1 //===- lib/CodeGen/MachineTraceMetrics.cpp ----------------------*- C++ -*-===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9
10 #include "llvm/CodeGen/MachineTraceMetrics.h"
11 #include "llvm/ADT/PostOrderIterator.h"
12 #include "llvm/ADT/SparseSet.h"
13 #include "llvm/CodeGen/MachineBasicBlock.h"
14 #include "llvm/CodeGen/MachineBranchProbabilityInfo.h"
15 #include "llvm/CodeGen/MachineLoopInfo.h"
16 #include "llvm/CodeGen/MachineRegisterInfo.h"
17 #include "llvm/CodeGen/Passes.h"
18 #include "llvm/MC/MCSubtargetInfo.h"
19 #include "llvm/Support/Debug.h"
20 #include "llvm/Support/Format.h"
21 #include "llvm/Support/raw_ostream.h"
22 #include "llvm/Target/TargetInstrInfo.h"
23 #include "llvm/Target/TargetRegisterInfo.h"
24 #include "llvm/Target/TargetSubtargetInfo.h"
25
26 using namespace llvm;
27
28 #define DEBUG_TYPE "machine-trace-metrics"
29
30 char MachineTraceMetrics::ID = 0;
31 char &llvm::MachineTraceMetricsID = MachineTraceMetrics::ID;
32
33 INITIALIZE_PASS_BEGIN(MachineTraceMetrics,
34 "machine-trace-metrics", "Machine Trace Metrics", false, true)
INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfo)35 INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfo)
36 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
37 INITIALIZE_PASS_END(MachineTraceMetrics,
38 "machine-trace-metrics", "Machine Trace Metrics", false, true)
39
40 MachineTraceMetrics::MachineTraceMetrics()
41 : MachineFunctionPass(ID), MF(nullptr), TII(nullptr), TRI(nullptr),
42 MRI(nullptr), Loops(nullptr) {
43 std::fill(std::begin(Ensembles), std::end(Ensembles), nullptr);
44 }
45
getAnalysisUsage(AnalysisUsage & AU) const46 void MachineTraceMetrics::getAnalysisUsage(AnalysisUsage &AU) const {
47 AU.setPreservesAll();
48 AU.addRequired<MachineBranchProbabilityInfo>();
49 AU.addRequired<MachineLoopInfo>();
50 MachineFunctionPass::getAnalysisUsage(AU);
51 }
52
runOnMachineFunction(MachineFunction & Func)53 bool MachineTraceMetrics::runOnMachineFunction(MachineFunction &Func) {
54 MF = &Func;
55 const TargetSubtargetInfo &ST = MF->getSubtarget();
56 TII = ST.getInstrInfo();
57 TRI = ST.getRegisterInfo();
58 MRI = &MF->getRegInfo();
59 Loops = &getAnalysis<MachineLoopInfo>();
60 SchedModel.init(ST.getSchedModel(), &ST, TII);
61 BlockInfo.resize(MF->getNumBlockIDs());
62 ProcResourceCycles.resize(MF->getNumBlockIDs() *
63 SchedModel.getNumProcResourceKinds());
64 return false;
65 }
66
releaseMemory()67 void MachineTraceMetrics::releaseMemory() {
68 MF = nullptr;
69 BlockInfo.clear();
70 for (unsigned i = 0; i != TS_NumStrategies; ++i) {
71 delete Ensembles[i];
72 Ensembles[i] = nullptr;
73 }
74 }
75
76 //===----------------------------------------------------------------------===//
77 // Fixed block information
78 //===----------------------------------------------------------------------===//
79 //
80 // The number of instructions in a basic block and the CPU resources used by
81 // those instructions don't depend on any given trace strategy.
82
83 /// Compute the resource usage in basic block MBB.
84 const MachineTraceMetrics::FixedBlockInfo*
getResources(const MachineBasicBlock * MBB)85 MachineTraceMetrics::getResources(const MachineBasicBlock *MBB) {
86 assert(MBB && "No basic block");
87 FixedBlockInfo *FBI = &BlockInfo[MBB->getNumber()];
88 if (FBI->hasResources())
89 return FBI;
90
91 // Compute resource usage in the block.
92 FBI->HasCalls = false;
93 unsigned InstrCount = 0;
94
95 // Add up per-processor resource cycles as well.
96 unsigned PRKinds = SchedModel.getNumProcResourceKinds();
97 SmallVector<unsigned, 32> PRCycles(PRKinds);
98
99 for (const auto &MI : *MBB) {
100 if (MI.isTransient())
101 continue;
102 ++InstrCount;
103 if (MI.isCall())
104 FBI->HasCalls = true;
105
106 // Count processor resources used.
107 if (!SchedModel.hasInstrSchedModel())
108 continue;
109 const MCSchedClassDesc *SC = SchedModel.resolveSchedClass(&MI);
110 if (!SC->isValid())
111 continue;
112
113 for (TargetSchedModel::ProcResIter
114 PI = SchedModel.getWriteProcResBegin(SC),
115 PE = SchedModel.getWriteProcResEnd(SC); PI != PE; ++PI) {
116 assert(PI->ProcResourceIdx < PRKinds && "Bad processor resource kind");
117 PRCycles[PI->ProcResourceIdx] += PI->Cycles;
118 }
119 }
120 FBI->InstrCount = InstrCount;
121
122 // Scale the resource cycles so they are comparable.
123 unsigned PROffset = MBB->getNumber() * PRKinds;
124 for (unsigned K = 0; K != PRKinds; ++K)
125 ProcResourceCycles[PROffset + K] =
126 PRCycles[K] * SchedModel.getResourceFactor(K);
127
128 return FBI;
129 }
130
131 ArrayRef<unsigned>
getProcResourceCycles(unsigned MBBNum) const132 MachineTraceMetrics::getProcResourceCycles(unsigned MBBNum) const {
133 assert(BlockInfo[MBBNum].hasResources() &&
134 "getResources() must be called before getProcResourceCycles()");
135 unsigned PRKinds = SchedModel.getNumProcResourceKinds();
136 assert((MBBNum+1) * PRKinds <= ProcResourceCycles.size());
137 return makeArrayRef(ProcResourceCycles.data() + MBBNum * PRKinds, PRKinds);
138 }
139
140
141 //===----------------------------------------------------------------------===//
142 // Ensemble utility functions
143 //===----------------------------------------------------------------------===//
144
Ensemble(MachineTraceMetrics * ct)145 MachineTraceMetrics::Ensemble::Ensemble(MachineTraceMetrics *ct)
146 : MTM(*ct) {
147 BlockInfo.resize(MTM.BlockInfo.size());
148 unsigned PRKinds = MTM.SchedModel.getNumProcResourceKinds();
149 ProcResourceDepths.resize(MTM.BlockInfo.size() * PRKinds);
150 ProcResourceHeights.resize(MTM.BlockInfo.size() * PRKinds);
151 }
152
153 // Virtual destructor serves as an anchor.
~Ensemble()154 MachineTraceMetrics::Ensemble::~Ensemble() {}
155
156 const MachineLoop*
getLoopFor(const MachineBasicBlock * MBB) const157 MachineTraceMetrics::Ensemble::getLoopFor(const MachineBasicBlock *MBB) const {
158 return MTM.Loops->getLoopFor(MBB);
159 }
160
161 // Update resource-related information in the TraceBlockInfo for MBB.
162 // Only update resources related to the trace above MBB.
163 void MachineTraceMetrics::Ensemble::
computeDepthResources(const MachineBasicBlock * MBB)164 computeDepthResources(const MachineBasicBlock *MBB) {
165 TraceBlockInfo *TBI = &BlockInfo[MBB->getNumber()];
166 unsigned PRKinds = MTM.SchedModel.getNumProcResourceKinds();
167 unsigned PROffset = MBB->getNumber() * PRKinds;
168
169 // Compute resources from trace above. The top block is simple.
170 if (!TBI->Pred) {
171 TBI->InstrDepth = 0;
172 TBI->Head = MBB->getNumber();
173 std::fill(ProcResourceDepths.begin() + PROffset,
174 ProcResourceDepths.begin() + PROffset + PRKinds, 0);
175 return;
176 }
177
178 // Compute from the block above. A post-order traversal ensures the
179 // predecessor is always computed first.
