &&
721            !(ExitEdgeFreq < BestExitEdgeFreq * Bias))) {
722         BestExitEdgeFreq = ExitEdgeFreq;
723         ExitingBB = MBB;
724       }
725     }
726 
727     if (!HasLoopingSucc) {
728       // Restore the old exiting state, no viable looping successor was found.
729       ExitingBB = OldExitingBB;
730       BestExitEdgeFreq = OldBestExitEdgeFreq;
731       continue;
732     }
733   }
734   // Without a candidate exiting block or with only a single block in the
735   // loop, just use the loop header to layout the loop.
736   if (!ExitingBB || L.getNumBlocks() == 1)
737     return nullptr;
738 
739   // Also, if we have exit blocks which lead to outer loops but didn't select
740   // one of them as the exiting block we are rotating toward, disable loop
741   // rotation altogether.
742   if (!BlocksExitingToOuterLoop.empty() &&
743       !BlocksExitingToOuterLoop.count(ExitingBB))
744     return nullptr;
745 
746   DEBUG(dbgs() << "  Best exiting block: " << getBlockName(ExitingBB) << "\n");
747   return ExitingBB;
748 }
749 
750 /// \brief Attempt to rotate an exiting block to the bottom of the loop.
751 ///
752 /// Once we have built a chain, try to rotate it to line up the hot exit block
753 /// with fallthrough out of the loop if doing so doesn't introduce unnecessary
754 /// branches. For example, if the loop has fallthrough into its header and out
755 /// of its bottom already, don't rotate it.
rotateLoop(BlockChain & LoopChain,MachineBasicBlock * ExitingBB,const BlockFilterSet & LoopBlockSet)756 void MachineBlockPlacement::rotateLoop(BlockChain &LoopChain,
757                                        MachineBasicBlock *ExitingBB,
758                                        const BlockFilterSet &LoopBlockSet) {
759   if (!ExitingBB)
760     return;
761 
762   MachineBasicBlock *Top = *LoopChain.begin();
763   bool ViableTopFallthrough = false;
764   for (MachineBasicBlock *Pred : Top->predecessors()) {
765     BlockChain *PredChain = BlockToChain[Pred];
766     if (!LoopBlockSet.count(Pred) &&
767         (!PredChain || Pred == *std::prev(PredChain->end()))) {
768       ViableTopFallthrough = true;
769       break;
770     }
771   }
772 
773   // If the header has viable fallthrough, check whether the current loop
774   // bottom is a viable exiting block. If so, bail out as rotating will
775   // introduce an unnecessary branch.
776   if (ViableTopFallthrough) {
777     MachineBasicBlock *Bottom = *std::prev(LoopChain.end());
778     for (MachineBasicBlock *Succ : Bottom->successors()) {
779       BlockChain *SuccChain = BlockToChain[Succ];
780       if (!LoopBlockSet.count(Succ) &&
781           (!SuccChain || Succ == *SuccChain->begin()))
782         return;
783     }
784   }
785 
786   BlockChain::iterator ExitIt =
787       std::find(LoopChain.begin(), LoopChain.end(), ExitingBB);
788   if (ExitIt == LoopChain.end())
789     return;
790 
791   std::rotate(LoopChain.begin(), std::next(ExitIt), LoopChain.end());
792 }
793 
794 /// \brief Forms basic block chains from the natural loop structures.
795 ///
796 /// These chains are designed to preserve the existing *structure* of the code
797 /// as much as possible. We can then stitch the chains together in a way which
798 /// both preserves the topological structure and minimizes taken conditional
799 /// branches.
buildLoopChains(MachineFunction & F,MachineLoop & L)800 void MachineBlockPlacement::buildLoopChains(MachineFunction &F,
801                                             MachineLoop &L) {
802   // First recurse through any nested loops, building chains for those inner
803   // loops.
