1 //===-- LegalizeVectorOps.cpp - Implement SelectionDAG::LegalizeVectors ---===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the SelectionDAG::LegalizeVectors method.
11 //
12 // The vector legalizer looks for vector operations which might need to be
13 // scalarized and legalizes them. This is a separate step from Legalize because
14 // scalarizing can introduce illegal types.  For example, suppose we have an
15 // ISD::SDIV of type v2i64 on x86-32.  The type is legal (for example, addition
16 // on a v2i64 is legal), but ISD::SDIV isn't legal, so we have to unroll the
17 // operation, which introduces nodes with the illegal type i64 which must be
18 // expanded.  Similarly, suppose we have an ISD::SRA of type v16i8 on PowerPC;
19 // the operation must be unrolled, which introduces nodes with the illegal
20 // type i8 which must be promoted.
21 //
22 // This does not legalize vector manipulations like ISD::BUILD_VECTOR,
23 // or operations that happen to take a vector which are custom-lowered;
24 // the legalization for such operations never produces nodes
25 // with illegal types, so it's okay to put off legalizing them until
26 // SelectionDAG::Legalize runs.
27 //
28 //===----------------------------------------------------------------------===//
29 
30 #include "llvm/CodeGen/SelectionDAG.h"
31 #include "llvm/Target/TargetLowering.h"
32 using namespace llvm;
33 
34 namespace {
35 class VectorLegalizer {
36   SelectionDAG& DAG;
37   const TargetLowering &TLI;
38   bool Changed; // Keep track of whether anything changed
39 
40   /// For nodes that are of legal width, and that have more than one use, this
41   /// map indicates what regularized operand to use.  This allows us to avoid
42   /// legalizing the same thing more than once.
43   SmallDenseMap<SDValue, SDValue, 64> LegalizedNodes;
44 
45   /// \brief Adds a node to the translation cache.
AddLegalizedOperand(SDValue From,SDValue To)46   void AddLegalizedOperand(SDValue From, SDValue To) {
47     LegalizedNodes.insert(std::make_pair(From, To));
48     // If someone requests legalization of the new node, return itself.
49     if (From != To)
50       LegalizedNodes.insert(std::make_pair(To, To));
51   }
52 
53   /// \brief Legalizes the given node.
54   SDValue LegalizeOp(SDValue Op);
55 
56   /// \brief Assuming the node is legal, "legalize" the results.
57   SDValue TranslateLegalizeResults(SDValue Op, SDValue Result);
58 
59   /// \brief Implements unrolling a VSETCC.
60   SDValue UnrollVSETCC(SDValue Op);
61 
62   /// \brief Implement expand-based legalization of vector operations.
63   ///
64   /// This is just a high-level routine to dispatch to specific code paths for
65   /// operations to legalize them.
66   SDValue Expand(SDValue Op);
67 
68   /// \brief Implements expansion for FNEG; falls back to UnrollVectorOp if
69   /// FSUB isn't legal.
70   ///
71   /// Implements expansion for UINT_TO_FLOAT; falls back to UnrollVectorOp if
72   /// SINT_TO_FLOAT and SHR on vectors isn't legal.
73   SDValue ExpandUINT_TO_FLOAT(SDValue Op);
74 
75   /// \brief Implement expansion for SIGN_EXTEND_INREG using SRL and SRA.
76   SDValue ExpandSEXTINREG(SDValue Op);
77 
78   /// \brief Implement expansion for ANY_EXTEND_VECTOR_INREG.
79   ///
80   /// Shuffles the low lanes of the operand into place and bitcasts to the proper
81   /// type. The contents of the bits in the extended part of each element are
82   /// undef.
83   SDValue ExpandANY_EXTEND_VECTOR_INREG(SDValue Op);
84 
85   /// \brief Implement expansion for SIGN_EXTEND_VECTOR_INREG.
86   ///
87   /// Shuffles the low lanes of the operand into place, bitcasts to the proper
88   /// type, then shifts left and arithmetic shifts right to introduce a sign
89   /// extension.
90   SDValue ExpandSIGN_EXTEND_VECTOR_INREG(SDValue Op);
91 
92   /// \brief Implement expansion for ZERO_EXTEND_VECTOR_INREG.
93   ///
94   /// Shuffles the low lanes of the operand into place and blends zeros into
95   /// the remaining lanes, finally bitcasting to the proper type.
96   SDValue ExpandZERO_EXTEND_VECTOR_INREG(SDValue Op);
97 
98   /// \brief Expand bswap of vectors into a shuffle if legal.
99   SDValue ExpandBSWAP(SDValue Op);
100 
101   /// \brief Implement vselect in terms of XOR, AND, OR when blend is not
102   /// supported by the target.
