1 //===-- LegalizeVectorOps.cpp - Implement SelectionDAG::LegalizeVectors ---===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the SelectionDAG::LegalizeVectors method.
11 //
12 // The vector legalizer looks for vector operations which might need to be
13 // scalarized and legalizes them. This is a separate step from Legalize because
14 // scalarizing can introduce illegal types. For example, suppose we have an
15 // ISD::SDIV of type v2i64 on x86-32. The type is legal (for example, addition
16 // on a v2i64 is legal), but ISD::SDIV isn't legal, so we have to unroll the
17 // operation, which introduces nodes with the illegal type i64 which must be
18 // expanded. Similarly, suppose we have an ISD::SRA of type v16i8 on PowerPC;
19 // the operation must be unrolled, which introduces nodes with the illegal
20 // type i8 which must be promoted.
21 //
22 // This does not legalize vector manipulations like ISD::BUILD_VECTOR,
23 // or operations that happen to take a vector which are custom-lowered;
24 // the legalization for such operations never produces nodes
25 // with illegal types, so it's okay to put off legalizing them until
26 // SelectionDAG::Legalize runs.
27 //
28 //===----------------------------------------------------------------------===//
29
30 #include "llvm/CodeGen/SelectionDAG.h"
31 #include "llvm/Target/TargetLowering.h"
32 using namespace llvm;
33
34 namespace {
35 class VectorLegalizer {
36 SelectionDAG& DAG;
37 const TargetLowering &TLI;
38 bool Changed; // Keep track of whether anything changed
39
40 /// For nodes that are of legal width, and that have more than one use, this
41 /// map indicates what regularized operand to use. This allows us to avoid
42 /// legalizing the same thing more than once.
43 SmallDenseMap<SDValue, SDValue, 64> LegalizedNodes;
44
45 /// \brief Adds a node to the translation cache.
AddLegalizedOperand(SDValue From,SDValue To)46 void AddLegalizedOperand(SDValue From, SDValue To) {
47 LegalizedNodes.insert(std::make_pair(From, To));
48 // If someone requests legalization of the new node, return itself.
49 if (From != To)
50 LegalizedNodes.insert(std::make_pair(To, To));
51 }
52
53 /// \brief Legalizes the given node.
54 SDValue LegalizeOp(SDValue Op);
55
56 /// \brief Assuming the node is legal, "legalize" the results.
57 SDValue TranslateLegalizeResults(SDValue Op, SDValue Result);
58
59 /// \brief Implements unrolling a VSETCC.
60 SDValue UnrollVSETCC(SDValue Op);
61
62 /// \brief Implement expand-based legalization of vector operations.
63 ///
64 /// This is just a high-level routine to dispatch to specific code paths for
65 /// operations to legalize them.
66 SDValue Expand(SDValue Op);
67
68 /// \brief Implements expansion for FNEG; falls back to UnrollVectorOp if
69 /// FSUB isn't legal.
70 ///
71 /// Implements expansion for UINT_TO_FLOAT; falls back to UnrollVectorOp if
72 /// SINT_TO_FLOAT and SHR on vectors isn't legal.
73 SDValue ExpandUINT_TO_FLOAT(SDValue Op);
74
75 /// \brief Implement expansion for SIGN_EXTEND_INREG using SRL and SRA.
76 SDValue ExpandSEXTINREG(SDValue Op);
77
78 /// \brief Implement expansion for ANY_EXTEND_VECTOR_INREG.
79 ///
80 /// Shuffles the low lanes of the operand into place and bitcasts to the proper
81 /// type. The contents of the bits in the extended part of each element are
82 /// undef.
83 SDValue ExpandANY_EXTEND_VECTOR_INREG(SDValue Op);
84
85 /// \brief Implement expansion for SIGN_EXTEND_VECTOR_INREG.
86 ///
87 /// Shuffles the low lanes of the operand into place, bitcasts to the proper
88 /// type, then shifts left and arithmetic shifts right to introduce a sign
89 /// extension.
90 SDValue ExpandSIGN_EXTEND_VECTOR_INREG(SDValue Op);
91
92 /// \brief Implement expansion for ZERO_EXTEND_VECTOR_INREG.
93 ///
94 /// Shuffles the low lanes of the operand into place and blends zeros into
95 /// the remaining lanes, finally bitcasting to the proper type.
96 SDValue ExpandZERO_EXTEND_VECTOR_INREG(SDValue Op);
97
98 /// \brief Expand bswap of vectors into a shuffle if legal.
99 SDValue ExpandBSWAP(SDValue Op);
100
101 /// \brief Implement vselect in terms of XOR, AND, OR when blend is not
102 /// supported by the target.
103 SDValue ExpandVSELECT(SDValue Op);
104 SDValue ExpandSELECT(SDValue Op);
105 SDValue ExpandLoad(SDValue Op);
106 SDValue ExpandStore(SDValue Op);
107 SDValue ExpandFNEG(SDValue Op);
108
109 /// \brief Implements vector promotion.
110 ///
111 /// This is essentially just bitcasting the operands to a different type and
112 /// bitcasting the result back to the original type.
113 SDValue Promote(SDValue Op);
114
115 /// \brief Implements [SU]INT_TO_FP vector promotion.
116 ///
117 /// This is a [zs]ext of the input operand to the next size up.
118 SDValue PromoteINT_TO_FP(SDValue Op);
119
120 /// \brief Implements FP_TO_[SU]INT vector promotion of the result type.
121 ///
122 /// It is promoted to the next size up integer type. The result is then
123 /// truncated back to the original type.
124 SDValue PromoteFP_TO_INT(SDValue Op, bool isSigned);
125
126 public:
127 /// \brief Begin legalizer the vector operations in the DAG.
128 bool Run();
VectorLegalizer(SelectionDAG & dag)129 VectorLegalizer(SelectionDAG& dag) :
130 DAG(dag), TLI(dag.getTargetLoweringInfo()), Changed(false) {}
131 };
132
Run()133 bool VectorLegalizer::Run() {
134 // Before we start legalizing vector nodes, check if there are any vectors.
135 bool HasVectors = false;
136 for (SelectionDAG::allnodes_iterator I = DAG.allnodes_begin(),
137 E = std::prev(DAG.allnodes_end()); I != std::next(E); ++I) {
138 // Check if the values of the nodes contain vectors. We don't need to check
139 // the operands because we are going to check their values at some point.