804   for (MachineLoop *InnerLoop : L)
805     buildLoopChains(F, *InnerLoop);
806 
807   SmallVector<MachineBasicBlock *, 16> BlockWorkList;
808   BlockFilterSet LoopBlockSet(L.block_begin(), L.block_end());
809 
810   // First check to see if there is an obviously preferable top block for the
811   // loop. This will default to the header, but may end up as one of the
812   // predecessors to the header if there is one which will result in strictly
813   // fewer branches in the loop body.
814   MachineBasicBlock *LoopTop = findBestLoopTop(L, LoopBlockSet);
815 
816   // If we selected just the header for the loop top, look for a potentially
817   // profitable exit block in the event that rotating the loop can eliminate
818   // branches by placing an exit edge at the bottom.
819   MachineBasicBlock *ExitingBB = nullptr;
820   if (LoopTop == L.getHeader())
821     ExitingBB = findBestLoopExit(F, L, LoopBlockSet);
822 
823   BlockChain &LoopChain = *BlockToChain[LoopTop];
824 
825   // FIXME: This is a really lame way of walking the chains in the loop: we
826   // walk the blocks, and use a set to prevent visiting a particular chain
827   // twice.
828   SmallPtrSet<BlockChain *, 4> UpdatedPreds;
829   assert(LoopChain.LoopPredecessors == 0);
830   UpdatedPreds.insert(&LoopChain);
831   for (MachineBasicBlock *LoopBB : L.getBlocks()) {
832     BlockChain &Chain = *BlockToChain[LoopBB];
833     if (!UpdatedPreds.insert(&Chain).second)
834       continue;
835 
836     assert(Chain.LoopPredecessors == 0);
837     for (MachineBasicBlock *ChainBB : Chain) {
838       assert(BlockToChain[ChainBB] == &Chain);
839       for (MachineBasicBlock *Pred : ChainBB->predecessors()) {
840         if (BlockToChain[Pred] == &Chain || !LoopBlockSet.count(Pred))
841           continue;
842         ++Chain.LoopPredecessors;
843       }
844     }
845 
846     if (Chain.LoopPredecessors == 0)
847       BlockWorkList.push_back(*Chain.begin());
848   }
849 
850   buildChain(LoopTop, LoopChain, BlockWorkList, &LoopBlockSet);
851   rotateLoop(LoopChain, ExitingBB, LoopBlockSet);
852 
853   DEBUG({
854     // Crash at the end so we get all of the debugging output first.
855     bool BadLoop = false;
856     if (LoopChain.LoopPredecessors) {
857       BadLoop = true;
858       dbgs() << "Loop chain contains a block without its preds placed!\n"
859              << "  Loop header:  " << getBlockName(*L.block_begin()) << "\n"
860              << "  Chain header: " << getBlockName(*LoopChain.begin()) << "\n";
861     }
862     for (MachineBasicBlock *ChainBB : LoopChain) {
863       dbgs() << "          ... " << getBlockName(ChainBB) << "\n";
864       if (!LoopBlockSet.erase(ChainBB)) {
865         // We don't mark the loop as bad here because there are real situations
866         // where this can occur. For example, with an unanalyzable fallthrough
867         // from a loop block to a non-loop block or vice versa.
868         dbgs() << "Loop chain contains a block not contained by the loop!\n"
869                << "  Loop header:  " << getBlockName(*L.block_begin()) << "\n"
870                << "  Chain header: " << getBlockName(*LoopChain.begin()) << "\n"
871                << "  Bad block:    " << getBlockName(ChainBB) << "\n";
872       }
873     }
874 
875     if (!LoopBlockSet.empty()) {
876       BadLoop = true;
877       for (MachineBasicBlock *LoopBB : LoopBlockSet)
878         dbgs() << "Loop contains blocks never placed into a chain!\n"
879                << "  Loop header:  " << getBlockName(*L.block_begin()) << "\n"
880                << "  Chain header: " << getBlockName(*LoopChain.begin()) << "\n"
881                << "  Bad block:    " << getBlockName(LoopBB) << "\n";
882     }
883     assert(!BadLoop && "Detected problems with the placement of this loop.");
884   });
885 }
886 
buildCFGChains(MachineFunction & F)887 void MachineBlockPlacement::buildCFGChains(MachineFunction &F) {
888   // Ensure that every BB in the function has an associated chain to simplify
889   // the assumptions of the remaining algorithm.
