1 //===-- MachineSink.cpp - Sinking for machine instructions ----------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This pass moves instructions into successor blocks when possible, so that
11 // they aren't executed on paths where their results aren't needed.
12 //
13 // This pass is not intended to be a replacement or a complete alternative
14 // for an LLVM-IR-level sinking pass. It is only designed to sink simple
15 // constructs that are not exposed before lowering and instruction selection.
16 //
17 //===----------------------------------------------------------------------===//
18
19 #include "llvm/CodeGen/Passes.h"
20 #include "llvm/ADT/SetVector.h"
21 #include "llvm/ADT/SmallSet.h"
22 #include "llvm/ADT/Statistic.h"
23 #include "llvm/Analysis/AliasAnalysis.h"
24 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
25 #include "llvm/CodeGen/MachineDominators.h"
26 #include "llvm/CodeGen/MachineLoopInfo.h"
27 #include "llvm/CodeGen/MachinePostDominators.h"
28 #include "llvm/CodeGen/MachineRegisterInfo.h"
29 #include "llvm/Support/CommandLine.h"
30 #include "llvm/Support/Debug.h"
31 #include "llvm/Support/raw_ostream.h"
32 #include "llvm/Target/TargetInstrInfo.h"
33 #include "llvm/Target/TargetRegisterInfo.h"
34 #include "llvm/Target/TargetSubtargetInfo.h"
35 using namespace llvm;
36
37 #define DEBUG_TYPE "machine-sink"
38
39 static cl::opt<bool>
40 SplitEdges("machine-sink-split",
41 cl::desc("Split critical edges during machine sinking"),
42 cl::init(true), cl::Hidden);
43
44 static cl::opt<bool>
45 UseBlockFreqInfo("machine-sink-bfi",
46 cl::desc("Use block frequency info to find successors to sink"),
47 cl::init(true), cl::Hidden);
48
49
50 STATISTIC(NumSunk, "Number of machine instructions sunk");
51 STATISTIC(NumSplit, "Number of critical edges split");
52 STATISTIC(NumCoalesces, "Number of copies coalesced");
53
54 namespace {
55 class MachineSinking : public MachineFunctionPass {
56 const TargetInstrInfo *TII;
57 const TargetRegisterInfo *TRI;
58 MachineRegisterInfo *MRI; // Machine register information
59 MachineDominatorTree *DT; // Machine dominator tree
60 MachinePostDominatorTree *PDT; // Machine post dominator tree
61 MachineLoopInfo *LI;
62 const MachineBlockFrequencyInfo *MBFI;
63 AliasAnalysis *AA;
64
65 // Remember which edges have been considered for breaking.
66 SmallSet<std::pair<MachineBasicBlock*,MachineBasicBlock*>, 8>
67 CEBCandidates;
68 // Remember which edges we are about to split.
69 // This is different from CEBCandidates since those edges
70 // will be split.
71 SetVector<std::pair<MachineBasicBlock*,MachineBasicBlock*> > ToSplit;
72
73 public:
74 static char ID; // Pass identification
MachineSinking()75 MachineSinking() : MachineFunctionPass(ID) {
76 initializeMachineSinkingPass(*PassRegistry::getPassRegistry());
77 }
78
79 bool runOnMachineFunction(MachineFunction &MF) override;
80
getAnalysisUsage(AnalysisUsage & AU) const81 void getAnalysisUsage(AnalysisUsage &AU) const override {
82 AU.setPreservesCFG();
83 MachineFunctionPass::getAnalysisUsage(AU);
84 AU.addRequired<AliasAnalysis>();
85 AU.addRequired<MachineDominatorTree>();
86 AU.addRequired<MachinePostDominatorTree>();
87 AU.addRequired<MachineLoopInfo>();
88 AU.addPreserved<MachineDominatorTree>();
89 AU.addPreserved<MachinePostDominatorTree>();
90 AU.addPreserved<MachineLoopInfo>();
91 if (UseBlockFreqInfo)
92 AU.addRequired<MachineBlockFrequencyInfo>();
93 }
94
releaseMemory()95 void releaseMemory() override {
96 CEBCandidates.clear();
97 }
98
99 private:
100 bool ProcessBlock(MachineBasicBlock &MBB);
101 bool isWorthBreakingCriticalEdge(MachineInstr *MI,
102 MachineBasicBlock *From,
103 MachineBasicBlock *To);
104 /// \brief Postpone the splitting of the given critical
105 /// edge (\p From, \p To).