140 for (SDNode::value_iterator J = I->value_begin(), E = I->value_end();
141 J != E; ++J)
142 HasVectors |= J->isVector();
143
144 // If we found a vector node we can start the legalization.
145 if (HasVectors)
146 break;
147 }
148
149 // If this basic block has no vectors then no need to legalize vectors.
150 if (!HasVectors)
151 return false;
152
153 // The legalize process is inherently a bottom-up recursive process (users
154 // legalize their uses before themselves). Given infinite stack space, we
155 // could just start legalizing on the root and traverse the whole graph. In
156 // practice however, this causes us to run out of stack space on large basic
157 // blocks. To avoid this problem, compute an ordering of the nodes where each
158 // node is only legalized after all of its operands are legalized.
159 DAG.AssignTopologicalOrder();
160 for (SelectionDAG::allnodes_iterator I = DAG.allnodes_begin(),
161 E = std::prev(DAG.allnodes_end()); I != std::next(E); ++I)
162 LegalizeOp(SDValue(I, 0));
163
164 // Finally, it's possible the root changed. Get the new root.
165 SDValue OldRoot = DAG.getRoot();
166 assert(LegalizedNodes.count(OldRoot) && "Root didn't get legalized?");
167 DAG.setRoot(LegalizedNodes[OldRoot]);
168
169 LegalizedNodes.clear();
170
171 // Remove dead nodes now.
172 DAG.RemoveDeadNodes();
173
174 return Changed;
175 }
176
TranslateLegalizeResults(SDValue Op,SDValue Result)177 SDValue VectorLegalizer::TranslateLegalizeResults(SDValue Op, SDValue Result) {
178 // Generic legalization: just pass the operand through.
179 for (unsigned i = 0, e = Op.getNode()->getNumValues(); i != e; ++i)
180 AddLegalizedOperand(Op.getValue(i), Result.getValue(i));
181 return Result.getValue(Op.getResNo());
182 }
183
LegalizeOp(SDValue Op)184 SDValue VectorLegalizer::LegalizeOp(SDValue Op) {
185 // Note that LegalizeOp may be reentered even from single-use nodes, which
186 // means that we always must cache transformed nodes.
187 DenseMap<SDValue, SDValue>::iterator I = LegalizedNodes.find(Op);
188 if (I != LegalizedNodes.end()) return I->second;
189
190 SDNode* Node = Op.getNode();
191
192 // Legalize the operands
193 SmallVector<SDValue, 8> Ops;
194 for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i)
195 Ops.push_back(LegalizeOp(Node->getOperand(i)));
196
197 SDValue Result = SDValue(DAG.UpdateNodeOperands(Op.getNode(), Ops), 0);
198
199 if (Op.getOpcode() == ISD::LOAD) {
200 LoadSDNode *LD = cast<LoadSDNode>(Op.getNode());
201 ISD::LoadExtType ExtType = LD->getExtensionType();
202 if (LD->getMemoryVT().isVector() && ExtType != ISD::NON_EXTLOAD)
203 switch (TLI.getLoadExtAction(LD->getExtensionType(), LD->getValueType(0),
204 LD->getMemoryVT())) {
205 default: llvm_unreachable("This action is not supported yet!");
206 case TargetLowering::Legal:
207 return TranslateLegalizeResults(Op, Result);
208 case TargetLowering::Custom:
209 if (SDValue Lowered = TLI.LowerOperation(Result, DAG)) {
210 if (Lowered == Result)
211 return TranslateLegalizeResults(Op, Lowered);
212 Changed = true;
213 if (Lowered->getNumValues() != Op->getNumValues()) {
214 // This expanded to something other than the load. Assume the
215 // lowering code took care of any chain values, and just handle the
216 // returned value.
217 assert(Result.getValue(1).use_empty() &&
218 "There are still live users of the old chain!");
219 return LegalizeOp(Lowered);
220 } else {
221 return TranslateLegalizeResults(Op, Lowered);
222 }
223 }
224 case TargetLowering::Expand:
225 Changed = true;
226 return LegalizeOp(ExpandLoad(Op));
227 }
228 } else if (Op.getOpcode() == ISD::STORE) {
229 StoreSDNode *ST = cast<StoreSDNode>(Op.getNode());
230 EVT StVT = ST->getMemoryVT();
231 MVT ValVT = ST->getValue().getSimpleValueType();
232 if (StVT.isVector() && ST->isTruncatingStore())
233 switch (TLI.getTruncStoreAction(ValVT, StVT.getSimpleVT())) {
234 default: llvm_unreachable("This action is not supported yet!");
235 case TargetLowering::Legal:
236 return TranslateLegalizeResults(Op, Result);
237 case TargetLowering::Custom: {
238 SDValue Lowered = TLI.LowerOperation(Result, DAG);
239 Changed = Lowered != Result;
240 return TranslateLegalizeResults(Op, Lowered);
241 }
242 case TargetLowering::Expand:
243 Changed = true;
244 return LegalizeOp(ExpandStore(Op));
245 }
246 }
247
248 bool HasVectorValue = false;
249 for (SDNode::value_iterator J = Node->value_begin(), E = Node->value_end();
250 J != E;
251 ++J)
252 HasVectorValue |= J->isVector();
253 if (!HasVectorValue)
254 return TranslateLegalizeResults(Op, Result);
255
256 EVT QueryType;
257 switch (Op.getOpcode()) {
258 default:
259 return TranslateLegalizeResults(Op, Result);
260 case ISD::ADD:
261 case ISD::SUB:
262 case ISD::MUL:
263 case ISD::SDIV:
264 case ISD::UDIV:
265 case ISD::SREM:
266 case ISD::UREM:
267 case ISD::FADD:
268 case ISD::FSUB:
269 case ISD::FMUL:
270 case ISD::FDIV:
271 case ISD::FREM:
272 case ISD::AND:
273 case ISD::OR:
274 case ISD::XOR:
275 case ISD::SHL:
276 case ISD::SRA:
277 case ISD::SRL:
278 case ISD::ROTL:
279 case ISD::ROTR:
280 case ISD::BSWAP:
281 case ISD::CTLZ:
282 case ISD::CTTZ:
283 case ISD::CTLZ_ZERO_UNDEF:
284 case ISD::CTTZ_ZERO_UNDEF:
285 case ISD::CTPOP:
286 case ISD::SELECT:
287 case ISD::VSELECT:
288 case ISD::SELECT_CC:
289 case ISD::SETCC:
290 case ISD::ZERO_EXTEND:
291 case ISD::ANY_EXTEND:
292 case ISD::TRUNCATE:
293 case ISD::SIGN_EXTEND:
294 case ISD::FP_TO_SINT:
295 case ISD::FP_TO_UINT:
296 case ISD::FNEG:
297 case ISD::FABS:
298 case ISD::FMINNUM:
299 case ISD::FMAXNUM:
300 case ISD::FCOPYSIGN:
301 case ISD::FSQRT:
302 case ISD::FSIN:
303 case ISD::FCOS:
304 case ISD::FPOWI:
305 case ISD::FPOW:
306 case ISD::FLOG:
307 case ISD::FLOG2:
308 case ISD::FLOG10:
309 case ISD::FEXP:
310 case ISD::FEXP2:
311 case ISD::FCEIL:
312 case ISD::FTRUNC:
313 case ISD::FRINT:
314 case ISD::FNEARBYINT:
315 case ISD::FROUND:
316 case ISD::FFLOOR:
317 case ISD::FP_ROUND:
318 case ISD::FP_EXTEND:
319 case ISD::FMA:
320 case ISD::SIGN_EXTEND_INREG:
321 case ISD::ANY_EXTEND_VECTOR_INREG:
322 case ISD::SIGN_EXTEND_VECTOR_INREG:
323 case ISD::ZERO_EXTEND_VECTOR_INREG:
324 QueryType = Node->getValueType(0);
325 break;
326 case ISD::FP_ROUND_INREG:
327 QueryType = cast<VTSDNode>(Node->getOperand(1))->getVT();
328 break;
329 case ISD::SINT_TO_FP:
330 case ISD::UINT_TO_FP:
331 QueryType = Node->getOperand(0).getValueType();
332 break;
333 }
334
335 switch (TLI.getOperationAction(Node->getOpcode(), QueryType)) {
336 case TargetLowering::Promote:
337 Result = Promote(Op);
338 Changed = true;
339 break;
340 case TargetLowering::Legal:
341 break;
342 case TargetLowering::Custom: {
343 SDValue Tmp1 = TLI.LowerOperation(Op, DAG);
344 if (Tmp1.getNode()) {
345 Result = Tmp1;
346 break;
347 }
348 // FALL THROUGH
349 }
350 case TargetLowering::Expand:
351 Result = Expand(Op);
352 }
353
354 // Make sure that the generated code is itself legal.
355 if (Result != Op) {
356 Result = LegalizeOp(Result);
357 Changed = true;
358 }
359
360 // Note that LegalizeOp may be reentered even from single-use nodes, which
361 // means that we always must cache transformed nodes.
362 AddLegalizedOperand(Op, Result);
363 return Result;
364 }
365
Promote(SDValue Op)366 SDValue VectorLegalizer::Promote(SDValue Op) {
367 // For a few operations there is a specific concept for promotion based on
368 // the operand's type.
369 switch (Op.getOpcode()) {
370 case ISD::SINT_TO_FP:
371 case ISD::UINT_TO_FP:
372 // "Promote" the operation by extending the operand.
373 return PromoteINT_TO_FP(Op);
374 case ISD::FP_TO_UINT:
375 case ISD::FP_TO_SINT:
376 // Promote the operation by extending the operand.
377 return PromoteFP_TO_INT(Op, Op->getOpcode() == ISD::FP_TO_SINT);
378 }
379
380 // There are currently two cases of vector promotion:
381 // 1) Bitcasting a vector of integers to a different type to a vector of the
382 // same overall length. For example, x86 promotes ISD::AND v2i32 to v1i64.
383 // 2) Extending a vector of floats to a vector of the same number of larger
384 // floats. For example, AArch64 promotes ISD::FADD on v4f16 to v4f32.
385 MVT VT = Op.getSimpleValueType();
386 assert(Op.getNode()->getNumValues() == 1 &&
387 "Can't promote a vector with multiple results!");
388 MVT NVT = TLI.getTypeToPromoteTo(Op.getOpcode(), VT);
389 SDLoc dl(Op);
390 SmallVector<SDValue, 4> Operands(Op.getNumOperands());
391
392 for (unsigned j = 0; j != Op.getNumOperands(); ++j) {
393 if (Op.getOperand(j).getValueType().isVector())
394 if (Op.getOperand(j)
395 .getValueType()
396 .getVectorElementType()
397 .isFloatingPoint() &&
398 NVT.isVector() && NVT.getVectorElementType().isFloatingPoint())
399 Operands[j] = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Op.getOperand(j));
400 else
401 Operands[j] = DAG.getNode(ISD::BITCAST, dl, NVT, Op.getOperand(j));
402 else
403 Operands[j] = Op.getOperand(j);
404 }
405
406 Op = DAG.getNode(Op.getOpcode(), dl, NVT, Operands);
407 if ((VT.isFloatingPoint() && NVT.isFloatingPoint()) ||
408 (VT.isVector() && VT.getVectorElementType().isFloatingPoint() &&
409 NVT.isVector() && NVT.getVectorElementType().isFloatingPoint()))
410 return DAG.getNode(ISD::FP_ROUND, dl, VT, Op, DAG.getIntPtrConstant(0));
411 else
412 return DAG.getNode(ISD::BITCAST, dl, VT, Op);
413 }
414
PromoteINT_TO_FP(SDValue Op)415 SDValue VectorLegalizer::PromoteINT_TO_FP(SDValue Op) {
416 // INT_TO_FP operations may require the input operand be promoted even
417 // when the type is otherwise legal.
418 EVT VT = Op.getOperand(0).getValueType();
419 assert(Op.getNode()->getNumValues() == 1 &&
420 "Can't promote a vector with multiple results!");
421
422 // Normal getTypeToPromoteTo() doesn't work here, as that will promote
423 // by widening the vector w/ the same element width and twice the number
424 // of elements. We want the other way around, the same number of elements,
425 // each twice the width.