890   SmallVector<MachineOperand, 4> Cond; // For AnalyzeBranch.
891   for (MachineFunction::iterator FI = F.begin(), FE = F.end(); FI != FE; ++FI) {
892     MachineBasicBlock *BB = FI;
893     BlockChain *Chain =
894         new (ChainAllocator.Allocate()) BlockChain(BlockToChain, BB);
895     // Also, merge any blocks which we cannot reason about and must preserve
896     // the exact fallthrough behavior for.
897     for (;;) {
898       Cond.clear();
899       MachineBasicBlock *TBB = nullptr, *FBB = nullptr; // For AnalyzeBranch.
900       if (!TII->AnalyzeBranch(*BB, TBB, FBB, Cond) || !FI->canFallThrough())
901         break;
902 
903       MachineFunction::iterator NextFI(std::next(FI));
904       MachineBasicBlock *NextBB = NextFI;
905       // Ensure that the layout successor is a viable block, as we know that
906       // fallthrough is a possibility.
907       assert(NextFI != FE && "Can't fallthrough past the last block.");
908       DEBUG(dbgs() << "Pre-merging due to unanalyzable fallthrough: "
909                    << getBlockName(BB) << " -> " << getBlockName(NextBB)
910                    << "\n");
911       Chain->merge(NextBB, nullptr);
912       FI = NextFI;
913       BB = NextBB;
914     }
915   }
916 
917   if (OutlineOptionalBranches) {
918     // Find the nearest common dominator of all of F's terminators.
919     MachineBasicBlock *Terminator = nullptr;
920     for (MachineBasicBlock &MBB : F) {
921       if (MBB.succ_size() == 0) {
922         if (Terminator == nullptr)
923           Terminator = &MBB;
924         else
925           Terminator = MDT->findNearestCommonDominator(Terminator, &MBB);
926       }
927     }
928 
929     // MBBs dominating this common dominator are unavoidable.
930     UnavoidableBlocks.clear();
931     for (MachineBasicBlock &MBB : F) {
932       if (MDT->dominates(&MBB, Terminator)) {
933         UnavoidableBlocks.insert(&MBB);
934       }
935     }
936   }
937 
938   // Build any loop-based chains.
939   for (MachineLoop *L : *MLI)
940     buildLoopChains(F, *L);
941 
942   SmallVector<MachineBasicBlock *, 16> BlockWorkList;
943 
944   SmallPtrSet<BlockChain *, 4> UpdatedPreds;
945   for (MachineBasicBlock &MBB : F) {
946     BlockChain &Chain = *BlockToChain[&MBB];
947     if (!UpdatedPreds.insert(&Chain).second)
948       continue;
949 
950     assert(Chain.LoopPredecessors == 0);
951     for (MachineBasicBlock *ChainBB : Chain) {
952       assert(BlockToChain[ChainBB] == &Chain);
953       for (MachineBasicBlock *Pred : ChainBB->predecessors()) {
954         if (BlockToChain[Pred] == &Chain)
955           continue;
956         ++Chain.LoopPredecessors;
957       }
958     }
959 
960     if (Chain.LoopPredecessors == 0)
961       BlockWorkList.push_back(*Chain.begin());
962   }
963 
964   BlockChain &FunctionChain = *BlockToChain[&F.front()];
965   buildChain(&F.front(), FunctionChain, BlockWorkList);
966 
967 #ifndef NDEBUG
968   typedef SmallPtrSet<MachineBasicBlock *, 16> FunctionBlockSetType;
969 #endif
970   DEBUG({
971     // Crash at the end so we get all of the debugging output first.
