1 //===-- MachineSink.cpp - Sinking for machine instructions ----------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This pass moves instructions into successor blocks when possible, so that
11 // they aren't executed on paths where their results aren't needed.
12 //
13 // This pass is not intended to be a replacement or a complete alternative
14 // for an LLVM-IR-level sinking pass. It is only designed to sink simple
15 // constructs that are not exposed before lowering and instruction selection.
16 //
17 //===----------------------------------------------------------------------===//
18 
19 #include "llvm/CodeGen/Passes.h"
20 #include "llvm/ADT/SetVector.h"
21 #include "llvm/ADT/SmallSet.h"
22 #include "llvm/ADT/Statistic.h"
23 #include "llvm/Analysis/AliasAnalysis.h"
24 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
25 #include "llvm/CodeGen/MachineDominators.h"
26 #include "llvm/CodeGen/MachineLoopInfo.h"
27 #include "llvm/CodeGen/MachinePostDominators.h"
28 #include "llvm/CodeGen/MachineRegisterInfo.h"
29 #include "llvm/Support/CommandLine.h"
30 #include "llvm/Support/Debug.h"
31 #include "llvm/Support/raw_ostream.h"
32 #include "llvm/Target/TargetInstrInfo.h"
33 #include "llvm/Target/TargetRegisterInfo.h"
34 #include "llvm/Target/TargetSubtargetInfo.h"
35 using namespace llvm;
36 
37 #define DEBUG_TYPE "machine-sink"
38 
39 static cl::opt<bool>
40 SplitEdges("machine-sink-split",
41            cl::desc("Split critical edges during machine sinking"),
42            cl::init(true), cl::Hidden);
43 
44 static cl::opt<bool>
45 UseBlockFreqInfo("machine-sink-bfi",
46            cl::desc("Use block frequency info to find successors to sink"),
47            cl::init(true), cl::Hidden);
48 
49 
50 STATISTIC(NumSunk,      "Number of machine instructions sunk");
51 STATISTIC(NumSplit,     "Number of critical edges split");
52 STATISTIC(NumCoalesces, "Number of copies coalesced");
53 
54 namespace {
55   class MachineSinking : public MachineFunctionPass {
56     const TargetInstrInfo *TII;
57     const TargetRegisterInfo *TRI;
58     MachineRegisterInfo  *MRI;     // Machine register information
59     MachineDominatorTree *DT;      // Machine dominator tree
60     MachinePostDominatorTree *PDT; // Machine post dominator tree
61     MachineLoopInfo *LI;
62     const MachineBlockFrequencyInfo *MBFI;
63     AliasAnalysis *AA;
64 
65     // Remember which edges have been considered for breaking.
66     SmallSet<std::pair<MachineBasicBlock*,MachineBasicBlock*>, 8>
67     CEBCandidates;
68     // Remember which edges we are about to split.
69     // This is different from CEBCandidates since those edges
70     // will be split.
71     SetVector<std::pair<MachineBasicBlock*,MachineBasicBlock*> > ToSplit;
72 
73   public:
74     static char ID; // Pass identification
MachineSinking()75     MachineSinking() : MachineFunctionPass(ID) {
76       initializeMachineSinkingPass(*PassRegistry::getPassRegistry());
77     }
78 
79     bool runOnMachineFunction(MachineFunction &MF) override;
80 
getAnalysisUsage(AnalysisUsage & AU) const81     void getAnalysisUsage(AnalysisUsage &AU) const override {
82       AU.setPreservesCFG();
83       MachineFunctionPass::getAnalysisUsage(AU);
84       AU.addRequired<AliasAnalysis>();
85       AU.addRequired<MachineDominatorTree>();
86       AU.addRequired<MachinePostDominatorTree>();
87       AU.addRequired<MachineLoopInfo>();
88       AU.addPreserved<MachineDominatorTree>();
89       AU.addPreserved<MachinePostDominatorTree>();
90       AU.addPreserved<MachineLoopInfo>();
91       if (UseBlockFreqInfo)
92         AU.addRequired<MachineBlockFrequencyInfo>();
93     }
94 
releaseMemory()95     void releaseMemory() override {
96       CEBCandidates.clear();
97     }
98 
99   private:
100     bool ProcessBlock(MachineBasicBlock &MBB);
101     bool isWorthBreakingCriticalEdge(MachineInstr *MI,
102                                      MachineBasicBlock *From,
103                                      MachineBasicBlock *To);
104     /// \brief Postpone the splitting of the given critical
105     /// edge (\p From, \p To).