426 //
427 // Increase the bitwidth of the element to the next pow-of-two
428 // (which is greater than 8 bits).
429
430 EVT NVT = VT.widenIntegerVectorElementType(*DAG.getContext());
431 assert(NVT.isSimple() && "Promoting to a non-simple vector type!");
432 SDLoc dl(Op);
433 SmallVector<SDValue, 4> Operands(Op.getNumOperands());
434
435 unsigned Opc = Op.getOpcode() == ISD::UINT_TO_FP ? ISD::ZERO_EXTEND :
436 ISD::SIGN_EXTEND;
437 for (unsigned j = 0; j != Op.getNumOperands(); ++j) {
438 if (Op.getOperand(j).getValueType().isVector())
439 Operands[j] = DAG.getNode(Opc, dl, NVT, Op.getOperand(j));
440 else
441 Operands[j] = Op.getOperand(j);
442 }
443
444 return DAG.getNode(Op.getOpcode(), dl, Op.getValueType(), Operands);
445 }
446
447 // For FP_TO_INT we promote the result type to a vector type with wider
448 // elements and then truncate the result. This is different from the default
449 // PromoteVector which uses bitcast to promote thus assumning that the
450 // promoted vector type has the same overall size.
PromoteFP_TO_INT(SDValue Op,bool isSigned)451 SDValue VectorLegalizer::PromoteFP_TO_INT(SDValue Op, bool isSigned) {
452 assert(Op.getNode()->getNumValues() == 1 &&
453 "Can't promote a vector with multiple results!");
454 EVT VT = Op.getValueType();
455
456 EVT NewVT;
457 unsigned NewOpc;
458 while (1) {
459 NewVT = VT.widenIntegerVectorElementType(*DAG.getContext());
460 assert(NewVT.isSimple() && "Promoting to a non-simple vector type!");
461 if (TLI.isOperationLegalOrCustom(ISD::FP_TO_SINT, NewVT)) {
462 NewOpc = ISD::FP_TO_SINT;
463 break;
464 }
465 if (!isSigned && TLI.isOperationLegalOrCustom(ISD::FP_TO_UINT, NewVT)) {
466 NewOpc = ISD::FP_TO_UINT;
467 break;
468 }
469 }
470
471 SDLoc loc(Op);
472 SDValue promoted = DAG.getNode(NewOpc, SDLoc(Op), NewVT, Op.getOperand(0));
473 return DAG.getNode(ISD::TRUNCATE, SDLoc(Op), VT, promoted);
474 }
475
476
ExpandLoad(SDValue Op)477 SDValue VectorLegalizer::ExpandLoad(SDValue Op) {
478 SDLoc dl(Op);
479 LoadSDNode *LD = cast<LoadSDNode>(Op.getNode());
480 SDValue Chain = LD->getChain();
481 SDValue BasePTR = LD->getBasePtr();
482 EVT SrcVT = LD->getMemoryVT();
483 ISD::LoadExtType ExtType = LD->getExtensionType();
484
485 SmallVector<SDValue, 8> Vals;
486 SmallVector<SDValue, 8> LoadChains;
487 unsigned NumElem = SrcVT.getVectorNumElements();
488
489 EVT SrcEltVT = SrcVT.getScalarType();
490 EVT DstEltVT = Op.getNode()->getValueType(0).getScalarType();
491
492 if (SrcVT.getVectorNumElements() > 1 && !SrcEltVT.isByteSized()) {
493 // When elements in a vector is not byte-addressable, we cannot directly
494 // load each element by advancing pointer, which could only address bytes.
495 // Instead, we load all significant words, mask bits off, and concatenate
496 // them to form each element. Finally, they are extended to destination
497 // scalar type to build the destination vector.
498 EVT WideVT = TLI.getPointerTy();
499
500 assert(WideVT.isRound() &&
501 "Could not handle the sophisticated case when the widest integer is"
502 " not power of 2.");
503 assert(WideVT.bitsGE(SrcEltVT) &&
504 "Type is not legalized?");
505
506 unsigned WideBytes = WideVT.getStoreSize();
507 unsigned Offset = 0;
508 unsigned RemainingBytes = SrcVT.getStoreSize();
509 SmallVector<SDValue, 8> LoadVals;
510
511 while (RemainingBytes > 0) {
512 SDValue ScalarLoad;
513 unsigned LoadBytes = WideBytes;
514
515 if (RemainingBytes >= LoadBytes) {
516 ScalarLoad = DAG.getLoad(WideVT, dl, Chain, BasePTR,
517 LD->getPointerInfo().getWithOffset(Offset),
518 LD->isVolatile(), LD->isNonTemporal(),
519 LD->isInvariant(),
520 MinAlign(LD->getAlignment(), Offset),
521 LD->getAAInfo());
522 } else {
523 EVT LoadVT = WideVT;
524 while (RemainingBytes < LoadBytes) {
525 LoadBytes >>= 1; // Reduce the load size by half.
526 LoadVT = EVT::getIntegerVT(*DAG.getContext(), LoadBytes << 3);
527 }
528 ScalarLoad = DAG.getExtLoad(ISD::EXTLOAD, dl, WideVT, Chain, BasePTR,
529 LD->getPointerInfo().getWithOffset(Offset),
530 LoadVT, LD->isVolatile(),
531 LD->isNonTemporal(), LD->isInvariant(),
532 MinAlign(LD->getAlignment(), Offset),
533 LD->getAAInfo());
534 }
535
536 RemainingBytes -= LoadBytes;
537 Offset += LoadBytes;
538 BasePTR = DAG.getNode(ISD::ADD, dl, BasePTR.getValueType(), BasePTR,
539 DAG.getConstant(LoadBytes, BasePTR.getValueType()));
540
541 LoadVals.push_back(ScalarLoad.getValue(0));
542 LoadChains.push_back(ScalarLoad.getValue(1));
543 }
544
545 // Extract bits, pack and extend/trunc them into destination type.