106 ///
107 /// We do not split the edges on the fly. Indeed, this invalidates
108 /// the dominance information and thus triggers a lot of updates
109 /// of that information underneath.
110 /// Instead, we postpone all the splits after each iteration of
111 /// the main loop. That way, the information is at least valid
112 /// for the lifetime of an iteration.
113 ///
114 /// \return True if the edge is marked as toSplit, false otherwise.
115 /// False can be returned if, for instance, this is not profitable.
116 bool PostponeSplitCriticalEdge(MachineInstr *MI,
117 MachineBasicBlock *From,
118 MachineBasicBlock *To,
119 bool BreakPHIEdge);
120 bool SinkInstruction(MachineInstr *MI, bool &SawStore);
121 bool AllUsesDominatedByBlock(unsigned Reg, MachineBasicBlock *MBB,
122 MachineBasicBlock *DefMBB,
123 bool &BreakPHIEdge, bool &LocalUse) const;
124 MachineBasicBlock *FindSuccToSinkTo(MachineInstr *MI, MachineBasicBlock *MBB,
125 bool &BreakPHIEdge);
126 bool isProfitableToSinkTo(unsigned Reg, MachineInstr *MI,
127 MachineBasicBlock *MBB,
128 MachineBasicBlock *SuccToSinkTo);
129
130 bool PerformTrivialForwardCoalescing(MachineInstr *MI,
131 MachineBasicBlock *MBB);
132 };
133 } // end anonymous namespace
134
135 char MachineSinking::ID = 0;
136 char &llvm::MachineSinkingID = MachineSinking::ID;
137 INITIALIZE_PASS_BEGIN(MachineSinking, "machine-sink",
138 "Machine code sinking", false, false)
INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)139 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
140 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
141 INITIALIZE_AG_DEPENDENCY(AliasAnalysis)
142 INITIALIZE_PASS_END(MachineSinking, "machine-sink",
143 "Machine code sinking", false, false)
144
145 bool MachineSinking::PerformTrivialForwardCoalescing(MachineInstr *MI,
146 MachineBasicBlock *MBB) {
147 if (!MI->isCopy())
148 return false;
149
150 unsigned SrcReg = MI->getOperand(1).getReg();
151 unsigned DstReg = MI->getOperand(0).getReg();
152 if (!TargetRegisterInfo::isVirtualRegister(SrcReg) ||
153 !TargetRegisterInfo::isVirtualRegister(DstReg) ||
154 !MRI->hasOneNonDBGUse(SrcReg))
155 return false;
156
157 const TargetRegisterClass *SRC = MRI->getRegClass(SrcReg);
158 const TargetRegisterClass *DRC = MRI->getRegClass(DstReg);
159 if (SRC != DRC)
160 return false;
161
162 MachineInstr *DefMI = MRI->getVRegDef(SrcReg);
163 if (DefMI->isCopyLike())
164 return false;
165 DEBUG(dbgs() << "Coalescing: " << *DefMI);
166 DEBUG(dbgs() << "*** to: " << *MI);
167 MRI->replaceRegWith(DstReg, SrcReg);
168 MI->eraseFromParent();
169
170 // Conservatively, clear any kill flags, since it's possible that they are no
171 // longer correct.
172 MRI->clearKillFlags(SrcReg);
173
174 ++NumCoalesces;
175 return true;
176 }
177
178 /// AllUsesDominatedByBlock - Return true if all uses of the specified register
179 /// occur in blocks dominated by the specified block. If any use is in the
180 /// definition block, then return false since it is never legal to move def
181 /// after uses.
182 bool
AllUsesDominatedByBlock(unsigned Reg,MachineBasicBlock * MBB,MachineBasicBlock * DefMBB,bool & BreakPHIEdge,bool & LocalUse) const183 MachineSinking::AllUsesDominatedByBlock(unsigned Reg,
184 MachineBasicBlock *MBB,
185 MachineBasicBlock *DefMBB,
186 bool &BreakPHIEdge,
187 bool &LocalUse) const {
188 assert(TargetRegisterInfo::isVirtualRegister(Reg) &&
189 "Only makes sense for vregs");
190
191 // Ignore debug uses because debug info doesn't affect the code.