106     ///
107     /// We do not split the edges on the fly. Indeed, this invalidates
108     /// the dominance information and thus triggers a lot of updates
109     /// of that information underneath.
110     /// Instead, we postpone all the splits after each iteration of
111     /// the main loop. That way, the information is at least valid
112     /// for the lifetime of an iteration.
113     ///
114     /// \return True if the edge is marked as toSplit, false otherwise.
115     /// False can be returned if, for instance, this is not profitable.
116     bool PostponeSplitCriticalEdge(MachineInstr *MI,
117                                    MachineBasicBlock *From,
118                                    MachineBasicBlock *To,
119                                    bool BreakPHIEdge);
120     bool SinkInstruction(MachineInstr *MI, bool &SawStore);
121     bool AllUsesDominatedByBlock(unsigned Reg, MachineBasicBlock *MBB,
122                                  MachineBasicBlock *DefMBB,
123                                  bool &BreakPHIEdge, bool &LocalUse) const;
124     MachineBasicBlock *FindSuccToSinkTo(MachineInstr *MI, MachineBasicBlock *MBB,
125                bool &BreakPHIEdge);
126     bool isProfitableToSinkTo(unsigned Reg, MachineInstr *MI,
127                               MachineBasicBlock *MBB,
128                               MachineBasicBlock *SuccToSinkTo);
129 
130     bool PerformTrivialForwardCoalescing(MachineInstr *MI,
131                                          MachineBasicBlock *MBB);
132   };
133 } // end anonymous namespace
134 
135 char MachineSinking::ID = 0;
136 char &llvm::MachineSinkingID = MachineSinking::ID;
137 INITIALIZE_PASS_BEGIN(MachineSinking, "machine-sink",
138                 "Machine code sinking", false, false)
INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)139 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
140 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
141 INITIALIZE_AG_DEPENDENCY(AliasAnalysis)
142 INITIALIZE_PASS_END(MachineSinking, "machine-sink",
143                 "Machine code sinking", false, false)
144 
145 bool MachineSinking::PerformTrivialForwardCoalescing(MachineInstr *MI,
146                                                      MachineBasicBlock *MBB) {
147   if (!MI->isCopy())
148     return false;
149 
150   unsigned SrcReg = MI->getOperand(1).getReg();
151   unsigned DstReg = MI->getOperand(0).getReg();
152   if (!TargetRegisterInfo::isVirtualRegister(SrcReg) ||
153       !TargetRegisterInfo::isVirtualRegister(DstReg) ||
154       !MRI->hasOneNonDBGUse(SrcReg))
155     return false;
156 
157   const TargetRegisterClass *SRC = MRI->getRegClass(SrcReg);
158   const TargetRegisterClass *DRC = MRI->getRegClass(DstReg);
159   if (SRC != DRC)
160     return false;
161 
162   MachineInstr *DefMI = MRI->getVRegDef(SrcReg);
163   if (DefMI->isCopyLike())
164     return false;
165   DEBUG(dbgs() << "Coalescing: " << *DefMI);
166   DEBUG(dbgs() << "*** to: " << *MI);
167   MRI->replaceRegWith(DstReg, SrcReg);
168   MI->eraseFromParent();
169 
170   // Conservatively, clear any kill flags, since it's possible that they are no
171   // longer correct.
172   MRI->clearKillFlags(SrcReg);
173 
174   ++NumCoalesces;
175   return true;
176 }
177 
178 /// AllUsesDominatedByBlock - Return true if all uses of the specified register
179 /// occur in blocks dominated by the specified block. If any use is in the
180 /// definition block, then return false since it is never legal to move def
181 /// after uses.
182 bool
AllUsesDominatedByBlock(unsigned Reg,MachineBasicBlock * MBB,MachineBasicBlock * DefMBB,bool & BreakPHIEdge,bool & LocalUse) const183 MachineSinking::AllUsesDominatedByBlock(unsigned Reg,
184                                         MachineBasicBlock *MBB,
185                                         MachineBasicBlock *DefMBB,
186                                         bool &BreakPHIEdge,
187                                         bool &LocalUse) const {
188   assert(TargetRegisterInfo::isVirtualRegister(Reg) &&
189          "Only makes sense for vregs");
190 
191   // Ignore debug uses because debug info doesn't affect the code.