180 unsigned PredNum = TBI->Pred->getNumber();
181 TraceBlockInfo *PredTBI = &BlockInfo[PredNum];
182 assert(PredTBI->hasValidDepth() && "Trace above has not been computed yet");
183 const FixedBlockInfo *PredFBI = MTM.getResources(TBI->Pred);
184 TBI->InstrDepth = PredTBI->InstrDepth + PredFBI->InstrCount;
185 TBI->Head = PredTBI->Head;
186
187 // Compute per-resource depths.
188 ArrayRef<unsigned> PredPRDepths = getProcResourceDepths(PredNum);
189 ArrayRef<unsigned> PredPRCycles = MTM.getProcResourceCycles(PredNum);
190 for (unsigned K = 0; K != PRKinds; ++K)
191 ProcResourceDepths[PROffset + K] = PredPRDepths[K] + PredPRCycles[K];
192 }
193
194 // Update resource-related information in the TraceBlockInfo for MBB.
195 // Only update resources related to the trace below MBB.
196 void MachineTraceMetrics::Ensemble::
computeHeightResources(const MachineBasicBlock * MBB)197 computeHeightResources(const MachineBasicBlock *MBB) {
198 TraceBlockInfo *TBI = &BlockInfo[MBB->getNumber()];
199 unsigned PRKinds = MTM.SchedModel.getNumProcResourceKinds();
200 unsigned PROffset = MBB->getNumber() * PRKinds;
201
202 // Compute resources for the current block.
203 TBI->InstrHeight = MTM.getResources(MBB)->InstrCount;
204 ArrayRef<unsigned> PRCycles = MTM.getProcResourceCycles(MBB->getNumber());
205
206 // The trace tail is done.
207 if (!TBI->Succ) {
208 TBI->Tail = MBB->getNumber();
209 std::copy(PRCycles.begin(), PRCycles.end(),
210 ProcResourceHeights.begin() + PROffset);
211 return;
212 }
213
214 // Compute from the block below. A post-order traversal ensures the
215 // predecessor is always computed first.
216 unsigned SuccNum = TBI->Succ->getNumber();
217 TraceBlockInfo *SuccTBI = &BlockInfo[SuccNum];
218 assert(SuccTBI->hasValidHeight() && "Trace below has not been computed yet");
219 TBI->InstrHeight += SuccTBI->InstrHeight;
220 TBI->Tail = SuccTBI->Tail;
221
222 // Compute per-resource heights.
223 ArrayRef<unsigned> SuccPRHeights = getProcResourceHeights(SuccNum);
224 for (unsigned K = 0; K != PRKinds; ++K)
225 ProcResourceHeights[PROffset + K] = SuccPRHeights[K] + PRCycles[K];
226 }
227
228 // Check if depth resources for MBB are valid and return the TBI.
229 // Return NULL if the resources have been invalidated.
230 const MachineTraceMetrics::TraceBlockInfo*
231 MachineTraceMetrics::Ensemble::
getDepthResources(const MachineBasicBlock * MBB) const232 getDepthResources(const MachineBasicBlock *MBB) const {
233 const TraceBlockInfo *TBI = &BlockInfo[MBB->getNumber()];
234 return TBI->hasValidDepth() ? TBI : nullptr;
235 }
236
237 // Check if height resources for MBB are valid and return the TBI.
238 // Return NULL if the resources have been invalidated.
239 const MachineTraceMetrics::TraceBlockInfo*
240 MachineTraceMetrics::Ensemble::
getHeightResources(const MachineBasicBlock * MBB) const241 getHeightResources(const MachineBasicBlock *MBB) const {
242 const TraceBlockInfo *TBI = &BlockInfo[MBB->getNumber()];
243 return TBI->hasValidHeight() ? TBI : nullptr;
244 }
245
246 /// Get an array of processor resource depths for MBB. Indexed by processor
247 /// resource kind, this array contains the scaled processor resources consumed
248 /// by all blocks preceding MBB in its trace. It does not include instructions
249 /// in MBB.
250 ///
251 /// Compare TraceBlockInfo::InstrDepth.
252 ArrayRef<unsigned>
253 MachineTraceMetrics::Ensemble::
getProcResourceDepths(unsigned MBBNum) const254 getProcResourceDepths(unsigned MBBNum) const {
255 unsigned PRKinds = MTM.SchedModel.getNumProcResourceKinds();
256 assert((MBBNum+1) * PRKinds <= ProcResourceDepths.size());
257 return makeArrayRef(ProcResourceDepths.data() + MBBNum * PRKinds, PRKinds);
258 }
259
260 /// Get an array of processor resource heights for MBB. Indexed by processor
261 /// resource kind, this array contains the scaled processor resources consumed
262 /// by this block and all blocks following it in its trace.
263 ///
264 /// Compare TraceBlockInfo::InstrHeight.
265 ArrayRef<unsigned>
266 MachineTraceMetrics::Ensemble::
getProcResourceHeights(unsigned MBBNum) const267 getProcResourceHeights(unsigned MBBNum) const {
268 unsigned PRKinds = MTM.SchedModel.getNumProcResourceKinds();
269 assert((MBBNum+1) * PRKinds <= ProcResourceHeights.size());
270 return makeArrayRef(ProcResourceHeights.data() + MBBNum * PRKinds, PRKinds);
271 }
272
273 //===----------------------------------------------------------------------===//
274 // Trace Selection Strategies
275 //===----------------------------------------------------------------------===//
276 //
277 // A trace selection strategy is implemented as a sub-class of Ensemble. The
278 // trace through a block B is computed by two DFS traversals of the CFG
279 // starting from B. One upwards, and one downwards. During the upwards DFS,
280 // pickTracePred() is called on the post-ordered blocks. During the downwards
281 // DFS, pickTraceSucc() is called in a post-order.
282 //
283
284 // We never allow traces that leave loops, but we do allow traces to enter
285 // nested loops. We also never allow traces to contain back-edges.
286 //
287 // This means that a loop header can never appear above the center block of a
288 // trace, except as the trace head. Below the center block, loop exiting edges
289 // are banned.
290 //
291 // Return true if an edge from the From loop to the To loop is leaving a loop.
292 // Either of To and From can be null.
isExitingLoop(const MachineLoop * From,const MachineLoop * To)293 static bool isExitingLoop(const MachineLoop *From, const MachineLoop *To) {
294 return From && !From->contains(To);
295 }
296
297 // MinInstrCountEnsemble - Pick the trace that executes the least number of
298 // instructions.
299 namespace {
300 class MinInstrCountEnsemble : public MachineTraceMetrics::Ensemble {
getName() const301 const char *getName() const override { return "MinInstr"; }
302 const MachineBasicBlock *pickTracePred(const MachineBasicBlock*) override;
303 const MachineBasicBlock *pickTraceSucc(const MachineBasicBlock*) override;
304
305 public:
MinInstrCountEnsemble(MachineTraceMetrics * mtm)306 MinInstrCountEnsemble(MachineTraceMetrics *mtm)
307 : MachineTraceMetrics::Ensemble(mtm) {}
308 };
309 }
310
311 // Select the preferred predecessor for MBB.
312 const MachineBasicBlock*
pickTracePred(const MachineBasicBlock * MBB)313 MinInstrCountEnsemble::pickTracePred(const MachineBasicBlock *MBB) {
314 if (MBB->pred_empty())
315 return nullptr;
316 const MachineLoop *CurLoop = getLoopFor(MBB);
317 // Don't leave loops, and never follow back-edges.
318 if (CurLoop && MBB == CurLoop->getHeader())
319 return nullptr;
320 unsigned CurCount = MTM.getResources(MBB)->InstrCount;
321 const MachineBasicBlock *Best = nullptr;
322 unsigned BestDepth = 0;
323 for (MachineBasicBlock::const_pred_iterator
324 I = MBB->pred_begin(), E = MBB->pred_end(); I != E; ++I) {
325 const MachineBasicBlock *Pred = *I;
326 const MachineTraceMetrics::TraceBlockInfo *PredTBI =
327 getDepthResources(Pred);
328 // Ignore cycles that aren't natural loops.
329 if (!PredTBI)
330 continue;
331 // Pick the predecessor that would give this block the smallest InstrDepth.