192 if (MRI->use_nodbg_empty(Reg))
193 return true;
194
195 // BreakPHIEdge is true if all the uses are in the successor MBB being sunken
196 // into and they are all PHI nodes. In this case, machine-sink must break
197 // the critical edge first. e.g.
198 //
199 // BB#1: derived from LLVM BB %bb4.preheader
200 // Predecessors according to CFG: BB#0
201 // ...
202 // %reg16385<def> = DEC64_32r %reg16437, %EFLAGS<imp-def,dead>
203 // ...
204 // JE_4 <BB#37>, %EFLAGS<imp-use>
205 // Successors according to CFG: BB#37 BB#2
206 //
207 // BB#2: derived from LLVM BB %bb.nph
208 // Predecessors according to CFG: BB#0 BB#1
209 // %reg16386<def> = PHI %reg16434, <BB#0>, %reg16385, <BB#1>
210 BreakPHIEdge = true;
211 for (MachineOperand &MO : MRI->use_nodbg_operands(Reg)) {
212 MachineInstr *UseInst = MO.getParent();
213 unsigned OpNo = &MO - &UseInst->getOperand(0);
214 MachineBasicBlock *UseBlock = UseInst->getParent();
215 if (!(UseBlock == MBB && UseInst->isPHI() &&
216 UseInst->getOperand(OpNo+1).getMBB() == DefMBB)) {
217 BreakPHIEdge = false;
218 break;
219 }
220 }
221 if (BreakPHIEdge)
222 return true;
223
224 for (MachineOperand &MO : MRI->use_nodbg_operands(Reg)) {
225 // Determine the block of the use.
226 MachineInstr *UseInst = MO.getParent();
227 unsigned OpNo = &MO - &UseInst->getOperand(0);
228 MachineBasicBlock *UseBlock = UseInst->getParent();
229 if (UseInst->isPHI()) {
230 // PHI nodes use the operand in the predecessor block, not the block with
231 // the PHI.
232 UseBlock = UseInst->getOperand(OpNo+1).getMBB();
233 } else if (UseBlock == DefMBB) {
234 LocalUse = true;
235 return false;
236 }
237
238 // Check that it dominates.
239 if (!DT->dominates(MBB, UseBlock))
240 return false;
241 }
242
243 return true;
244 }
245
runOnMachineFunction(MachineFunction & MF)246 bool MachineSinking::runOnMachineFunction(MachineFunction &MF) {
247 if (skipOptnoneFunction(*MF.getFunction()))
248 return false;
249
250 DEBUG(dbgs() << "******** Machine Sinking ********\n");
251
252 TII = MF.getSubtarget().getInstrInfo();
253 TRI = MF.getSubtarget().getRegisterInfo();
254 MRI = &MF.getRegInfo();
255 DT = &getAnalysis<MachineDominatorTree>();
256 PDT = &getAnalysis<MachinePostDominatorTree>();
257 LI = &getAnalysis<MachineLoopInfo>();
258 MBFI = UseBlockFreqInfo ? &getAnalysis<MachineBlockFrequencyInfo>() : nullptr;
259 AA = &getAnalysis<AliasAnalysis>();
260
261 bool EverMadeChange = false;
262
263 while (1) {
264 bool MadeChange = false;
265
266 // Process all basic blocks.
267 CEBCandidates.clear();
268 ToSplit.clear();
269 for (MachineFunction::iterator I = MF.begin(), E = MF.end();
270 I != E; ++I)
271 MadeChange |= ProcessBlock(*I);
272
273 // If we have anything we marked as toSplit, split it now.