192   if (MRI->use_nodbg_empty(Reg))
193     return true;
194 
195   // BreakPHIEdge is true if all the uses are in the successor MBB being sunken
196   // into and they are all PHI nodes. In this case, machine-sink must break
197   // the critical edge first. e.g.
198   //
199   // BB#1: derived from LLVM BB %bb4.preheader
200   //   Predecessors according to CFG: BB#0
201   //     ...
202   //     %reg16385<def> = DEC64_32r %reg16437, %EFLAGS<imp-def,dead>
203   //     ...
204   //     JE_4 <BB#37>, %EFLAGS<imp-use>
205   //   Successors according to CFG: BB#37 BB#2
206   //
207   // BB#2: derived from LLVM BB %bb.nph
208   //   Predecessors according to CFG: BB#0 BB#1
209   //     %reg16386<def> = PHI %reg16434, <BB#0>, %reg16385, <BB#1>
210   BreakPHIEdge = true;
211   for (MachineOperand &MO : MRI->use_nodbg_operands(Reg)) {
212     MachineInstr *UseInst = MO.getParent();
213     unsigned OpNo = &MO - &UseInst->getOperand(0);
214     MachineBasicBlock *UseBlock = UseInst->getParent();
215     if (!(UseBlock == MBB && UseInst->isPHI() &&
216           UseInst->getOperand(OpNo+1).getMBB() == DefMBB)) {
217       BreakPHIEdge = false;
218       break;
219     }
220   }
221   if (BreakPHIEdge)
222     return true;
223 
224   for (MachineOperand &MO : MRI->use_nodbg_operands(Reg)) {
225     // Determine the block of the use.
226     MachineInstr *UseInst = MO.getParent();
227     unsigned OpNo = &MO - &UseInst->getOperand(0);
228     MachineBasicBlock *UseBlock = UseInst->getParent();
229     if (UseInst->isPHI()) {
230       // PHI nodes use the operand in the predecessor block, not the block with
231       // the PHI.
232       UseBlock = UseInst->getOperand(OpNo+1).getMBB();
233     } else if (UseBlock == DefMBB) {
234       LocalUse = true;
235       return false;
236     }
237 
238     // Check that it dominates.
239     if (!DT->dominates(MBB, UseBlock))
240       return false;
241   }
242 
243   return true;
244 }
245 
runOnMachineFunction(MachineFunction & MF)246 bool MachineSinking::runOnMachineFunction(MachineFunction &MF) {
247   if (skipOptnoneFunction(*MF.getFunction()))
248     return false;
249 
250   DEBUG(dbgs() << "******** Machine Sinking ********\n");
251 
252   TII = MF.getSubtarget().getInstrInfo();
253   TRI = MF.getSubtarget().getRegisterInfo();
254   MRI = &MF.getRegInfo();
255   DT = &getAnalysis<MachineDominatorTree>();
256   PDT = &getAnalysis<MachinePostDominatorTree>();
257   LI = &getAnalysis<MachineLoopInfo>();
258   MBFI = UseBlockFreqInfo ? &getAnalysis<MachineBlockFrequencyInfo>() : nullptr;
259   AA = &getAnalysis<AliasAnalysis>();
260 
261   bool EverMadeChange = false;
262 
263   while (1) {
264     bool MadeChange = false;
265 
266     // Process all basic blocks.
267     CEBCandidates.clear();
268     ToSplit.clear();
269     for (MachineFunction::iterator I = MF.begin(), E = MF.end();
270          I != E; ++I)
271       MadeChange |= ProcessBlock(*I);
272 
273     // If we have anything we marked as toSplit, split it now.