332 unsigned Depth = PredTBI->InstrDepth + CurCount;
333 if (!Best || Depth < BestDepth)
334 Best = Pred, BestDepth = Depth;
335 }
336 return Best;
337 }
338
339 // Select the preferred successor for MBB.
340 const MachineBasicBlock*
pickTraceSucc(const MachineBasicBlock * MBB)341 MinInstrCountEnsemble::pickTraceSucc(const MachineBasicBlock *MBB) {
342 if (MBB->pred_empty())
343 return nullptr;
344 const MachineLoop *CurLoop = getLoopFor(MBB);
345 const MachineBasicBlock *Best = nullptr;
346 unsigned BestHeight = 0;
347 for (MachineBasicBlock::const_succ_iterator
348 I = MBB->succ_begin(), E = MBB->succ_end(); I != E; ++I) {
349 const MachineBasicBlock *Succ = *I;
350 // Don't consider back-edges.
351 if (CurLoop && Succ == CurLoop->getHeader())
352 continue;
353 // Don't consider successors exiting CurLoop.
354 if (isExitingLoop(CurLoop, getLoopFor(Succ)))
355 continue;
356 const MachineTraceMetrics::TraceBlockInfo *SuccTBI =
357 getHeightResources(Succ);
358 // Ignore cycles that aren't natural loops.
359 if (!SuccTBI)
360 continue;
361 // Pick the successor that would give this block the smallest InstrHeight.
362 unsigned Height = SuccTBI->InstrHeight;
363 if (!Best || Height < BestHeight)
364 Best = Succ, BestHeight = Height;
365 }
366 return Best;
367 }
368
369 // Get an Ensemble sub-class for the requested trace strategy.
370 MachineTraceMetrics::Ensemble *
getEnsemble(MachineTraceMetrics::Strategy strategy)371 MachineTraceMetrics::getEnsemble(MachineTraceMetrics::Strategy strategy) {
372 assert(strategy < TS_NumStrategies && "Invalid trace strategy enum");
373 Ensemble *&E = Ensembles[strategy];
374 if (E)
375 return E;
376
377 // Allocate new Ensemble on demand.
378 switch (strategy) {
379 case TS_MinInstrCount: return (E = new MinInstrCountEnsemble(this));
380 default: llvm_unreachable("Invalid trace strategy enum");
381 }
382 }
383
invalidate(const MachineBasicBlock * MBB)384 void MachineTraceMetrics::invalidate(const MachineBasicBlock *MBB) {
385 DEBUG(dbgs() << "Invalidate traces through BB#" << MBB->getNumber() << '\n');
386 BlockInfo[MBB->getNumber()].invalidate();
387 for (unsigned i = 0; i != TS_NumStrategies; ++i)
388 if (Ensembles[i])
389 Ensembles[i]->invalidate(MBB);
390 }
391
verifyAnalysis() const392 void MachineTraceMetrics::verifyAnalysis() const {
393 if (!MF)
394 return;
395 #ifndef NDEBUG
396 assert(BlockInfo.size() == MF->getNumBlockIDs() && "Outdated BlockInfo size");
397 for (unsigned i = 0; i != TS_NumStrategies; ++i)
398 if (Ensembles[i])
399 Ensembles[i]->verify();
400 #endif
401 }
402
403 //===----------------------------------------------------------------------===//
404 // Trace building
405 //===----------------------------------------------------------------------===//
406 //
407 // Traces are built by two CFG traversals. To avoid recomputing too much, use a
408 // set abstraction that confines the search to the current loop, and doesn't
409 // revisit blocks.
410
411 namespace {
412 struct LoopBounds {
413 MutableArrayRef<MachineTraceMetrics::TraceBlockInfo> Blocks;
414 SmallPtrSet<const MachineBasicBlock*, 8> Visited;
415 const MachineLoopInfo *Loops;
416 bool Downward;
LoopBounds__anonb1f637110211::LoopBounds417 LoopBounds(MutableArrayRef<MachineTraceMetrics::TraceBlockInfo> blocks,
418 const MachineLoopInfo *loops)
419 : Blocks(blocks), Loops(loops), Downward(false) {}
420 };
421 }
422
423 // Specialize po_iterator_storage in order to prune the post-order traversal so
424 // it is limited to the current loop and doesn't traverse the loop back edges.
425 namespace llvm {
426 template<>
427 class po_iterator_storage<LoopBounds, true> {
428 LoopBounds &LB;
429 public:
po_iterator_storage(LoopBounds & lb)430 po_iterator_storage(LoopBounds &lb) : LB(lb) {}
finishPostorder(const MachineBasicBlock *)431 void finishPostorder(const MachineBasicBlock*) {}
432
insertEdge(const MachineBasicBlock * From,const MachineBasicBlock * To)433 bool insertEdge(const MachineBasicBlock *From, const MachineBasicBlock *To) {
434 // Skip already visited To blocks.
435 MachineTraceMetrics::TraceBlockInfo &TBI = LB.Blocks[To->getNumber()];
436 if (LB.Downward ? TBI.hasValidHeight() : TBI.hasValidDepth())
437 return false;
438 // From is null once when To is the trace center block.
439 if (From) {
440 if (const MachineLoop *FromLoop = LB.Loops->getLoopFor(From)) {
441 // Don't follow backedges, don't leave FromLoop when going upwards.
442 if ((LB.Downward ? To : From) == FromLoop->getHeader())
443 return false;
444 // Don't leave FromLoop.
445 if (isExitingLoop(FromLoop, LB.Loops->getLoopFor(To)))
446 return false;
447 }
448 }
449 // To is a new block. Mark the block as visited in case the CFG has cycles
450 // that MachineLoopInfo didn't recognize as a natural loop.
451 return LB.Visited.insert(To).second;
452 }
453 };
454 }
455
456 /// Compute the trace through MBB.
computeTrace(const MachineBasicBlock * MBB)457 void MachineTraceMetrics::Ensemble::computeTrace(const MachineBasicBlock *MBB) {
458 DEBUG(dbgs() << "Computing " << getName() << " trace through BB#"
459 << MBB->getNumber() << '\n');
460 // Set up loop bounds for the backwards post-order traversal.
461 LoopBounds Bounds(BlockInfo, MTM.Loops);
462
463 // Run an upwards post-order search for the trace start.
464 Bounds.Downward = false;
465 Bounds.Visited.clear();
466 for (auto I : inverse_post_order_ext(MBB, Bounds)) {
467 DEBUG(dbgs() << " pred for BB#" << I->getNumber() << ": ");
468 TraceBlockInfo &TBI = BlockInfo[I->getNumber()];
469 // All the predecessors have been visited, pick the preferred one.
470 TBI.Pred = pickTracePred(I);
471 DEBUG({
472 if (TBI.Pred)
473 dbgs() << "BB#" << TBI.Pred->getNumber() << '\n';
474 else
475 dbgs() << "null\n";
476 });
477 // The trace leading to I is now known, compute the depth resources.
478 computeDepthResources(I);
479 }
480
481 // Run a downwards post-order search for the trace end.
482 Bounds.Downward = true;
483 Bounds.Visited.clear();
484 for (auto I : post_order_ext(MBB, Bounds)) {
485 DEBUG(dbgs() << " succ for BB#" << I->getNumber() << ": ");
486 TraceBlockInfo &TBI = BlockInfo[I->getNumber()];
487 // All the successors have been visited, pick the preferred one.
488 TBI.Succ = pickTraceSucc(I);
489 DEBUG({
490 if (TBI.Succ)
491 dbgs() << "BB#" << TBI.Succ->getNumber() << '\n';
492 else
493 dbgs() << "null\n";
494 });
495 // The trace leaving I is now known, compute the height resources.
496 computeHeightResources(I);
497 }
498 }
499
500 /// Invalidate traces through BadMBB.
501 void
invalidate(const MachineBasicBlock * BadMBB)502 MachineTraceMetrics::Ensemble::invalidate(const MachineBasicBlock *BadMBB) {
503 SmallVector<const MachineBasicBlock*, 16> WorkList;
504 TraceBlockInfo &BadTBI = BlockInfo[BadMBB->getNumber()];
505
506 // Invalidate height resources of blocks above MBB.