274 for (auto &Pair : ToSplit) {
275 auto NewSucc = Pair.first->SplitCriticalEdge(Pair.second, this);
276 if (NewSucc != nullptr) {
277 DEBUG(dbgs() << " *** Splitting critical edge:"
278 " BB#" << Pair.first->getNumber()
279 << " -- BB#" << NewSucc->getNumber()
280 << " -- BB#" << Pair.second->getNumber() << '\n');
281 MadeChange = true;
282 ++NumSplit;
283 } else
284 DEBUG(dbgs() << " *** Not legal to break critical edge\n");
285 }
286 // If this iteration over the code changed anything, keep iterating.
287 if (!MadeChange) break;
288 EverMadeChange = true;
289 }
290 return EverMadeChange;
291 }
292
ProcessBlock(MachineBasicBlock & MBB)293 bool MachineSinking::ProcessBlock(MachineBasicBlock &MBB) {
294 // Can't sink anything out of a block that has less than two successors.
295 if (MBB.succ_size() <= 1 || MBB.empty()) return false;
296
297 // Don't bother sinking code out of unreachable blocks. In addition to being
298 // unprofitable, it can also lead to infinite looping, because in an
299 // unreachable loop there may be nowhere to stop.
300 if (!DT->isReachableFromEntry(&MBB)) return false;
301
302 bool MadeChange = false;
303
304 // Walk the basic block bottom-up. Remember if we saw a store.
305 MachineBasicBlock::iterator I = MBB.end();
306 --I;
307 bool ProcessedBegin, SawStore = false;
308 do {
309 MachineInstr *MI = I; // The instruction to sink.
310
311 // Predecrement I (if it's not begin) so that it isn't invalidated by
312 // sinking.
313 ProcessedBegin = I == MBB.begin();
314 if (!ProcessedBegin)
315 --I;
316
317 if (MI->isDebugValue())
318 continue;
319
320 bool Joined = PerformTrivialForwardCoalescing(MI, &MBB);
321 if (Joined) {
322 MadeChange = true;
323 continue;
324 }
325
326 if (SinkInstruction(MI, SawStore))
327 ++NumSunk, MadeChange = true;
328
329 // If we just processed the first instruction in the block, we're done.
330 } while (!ProcessedBegin);
331
332 return MadeChange;
333 }
334
isWorthBreakingCriticalEdge(MachineInstr * MI,MachineBasicBlock * From,MachineBasicBlock * To)335 bool MachineSinking::isWorthBreakingCriticalEdge(MachineInstr *MI,
336 MachineBasicBlock *From,
337 MachineBasicBlock *To) {
338 // FIXME: Need much better heuristics.
339
340 // If the pass has already considered breaking this edge (during this pass
341 // through the function), then let's go ahead and break it. This means
342 // sinking multiple "cheap" instructions into the same block.
343 if (!CEBCandidates.insert(std::make_pair(From, To)).second)
344 return true;
345
346 if (!MI->isCopy() && !TII->isAsCheapAsAMove(MI))
347 return true;
348
349 // MI is cheap, we probably don't want to break the critical edge for it.
350 // However, if this would allow some definitions of its source operands
351 // to be sunk then it's probably worth it.
352 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
353 const MachineOperand &MO = MI->getOperand(i);
354 if (!MO.isReg() || !MO.isUse())
355 continue;
356 unsigned Reg = MO.getReg();
357 if (Reg == 0)
358 continue;
359
360 // We don't move live definitions of physical registers,
361 // so sinking their uses won't enable any opportunities.
362 if (TargetRegisterInfo::isPhysicalRegister(Reg))
363 continue;
364
365 // If this instruction is the only user of a virtual register,
366 // check if breaking the edge will enable sinking
367 // both this instruction and the defining instruction.
368 if (MRI->hasOneNonDBGUse(Reg)) {
369 // If the definition resides in same MBB,
370 // claim it's likely we can sink these together.
371 // If definition resides elsewhere, we aren't
372 // blocking it from being sunk so don't break the edge.
373 MachineInstr *DefMI = MRI->getVRegDef(Reg);
374 if (DefMI->getParent() == MI->getParent())
375 return true;
376 }
377 }
378
379 return false;
380 }
381
PostponeSplitCriticalEdge(MachineInstr * MI,MachineBasicBlock * FromBB,MachineBasicBlock * ToBB,bool BreakPHIEdge)382 bool MachineSinking::PostponeSplitCriticalEdge(MachineInstr *MI,
383 MachineBasicBlock *FromBB,
384 MachineBasicBlock *ToBB,
385 bool BreakPHIEdge) {
386 if (!isWorthBreakingCriticalEdge(MI, FromBB, ToBB))
387 return false;
388
389 // Avoid breaking back edge. From == To means backedge for single BB loop.