274     for (auto &Pair : ToSplit) {
275       auto NewSucc = Pair.first->SplitCriticalEdge(Pair.second, this);
276       if (NewSucc != nullptr) {
277         DEBUG(dbgs() << " *** Splitting critical edge:"
278               " BB#" << Pair.first->getNumber()
279               << " -- BB#" << NewSucc->getNumber()
280               << " -- BB#" << Pair.second->getNumber() << '\n');
281         MadeChange = true;
282         ++NumSplit;
283       } else
284         DEBUG(dbgs() << " *** Not legal to break critical edge\n");
285     }
286     // If this iteration over the code changed anything, keep iterating.
287     if (!MadeChange) break;
288     EverMadeChange = true;
289   }
290   return EverMadeChange;
291 }
292 
ProcessBlock(MachineBasicBlock & MBB)293 bool MachineSinking::ProcessBlock(MachineBasicBlock &MBB) {
294   // Can't sink anything out of a block that has less than two successors.
295   if (MBB.succ_size() <= 1 || MBB.empty()) return false;
296 
297   // Don't bother sinking code out of unreachable blocks. In addition to being
298   // unprofitable, it can also lead to infinite looping, because in an
299   // unreachable loop there may be nowhere to stop.
300   if (!DT->isReachableFromEntry(&MBB)) return false;
301 
302   bool MadeChange = false;
303 
304   // Walk the basic block bottom-up.  Remember if we saw a store.
305   MachineBasicBlock::iterator I = MBB.end();
306   --I;
307   bool ProcessedBegin, SawStore = false;
308   do {
309     MachineInstr *MI = I;  // The instruction to sink.
310 
311     // Predecrement I (if it's not begin) so that it isn't invalidated by
312     // sinking.
313     ProcessedBegin = I == MBB.begin();
314     if (!ProcessedBegin)
315       --I;
316 
317     if (MI->isDebugValue())
318       continue;
319 
320     bool Joined = PerformTrivialForwardCoalescing(MI, &MBB);
321     if (Joined) {
322       MadeChange = true;
323       continue;
324     }
325 
326     if (SinkInstruction(MI, SawStore))
327       ++NumSunk, MadeChange = true;
328 
329     // If we just processed the first instruction in the block, we're done.
330   } while (!ProcessedBegin);
331 
332   return MadeChange;
333 }
334 
isWorthBreakingCriticalEdge(MachineInstr * MI,MachineBasicBlock * From,MachineBasicBlock * To)335 bool MachineSinking::isWorthBreakingCriticalEdge(MachineInstr *MI,
336                                                  MachineBasicBlock *From,
337                                                  MachineBasicBlock *To) {
338   // FIXME: Need much better heuristics.
339 
340   // If the pass has already considered breaking this edge (during this pass
341   // through the function), then let's go ahead and break it. This means
342   // sinking multiple "cheap" instructions into the same block.
343   if (!CEBCandidates.insert(std::make_pair(From, To)).second)
344     return true;
345 
346   if (!MI->isCopy() && !TII->isAsCheapAsAMove(MI))
347     return true;
348 
349   // MI is cheap, we probably don't want to break the critical edge for it.
350   // However, if this would allow some definitions of its source operands
351   // to be sunk then it's probably worth it.
352   for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
353     const MachineOperand &MO = MI->getOperand(i);
354     if (!MO.isReg() || !MO.isUse())
355       continue;
356     unsigned Reg = MO.getReg();
357     if (Reg == 0)
358       continue;
359 
360     // We don't move live definitions of physical registers,
361     // so sinking their uses won't enable any opportunities.
362     if (TargetRegisterInfo::isPhysicalRegister(Reg))
363       continue;
364 
365     // If this instruction is the only user of a virtual register,
366     // check if breaking the edge will enable sinking
367     // both this instruction and the defining instruction.
368     if (MRI->hasOneNonDBGUse(Reg)) {
369       // If the definition resides in same MBB,
370       // claim it's likely we can sink these together.
371       // If definition resides elsewhere, we aren't
372       // blocking it from being sunk so don't break the edge.
373       MachineInstr *DefMI = MRI->getVRegDef(Reg);
374       if (DefMI->getParent() == MI->getParent())
375         return true;
376     }
377   }
378 
379   return false;
380 }
381 
PostponeSplitCriticalEdge(MachineInstr * MI,MachineBasicBlock * FromBB,MachineBasicBlock * ToBB,bool BreakPHIEdge)382 bool MachineSinking::PostponeSplitCriticalEdge(MachineInstr *MI,
383                                                MachineBasicBlock *FromBB,
384                                                MachineBasicBlock *ToBB,
385                                                bool BreakPHIEdge) {
386   if (!isWorthBreakingCriticalEdge(MI, FromBB, ToBB))
387     return false;
388 
389   // Avoid breaking back edge. From == To means backedge for single BB loop.