972     bool BadFunc = false;
973     FunctionBlockSetType FunctionBlockSet;
974     for (MachineBasicBlock &MBB : F)
975       FunctionBlockSet.insert(&MBB);
976 
977     for (MachineBasicBlock *ChainBB : FunctionChain)
978       if (!FunctionBlockSet.erase(ChainBB)) {
979         BadFunc = true;
980         dbgs() << "Function chain contains a block not in the function!\n"
981                << "  Bad block:    " << getBlockName(ChainBB) << "\n";
982       }
983 
984     if (!FunctionBlockSet.empty()) {
985       BadFunc = true;
986       for (MachineBasicBlock *RemainingBB : FunctionBlockSet)
987         dbgs() << "Function contains blocks never placed into a chain!\n"
988                << "  Bad block:    " << getBlockName(RemainingBB) << "\n";
989     }
990     assert(!BadFunc && "Detected problems with the block placement.");
991   });
992 
993   // Splice the blocks into place.
994   MachineFunction::iterator InsertPos = F.begin();
995   for (MachineBasicBlock *ChainBB : FunctionChain) {
996     DEBUG(dbgs() << (ChainBB == *FunctionChain.begin() ? "Placing chain "
997                                                        : "          ... ")
998                  << getBlockName(ChainBB) << "\n");
999     if (InsertPos != MachineFunction::iterator(ChainBB))
1000       F.splice(InsertPos, ChainBB);
1001     else
1002       ++InsertPos;
1003 
1004     // Update the terminator of the previous block.
1005     if (ChainBB == *FunctionChain.begin())
1006       continue;
1007     MachineBasicBlock *PrevBB = std::prev(MachineFunction::iterator(ChainBB));
1008 
1009     // FIXME: It would be awesome of updateTerminator would just return rather
1010     // than assert when the branch cannot be analyzed in order to remove this
1011     // boiler plate.
1012     Cond.clear();
1013     MachineBasicBlock *TBB = nullptr, *FBB = nullptr; // For AnalyzeBranch.
1014     if (!TII->AnalyzeBranch(*PrevBB, TBB, FBB, Cond)) {
1015       // The "PrevBB" is not yet updated to reflect current code layout, so,
1016       //   o. it may fall-through to a block without explict "goto" instruction
1017       //      before layout, and no longer fall-through it after layout; or
1018       //   o. just opposite.
1019       //
1020       // AnalyzeBranch() may return erroneous value for FBB when these two
1021       // situations take place. For the first scenario FBB is mistakenly set
1022       // NULL; for the 2nd scenario, the FBB, which is expected to be NULL,
1023       // is mistakenly pointing to "*BI".
1024       //
1025       bool needUpdateBr = true;
1026       if (!Cond.empty() && (!FBB || FBB == ChainBB)) {
1027         PrevBB->updateTerminator();
1028         needUpdateBr = false;
1029         Cond.clear();
1030         TBB = FBB = nullptr;
1031         if (TII->AnalyzeBranch(*PrevBB, TBB, FBB, Cond)) {
1032           // FIXME: This should never take place.
1033           TBB = FBB = nullptr;
1034         }
1035       }
1036 
1037       // If PrevBB has a two-way branch, try to re-order the branches
1038       // such that we branch to the successor with higher weight first.
1039       if (TBB && !Cond.empty() && FBB &&
1040           MBPI->getEdgeWeight(PrevBB, FBB) > MBPI->getEdgeWeight(PrevBB, TBB) &&
1041           !TII->ReverseBranchCondition(Cond)) {
1042         DEBUG(dbgs() << "Reverse order of the two branches: "
1043                      << getBlockName(PrevBB) << "\n");
1044         DEBUG(dbgs() << "    Edge weight: " << MBPI->getEdgeWeight(PrevBB, FBB)
1045                      << " vs " << MBPI->getEdgeWeight(PrevBB, TBB) << "\n");
1046         DebugLoc dl; // FIXME: this is nowhere
1047         TII->RemoveBranch(*PrevBB);
1048         TII->InsertBranch(*PrevBB, FBB, TBB, Cond, dl);
1049         needUpdateBr = true;
1050       }
1051       if (needUpdateBr)
1052         PrevBB->updateTerminator();
1053     }
1054   }
1055 
1056   // Fixup the last block.