507 if (BadTBI.hasValidHeight()) {
508 BadTBI.invalidateHeight();
509 WorkList.push_back(BadMBB);
510 do {
511 const MachineBasicBlock *MBB = WorkList.pop_back_val();
512 DEBUG(dbgs() << "Invalidate BB#" << MBB->getNumber() << ' ' << getName()
513 << " height.\n");
514 // Find any MBB predecessors that have MBB as their preferred successor.
515 // They are the only ones that need to be invalidated.
516 for (MachineBasicBlock::const_pred_iterator
517 I = MBB->pred_begin(), E = MBB->pred_end(); I != E; ++I) {
518 TraceBlockInfo &TBI = BlockInfo[(*I)->getNumber()];
519 if (!TBI.hasValidHeight())
520 continue;
521 if (TBI.Succ == MBB) {
522 TBI.invalidateHeight();
523 WorkList.push_back(*I);
524 continue;
525 }
526 // Verify that TBI.Succ is actually a *I successor.
527 assert((!TBI.Succ || (*I)->isSuccessor(TBI.Succ)) && "CFG changed");
528 }
529 } while (!WorkList.empty());
530 }
531
532 // Invalidate depth resources of blocks below MBB.
533 if (BadTBI.hasValidDepth()) {
534 BadTBI.invalidateDepth();
535 WorkList.push_back(BadMBB);
536 do {
537 const MachineBasicBlock *MBB = WorkList.pop_back_val();
538 DEBUG(dbgs() << "Invalidate BB#" << MBB->getNumber() << ' ' << getName()
539 << " depth.\n");
540 // Find any MBB successors that have MBB as their preferred predecessor.
541 // They are the only ones that need to be invalidated.
542 for (MachineBasicBlock::const_succ_iterator
543 I = MBB->succ_begin(), E = MBB->succ_end(); I != E; ++I) {
544 TraceBlockInfo &TBI = BlockInfo[(*I)->getNumber()];
545 if (!TBI.hasValidDepth())
546 continue;
547 if (TBI.Pred == MBB) {
548 TBI.invalidateDepth();
549 WorkList.push_back(*I);
550 continue;
551 }
552 // Verify that TBI.Pred is actually a *I predecessor.
553 assert((!TBI.Pred || (*I)->isPredecessor(TBI.Pred)) && "CFG changed");
554 }
555 } while (!WorkList.empty());
556 }
557
558 // Clear any per-instruction data. We only have to do this for BadMBB itself
559 // because the instructions in that block may change. Other blocks may be
560 // invalidated, but their instructions will stay the same, so there is no
561 // need to erase the Cycle entries. They will be overwritten when we
562 // recompute.
563 for (const auto &I : *BadMBB)
564 Cycles.erase(&I);
565 }
566
verify() const567 void MachineTraceMetrics::Ensemble::verify() const {
568 #ifndef NDEBUG
569 assert(BlockInfo.size() == MTM.MF->getNumBlockIDs() &&
570 "Outdated BlockInfo size");
571 for (unsigned Num = 0, e = BlockInfo.size(); Num != e; ++Num) {
572 const TraceBlockInfo &TBI = BlockInfo[Num];
573 if (TBI.hasValidDepth() && TBI.Pred) {
574 const MachineBasicBlock *MBB = MTM.MF->getBlockNumbered(Num);
575 assert(MBB->isPredecessor(TBI.Pred) && "CFG doesn't match trace");
576 assert(BlockInfo[TBI.Pred->getNumber()].hasValidDepth() &&
577 "Trace is broken, depth should have been invalidated.");
578 const MachineLoop *Loop = getLoopFor(MBB);
579 assert(!(Loop && MBB == Loop->getHeader()) && "Trace contains backedge");
580 }
581 if (TBI.hasValidHeight() && TBI.Succ) {
582 const MachineBasicBlock *MBB = MTM.MF->getBlockNumbered(Num);
583 assert(MBB->isSuccessor(TBI.Succ) && "CFG doesn't match trace");
584 assert(BlockInfo[TBI.Succ->getNumber()].hasValidHeight() &&
585 "Trace is broken, height should have been invalidated.");
586 const MachineLoop *Loop = getLoopFor(MBB);
587 const MachineLoop *SuccLoop = getLoopFor(TBI.Succ);
588 assert(!(Loop && Loop == SuccLoop && TBI.Succ == Loop->getHeader()) &&
589 "Trace contains backedge");
590 }
591 }
592 #endif
593 }
594
595 //===----------------------------------------------------------------------===//
596 // Data Dependencies
597 //===----------------------------------------------------------------------===//
598 //
599 // Compute the depth and height of each instruction based on data dependencies
600 // and instruction latencies. These cycle numbers assume that the CPU can issue
601 // an infinite number of instructions per cycle as long as their dependencies
602 // are ready.
603
604 // A data dependency is represented as a defining MI and operand numbers on the
605 // defining and using MI.
606 namespace {
607 struct DataDep {
608 const MachineInstr *DefMI;
609 unsigned DefOp;
610 unsigned UseOp;
611
DataDep__anonb1f637110311::DataDep612 DataDep(const MachineInstr *DefMI, unsigned DefOp, unsigned UseOp)
613 : DefMI(DefMI), DefOp(DefOp), UseOp(UseOp) {}
614
615 /// Create a DataDep from an SSA form virtual register.
DataDep__anonb1f637110311::DataDep616 DataDep(const MachineRegisterInfo *MRI, unsigned VirtReg, unsigned UseOp)
617 : UseOp(UseOp) {
618 assert(TargetRegisterInfo::isVirtualRegister(VirtReg));
619 MachineRegisterInfo::def_iterator DefI = MRI->def_begin(VirtReg);
620 assert(!DefI.atEnd() && "Register has no defs");
621 DefMI = DefI->getParent();
622 DefOp = DefI.getOperandNo();
623 assert((++DefI).atEnd() && "Register has multiple defs");
624 }
625 };
626 }
627
628 // Get the input data dependencies that must be ready before UseMI can issue.
629 // Return true if UseMI has any physreg operands.
getDataDeps(const MachineInstr * UseMI,SmallVectorImpl<DataDep> & Deps,const MachineRegisterInfo * MRI)630 static bool getDataDeps(const MachineInstr *UseMI,
631 SmallVectorImpl<DataDep> &Deps,
632 const MachineRegisterInfo *MRI) {
633 bool HasPhysRegs = false;
634 for (ConstMIOperands MO(UseMI); MO.isValid(); ++MO) {
635 if (!MO->isReg())
636 continue;
637 unsigned Reg = MO->getReg();
638 if (!Reg)
639 continue;
640 if (TargetRegisterInfo::isPhysicalRegister(Reg)) {
641 HasPhysRegs = true;
642 continue;
643 }
644 // Collect virtual register reads.
645 if (MO->readsReg())
646 Deps.push_back(DataDep(MRI, Reg, MO.getOperandNo()));
647 }
648 return HasPhysRegs;
649 }
650
651 // Get the input data dependencies of a PHI instruction, using Pred as the
652 // preferred predecessor.
653 // This will add at most one dependency to Deps.
getPHIDeps(const MachineInstr * UseMI,SmallVectorImpl<DataDep> & Deps,const MachineBasicBlock * Pred,const MachineRegisterInfo * MRI)654 static void getPHIDeps(const MachineInstr *UseMI,
655 SmallVectorImpl<DataDep> &Deps,
656 const MachineBasicBlock *Pred,
657 const MachineRegisterInfo *MRI) {
658 // No predecessor at the beginning of a trace. Ignore dependencies.
659 if (!Pred)
660 return;
661 assert(UseMI->isPHI() && UseMI->getNumOperands() % 2 && "Bad PHI");
662 for (unsigned i = 1; i != UseMI->getNumOperands(); i += 2) {
663 if (UseMI->getOperand(i + 1).getMBB() == Pred) {
664 unsigned Reg = UseMI->getOperand(i).getReg();
665 Deps.push_back(DataDep(MRI, Reg, i));
666 return;
667 }
668 }
669 }
670
671 // Keep track of physreg data dependencies by recording each live register unit.
672 // Associate each regunit with an instruction operand. Depending on the
673 // direction instructions are scanned, it could be the operand that defined the
674 // regunit, or the highest operand to read the regunit.