390   if (!SplitEdges || FromBB == ToBB)
391     return false;
392 
393   // Check for backedges of more "complex" loops.
394   if (LI->getLoopFor(FromBB) == LI->getLoopFor(ToBB) &&
395       LI->isLoopHeader(ToBB))
396     return false;
397 
398   // It's not always legal to break critical edges and sink the computation
399   // to the edge.
400   //
401   // BB#1:
402   // v1024
403   // Beq BB#3
404   // <fallthrough>
405   // BB#2:
406   // ... no uses of v1024
407   // <fallthrough>
408   // BB#3:
409   // ...
410   //       = v1024
411   //
412   // If BB#1 -> BB#3 edge is broken and computation of v1024 is inserted:
413   //
414   // BB#1:
415   // ...
416   // Bne BB#2
417   // BB#4:
418   // v1024 =
419   // B BB#3
420   // BB#2:
421   // ... no uses of v1024
422   // <fallthrough>
423   // BB#3:
424   // ...
425   //       = v1024
426   //
427   // This is incorrect since v1024 is not computed along the BB#1->BB#2->BB#3
428   // flow. We need to ensure the new basic block where the computation is
429   // sunk to dominates all the uses.
430   // It's only legal to break critical edge and sink the computation to the
431   // new block if all the predecessors of "To", except for "From", are
432   // not dominated by "From". Given SSA property, this means these
433   // predecessors are dominated by "To".
434   //
435   // There is no need to do this check if all the uses are PHI nodes. PHI
436   // sources are only defined on the specific predecessor edges.
437   if (!BreakPHIEdge) {
438     for (MachineBasicBlock::pred_iterator PI = ToBB->pred_begin(),
439            E = ToBB->pred_end(); PI != E; ++PI) {
440       if (*PI == FromBB)
441         continue;
442       if (!DT->dominates(ToBB, *PI))
443         return false;
444     }
445   }
446 
447   ToSplit.insert(std::make_pair(FromBB, ToBB));
448 
449   return true;
450 }
451 
AvoidsSinking(MachineInstr * MI,MachineRegisterInfo * MRI)452 static bool AvoidsSinking(MachineInstr *MI, MachineRegisterInfo *MRI) {
453   return MI->isInsertSubreg() || MI->isSubregToReg() || MI->isRegSequence();
454 }
455 
456 /// collectDebgValues - Scan instructions following MI and collect any
457 /// matching DBG_VALUEs.
collectDebugValues(MachineInstr * MI,SmallVectorImpl<MachineInstr * > & DbgValues)458 static void collectDebugValues(MachineInstr *MI,
459                                SmallVectorImpl<MachineInstr *> &DbgValues) {
460   DbgValues.clear();
461   if (!MI->getOperand(0).isReg())
462     return;
463 
464   MachineBasicBlock::iterator DI = MI; ++DI;
465   for (MachineBasicBlock::iterator DE = MI->getParent()->end();
466        DI != DE; ++DI) {
467     if (!DI->isDebugValue())
468       return;
469     if (DI->getOperand(0).isReg() &&
470         DI->getOperand(0).getReg() == MI->getOperand(0).getReg())
471       DbgValues.push_back(DI);
472   }
473 }
474 
475 /// isProfitableToSinkTo - Return true if it is profitable to sink MI.
isProfitableToSinkTo(unsigned Reg,MachineInstr * MI,MachineBasicBlock * MBB,MachineBasicBlock * SuccToSinkTo)476 bool MachineSinking::isProfitableToSinkTo(unsigned Reg, MachineInstr *MI,
477                                           MachineBasicBlock *MBB,
478                                           MachineBasicBlock *SuccToSinkTo) {
479   assert (MI && "Invalid MachineInstr!");
480   assert (SuccToSinkTo && "Invalid SinkTo Candidate BB");
481 
482   if (MBB == SuccToSinkTo)
483     return false;
484 
485   // It is profitable if SuccToSinkTo does not post dominate current block.