103   SDValue ExpandVSELECT(SDValue Op);
104   SDValue ExpandSELECT(SDValue Op);
105   SDValue ExpandLoad(SDValue Op);
106   SDValue ExpandStore(SDValue Op);
107   SDValue ExpandFNEG(SDValue Op);
108 
109   /// \brief Implements vector promotion.
110   ///
111   /// This is essentially just bitcasting the operands to a different type and
112   /// bitcasting the result back to the original type.
113   SDValue Promote(SDValue Op);
114 
115   /// \brief Implements [SU]INT_TO_FP vector promotion.
116   ///
117   /// This is a [zs]ext of the input operand to the next size up.
118   SDValue PromoteINT_TO_FP(SDValue Op);
119 
120   /// \brief Implements FP_TO_[SU]INT vector promotion of the result type.
121   ///
122   /// It is promoted to the next size up integer type.  The result is then
123   /// truncated back to the original type.
124   SDValue PromoteFP_TO_INT(SDValue Op, bool isSigned);
125 
126 public:
127   /// \brief Begin legalizer the vector operations in the DAG.
128   bool Run();
VectorLegalizer(SelectionDAG & dag)129   VectorLegalizer(SelectionDAG& dag) :
130       DAG(dag), TLI(dag.getTargetLoweringInfo()), Changed(false) {}
131 };
132 
Run()133 bool VectorLegalizer::Run() {
134   // Before we start legalizing vector nodes, check if there are any vectors.
135   bool HasVectors = false;
136   for (SelectionDAG::allnodes_iterator I = DAG.allnodes_begin(),
137        E = std::prev(DAG.allnodes_end()); I != std::next(E); ++I) {
138     // Check if the values of the nodes contain vectors. We don't need to check
139     // the operands because we are going to check their values at some point.
140     for (SDNode::value_iterator J = I->value_begin(), E = I->value_end();
141          J != E; ++J)
142       HasVectors |= J->isVector();
143 
144     // If we found a vector node we can start the legalization.
145     if (HasVectors)
146       break;
147   }
148 
149   // If this basic block has no vectors then no need to legalize vectors.
150   if (!HasVectors)
151     return false;
152 
153   // The legalize process is inherently a bottom-up recursive process (users
154   // legalize their uses before themselves).  Given infinite stack space, we
155   // could just start legalizing on the root and traverse the whole graph.  In
156   // practice however, this causes us to run out of stack space on large basic
157   // blocks.  To avoid this problem, compute an ordering of the nodes where each
158   // node is only legalized after all of its operands are legalized.
159   DAG.AssignTopologicalOrder();
160   for (SelectionDAG::allnodes_iterator I = DAG.allnodes_begin(),
161        E = std::prev(DAG.allnodes_end()); I != std::next(E); ++I)
162     LegalizeOp(SDValue(I, 0));
163 
164   // Finally, it's possible the root changed.  Get the new root.
165   SDValue OldRoot = DAG.getRoot();
166   assert(LegalizedNodes.count(OldRoot) && "Root didn't get legalized?");
167   DAG.setRoot(LegalizedNodes[OldRoot]);
168 
169   LegalizedNodes.clear();
170 
171   // Remove dead nodes now.
172   DAG.RemoveDeadNodes();
173 
174   return Changed;
175 }
176 
TranslateLegalizeResults(SDValue Op,SDValue Result)177 SDValue VectorLegalizer::TranslateLegalizeResults(SDValue Op, SDValue Result) {
178   // Generic legalization: just pass the operand through.
179   for (unsigned i = 0, e = Op.getNode()->getNumValues(); i != e; ++i)
180     AddLegalizedOperand(Op.getValue(i), Result.getValue(i));
181   return Result.getValue(Op.getResNo());
182 }
183 
LegalizeOp(SDValue Op)184 SDValue VectorLegalizer::LegalizeOp(SDValue Op) {
185   // Note that LegalizeOp may be reentered even from single-use nodes, which
186   // means that we always must cache transformed nodes.
187   DenseMap<SDValue, SDValue>::iterator I = LegalizedNodes.find(Op);
188   if (I != LegalizedNodes.end()) return I->second;
189 
190   SDNode* Node = Op.getNode();
191 
192   // Legalize the operands
193   SmallVector<SDValue, 8> Ops;
194   for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i)
195     Ops.push_back(LegalizeOp(Node->getOperand(i)));
196 
197   SDValue Result = SDValue(DAG.UpdateNodeOperands(Op.getNode(), Ops), 0);
198 
199   if (Op.getOpcode() == ISD::LOAD) {
200     LoadSDNode *LD = cast<LoadSDNode>(Op.getNode());
201     ISD::LoadExtType ExtType = LD->getExtensionType();
202     if (LD->getMemoryVT().isVector() && ExtType != ISD::NON_EXTLOAD)
203       switch (TLI.getLoadExtAction(LD->getExtensionType(), LD->getValueType(0),
204                                    LD->getMemoryVT())) {
205       default: llvm_unreachable("This action is not supported yet!");
206       case TargetLowering::Legal:
207         return TranslateLegalizeResults(Op, Result);
208       case TargetLowering::Custom:
209         if (SDValue Lowered = TLI.LowerOperation(Result, DAG)) {
210           if (Lowered == Result)
211             return TranslateLegalizeResults(Op, Lowered);
212           Changed = true;
213           if (Lowered->getNumValues() != Op->getNumValues()) {
214             // This expanded to something other than the load. Assume the
215             // lowering code took care of any chain values, and just handle the
216             // returned value.