675 namespace {
676 struct LiveRegUnit {
677 unsigned RegUnit;
678 unsigned Cycle;
679 const MachineInstr *MI;
680 unsigned Op;
681
getSparseSetIndex__anonb1f637110411::LiveRegUnit682 unsigned getSparseSetIndex() const { return RegUnit; }
683
LiveRegUnit__anonb1f637110411::LiveRegUnit684 LiveRegUnit(unsigned RU) : RegUnit(RU), Cycle(0), MI(nullptr), Op(0) {}
685 };
686 }
687
688 // Identify physreg dependencies for UseMI, and update the live regunit
689 // tracking set when scanning instructions downwards.
updatePhysDepsDownwards(const MachineInstr * UseMI,SmallVectorImpl<DataDep> & Deps,SparseSet<LiveRegUnit> & RegUnits,const TargetRegisterInfo * TRI)690 static void updatePhysDepsDownwards(const MachineInstr *UseMI,
691 SmallVectorImpl<DataDep> &Deps,
692 SparseSet<LiveRegUnit> &RegUnits,
693 const TargetRegisterInfo *TRI) {
694 SmallVector<unsigned, 8> Kills;
695 SmallVector<unsigned, 8> LiveDefOps;
696
697 for (ConstMIOperands MO(UseMI); MO.isValid(); ++MO) {
698 if (!MO->isReg())
699 continue;
700 unsigned Reg = MO->getReg();
701 if (!TargetRegisterInfo::isPhysicalRegister(Reg))
702 continue;
703 // Track live defs and kills for updating RegUnits.
704 if (MO->isDef()) {
705 if (MO->isDead())
706 Kills.push_back(Reg);
707 else
708 LiveDefOps.push_back(MO.getOperandNo());
709 } else if (MO->isKill())
710 Kills.push_back(Reg);
711 // Identify dependencies.
712 if (!MO->readsReg())
713 continue;
714 for (MCRegUnitIterator Units(Reg, TRI); Units.isValid(); ++Units) {
715 SparseSet<LiveRegUnit>::iterator I = RegUnits.find(*Units);
716 if (I == RegUnits.end())
717 continue;
718 Deps.push_back(DataDep(I->MI, I->Op, MO.getOperandNo()));
719 break;
720 }
721 }
722
723 // Update RegUnits to reflect live registers after UseMI.
724 // First kills.
725 for (unsigned i = 0, e = Kills.size(); i != e; ++i)
726 for (MCRegUnitIterator Units(Kills[i], TRI); Units.isValid(); ++Units)
727 RegUnits.erase(*Units);
728
729 // Second, live defs.
730 for (unsigned i = 0, e = LiveDefOps.size(); i != e; ++i) {
731 unsigned DefOp = LiveDefOps[i];
732 for (MCRegUnitIterator Units(UseMI->getOperand(DefOp).getReg(), TRI);
733 Units.isValid(); ++Units) {
734 LiveRegUnit &LRU = RegUnits[*Units];
735 LRU.MI = UseMI;
736 LRU.Op = DefOp;
737 }
738 }
739 }
740
741 /// The length of the critical path through a trace is the maximum of two path
742 /// lengths:
743 ///
744 /// 1. The maximum height+depth over all instructions in the trace center block.
745 ///
746 /// 2. The longest cross-block dependency chain. For small blocks, it is
747 /// possible that the critical path through the trace doesn't include any
748 /// instructions in the block.
749 ///
750 /// This function computes the second number from the live-in list of the
751 /// center block.
752 unsigned MachineTraceMetrics::Ensemble::
computeCrossBlockCriticalPath(const TraceBlockInfo & TBI)753 computeCrossBlockCriticalPath(const TraceBlockInfo &TBI) {
754 assert(TBI.HasValidInstrDepths && "Missing depth info");
755 assert(TBI.HasValidInstrHeights && "Missing height info");
756 unsigned MaxLen = 0;
757 for (unsigned i = 0, e = TBI.LiveIns.size(); i != e; ++i) {
758 const LiveInReg &LIR = TBI.LiveIns[i];
759 if (!TargetRegisterInfo::isVirtualRegister(LIR.Reg))
760 continue;
761 const MachineInstr *DefMI = MTM.MRI->getVRegDef(LIR.Reg);
762 // Ignore dependencies outside the current trace.
763 const TraceBlockInfo &DefTBI = BlockInfo[DefMI->getParent()->getNumber()];
764 if (!DefTBI.isUsefulDominator(TBI))
765 continue;
766 unsigned Len = LIR.Height + Cycles[DefMI].Depth;
767 MaxLen = std::max(MaxLen, Len);
768 }
769 return MaxLen;
770 }
771
772 /// Compute instruction depths for all instructions above or in MBB in its
773 /// trace. This assumes that the trace through MBB has already been computed.
774 void MachineTraceMetrics::Ensemble::
computeInstrDepths(const MachineBasicBlock * MBB)775 computeInstrDepths(const MachineBasicBlock *MBB) {
776 // The top of the trace may already be computed, and HasValidInstrDepths
777 // implies Head->HasValidInstrDepths, so we only need to start from the first
778 // block in the trace that needs to be recomputed.
779 SmallVector<const MachineBasicBlock*, 8> Stack;
780 do {
781 TraceBlockInfo &TBI = BlockInfo[MBB->getNumber()];
782 assert(TBI.hasValidDepth() && "Incomplete trace");
783 if (TBI.HasValidInstrDepths)
784 break;
785 Stack.push_back(MBB);
786 MBB = TBI.Pred;
787 } while (MBB);
788
789 // FIXME: If MBB is non-null at this point, it is the last pre-computed block
790 // in the trace. We should track any live-out physregs that were defined in
791 // the trace. This is quite rare in SSA form, typically created by CSE
792 // hoisting a compare.
793 SparseSet<LiveRegUnit> RegUnits;
794 RegUnits.setUniverse(MTM.TRI->getNumRegUnits());
795
796 // Go through trace blocks in top-down order, stopping after the center block.
797 SmallVector<DataDep, 8> Deps;
798 while (!Stack.empty()) {
799 MBB = Stack.pop_back_val();
800 DEBUG(dbgs() << "\nDepths for BB#" << MBB->getNumber() << ":\n");
801 TraceBlockInfo &TBI = BlockInfo[MBB->getNumber()];
802 TBI.HasValidInstrDepths = true;
803 TBI.CriticalPath = 0;
804
805 // Print out resource depths here as well.
806 DEBUG({
807 dbgs() << format("%7u Instructions\n", TBI.InstrDepth);
808 ArrayRef<unsigned> PRDepths = getProcResourceDepths(MBB->getNumber());
809 for (unsigned K = 0; K != PRDepths.size(); ++K)
810 if (PRDepths[K]) {
811 unsigned Factor = MTM.SchedModel.getResourceFactor(K);
812 dbgs() << format("%6uc @ ", MTM.getCycles(PRDepths[K]))
813 << MTM.SchedModel.getProcResource(K)->Name << " ("
814 << PRDepths[K]/Factor << " ops x" << Factor << ")\n";
815 }
816 });
817
818 // Also compute the critical path length through MBB when possible.
819 if (TBI.HasValidInstrHeights)
820 TBI.CriticalPath = computeCrossBlockCriticalPath(TBI);
821
822 for (const auto &UseMI : *MBB) {
823 // Collect all data dependencies.
824 Deps.clear();
825 if (UseMI.isPHI())
826 getPHIDeps(&UseMI, Deps, TBI.Pred, MTM.MRI);
827 else if (getDataDeps(&UseMI, Deps, MTM.MRI))
828 updatePhysDepsDownwards(&UseMI, Deps, RegUnits, MTM.TRI);
829
830 // Filter and process dependencies, computing the earliest issue cycle.
831 unsigned Cycle = 0;
832 for (unsigned i = 0, e = Deps.size(); i != e; ++i) {
833 const DataDep &Dep = Deps[i];
834 const TraceBlockInfo&DepTBI =
835 BlockInfo[Dep.DefMI->getParent()->getNumber()];
836 // Ignore dependencies from outside the current trace.
837 if (!DepTBI.isUsefulDominator(TBI))
838 continue;
839 assert(DepTBI.HasValidInstrDepths && "Inconsistent dependency");
840 unsigned DepCycle = Cycles.lookup(Dep.DefMI).Depth;
841 // Add latency if DefMI is a real instruction. Transients get latency 0.