486   if (!PDT->dominates(SuccToSinkTo, MBB))
487     return true;
488 
489   // It is profitable to sink an instruction from a deeper loop to a shallower
490   // loop, even if the latter post-dominates the former (PR21115).
491   if (LI->getLoopDepth(MBB) > LI->getLoopDepth(SuccToSinkTo))
492     return true;
493 
494   // Check if only use in post dominated block is PHI instruction.
495   bool NonPHIUse = false;
496   for (MachineInstr &UseInst : MRI->use_nodbg_instructions(Reg)) {
497     MachineBasicBlock *UseBlock = UseInst.getParent();
498     if (UseBlock == SuccToSinkTo && !UseInst.isPHI())
499       NonPHIUse = true;
500   }
501   if (!NonPHIUse)
502     return true;
503 
504   // If SuccToSinkTo post dominates then also it may be profitable if MI
505   // can further profitably sinked into another block in next round.
506   bool BreakPHIEdge = false;
507   // FIXME - If finding successor is compile time expensive then cache results.
508   if (MachineBasicBlock *MBB2 = FindSuccToSinkTo(MI, SuccToSinkTo, BreakPHIEdge))
509     return isProfitableToSinkTo(Reg, MI, SuccToSinkTo, MBB2);
510 
511   // If SuccToSinkTo is final destination and it is a post dominator of current
512   // block then it is not profitable to sink MI into SuccToSinkTo block.
513   return false;
514 }
515 
516 /// FindSuccToSinkTo - Find a successor to sink this instruction to.
FindSuccToSinkTo(MachineInstr * MI,MachineBasicBlock * MBB,bool & BreakPHIEdge)517 MachineBasicBlock *MachineSinking::FindSuccToSinkTo(MachineInstr *MI,
518                                    MachineBasicBlock *MBB,
519                                    bool &BreakPHIEdge) {
520 
521   assert (MI && "Invalid MachineInstr!");
522   assert (MBB && "Invalid MachineBasicBlock!");
523 
524   // Loop over all the operands of the specified instruction.  If there is
525   // anything we can't handle, bail out.
526 
527   // SuccToSinkTo - This is the successor to sink this instruction to, once we
528   // decide.
529   MachineBasicBlock *SuccToSinkTo = nullptr;
530   for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
531     const MachineOperand &MO = MI->getOperand(i);
532     if (!MO.isReg()) continue;  // Ignore non-register operands.
533 
534     unsigned Reg = MO.getReg();
535     if (Reg == 0) continue;
536 
537     if (TargetRegisterInfo::isPhysicalRegister(Reg)) {
538       if (MO.isUse()) {
539         // If the physreg has no defs anywhere, it's just an ambient register
540         // and we can freely move its uses. Alternatively, if it's allocatable,
541         // it could get allocated to something with a def during allocation.
542         if (!MRI->isConstantPhysReg(Reg, *MBB->getParent()))
543           return nullptr;
544       } else if (!MO.isDead()) {
545         // A def that isn't dead. We can't move it.
546         return nullptr;
547       }
548     } else {
549       // Virtual register uses are always safe to sink.
550       if (MO.isUse()) continue;
551 
552       // If it's not safe to move defs of the register class, then abort.
553       if (!TII->isSafeToMoveRegClassDefs(MRI->getRegClass(Reg)))
554         return nullptr;
555 
556       // Virtual register defs can only be sunk if all their uses are in blocks
557       // dominated by one of the successors.
558       if (SuccToSinkTo) {
559         // If a previous operand picked a block to sink to, then this operand
560         // must be sinkable to the same block.
561         bool LocalUse = false;
562         if (!AllUsesDominatedByBlock(Reg, SuccToSinkTo, MBB,
563                                      BreakPHIEdge, LocalUse))
564           return nullptr;
565 
566         continue;
567       }
568 
569       // Otherwise, we should look at all the successors and decide which one
570       // we should sink to. If we have reliable block frequency information
571       // (frequency != 0) available, give successors with smaller frequencies
572       // higher priority, otherwise prioritize smaller loop depths.