1057   Cond.clear();
1058   MachineBasicBlock *TBB = nullptr, *FBB = nullptr; // For AnalyzeBranch.
1059   if (!TII->AnalyzeBranch(F.back(), TBB, FBB, Cond))
1060     F.back().updateTerminator();
1061 
1062   // Walk through the backedges of the function now that we have fully laid out
1063   // the basic blocks and align the destination of each backedge. We don't rely
1064   // exclusively on the loop info here so that we can align backedges in
1065   // unnatural CFGs and backedges that were introduced purely because of the
1066   // loop rotations done during this layout pass.
1067   if (F.getFunction()->hasFnAttribute(Attribute::OptimizeForSize))
1068     return;
1069   if (FunctionChain.begin() == FunctionChain.end())
1070     return; // Empty chain.
1071 
1072   const BranchProbability ColdProb(1, 5); // 20%
1073   BlockFrequency EntryFreq = MBFI->getBlockFreq(F.begin());
1074   BlockFrequency WeightedEntryFreq = EntryFreq * ColdProb;
1075   for (MachineBasicBlock *ChainBB : FunctionChain) {
1076     if (ChainBB == *FunctionChain.begin())
1077       continue;
1078 
1079     // Don't align non-looping basic blocks. These are unlikely to execute
1080     // enough times to matter in practice. Note that we'll still handle
1081     // unnatural CFGs inside of a natural outer loop (the common case) and
1082     // rotated loops.
1083     MachineLoop *L = MLI->getLoopFor(ChainBB);
1084     if (!L)
1085       continue;
1086 
1087     unsigned Align = TLI->getPrefLoopAlignment(L);
1088     if (!Align)
1089       continue; // Don't care about loop alignment.
1090 
1091     // If the block is cold relative to the function entry don't waste space
1092     // aligning it.
1093     BlockFrequency Freq = MBFI->getBlockFreq(ChainBB);
1094     if (Freq < WeightedEntryFreq)
1095       continue;
1096 
1097     // If the block is cold relative to its loop header, don't align it
1098     // regardless of what edges into the block exist.
1099     MachineBasicBlock *LoopHeader = L->getHeader();
1100     BlockFrequency LoopHeaderFreq = MBFI->getBlockFreq(LoopHeader);
1101     if (Freq < (LoopHeaderFreq * ColdProb))
1102       continue;
1103 
1104     // Check for the existence of a non-layout predecessor which would benefit
1105     // from aligning this block.
1106     MachineBasicBlock *LayoutPred =
1107         &*std::prev(MachineFunction::iterator(ChainBB));
1108 
1109     // Force alignment if all the predecessors are jumps. We already checked
1110     // that the block isn't cold above.
1111     if (!LayoutPred->isSuccessor(ChainBB)) {
1112       ChainBB->setAlignment(Align);
1113       continue;
1114     }
1115 
1116     // Align this block if the layout predecessor's edge into this block is
1117     // cold relative to the block. When this is true, other predecessors make up
1118     // all of the hot entries into the block and thus alignment is likely to be
1119     // important.
1120     BranchProbability LayoutProb =
1121         MBPI->getEdgeProbability(LayoutPred, ChainBB);
1122     BlockFrequency LayoutEdgeFreq = MBFI->getBlockFreq(LayoutPred) * LayoutProb;
1123     if (LayoutEdgeFreq <= (Freq * ColdProb))
1124       ChainBB->setAlignment(Align);
1125   }
1126 }
1127 
runOnMachineFunction(MachineFunction & F)1128 bool MachineBlockPlacement::runOnMachineFunction(MachineFunction &F) {
1129   // Check for single-block functions and skip them.
1130   if (std::next(F.begin()) == F.end())
1131     return false;
1132 
1133   if (skipOptnoneFunction(*F.getFunction()))
1134     return false;
1135 
1136   MBPI = &getAnalysis<MachineBranchProbabilityInfo>();
1137   MBFI = &getAnalysis<MachineBlockFrequencyInfo>();
1138   MLI = &getAnalysis<MachineLoopInfo>();
1139   TII = F.getSubtarget().getInstrInfo();
1140   TLI = F.getSubtarget().getTargetLowering();
1141   MDT = &getAnalysis<MachineDominatorTree>();
1142   assert(BlockToChain.empty());
1143 
1144   buildCFGChains(F);
1145 
1146   BlockToChain.clear();
1147   ChainAllocator.DestroyAll();
1148 
1149   if (AlignAllBlock)
1150     // Align all of the blocks in the function to a specific alignment.