390 if (!SplitEdges || FromBB == ToBB)
391 return false;
392
393 // Check for backedges of more "complex" loops.
394 if (LI->getLoopFor(FromBB) == LI->getLoopFor(ToBB) &&
395 LI->isLoopHeader(ToBB))
396 return false;
397
398 // It's not always legal to break critical edges and sink the computation
399 // to the edge.
400 //
401 // BB#1:
402 // v1024
403 // Beq BB#3
404 // <fallthrough>
405 // BB#2:
406 // ... no uses of v1024
407 // <fallthrough>
408 // BB#3:
409 // ...
410 // = v1024
411 //
412 // If BB#1 -> BB#3 edge is broken and computation of v1024 is inserted:
413 //
414 // BB#1:
415 // ...
416 // Bne BB#2
417 // BB#4:
418 // v1024 =
419 // B BB#3
420 // BB#2:
421 // ... no uses of v1024
422 // <fallthrough>
423 // BB#3:
424 // ...
425 // = v1024
426 //
427 // This is incorrect since v1024 is not computed along the BB#1->BB#2->BB#3
428 // flow. We need to ensure the new basic block where the computation is
429 // sunk to dominates all the uses.
430 // It's only legal to break critical edge and sink the computation to the
431 // new block if all the predecessors of "To", except for "From", are
432 // not dominated by "From". Given SSA property, this means these
433 // predecessors are dominated by "To".
434 //
435 // There is no need to do this check if all the uses are PHI nodes. PHI
436 // sources are only defined on the specific predecessor edges.
437 if (!BreakPHIEdge) {
438 for (MachineBasicBlock::pred_iterator PI = ToBB->pred_begin(),
439 E = ToBB->pred_end(); PI != E; ++PI) {
440 if (*PI == FromBB)
441 continue;
442 if (!DT->dominates(ToBB, *PI))
443 return false;
444 }
445 }
446
447 ToSplit.insert(std::make_pair(FromBB, ToBB));
448
449 return true;
450 }
451
AvoidsSinking(MachineInstr * MI,MachineRegisterInfo * MRI)452 static bool AvoidsSinking(MachineInstr *MI, MachineRegisterInfo *MRI) {
453 return MI->isInsertSubreg() || MI->isSubregToReg() || MI->isRegSequence();
454 }
455
456 /// collectDebgValues - Scan instructions following MI and collect any
457 /// matching DBG_VALUEs.
collectDebugValues(MachineInstr * MI,SmallVectorImpl<MachineInstr * > & DbgValues)458 static void collectDebugValues(MachineInstr *MI,
459 SmallVectorImpl<MachineInstr *> &DbgValues) {
460 DbgValues.clear();
461 if (!MI->getOperand(0).isReg())
462 return;
463
464 MachineBasicBlock::iterator DI = MI; ++DI;
465 for (MachineBasicBlock::iterator DE = MI->getParent()->end();
466 DI != DE; ++DI) {
467 if (!DI->isDebugValue())
468 return;
469 if (DI->getOperand(0).isReg() &&
470 DI->getOperand(0).getReg() == MI->getOperand(0).getReg())
471 DbgValues.push_back(DI);
472 }
473 }
474
475 /// isProfitableToSinkTo - Return true if it is profitable to sink MI.
isProfitableToSinkTo(unsigned Reg,MachineInstr * MI,MachineBasicBlock * MBB,MachineBasicBlock * SuccToSinkTo)476 bool MachineSinking::isProfitableToSinkTo(unsigned Reg, MachineInstr *MI,
477 MachineBasicBlock *MBB,
478 MachineBasicBlock *SuccToSinkTo) {
479 assert (MI && "Invalid MachineInstr!");
480 assert (SuccToSinkTo && "Invalid SinkTo Candidate BB");
481
482 if (MBB == SuccToSinkTo)
483 return false;
484
485 // It is profitable if SuccToSinkTo does not post dominate current block.