573       SmallVector<MachineBasicBlock*, 4> Succs(MBB->succ_begin(),
574                                                MBB->succ_end());
575 
576       // Handle cases where sinking can happen but where the sink point isn't a
577       // successor. For example:
578       //
579       //   x = computation
580       //   if () {} else {}
581       //   use x
582       //
583       const std::vector<MachineDomTreeNode *> &Children =
584         DT->getNode(MBB)->getChildren();
585       for (const auto &DTChild : Children)
586         // DomTree children of MBB that have MBB as immediate dominator are added.
587         if (DTChild->getIDom()->getBlock() == MI->getParent() &&
588             // Skip MBBs already added to the Succs vector above.
589             !MBB->isSuccessor(DTChild->getBlock()))
590           Succs.push_back(DTChild->getBlock());
591 
592       // Sort Successors according to their loop depth or block frequency info.
593       std::stable_sort(
594           Succs.begin(), Succs.end(),
595           [this](const MachineBasicBlock *L, const MachineBasicBlock *R) {
596             uint64_t LHSFreq = MBFI ? MBFI->getBlockFreq(L).getFrequency() : 0;
597             uint64_t RHSFreq = MBFI ? MBFI->getBlockFreq(R).getFrequency() : 0;
598             bool HasBlockFreq = LHSFreq != 0 && RHSFreq != 0;
599             return HasBlockFreq ? LHSFreq < RHSFreq
600                                 : LI->getLoopDepth(L) < LI->getLoopDepth(R);
601           });
602       for (SmallVectorImpl<MachineBasicBlock *>::iterator SI = Succs.begin(),
603              E = Succs.end(); SI != E; ++SI) {
604         MachineBasicBlock *SuccBlock = *SI;
605         bool LocalUse = false;
606         if (AllUsesDominatedByBlock(Reg, SuccBlock, MBB,
607                                     BreakPHIEdge, LocalUse)) {
608           SuccToSinkTo = SuccBlock;
609           break;
610         }
611         if (LocalUse)
612           // Def is used locally, it's never safe to move this def.
613           return nullptr;
614       }
615 
616       // If we couldn't find a block to sink to, ignore this instruction.
617       if (!SuccToSinkTo)
618         return nullptr;
619       if (!isProfitableToSinkTo(Reg, MI, MBB, SuccToSinkTo))
620         return nullptr;
621     }
622   }
623 
624   // It is not possible to sink an instruction into its own block.  This can
625   // happen with loops.
626   if (MBB == SuccToSinkTo)
627     return nullptr;
628 
629   // It's not safe to sink instructions to EH landing pad. Control flow into
630   // landing pad is implicitly defined.
631   if (SuccToSinkTo && SuccToSinkTo->isLandingPad())
632     return nullptr;
633 
634   return SuccToSinkTo;
635 }
636 
637 /// SinkInstruction - Determine whether it is safe to sink the specified machine
638 /// instruction out of its current block into a successor.
SinkInstruction(MachineInstr * MI,bool & SawStore)639 bool MachineSinking::SinkInstruction(MachineInstr *MI, bool &SawStore) {
640   // Don't sink insert_subreg, subreg_to_reg, reg_sequence. These are meant to
641   // be close to the source to make it easier to coalesce.
642   if (AvoidsSinking(MI, MRI))
643     return false;
644 
645   // Check if it's safe to move the instruction.
646   if (!MI->isSafeToMove(TII, AA, SawStore))
647     return false;
648 
649   // FIXME: This should include support for sinking instructions within the
650   // block they are currently in to shorten the live ranges.  We often get
651   // instructions sunk into the top of a large block, but it would be better to
652   // also sink them down before their first use in the block.  This xform has to
653   // be careful not to *increase* register pressure though, e.g. sinking
654   // "x = y + z" down if it kills y and z would increase the live ranges of y
655   // and z and only shrink the live range of x.
656 
657   bool BreakPHIEdge = false;
658   MachineBasicBlock *ParentBlock = MI->getParent();
659   MachineBasicBlock *SuccToSinkTo = FindSuccToSinkTo(MI, ParentBlock, BreakPHIEdge);
660 
661   // If there are no outputs, it must have side-effects.