842 if (!Dep.DefMI->isTransient())
843 DepCycle += MTM.SchedModel
844 .computeOperandLatency(Dep.DefMI, Dep.DefOp, &UseMI, Dep.UseOp);
845 Cycle = std::max(Cycle, DepCycle);
846 }
847 // Remember the instruction depth.
848 InstrCycles &MICycles = Cycles[&UseMI];
849 MICycles.Depth = Cycle;
850
851 if (!TBI.HasValidInstrHeights) {
852 DEBUG(dbgs() << Cycle << '\t' << UseMI);
853 continue;
854 }
855 // Update critical path length.
856 TBI.CriticalPath = std::max(TBI.CriticalPath, Cycle + MICycles.Height);
857 DEBUG(dbgs() << TBI.CriticalPath << '\t' << Cycle << '\t' << UseMI);
858 }
859 }
860 }
861
862 // Identify physreg dependencies for MI when scanning instructions upwards.
863 // Return the issue height of MI after considering any live regunits.
864 // Height is the issue height computed from virtual register dependencies alone.
updatePhysDepsUpwards(const MachineInstr * MI,unsigned Height,SparseSet<LiveRegUnit> & RegUnits,const TargetSchedModel & SchedModel,const TargetInstrInfo * TII,const TargetRegisterInfo * TRI)865 static unsigned updatePhysDepsUpwards(const MachineInstr *MI, unsigned Height,
866 SparseSet<LiveRegUnit> &RegUnits,
867 const TargetSchedModel &SchedModel,
868 const TargetInstrInfo *TII,
869 const TargetRegisterInfo *TRI) {
870 SmallVector<unsigned, 8> ReadOps;
871 for (ConstMIOperands MO(MI); MO.isValid(); ++MO) {
872 if (!MO->isReg())
873 continue;
874 unsigned Reg = MO->getReg();
875 if (!TargetRegisterInfo::isPhysicalRegister(Reg))
876 continue;
877 if (MO->readsReg())
878 ReadOps.push_back(MO.getOperandNo());
879 if (!MO->isDef())
880 continue;
881 // This is a def of Reg. Remove corresponding entries from RegUnits, and
882 // update MI Height to consider the physreg dependencies.
883 for (MCRegUnitIterator Units(Reg, TRI); Units.isValid(); ++Units) {
884 SparseSet<LiveRegUnit>::iterator I = RegUnits.find(*Units);
885 if (I == RegUnits.end())
886 continue;
887 unsigned DepHeight = I->Cycle;
888 if (!MI->isTransient()) {
889 // We may not know the UseMI of this dependency, if it came from the
890 // live-in list. SchedModel can handle a NULL UseMI.
891 DepHeight += SchedModel
892 .computeOperandLatency(MI, MO.getOperandNo(), I->MI, I->Op);
893 }
894 Height = std::max(Height, DepHeight);
895 // This regunit is dead above MI.
896 RegUnits.erase(I);
897 }
898 }
899
900 // Now we know the height of MI. Update any regunits read.
901 for (unsigned i = 0, e = ReadOps.size(); i != e; ++i) {
902 unsigned Reg = MI->getOperand(ReadOps[i]).getReg();
903 for (MCRegUnitIterator Units(Reg, TRI); Units.isValid(); ++Units) {
904 LiveRegUnit &LRU = RegUnits[*Units];
905 // Set the height to the highest reader of the unit.
906 if (LRU.Cycle <= Height && LRU.MI != MI) {
907 LRU.Cycle = Height;
908 LRU.MI = MI;
909 LRU.Op = ReadOps[i];
910 }
911 }
912 }
913
914 return Height;
915 }
916
917
918 typedef DenseMap<const MachineInstr *, unsigned> MIHeightMap;
919
920 // Push the height of DefMI upwards if required to match UseMI.
921 // Return true if this is the first time DefMI was seen.
pushDepHeight(const DataDep & Dep,const MachineInstr * UseMI,unsigned UseHeight,MIHeightMap & Heights,const TargetSchedModel & SchedModel,const TargetInstrInfo * TII)922 static bool pushDepHeight(const DataDep &Dep,
923 const MachineInstr *UseMI, unsigned UseHeight,
924 MIHeightMap &Heights,
925 const TargetSchedModel &SchedModel,
926 const TargetInstrInfo *TII) {
927 // Adjust height by Dep.DefMI latency.
928 if (!Dep.DefMI->isTransient())
929 UseHeight += SchedModel.computeOperandLatency(Dep.DefMI, Dep.DefOp,
930 UseMI, Dep.UseOp);
931
932 // Update Heights[DefMI] to be the maximum height seen.
933 MIHeightMap::iterator I;
934 bool New;
935 std::tie(I, New) = Heights.insert(std::make_pair(Dep.DefMI, UseHeight));
936 if (New)
937 return true;
938
939 // DefMI has been pushed before. Give it the max height.
940 if (I->second < UseHeight)
941 I->second = UseHeight;
942 return false;
943 }
944
945 /// Assuming that the virtual register defined by DefMI:DefOp was used by
946 /// Trace.back(), add it to the live-in lists of all the blocks in Trace. Stop
947 /// when reaching the block that contains DefMI.
948 void MachineTraceMetrics::Ensemble::
addLiveIns(const MachineInstr * DefMI,unsigned DefOp,ArrayRef<const MachineBasicBlock * > Trace)949 addLiveIns(const MachineInstr *DefMI, unsigned DefOp,
950 ArrayRef<const MachineBasicBlock*> Trace) {
951 assert(!Trace.empty() && "Trace should contain at least one block");
952 unsigned Reg = DefMI->getOperand(DefOp).getReg();
953 assert(TargetRegisterInfo::isVirtualRegister(Reg));
954 const MachineBasicBlock *DefMBB = DefMI->getParent();
955
956 // Reg is live-in to all blocks in Trace that follow DefMBB.
957 for (unsigned i = Trace.size(); i; --i) {
958 const MachineBasicBlock *MBB = Trace[i-1];
959 if (MBB == DefMBB)
960 return;
961 TraceBlockInfo &TBI = BlockInfo[MBB->getNumber()];
962 // Just add the register. The height will be updated later.
963 TBI.LiveIns.push_back(Reg);
964 }
965 }
966
967 /// Compute instruction heights in the trace through MBB. This updates MBB and
968 /// the blocks below it in the trace. It is assumed that the trace has already
969 /// been computed.
970 void MachineTraceMetrics::Ensemble::
computeInstrHeights(const MachineBasicBlock * MBB)971 computeInstrHeights(const MachineBasicBlock *MBB) {
972 // The bottom of the trace may already be computed.
973 // Find the blocks that need updating.
974 SmallVector<const MachineBasicBlock*, 8> Stack;
975 do {
976 TraceBlockInfo &TBI = BlockInfo[MBB->getNumber()];
977 assert(TBI.hasValidHeight() && "Incomplete trace");
978 if (TBI.HasValidInstrHeights)
979 break;
980 Stack.push_back(MBB);
981 TBI.LiveIns.clear();
982 MBB = TBI.Succ;
983 } while (MBB);
984
985 // As we move upwards in the trace, keep track of instructions that are
986 // required by deeper trace instructions. Map MI -> height required so far.
987 MIHeightMap Heights;
988
989 // For physregs, the def isn't known when we see the use.
990 // Instead, keep track of the highest use of each regunit.
991 SparseSet<LiveRegUnit> RegUnits;
992 RegUnits.setUniverse(MTM.TRI->getNumRegUnits());
993
994 // If the bottom of the trace was already precomputed, initialize heights
995 // from its live-in list.
996 // MBB is the highest precomputed block in the trace.
997 if (MBB) {
998 TraceBlockInfo &TBI = BlockInfo[MBB->getNumber()];
999 for (unsigned i = 0, e = TBI.LiveIns.size(); i != e; ++i) {
1000 LiveInReg LI = TBI.LiveIns[i];
1001 if (TargetRegisterInfo::isVirtualRegister(LI.Reg)) {
1002 // For virtual registers, the def latency is included.
1003 unsigned &Height = Heights[MTM.MRI->getVRegDef(LI.Reg)];
1004 if (Height < LI.Height)
1005 Height = LI.Height;
1006 } else {
1007 // For register units, the def latency is not included because we don't
1008 // know the def yet.