546 unsigned SrcEltBits = SrcEltVT.getSizeInBits();
547 SDValue SrcEltBitMask = DAG.getConstant((1U << SrcEltBits) - 1, WideVT);
548
549 unsigned BitOffset = 0;
550 unsigned WideIdx = 0;
551 unsigned WideBits = WideVT.getSizeInBits();
552
553 for (unsigned Idx = 0; Idx != NumElem; ++Idx) {
554 SDValue Lo, Hi, ShAmt;
555
556 if (BitOffset < WideBits) {
557 ShAmt = DAG.getConstant(BitOffset, TLI.getShiftAmountTy(WideVT));
558 Lo = DAG.getNode(ISD::SRL, dl, WideVT, LoadVals[WideIdx], ShAmt);
559 Lo = DAG.getNode(ISD::AND, dl, WideVT, Lo, SrcEltBitMask);
560 }
561
562 BitOffset += SrcEltBits;
563 if (BitOffset >= WideBits) {
564 WideIdx++;
565 BitOffset -= WideBits;
566 if (BitOffset > 0) {
567 ShAmt = DAG.getConstant(SrcEltBits - BitOffset,
568 TLI.getShiftAmountTy(WideVT));
569 Hi = DAG.getNode(ISD::SHL, dl, WideVT, LoadVals[WideIdx], ShAmt);
570 Hi = DAG.getNode(ISD::AND, dl, WideVT, Hi, SrcEltBitMask);
571 }
572 }
573
574 if (Hi.getNode())
575 Lo = DAG.getNode(ISD::OR, dl, WideVT, Lo, Hi);
576
577 switch (ExtType) {
578 default: llvm_unreachable("Unknown extended-load op!");
579 case ISD::EXTLOAD:
580 Lo = DAG.getAnyExtOrTrunc(Lo, dl, DstEltVT);
581 break;
582 case ISD::ZEXTLOAD:
583 Lo = DAG.getZExtOrTrunc(Lo, dl, DstEltVT);
584 break;
585 case ISD::SEXTLOAD:
586 ShAmt = DAG.getConstant(WideBits - SrcEltBits,
587 TLI.getShiftAmountTy(WideVT));
588 Lo = DAG.getNode(ISD::SHL, dl, WideVT, Lo, ShAmt);
589 Lo = DAG.getNode(ISD::SRA, dl, WideVT, Lo, ShAmt);
590 Lo = DAG.getSExtOrTrunc(Lo, dl, DstEltVT);
591 break;
592 }
593 Vals.push_back(Lo);
594 }
595 } else {
596 unsigned Stride = SrcVT.getScalarType().getSizeInBits()/8;
597
598 for (unsigned Idx=0; Idx<NumElem; Idx++) {
599 SDValue ScalarLoad = DAG.getExtLoad(ExtType, dl,
600 Op.getNode()->getValueType(0).getScalarType(),
601 Chain, BasePTR, LD->getPointerInfo().getWithOffset(Idx * Stride),
602 SrcVT.getScalarType(),
603 LD->isVolatile(), LD->isNonTemporal(), LD->isInvariant(),
604 MinAlign(LD->getAlignment(), Idx * Stride), LD->getAAInfo());
605
606 BasePTR = DAG.getNode(ISD::ADD, dl, BasePTR.getValueType(), BasePTR,
607 DAG.getConstant(Stride, BasePTR.getValueType()));
608
609 Vals.push_back(ScalarLoad.getValue(0));
610 LoadChains.push_back(ScalarLoad.getValue(1));
611 }
612 }
613
614 SDValue NewChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, LoadChains);
615 SDValue Value = DAG.getNode(ISD::BUILD_VECTOR, dl,
616 Op.getNode()->getValueType(0), Vals);
617
618 AddLegalizedOperand(Op.getValue(0), Value);
619 AddLegalizedOperand(Op.getValue(1), NewChain);
620
621 return (Op.getResNo() ? NewChain : Value);
622 }
623
ExpandStore(SDValue Op)624 SDValue VectorLegalizer::ExpandStore(SDValue Op) {
625 SDLoc dl(Op);
626 StoreSDNode *ST = cast<StoreSDNode>(Op.getNode());
627 SDValue Chain = ST->getChain();
628 SDValue BasePTR = ST->getBasePtr();
629 SDValue Value = ST->getValue();
630 EVT StVT = ST->getMemoryVT();
631
632 unsigned Alignment = ST->getAlignment();
633 bool isVolatile = ST->isVolatile();
634 bool isNonTemporal = ST->isNonTemporal();
635 AAMDNodes AAInfo = ST->getAAInfo();
636
637 unsigned NumElem = StVT.getVectorNumElements();
638 // The type of the data we want to save
639 EVT RegVT = Value.getValueType();
640 EVT RegSclVT = RegVT.getScalarType();
641 // The type of data as saved in memory.
642 EVT MemSclVT = StVT.getScalarType();
643
644 // Cast floats into integers
645 unsigned ScalarSize = MemSclVT.getSizeInBits();
646
647 // Round odd types to the next pow of two.
648 if (!isPowerOf2_32(ScalarSize))
649 ScalarSize = NextPowerOf2(ScalarSize);
650
651 // Store Stride in bytes
652 unsigned Stride = ScalarSize/8;
653 // Extract each of the elements from the original vector
654 // and save them into memory individually.
655 SmallVector<SDValue, 8> Stores;
656 for (unsigned Idx = 0; Idx < NumElem; Idx++) {
657 SDValue Ex = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl,
658 RegSclVT, Value, DAG.getConstant(Idx, TLI.getVectorIdxTy()));
659
660 // This scalar TruncStore may be illegal, but we legalize it later.