1151     for (MachineBasicBlock &MBB : F)
1152       MBB.setAlignment(AlignAllBlock);
1153 
1154   // We always return true as we have no way to track whether the final order
1155   // differs from the original order.
1156   return true;
1157 }
1158 
1159 namespace {
1160 /// \brief A pass to compute block placement statistics.
1161 ///
1162 /// A separate pass to compute interesting statistics for evaluating block
1163 /// placement. This is separate from the actual placement pass so that they can
1164 /// be computed in the absence of any placement transformations or when using
1165 /// alternative placement strategies.
1166 class MachineBlockPlacementStats : public MachineFunctionPass {
1167   /// \brief A handle to the branch probability pass.
1168   const MachineBranchProbabilityInfo *MBPI;
1169 
1170   /// \brief A handle to the function-wide block frequency pass.
1171   const MachineBlockFrequencyInfo *MBFI;
1172 
1173 public:
1174   static char ID; // Pass identification, replacement for typeid
MachineBlockPlacementStats()1175   MachineBlockPlacementStats() : MachineFunctionPass(ID) {
1176     initializeMachineBlockPlacementStatsPass(*PassRegistry::getPassRegistry());
1177   }
1178 
1179   bool runOnMachineFunction(MachineFunction &F) override;
1180 
getAnalysisUsage(AnalysisUsage & AU) const1181   void getAnalysisUsage(AnalysisUsage &AU) const override {
1182     AU.addRequired<MachineBranchProbabilityInfo>();
1183     AU.addRequired<MachineBlockFrequencyInfo>();
1184     AU.setPreservesAll();
1185     MachineFunctionPass::getAnalysisUsage(AU);
1186   }
1187 };
1188 }
1189 
1190 char MachineBlockPlacementStats::ID = 0;
1191 char &llvm::MachineBlockPlacementStatsID = MachineBlockPlacementStats::ID;
1192 INITIALIZE_PASS_BEGIN(MachineBlockPlacementStats, "block-placement-stats",
1193                       "Basic Block Placement Stats", false, false)
INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfo)1194 INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfo)
1195 INITIALIZE_PASS_DEPENDENCY(MachineBlockFrequencyInfo)
1196 INITIALIZE_PASS_END(MachineBlockPlacementStats, "block-placement-stats",
1197                     "Basic Block Placement Stats", false, false)
1198 
1199 bool MachineBlockPlacementStats::runOnMachineFunction(MachineFunction &F) {
1200   // Check for single-block functions and skip them.
1201   if (std::next(F.begin()) == F.end())
1202     return false;
1203 
1204   MBPI = &getAnalysis<MachineBranchProbabilityInfo>();
1205   MBFI = &getAnalysis<MachineBlockFrequencyInfo>();
1206 
1207   for (MachineBasicBlock &MBB : F) {
1208     BlockFrequency BlockFreq = MBFI->getBlockFreq(&MBB);
1209     Statistic &NumBranches =
1210         (MBB.succ_size() > 1) ? NumCondBranches : NumUncondBranches;
1211     Statistic &BranchTakenFreq =
1212         (MBB.succ_size() > 1) ? CondBranchTakenFreq : UncondBranchTakenFreq;
1213     for (MachineBasicBlock *Succ : MBB.successors()) {
1214       // Skip if this successor is a fallthrough.
1215       if (MBB.isLayoutSuccessor(Succ))
1216         continue;
1217 
1218       BlockFrequency EdgeFreq =
1219           BlockFreq * MBPI->getEdgeProbability(&MBB, Succ);
1220       ++NumBranches;
1221       BranchTakenFreq += EdgeFreq.getFrequency();
1222     }
1223   }
1224 
1225   return false;
1226 }
1227 
1228