662   if (!SuccToSinkTo)
663     return false;
664 
665 
666   // If the instruction to move defines a dead physical register which is live
667   // when leaving the basic block, don't move it because it could turn into a
668   // "zombie" define of that preg. E.g., EFLAGS. (<rdar://problem/8030636>)
669   for (unsigned I = 0, E = MI->getNumOperands(); I != E; ++I) {
670     const MachineOperand &MO = MI->getOperand(I);
671     if (!MO.isReg()) continue;
672     unsigned Reg = MO.getReg();
673     if (Reg == 0 || !TargetRegisterInfo::isPhysicalRegister(Reg)) continue;
674     if (SuccToSinkTo->isLiveIn(Reg))
675       return false;
676   }
677 
678   DEBUG(dbgs() << "Sink instr " << *MI << "\tinto block " << *SuccToSinkTo);
679 
680   // If the block has multiple predecessors, this is a critical edge.
681   // Decide if we can sink along it or need to break the edge.
682   if (SuccToSinkTo->pred_size() > 1) {
683     // We cannot sink a load across a critical edge - there may be stores in
684     // other code paths.
685     bool TryBreak = false;
686     bool store = true;
687     if (!MI->isSafeToMove(TII, AA, store)) {
688       DEBUG(dbgs() << " *** NOTE: Won't sink load along critical edge.\n");
689       TryBreak = true;
690     }
691 
692     // We don't want to sink across a critical edge if we don't dominate the
693     // successor. We could be introducing calculations to new code paths.
694     if (!TryBreak && !DT->dominates(ParentBlock, SuccToSinkTo)) {
695       DEBUG(dbgs() << " *** NOTE: Critical edge found\n");
696       TryBreak = true;
697     }
698 
699     // Don't sink instructions into a loop.
700     if (!TryBreak && LI->isLoopHeader(SuccToSinkTo)) {
701       DEBUG(dbgs() << " *** NOTE: Loop header found\n");
702       TryBreak = true;
703     }
704 
705     // Otherwise we are OK with sinking along a critical edge.
706     if (!TryBreak)
707       DEBUG(dbgs() << "Sinking along critical edge.\n");
708     else {
709       // Mark this edge as to be split.
710       // If the edge can actually be split, the next iteration of the main loop
711       // will sink MI in the newly created block.
712       bool Status =
713         PostponeSplitCriticalEdge(MI, ParentBlock, SuccToSinkTo, BreakPHIEdge);
714       if (!Status)
715         DEBUG(dbgs() << " *** PUNTING: Not legal or profitable to "
716               "break critical edge\n");
717       // The instruction will not be sunk this time.
718       return false;
719     }
720   }
721 
722   if (BreakPHIEdge) {
723     // BreakPHIEdge is true if all the uses are in the successor MBB being
724     // sunken into and they are all PHI nodes. In this case, machine-sink must
725     // break the critical edge first.
726     bool Status = PostponeSplitCriticalEdge(MI, ParentBlock,
727                                             SuccToSinkTo, BreakPHIEdge);
728     if (!Status)
729       DEBUG(dbgs() << " *** PUNTING: Not legal or profitable to "
730             "break critical edge\n");
731     // The instruction will not be sunk this time.
732     return false;
733   }
734 
735   // Determine where to insert into. Skip phi nodes.
736   MachineBasicBlock::iterator InsertPos = SuccToSinkTo->begin();
737   while (InsertPos != SuccToSinkTo->end() && InsertPos->isPHI())
738     ++InsertPos;
739 
740   // collect matching debug values.
741   SmallVector<MachineInstr *, 2> DbgValuesToSink;
742   collectDebugValues(MI, DbgValuesToSink);
743 
744   // Move the instruction.
745   SuccToSinkTo->splice(InsertPos, ParentBlock, MI,
746                        ++MachineBasicBlock::iterator(MI));
747 
748   // Move debug values.
749   for (SmallVectorImpl<MachineInstr *>::iterator DBI = DbgValuesToSink.begin(),
750          DBE = DbgValuesToSink.end(); DBI != DBE; ++DBI) {
751     MachineInstr *DbgMI = *DBI;
752     SuccToSinkTo->splice(InsertPos, ParentBlock,  DbgMI,
753                          ++MachineBasicBlock::iterator(DbgMI));
754   }
755 
756   // Conservatively, clear any kill flags, since it's possible that they are no
757   // longer correct.
758   MI->clearKillInfo();
759 
760   return true;
761 }
762