486 if (!PDT->dominates(SuccToSinkTo, MBB))
487 return true;
488
489 // It is profitable to sink an instruction from a deeper loop to a shallower
490 // loop, even if the latter post-dominates the former (PR21115).
491 if (LI->getLoopDepth(MBB) > LI->getLoopDepth(SuccToSinkTo))
492 return true;
493
494 // Check if only use in post dominated block is PHI instruction.
495 bool NonPHIUse = false;
496 for (MachineInstr &UseInst : MRI->use_nodbg_instructions(Reg)) {
497 MachineBasicBlock *UseBlock = UseInst.getParent();
498 if (UseBlock == SuccToSinkTo && !UseInst.isPHI())
499 NonPHIUse = true;
500 }
501 if (!NonPHIUse)
502 return true;
503
504 // If SuccToSinkTo post dominates then also it may be profitable if MI
505 // can further profitably sinked into another block in next round.
506 bool BreakPHIEdge = false;
507 // FIXME - If finding successor is compile time expensive then cache results.
508 if (MachineBasicBlock *MBB2 = FindSuccToSinkTo(MI, SuccToSinkTo, BreakPHIEdge))
509 return isProfitableToSinkTo(Reg, MI, SuccToSinkTo, MBB2);
510
511 // If SuccToSinkTo is final destination and it is a post dominator of current
512 // block then it is not profitable to sink MI into SuccToSinkTo block.
513 return false;
514 }
515
516 /// FindSuccToSinkTo - Find a successor to sink this instruction to.
FindSuccToSinkTo(MachineInstr * MI,MachineBasicBlock * MBB,bool & BreakPHIEdge)517 MachineBasicBlock *MachineSinking::FindSuccToSinkTo(MachineInstr *MI,
518 MachineBasicBlock *MBB,
519 bool &BreakPHIEdge) {
520
521 assert (MI && "Invalid MachineInstr!");
522 assert (MBB && "Invalid MachineBasicBlock!");
523
524 // Loop over all the operands of the specified instruction. If there is
525 // anything we can't handle, bail out.
526
527 // SuccToSinkTo - This is the successor to sink this instruction to, once we
528 // decide.
529 MachineBasicBlock *SuccToSinkTo = nullptr;
530 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
531 const MachineOperand &MO = MI->getOperand(i);
532 if (!MO.isReg()) continue; // Ignore non-register operands.
533
534 unsigned Reg = MO.getReg();
535 if (Reg == 0) continue;
536
537 if (TargetRegisterInfo::isPhysicalRegister(Reg)) {
538 if (MO.isUse()) {
539 // If the physreg has no defs anywhere, it's just an ambient register
540 // and we can freely move its uses. Alternatively, if it's allocatable,
541 // it could get allocated to something with a def during allocation.
542 if (!MRI->isConstantPhysReg(Reg, *MBB->getParent()))
543 return nullptr;
544 } else if (!MO.isDead()) {
545 // A def that isn't dead. We can't move it.
546 return nullptr;
547 }
548 } else {
549 // Virtual register uses are always safe to sink.
550 if (MO.isUse()) continue;
551
552 // If it's not safe to move defs of the register class, then abort.
553 if (!TII->isSafeToMoveRegClassDefs(MRI->getRegClass(Reg)))
554 return nullptr;
555
556 // Virtual register defs can only be sunk if all their uses are in blocks
557 // dominated by one of the successors.
558 if (SuccToSinkTo) {
559 // If a previous operand picked a block to sink to, then this operand
560 // must be sinkable to the same block.
561 bool LocalUse = false;
562 if (!AllUsesDominatedByBlock(Reg, SuccToSinkTo, MBB,
563 BreakPHIEdge, LocalUse))
564 return nullptr;
565
566 continue;
567 }
568
569 // Otherwise, we should look at all the successors and decide which one
570 // we should sink to. If we have reliable block frequency information
571 // (frequency != 0) available, give successors with smaller frequencies
572 // higher priority, otherwise prioritize smaller loop depths.