1009 RegUnits[LI.Reg].Cycle = LI.Height;
1010 }
1011 }
1012 }
1013
1014 // Go through the trace blocks in bottom-up order.
1015 SmallVector<DataDep, 8> Deps;
1016 for (;!Stack.empty(); Stack.pop_back()) {
1017 MBB = Stack.back();
1018 DEBUG(dbgs() << "Heights for BB#" << MBB->getNumber() << ":\n");
1019 TraceBlockInfo &TBI = BlockInfo[MBB->getNumber()];
1020 TBI.HasValidInstrHeights = true;
1021 TBI.CriticalPath = 0;
1022
1023 DEBUG({
1024 dbgs() << format("%7u Instructions\n", TBI.InstrHeight);
1025 ArrayRef<unsigned> PRHeights = getProcResourceHeights(MBB->getNumber());
1026 for (unsigned K = 0; K != PRHeights.size(); ++K)
1027 if (PRHeights[K]) {
1028 unsigned Factor = MTM.SchedModel.getResourceFactor(K);
1029 dbgs() << format("%6uc @ ", MTM.getCycles(PRHeights[K]))
1030 << MTM.SchedModel.getProcResource(K)->Name << " ("
1031 << PRHeights[K]/Factor << " ops x" << Factor << ")\n";
1032 }
1033 });
1034
1035 // Get dependencies from PHIs in the trace successor.
1036 const MachineBasicBlock *Succ = TBI.Succ;
1037 // If MBB is the last block in the trace, and it has a back-edge to the
1038 // loop header, get loop-carried dependencies from PHIs in the header. For
1039 // that purpose, pretend that all the loop header PHIs have height 0.
1040 if (!Succ)
1041 if (const MachineLoop *Loop = getLoopFor(MBB))
1042 if (MBB->isSuccessor(Loop->getHeader()))
1043 Succ = Loop->getHeader();
1044
1045 if (Succ) {
1046 for (const auto &PHI : *Succ) {
1047 if (!PHI.isPHI())
1048 break;
1049 Deps.clear();
1050 getPHIDeps(&PHI, Deps, MBB, MTM.MRI);
1051 if (!Deps.empty()) {
1052 // Loop header PHI heights are all 0.
1053 unsigned Height = TBI.Succ ? Cycles.lookup(&PHI).Height : 0;
1054 DEBUG(dbgs() << "pred\t" << Height << '\t' << PHI);
1055 if (pushDepHeight(Deps.front(), &PHI, Height,
1056 Heights, MTM.SchedModel, MTM.TII))
1057 addLiveIns(Deps.front().DefMI, Deps.front().DefOp, Stack);
1058 }
1059 }
1060 }
1061
1062 // Go through the block backwards.
1063 for (MachineBasicBlock::const_iterator BI = MBB->end(), BB = MBB->begin();
1064 BI != BB;) {
1065 const MachineInstr *MI = --BI;
1066
1067 // Find the MI height as determined by virtual register uses in the
1068 // trace below.
1069 unsigned Cycle = 0;
1070 MIHeightMap::iterator HeightI = Heights.find(MI);
1071 if (HeightI != Heights.end()) {
1072 Cycle = HeightI->second;
1073 // We won't be seeing any more MI uses.
1074 Heights.erase(HeightI);
1075 }
1076
1077 // Don't process PHI deps. They depend on the specific predecessor, and
1078 // we'll get them when visiting the predecessor.
1079 Deps.clear();
1080 bool HasPhysRegs = !MI->isPHI() && getDataDeps(MI, Deps, MTM.MRI);
1081
1082 // There may also be regunit dependencies to include in the height.
1083 if (HasPhysRegs)
1084 Cycle = updatePhysDepsUpwards(MI, Cycle, RegUnits,
1085 MTM.SchedModel, MTM.TII, MTM.TRI);
1086
1087 // Update the required height of any virtual registers read by MI.
1088 for (unsigned i = 0, e = Deps.size(); i != e; ++i)
1089 if (pushDepHeight(Deps[i], MI, Cycle, Heights, MTM.SchedModel, MTM.TII))
1090 addLiveIns(Deps[i].DefMI, Deps[i].DefOp, Stack);
1091
1092 InstrCycles &MICycles = Cycles[MI];
1093 MICycles.Height = Cycle;
1094 if (!TBI.HasValidInstrDepths) {
1095 DEBUG(dbgs() << Cycle << '\t' << *MI);
1096 continue;
1097 }
1098 // Update critical path length.
1099 TBI.CriticalPath = std::max(TBI.CriticalPath, Cycle + MICycles.Depth);
1100 DEBUG(dbgs() << TBI.CriticalPath << '\t' << Cycle << '\t' << *MI);
1101 }
1102
1103 // Update virtual live-in heights. They were added by addLiveIns() with a 0
1104 // height because the final height isn't known until now.
1105 DEBUG(dbgs() << "BB#" << MBB->getNumber() << " Live-ins:");
1106 for (unsigned i = 0, e = TBI.LiveIns.size(); i != e; ++i) {
1107 LiveInReg &LIR = TBI.LiveIns[i];
1108 const MachineInstr *DefMI = MTM.MRI->getVRegDef(LIR.Reg);
1109 LIR.Height = Heights.lookup(DefMI);
1110 DEBUG(dbgs() << ' ' << PrintReg(LIR.Reg) << '@' << LIR.Height);
1111 }
1112
1113 // Transfer the live regunits to the live-in list.
1114 for (SparseSet<LiveRegUnit>::const_iterator
1115 RI = RegUnits.begin(), RE = RegUnits.end(); RI != RE; ++RI) {
1116 TBI.LiveIns.push_back(LiveInReg(RI->RegUnit, RI->Cycle));
1117 DEBUG(dbgs() << ' ' << PrintRegUnit(RI->RegUnit, MTM.TRI)
1118 << '@' << RI->Cycle);
1119 }
1120 DEBUG(dbgs() << '\n');
1121
1122 if (!TBI.HasValidInstrDepths)
1123 continue;
1124 // Add live-ins to the critical path length.
1125 TBI.CriticalPath = std::max(TBI.CriticalPath,
1126 computeCrossBlockCriticalPath(TBI));
1127 DEBUG(dbgs() << "Critical path: " << TBI.CriticalPath << '\n');
1128 }
1129 }
1130
1131 MachineTraceMetrics::Trace
getTrace(const MachineBasicBlock * MBB)1132 MachineTraceMetrics::Ensemble::getTrace(const MachineBasicBlock *MBB) {
1133 // FIXME: Check cache tags, recompute as needed.
1134 computeTrace(MBB);
1135 computeInstrDepths(MBB);
1136 computeInstrHeights(MBB);
1137 return Trace(*this, BlockInfo[MBB->getNumber()]);
1138 }
1139
1140 unsigned
getInstrSlack(const MachineInstr * MI) const1141 MachineTraceMetrics::Trace::getInstrSlack(const MachineInstr *MI) const {
1142 assert(MI && "Not an instruction.");
1143 assert(getBlockNum() == unsigned(MI->getParent()->getNumber()) &&
1144 "MI must be in the trace center block");
1145 InstrCycles Cyc = getInstrCycles(MI);
1146 return getCriticalPath() - (Cyc.Depth + Cyc.Height);
1147 }
1148
1149 unsigned
getPHIDepth(const MachineInstr * PHI) const1150 MachineTraceMetrics::Trace::getPHIDepth(const MachineInstr *PHI) const {
1151 const MachineBasicBlock *MBB = TE.MTM.MF->getBlockNumbered(getBlockNum());
1152 SmallVector<DataDep, 1> Deps;
1153 getPHIDeps(PHI, Deps, MBB, TE.MTM.MRI);
1154 assert(Deps.size() == 1 && "PHI doesn't have MBB as a predecessor");
1155 DataDep &Dep = Deps.front();
1156 unsigned DepCycle = getInstrCycles(Dep.DefMI).Depth;
1157 // Add latency if DefMI is a real instruction. Transients get latency 0.