661 SDValue Store = DAG.getTruncStore(Chain, dl, Ex, BasePTR,
662 ST->getPointerInfo().getWithOffset(Idx*Stride), MemSclVT,
663 isVolatile, isNonTemporal, MinAlign(Alignment, Idx*Stride),
664 AAInfo);
665
666 BasePTR = DAG.getNode(ISD::ADD, dl, BasePTR.getValueType(), BasePTR,
667 DAG.getConstant(Stride, BasePTR.getValueType()));
668
669 Stores.push_back(Store);
670 }
671 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores);
672 AddLegalizedOperand(Op, TF);
673 return TF;
674 }
675
Expand(SDValue Op)676 SDValue VectorLegalizer::Expand(SDValue Op) {
677 switch (Op->getOpcode()) {
678 case ISD::SIGN_EXTEND_INREG:
679 return ExpandSEXTINREG(Op);
680 case ISD::ANY_EXTEND_VECTOR_INREG:
681 return ExpandANY_EXTEND_VECTOR_INREG(Op);
682 case ISD::SIGN_EXTEND_VECTOR_INREG:
683 return ExpandSIGN_EXTEND_VECTOR_INREG(Op);
684 case ISD::ZERO_EXTEND_VECTOR_INREG:
685 return ExpandZERO_EXTEND_VECTOR_INREG(Op);
686 case ISD::BSWAP:
687 return ExpandBSWAP(Op);
688 case ISD::VSELECT:
689 return ExpandVSELECT(Op);
690 case ISD::SELECT:
691 return ExpandSELECT(Op);
692 case ISD::UINT_TO_FP:
693 return ExpandUINT_TO_FLOAT(Op);
694 case ISD::FNEG:
695 return ExpandFNEG(Op);
696 case ISD::SETCC:
697 return UnrollVSETCC(Op);
698 default:
699 return DAG.UnrollVectorOp(Op.getNode());
700 }
701 }
702
ExpandSELECT(SDValue Op)703 SDValue VectorLegalizer::ExpandSELECT(SDValue Op) {
704 // Lower a select instruction where the condition is a scalar and the
705 // operands are vectors. Lower this select to VSELECT and implement it
706 // using XOR AND OR. The selector bit is broadcasted.
707 EVT VT = Op.getValueType();
708 SDLoc DL(Op);
709
710 SDValue Mask = Op.getOperand(0);
711 SDValue Op1 = Op.getOperand(1);
712 SDValue Op2 = Op.getOperand(2);
713
714 assert(VT.isVector() && !Mask.getValueType().isVector()
715 && Op1.getValueType() == Op2.getValueType() && "Invalid type");
716
717 unsigned NumElem = VT.getVectorNumElements();
718
719 // If we can't even use the basic vector operations of
720 // AND,OR,XOR, we will have to scalarize the op.
721 // Notice that the operation may be 'promoted' which means that it is
722 // 'bitcasted' to another type which is handled.
723 // Also, we need to be able to construct a splat vector using BUILD_VECTOR.
724 if (TLI.getOperationAction(ISD::AND, VT) == TargetLowering::Expand ||
725 TLI.getOperationAction(ISD::XOR, VT) == TargetLowering::Expand ||
726 TLI.getOperationAction(ISD::OR, VT) == TargetLowering::Expand ||
727 TLI.getOperationAction(ISD::BUILD_VECTOR, VT) == TargetLowering::Expand)
728 return DAG.UnrollVectorOp(Op.getNode());
729
730 // Generate a mask operand.
731 EVT MaskTy = VT.changeVectorElementTypeToInteger();
732
733 // What is the size of each element in the vector mask.
734 EVT BitTy = MaskTy.getScalarType();
735
736 Mask = DAG.getSelect(DL, BitTy, Mask,
737 DAG.getConstant(APInt::getAllOnesValue(BitTy.getSizeInBits()), BitTy),
738 DAG.getConstant(0, BitTy));
739
740 // Broadcast the mask so that the entire vector is all-one or all zero.
741 SmallVector<SDValue, 8> Ops(NumElem, Mask);
742 Mask = DAG.getNode(ISD::BUILD_VECTOR, DL, MaskTy, Ops);
743
744 // Bitcast the operands to be the same type as the mask.
745 // This is needed when we select between FP types because
746 // the mask is a vector of integers.
747 Op1 = DAG.getNode(ISD::BITCAST, DL, MaskTy, Op1);
748 Op2 = DAG.getNode(ISD::BITCAST, DL, MaskTy, Op2);
749
750 SDValue AllOnes = DAG.getConstant(
751 APInt::getAllOnesValue(BitTy.getSizeInBits()), MaskTy);
752 SDValue NotMask = DAG.getNode(ISD::XOR, DL, MaskTy, Mask, AllOnes);
753
754 Op1 = DAG.getNode(ISD::AND, DL, MaskTy, Op1, Mask);
755 Op2 = DAG.getNode(ISD::AND, DL, MaskTy, Op2, NotMask);
756 SDValue Val = DAG.getNode(ISD::OR, DL, MaskTy, Op1, Op2);
757 return DAG.getNode(ISD::BITCAST, DL, Op.getValueType(), Val);
758 }
759
ExpandSEXTINREG(SDValue Op)760 SDValue VectorLegalizer::ExpandSEXTINREG(SDValue Op) {
761 EVT VT = Op.getValueType();
762
763 // Make sure that the SRA and SHL instructions are available.
764 if (TLI.getOperationAction(ISD::SRA, VT) == TargetLowering::Expand ||
765 TLI.getOperationAction(ISD::SHL, VT) == TargetLowering::Expand)
766 return DAG.UnrollVectorOp(Op.getNode());
767
768 SDLoc DL(Op);
769 EVT OrigTy = cast<VTSDNode>(Op->getOperand(1))->getVT();
770
771 unsigned BW = VT.getScalarType().getSizeInBits();
772 unsigned OrigBW = OrigTy.getScalarType().getSizeInBits();
773 SDValue ShiftSz = DAG.getConstant(BW - OrigBW, VT);
774
775 Op = Op.getOperand(0);
776 Op = DAG.getNode(ISD::SHL, DL, VT, Op, ShiftSz);
777 return DAG.getNode(ISD::SRA, DL, VT, Op, ShiftSz);
778 }
779
780 // Generically expand a vector anyext in register to a shuffle of the relevant
781 // lanes into the appropriate locations, with other lanes left undef.
ExpandANY_EXTEND_VECTOR_INREG(SDValue Op)782 SDValue VectorLegalizer::ExpandANY_EXTEND_VECTOR_INREG(SDValue Op) {
783 SDLoc DL(Op);
784 EVT VT = Op.getValueType();
785 int NumElements = VT.getVectorNumElements();
786 SDValue Src = Op.getOperand(0);
787 EVT SrcVT = Src.getValueType();
788 int NumSrcElements = SrcVT.getVectorNumElements();
789
790 // Build a base mask of undef shuffles.