573 SmallVector<MachineBasicBlock*, 4> Succs(MBB->succ_begin(),
574 MBB->succ_end());
575
576 // Handle cases where sinking can happen but where the sink point isn't a
577 // successor. For example:
578 //
579 // x = computation
580 // if () {} else {}
581 // use x
582 //
583 const std::vector<MachineDomTreeNode *> &Children =
584 DT->getNode(MBB)->getChildren();
585 for (const auto &DTChild : Children)
586 // DomTree children of MBB that have MBB as immediate dominator are added.
587 if (DTChild->getIDom()->getBlock() == MI->getParent() &&
588 // Skip MBBs already added to the Succs vector above.
589 !MBB->isSuccessor(DTChild->getBlock()))
590 Succs.push_back(DTChild->getBlock());
591
592 // Sort Successors according to their loop depth or block frequency info.
593 std::stable_sort(
594 Succs.begin(), Succs.end(),
595 [this](const MachineBasicBlock *L, const MachineBasicBlock *R) {
596 uint64_t LHSFreq = MBFI ? MBFI->getBlockFreq(L).getFrequency() : 0;
597 uint64_t RHSFreq = MBFI ? MBFI->getBlockFreq(R).getFrequency() : 0;
598 bool HasBlockFreq = LHSFreq != 0 && RHSFreq != 0;
599 return HasBlockFreq ? LHSFreq < RHSFreq
600 : LI->getLoopDepth(L) < LI->getLoopDepth(R);
601 });
602 for (SmallVectorImpl<MachineBasicBlock *>::iterator SI = Succs.begin(),
603 E = Succs.end(); SI != E; ++SI) {
604 MachineBasicBlock *SuccBlock = *SI;
605 bool LocalUse = false;
606 if (AllUsesDominatedByBlock(Reg, SuccBlock, MBB,
607 BreakPHIEdge, LocalUse)) {
608 SuccToSinkTo = SuccBlock;
609 break;
610 }
611 if (LocalUse)
612 // Def is used locally, it's never safe to move this def.
613 return nullptr;
614 }
615
616 // If we couldn't find a block to sink to, ignore this instruction.
617 if (!SuccToSinkTo)
618 return nullptr;
619 if (!isProfitableToSinkTo(Reg, MI, MBB, SuccToSinkTo))
620 return nullptr;
621 }
622 }
623
624 // It is not possible to sink an instruction into its own block. This can
625 // happen with loops.
626 if (MBB == SuccToSinkTo)
627 return nullptr;
628
629 // It's not safe to sink instructions to EH landing pad. Control flow into
630 // landing pad is implicitly defined.
631 if (SuccToSinkTo && SuccToSinkTo->isLandingPad())
632 return nullptr;
633
634 return SuccToSinkTo;
635 }
636
637 /// SinkInstruction - Determine whether it is safe to sink the specified machine
638 /// instruction out of its current block into a successor.
SinkInstruction(MachineInstr * MI,bool & SawStore)639 bool MachineSinking::SinkInstruction(MachineInstr *MI, bool &SawStore) {
640 // Don't sink insert_subreg, subreg_to_reg, reg_sequence. These are meant to
641 // be close to the source to make it easier to coalesce.
642 if (AvoidsSinking(MI, MRI))
643 return false;
644
645 // Check if it's safe to move the instruction.
646 if (!MI->isSafeToMove(TII, AA, SawStore))
647 return false;
648
649 // FIXME: This should include support for sinking instructions within the
650 // block they are currently in to shorten the live ranges. We often get
651 // instructions sunk into the top of a large block, but it would be better to
652 // also sink them down before their first use in the block. This xform has to
653 // be careful not to *increase* register pressure though, e.g. sinking
654 // "x = y + z" down if it kills y and z would increase the live ranges of y
655 // and z and only shrink the live range of x.
656
657 bool BreakPHIEdge = false;
658 MachineBasicBlock *ParentBlock = MI->getParent();
659 MachineBasicBlock *SuccToSinkTo = FindSuccToSinkTo(MI, ParentBlock, BreakPHIEdge);
660
661 // If there are no outputs, it must have side-effects.