1158 if (!Dep.DefMI->isTransient())
1159 DepCycle += TE.MTM.SchedModel
1160 .computeOperandLatency(Dep.DefMI, Dep.DefOp, PHI, Dep.UseOp);
1161 return DepCycle;
1162 }
1163
1164 /// When bottom is set include instructions in current block in estimate.
getResourceDepth(bool Bottom) const1165 unsigned MachineTraceMetrics::Trace::getResourceDepth(bool Bottom) const {
1166 // Find the limiting processor resource.
1167 // Numbers have been pre-scaled to be comparable.
1168 unsigned PRMax = 0;
1169 ArrayRef<unsigned> PRDepths = TE.getProcResourceDepths(getBlockNum());
1170 if (Bottom) {
1171 ArrayRef<unsigned> PRCycles = TE.MTM.getProcResourceCycles(getBlockNum());
1172 for (unsigned K = 0; K != PRDepths.size(); ++K)
1173 PRMax = std::max(PRMax, PRDepths[K] + PRCycles[K]);
1174 } else {
1175 for (unsigned K = 0; K != PRDepths.size(); ++K)
1176 PRMax = std::max(PRMax, PRDepths[K]);
1177 }
1178 // Convert to cycle count.
1179 PRMax = TE.MTM.getCycles(PRMax);
1180
1181 /// All instructions before current block
1182 unsigned Instrs = TBI.InstrDepth;
1183 // plus instructions in current block
1184 if (Bottom)
1185 Instrs += TE.MTM.BlockInfo[getBlockNum()].InstrCount;
1186 if (unsigned IW = TE.MTM.SchedModel.getIssueWidth())
1187 Instrs /= IW;
1188 // Assume issue width 1 without a schedule model.
1189 return std::max(Instrs, PRMax);
1190 }
1191
getResourceLength(ArrayRef<const MachineBasicBlock * > Extrablocks,ArrayRef<const MCSchedClassDesc * > ExtraInstrs,ArrayRef<const MCSchedClassDesc * > RemoveInstrs) const1192 unsigned MachineTraceMetrics::Trace::getResourceLength(
1193 ArrayRef<const MachineBasicBlock *> Extrablocks,
1194 ArrayRef<const MCSchedClassDesc *> ExtraInstrs,
1195 ArrayRef<const MCSchedClassDesc *> RemoveInstrs) const {
1196 // Add up resources above and below the center block.
1197 ArrayRef<unsigned> PRDepths = TE.getProcResourceDepths(getBlockNum());
1198 ArrayRef<unsigned> PRHeights = TE.getProcResourceHeights(getBlockNum());
1199 unsigned PRMax = 0;
1200
1201 // Capture computing cycles from extra instructions
1202 auto extraCycles = [this](ArrayRef<const MCSchedClassDesc *> Instrs,
1203 unsigned ResourceIdx)
1204 ->unsigned {
1205 unsigned Cycles = 0;
1206 for (unsigned I = 0; I != Instrs.size(); ++I) {
1207 const MCSchedClassDesc *SC = Instrs[I];
1208 if (!SC->isValid())
1209 continue;
1210 for (TargetSchedModel::ProcResIter
1211 PI = TE.MTM.SchedModel.getWriteProcResBegin(SC),
1212 PE = TE.MTM.SchedModel.getWriteProcResEnd(SC);
1213 PI != PE; ++PI) {
1214 if (PI->ProcResourceIdx != ResourceIdx)
1215 continue;
1216 Cycles +=
1217 (PI->Cycles * TE.MTM.SchedModel.getResourceFactor(ResourceIdx));
1218 }
1219 }
1220 return Cycles;
1221 };
1222
1223 for (unsigned K = 0; K != PRDepths.size(); ++K) {
1224 unsigned PRCycles = PRDepths[K] + PRHeights[K];
1225 for (unsigned I = 0; I != Extrablocks.size(); ++I)
1226 PRCycles += TE.MTM.getProcResourceCycles(Extrablocks[I]->getNumber())[K];
1227 PRCycles += extraCycles(ExtraInstrs, K);
1228 PRCycles -= extraCycles(RemoveInstrs, K);
1229 PRMax = std::max(PRMax, PRCycles);
1230 }
1231 // Convert to cycle count.
1232 PRMax = TE.MTM.getCycles(PRMax);
1233
1234 // Instrs: #instructions in current trace outside current block.
1235 unsigned Instrs = TBI.InstrDepth + TBI.InstrHeight;
1236 // Add instruction count from the extra blocks.
1237 for (unsigned i = 0, e = Extrablocks.size(); i != e; ++i)
1238 Instrs += TE.MTM.getResources(Extrablocks[i])->InstrCount;
1239 Instrs += ExtraInstrs.size();
1240 Instrs -= RemoveInstrs.size();
1241 if (unsigned IW = TE.MTM.SchedModel.getIssueWidth())
1242 Instrs /= IW;
1243 // Assume issue width 1 without a schedule model.
1244 return std::max(Instrs, PRMax);
1245 }
1246
isDepInTrace(const MachineInstr * DefMI,const MachineInstr * UseMI) const1247 bool MachineTraceMetrics::Trace::isDepInTrace(const MachineInstr *DefMI,
1248 const MachineInstr *UseMI) const {
1249 if (DefMI->getParent() == UseMI->getParent())
1250 return true;
1251
1252 const TraceBlockInfo &DepTBI = TE.BlockInfo[DefMI->getParent()->getNumber()];
1253 const TraceBlockInfo &TBI = TE.BlockInfo[UseMI->getParent()->getNumber()];
1254
1255 return DepTBI.isUsefulDominator(TBI);
1256 }
1257
print(raw_ostream & OS) const1258 void MachineTraceMetrics::Ensemble::print(raw_ostream &OS) const {
1259 OS << getName() << " ensemble:\n";
1260 for (unsigned i = 0, e = BlockInfo.size(); i != e; ++i) {
1261 OS << " BB#" << i << '\t';
1262 BlockInfo[i].print(OS);
1263 OS << '\n';
1264 }
1265 }
1266
print(raw_ostream & OS) const1267 void MachineTraceMetrics::TraceBlockInfo::print(raw_ostream &OS) const {
1268 if (hasValidDepth()) {
1269 OS << "depth=" << InstrDepth;
1270 if (Pred)
1271 OS << " pred=BB#" << Pred->getNumber();
1272 else
1273 OS << " pred=null";
1274 OS << " head=BB#" << Head;
1275 if (HasValidInstrDepths)
1276 OS << " +instrs";
1277 } else
1278 OS << "depth invalid";
1279 OS << ", ";
1280 if (hasValidHeight()) {
1281 OS << "height=" << InstrHeight;
1282 if (Succ)
1283 OS << " succ=BB#" << Succ->getNumber();
1284 else
1285 OS << " succ=null";
1286 OS << " tail=BB#" << Tail;
1287 if (HasValidInstrHeights)
1288 OS << " +instrs";
1289 } else
1290 OS << "height invalid";
1291 if (HasValidInstrDepths && HasValidInstrHeights)
1292 OS << ", crit=" << CriticalPath;
1293 }
1294
print(raw_ostream & OS) const1295 void MachineTraceMetrics::Trace::print(raw_ostream &OS) const {
1296 unsigned MBBNum = &TBI - &TE.BlockInfo[0];
1297
1298 OS << TE.getName() << " trace BB#" << TBI.Head << " --> BB#" << MBBNum
1299 << " --> BB#" << TBI.Tail << ':';
1300 if (TBI.hasValidHeight() && TBI.hasValidDepth())
1301 OS << ' ' << getInstrCount() << " instrs.";
1302 if (TBI.HasValidInstrDepths && TBI.HasValidInstrHeights)
1303 OS << ' ' << TBI.CriticalPath << " cycles.";
1304
1305 const MachineTraceMetrics::TraceBlockInfo *Block = &TBI;
1306 OS << "\nBB#" << MBBNum;
1307 while (Block->hasValidDepth() && Block->Pred) {
1308 unsigned Num = Block->Pred->getNumber();
1309 OS << " <- BB#" << Num;
1310 Block = &TE.BlockInfo[Num];
1311 }
1312
1313 Block = &TBI;
1314 OS << "\n ";
1315 while (Block->hasValidHeight() && Block->Succ) {
1316 unsigned Num = Block->Succ->getNumber();
1317 OS << " -> BB#" << Num;
1318 Block = &TE.BlockInfo[Num];
1319 }
1320 OS << '\n';
1321 }
1322