791 SmallVector<int, 16> ShuffleMask;
792 ShuffleMask.resize(NumSrcElements, -1);
793
794 // Place the extended lanes into the correct locations.
795 int ExtLaneScale = NumSrcElements / NumElements;
796 int EndianOffset = TLI.isBigEndian() ? ExtLaneScale - 1 : 0;
797 for (int i = 0; i < NumElements; ++i)
798 ShuffleMask[i * ExtLaneScale + EndianOffset] = i;
799
800 return DAG.getNode(
801 ISD::BITCAST, DL, VT,
802 DAG.getVectorShuffle(SrcVT, DL, Src, DAG.getUNDEF(SrcVT), ShuffleMask));
803 }
804
ExpandSIGN_EXTEND_VECTOR_INREG(SDValue Op)805 SDValue VectorLegalizer::ExpandSIGN_EXTEND_VECTOR_INREG(SDValue Op) {
806 SDLoc DL(Op);
807 EVT VT = Op.getValueType();
808 SDValue Src = Op.getOperand(0);
809 EVT SrcVT = Src.getValueType();
810
811 // First build an any-extend node which can be legalized above when we
812 // recurse through it.
813 Op = DAG.getAnyExtendVectorInReg(Src, DL, VT);
814
815 // Now we need sign extend. Do this by shifting the elements. Even if these
816 // aren't legal operations, they have a better chance of being legalized
817 // without full scalarization than the sign extension does.
818 unsigned EltWidth = VT.getVectorElementType().getSizeInBits();
819 unsigned SrcEltWidth = SrcVT.getVectorElementType().getSizeInBits();
820 SDValue ShiftAmount = DAG.getConstant(EltWidth - SrcEltWidth, VT);
821 return DAG.getNode(ISD::SRA, DL, VT,
822 DAG.getNode(ISD::SHL, DL, VT, Op, ShiftAmount),
823 ShiftAmount);
824 }
825
826 // Generically expand a vector zext in register to a shuffle of the relevant
827 // lanes into the appropriate locations, a blend of zero into the high bits,
828 // and a bitcast to the wider element type.
ExpandZERO_EXTEND_VECTOR_INREG(SDValue Op)829 SDValue VectorLegalizer::ExpandZERO_EXTEND_VECTOR_INREG(SDValue Op) {
830 SDLoc DL(Op);
831 EVT VT = Op.getValueType();
832 int NumElements = VT.getVectorNumElements();
833 SDValue Src = Op.getOperand(0);
834 EVT SrcVT = Src.getValueType();
835 int NumSrcElements = SrcVT.getVectorNumElements();
836
837 // Build up a zero vector to blend into this one.
838 EVT SrcScalarVT = SrcVT.getScalarType();
839 SDValue ScalarZero = DAG.getTargetConstant(0, SrcScalarVT);
840 SmallVector<SDValue, 4> BuildVectorOperands(NumSrcElements, ScalarZero);
841 SDValue Zero = DAG.getNode(ISD::BUILD_VECTOR, DL, SrcVT, BuildVectorOperands);
842
843 // Shuffle the incoming lanes into the correct position, and pull all other
844 // lanes from the zero vector.
845 SmallVector<int, 16> ShuffleMask;
846 ShuffleMask.reserve(NumSrcElements);
847 for (int i = 0; i < NumSrcElements; ++i)
848 ShuffleMask.push_back(i);
849
850 int ExtLaneScale = NumSrcElements / NumElements;
851 int EndianOffset = TLI.isBigEndian() ? ExtLaneScale - 1 : 0;
852 for (int i = 0; i < NumElements; ++i)
853 ShuffleMask[i * ExtLaneScale + EndianOffset] = NumSrcElements + i;
854
855 return DAG.getNode(ISD::BITCAST, DL, VT,
856 DAG.getVectorShuffle(SrcVT, DL, Zero, Src, ShuffleMask));
857 }
858
ExpandBSWAP(SDValue Op)859 SDValue VectorLegalizer::ExpandBSWAP(SDValue Op) {
860 EVT VT = Op.getValueType();
861
862 // Generate a byte wise shuffle mask for the BSWAP.
863 SmallVector<int, 16> ShuffleMask;
864 int ScalarSizeInBytes = VT.getScalarSizeInBits() / 8;
865 for (int I = 0, E = VT.getVectorNumElements(); I != E; ++I)
866 for (int J = ScalarSizeInBytes - 1; J >= 0; --J)
867 ShuffleMask.push_back((I * ScalarSizeInBytes) + J);
868
869 EVT ByteVT = EVT::getVectorVT(*DAG.getContext(), MVT::i8, ShuffleMask.size());
870
871 // Only emit a shuffle if the mask is legal.
872 if (!TLI.isShuffleMaskLegal(ShuffleMask, ByteVT))
873 return DAG.UnrollVectorOp(Op.getNode());
874
875 SDLoc DL(Op);
876 Op = DAG.getNode(ISD::BITCAST, DL, ByteVT, Op.getOperand(0));
877 Op = DAG.getVectorShuffle(ByteVT, DL, Op, DAG.getUNDEF(ByteVT),
878 ShuffleMask.data());
879 return DAG.getNode(ISD::BITCAST, DL, VT, Op);
880 }
881
ExpandVSELECT(SDValue Op)882 SDValue VectorLegalizer::ExpandVSELECT(SDValue Op) {
883 // Implement VSELECT in terms of XOR, AND, OR
884 // on platforms which do not support blend natively.
885 SDLoc DL(Op);
886
887 SDValue Mask = Op.getOperand(0);
888 SDValue Op1 = Op.getOperand(1);
889 SDValue Op2 = Op.getOperand(2);
890
891 EVT VT = Mask.getValueType();
892
893 // If we can't even use the basic vector operations of
894 // AND,OR,XOR, we will have to scalarize the op.
895 // Notice that the operation may be 'promoted' which means that it is
896 // 'bitcasted' to another type which is handled.
897 // This operation also isn't safe with AND, OR, XOR when the boolean
898 // type is 0/1 as we need an all ones vector constant to mask with.
899 // FIXME: Sign extend 1 to all ones if thats legal on the target.