662 if (!SuccToSinkTo)
663 return false;
664
665
666 // If the instruction to move defines a dead physical register which is live
667 // when leaving the basic block, don't move it because it could turn into a
668 // "zombie" define of that preg. E.g., EFLAGS. (<rdar://problem/8030636>)
669 for (unsigned I = 0, E = MI->getNumOperands(); I != E; ++I) {
670 const MachineOperand &MO = MI->getOperand(I);
671 if (!MO.isReg()) continue;
672 unsigned Reg = MO.getReg();
673 if (Reg == 0 || !TargetRegisterInfo::isPhysicalRegister(Reg)) continue;
674 if (SuccToSinkTo->isLiveIn(Reg))
675 return false;
676 }
677
678 DEBUG(dbgs() << "Sink instr " << *MI << "\tinto block " << *SuccToSinkTo);
679
680 // If the block has multiple predecessors, this is a critical edge.
681 // Decide if we can sink along it or need to break the edge.
682 if (SuccToSinkTo->pred_size() > 1) {
683 // We cannot sink a load across a critical edge - there may be stores in
684 // other code paths.
685 bool TryBreak = false;
686 bool store = true;
687 if (!MI->isSafeToMove(TII, AA, store)) {
688 DEBUG(dbgs() << " *** NOTE: Won't sink load along critical edge.\n");
689 TryBreak = true;
690 }
691
692 // We don't want to sink across a critical edge if we don't dominate the
693 // successor. We could be introducing calculations to new code paths.
694 if (!TryBreak && !DT->dominates(ParentBlock, SuccToSinkTo)) {
695 DEBUG(dbgs() << " *** NOTE: Critical edge found\n");
696 TryBreak = true;
697 }
698
699 // Don't sink instructions into a loop.
700 if (!TryBreak && LI->isLoopHeader(SuccToSinkTo)) {
701 DEBUG(dbgs() << " *** NOTE: Loop header found\n");
702 TryBreak = true;
703 }
704
705 // Otherwise we are OK with sinking along a critical edge.
706 if (!TryBreak)
707 DEBUG(dbgs() << "Sinking along critical edge.\n");
708 else {
709 // Mark this edge as to be split.
710 // If the edge can actually be split, the next iteration of the main loop
711 // will sink MI in the newly created block.
712 bool Status =
713 PostponeSplitCriticalEdge(MI, ParentBlock, SuccToSinkTo, BreakPHIEdge);
714 if (!Status)
715 DEBUG(dbgs() << " *** PUNTING: Not legal or profitable to "
716 "break critical edge\n");
717 // The instruction will not be sunk this time.
718 return false;
719 }
720 }
721
722 if (BreakPHIEdge) {
723 // BreakPHIEdge is true if all the uses are in the successor MBB being
724 // sunken into and they are all PHI nodes. In this case, machine-sink must
725 // break the critical edge first.
726 bool Status = PostponeSplitCriticalEdge(MI, ParentBlock,
727 SuccToSinkTo, BreakPHIEdge);
728 if (!Status)
729 DEBUG(dbgs() << " *** PUNTING: Not legal or profitable to "
730 "break critical edge\n");
731 // The instruction will not be sunk this time.
732 return false;
733 }
734
735 // Determine where to insert into. Skip phi nodes.
736 MachineBasicBlock::iterator InsertPos = SuccToSinkTo->begin();
737 while (InsertPos != SuccToSinkTo->end() && InsertPos->isPHI())
738 ++InsertPos;
739
740 // collect matching debug values.
741 SmallVector<MachineInstr *, 2> DbgValuesToSink;
742 collectDebugValues(MI, DbgValuesToSink);
743
744 // Move the instruction.
745 SuccToSinkTo->splice(InsertPos, ParentBlock, MI,
746 ++MachineBasicBlock::iterator(MI));
747
748 // Move debug values.
749 for (SmallVectorImpl<MachineInstr *>::iterator DBI = DbgValuesToSink.begin(),
750 DBE = DbgValuesToSink.end(); DBI != DBE; ++DBI) {
751 MachineInstr *DbgMI = *DBI;
752 SuccToSinkTo->splice(InsertPos, ParentBlock, DbgMI,
753 ++MachineBasicBlock::iterator(DbgMI));
754 }
755
756 // Conservatively, clear any kill flags, since it's possible that they are no
757 // longer correct.
758 MI->clearKillInfo();
759
760 return true;
761 }
762