900 if (TLI.getOperationAction(ISD::AND, VT) == TargetLowering::Expand ||
901 TLI.getOperationAction(ISD::XOR, VT) == TargetLowering::Expand ||
902 TLI.getOperationAction(ISD::OR, VT) == TargetLowering::Expand ||
903 TLI.getBooleanContents(Op1.getValueType()) !=
904 TargetLowering::ZeroOrNegativeOneBooleanContent)
905 return DAG.UnrollVectorOp(Op.getNode());
906
907 // If the mask and the type are different sizes, unroll the vector op. This
908 // can occur when getSetCCResultType returns something that is different in
909 // size from the operand types. For example, v4i8 = select v4i32, v4i8, v4i8.
910 if (VT.getSizeInBits() != Op1.getValueType().getSizeInBits())
911 return DAG.UnrollVectorOp(Op.getNode());
912
913 // Bitcast the operands to be the same type as the mask.
914 // This is needed when we select between FP types because
915 // the mask is a vector of integers.
916 Op1 = DAG.getNode(ISD::BITCAST, DL, VT, Op1);
917 Op2 = DAG.getNode(ISD::BITCAST, DL, VT, Op2);
918
919 SDValue AllOnes = DAG.getConstant(
920 APInt::getAllOnesValue(VT.getScalarType().getSizeInBits()), VT);
921 SDValue NotMask = DAG.getNode(ISD::XOR, DL, VT, Mask, AllOnes);
922
923 Op1 = DAG.getNode(ISD::AND, DL, VT, Op1, Mask);
924 Op2 = DAG.getNode(ISD::AND, DL, VT, Op2, NotMask);
925 SDValue Val = DAG.getNode(ISD::OR, DL, VT, Op1, Op2);
926 return DAG.getNode(ISD::BITCAST, DL, Op.getValueType(), Val);
927 }
928
ExpandUINT_TO_FLOAT(SDValue Op)929 SDValue VectorLegalizer::ExpandUINT_TO_FLOAT(SDValue Op) {
930 EVT VT = Op.getOperand(0).getValueType();
931 SDLoc DL(Op);
932
933 // Make sure that the SINT_TO_FP and SRL instructions are available.
934 if (TLI.getOperationAction(ISD::SINT_TO_FP, VT) == TargetLowering::Expand ||
935 TLI.getOperationAction(ISD::SRL, VT) == TargetLowering::Expand)
936 return DAG.UnrollVectorOp(Op.getNode());
937
938 EVT SVT = VT.getScalarType();
939 assert((SVT.getSizeInBits() == 64 || SVT.getSizeInBits() == 32) &&
940 "Elements in vector-UINT_TO_FP must be 32 or 64 bits wide");
941
942 unsigned BW = SVT.getSizeInBits();
943 SDValue HalfWord = DAG.getConstant(BW/2, VT);
944
945 // Constants to clear the upper part of the word.
946 // Notice that we can also use SHL+SHR, but using a constant is slightly
947 // faster on x86.
948 uint64_t HWMask = (SVT.getSizeInBits()==64)?0x00000000FFFFFFFF:0x0000FFFF;
949 SDValue HalfWordMask = DAG.getConstant(HWMask, VT);
950
951 // Two to the power of half-word-size.
952 SDValue TWOHW = DAG.getConstantFP((1<<(BW/2)), Op.getValueType());
953
954 // Clear upper part of LO, lower HI
955 SDValue HI = DAG.getNode(ISD::SRL, DL, VT, Op.getOperand(0), HalfWord);
956 SDValue LO = DAG.getNode(ISD::AND, DL, VT, Op.getOperand(0), HalfWordMask);
957
958 // Convert hi and lo to floats
959 // Convert the hi part back to the upper values
960 SDValue fHI = DAG.getNode(ISD::SINT_TO_FP, DL, Op.getValueType(), HI);
961 fHI = DAG.getNode(ISD::FMUL, DL, Op.getValueType(), fHI, TWOHW);
962 SDValue fLO = DAG.getNode(ISD::SINT_TO_FP, DL, Op.getValueType(), LO);
963
964 // Add the two halves
965 return DAG.getNode(ISD::FADD, DL, Op.getValueType(), fHI, fLO);
966 }
967
968
ExpandFNEG(SDValue Op)969 SDValue VectorLegalizer::ExpandFNEG(SDValue Op) {
970 if (TLI.isOperationLegalOrCustom(ISD::FSUB, Op.getValueType())) {
971 SDValue Zero = DAG.getConstantFP(-0.0, Op.getValueType());
972 return DAG.getNode(ISD::FSUB, SDLoc(Op), Op.getValueType(),
973 Zero, Op.getOperand(0));
974 }
975 return DAG.UnrollVectorOp(Op.getNode());
976 }
977
UnrollVSETCC(SDValue Op)978 SDValue VectorLegalizer::UnrollVSETCC(SDValue Op) {
979 EVT VT = Op.getValueType();
980 unsigned NumElems = VT.getVectorNumElements();
981 EVT EltVT = VT.getVectorElementType();
982 SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1), CC = Op.getOperand(2);
983 EVT TmpEltVT = LHS.getValueType().getVectorElementType();
984 SDLoc dl(Op);
985 SmallVector<SDValue, 8> Ops(NumElems);
986 for (unsigned i = 0; i < NumElems; ++i) {
987 SDValue LHSElem = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, TmpEltVT, LHS,
988 DAG.getConstant(i, TLI.getVectorIdxTy()));
989 SDValue RHSElem = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, TmpEltVT, RHS,
990 DAG.getConstant(i, TLI.getVectorIdxTy()));
991 Ops[i] = DAG.getNode(ISD::SETCC, dl,
992 TLI.getSetCCResultType(*DAG.getContext(), TmpEltVT),
993 LHSElem, RHSElem, CC);
994 Ops[i] = DAG.getSelect(dl, EltVT, Ops[i],
995 DAG.getConstant(APInt::getAllOnesValue
996 (EltVT.getSizeInBits()), EltVT),
997 DAG.getConstant(0, EltVT));
998 }
999 return DAG.getNode(ISD::BUILD_VECTOR, dl, VT, Ops);
1000 }
1001
1002 }
1003
LegalizeVectors()1004 bool SelectionDAG::LegalizeVectors() {
1005 return VectorLegalizer(*this).Run();
1006 }
1007