217             assert(Result.getValue(1).use_empty() &&
218                    "There are still live users of the old chain!");
219             return LegalizeOp(Lowered);
220           } else {
221             return TranslateLegalizeResults(Op, Lowered);
222           }
223         }
224       case TargetLowering::Expand:
225         Changed = true;
226         return LegalizeOp(ExpandLoad(Op));
227       }
228   } else if (Op.getOpcode() == ISD::STORE) {
229     StoreSDNode *ST = cast<StoreSDNode>(Op.getNode());
230     EVT StVT = ST->getMemoryVT();
231     MVT ValVT = ST->getValue().getSimpleValueType();
232     if (StVT.isVector() && ST->isTruncatingStore())
233       switch (TLI.getTruncStoreAction(ValVT, StVT.getSimpleVT())) {
234       default: llvm_unreachable("This action is not supported yet!");
235       case TargetLowering::Legal:
236         return TranslateLegalizeResults(Op, Result);
237       case TargetLowering::Custom: {
238         SDValue Lowered = TLI.LowerOperation(Result, DAG);
239         Changed = Lowered != Result;
240         return TranslateLegalizeResults(Op, Lowered);
241       }
242       case TargetLowering::Expand:
243         Changed = true;
244         return LegalizeOp(ExpandStore(Op));
245       }
246   }
247 
248   bool HasVectorValue = false;
249   for (SDNode::value_iterator J = Node->value_begin(), E = Node->value_end();
250        J != E;
251        ++J)
252     HasVectorValue |= J->isVector();
253   if (!HasVectorValue)
254     return TranslateLegalizeResults(Op, Result);
255 
256   EVT QueryType;
257   switch (Op.getOpcode()) {
258   default:
259     return TranslateLegalizeResults(Op, Result);
260   case ISD::ADD:
261   case ISD::SUB:
262   case ISD::MUL:
263   case ISD::SDIV:
264   case ISD::UDIV:
265   case ISD::SREM:
266   case ISD::UREM:
267   case ISD::FADD:
268   case ISD::FSUB:
269   case ISD::FMUL:
270   case ISD::FDIV:
271   case ISD::FREM:
272   case ISD::AND:
273   case ISD::OR:
274   case ISD::XOR:
275   case ISD::SHL:
276   case ISD::SRA:
277   case ISD::SRL:
278   case ISD::ROTL:
279   case ISD::ROTR:
280   case ISD::BSWAP:
281   case ISD::CTLZ:
282   case ISD::CTTZ:
283   case ISD::CTLZ_ZERO_UNDEF:
284   case ISD::CTTZ_ZERO_UNDEF:
285   case ISD::CTPOP:
286   case ISD::SELECT:
287   case ISD::VSELECT:
288   case ISD::SELECT_CC:
289   case ISD::SETCC:
290   case ISD::ZERO_EXTEND:
291   case ISD::ANY_EXTEND:
292   case ISD::TRUNCATE:
293   case ISD::SIGN_EXTEND:
294   case ISD::FP_TO_SINT:
295   case ISD::FP_TO_UINT:
296   case ISD::FNEG:
297   case ISD::FABS:
298   case ISD::FMINNUM:
299   case ISD::FMAXNUM:
300   case ISD::FCOPYSIGN:
301   case ISD::FSQRT:
302   case ISD::FSIN:
303   case ISD::FCOS:
304   case ISD::FPOWI:
305   case ISD::FPOW:
306   case ISD::FLOG:
307   case ISD::FLOG2:
308   case ISD::FLOG10:
309   case ISD::FEXP:
310   case ISD::FEXP2:
311   case ISD::FCEIL:
312   case ISD::FTRUNC:
313   case ISD::FRINT:
314   case ISD::FNEARBYINT:
315   case ISD::FROUND:
316   case ISD::FFLOOR:
317   case ISD::FP_ROUND:
318   case ISD::FP_EXTEND:
319   case ISD::FMA:
320   case ISD::SIGN_EXTEND_INREG:
321   case ISD::ANY_EXTEND_VECTOR_INREG:
322   case ISD::SIGN_EXTEND_VECTOR_INREG:
323   case ISD::ZERO_EXTEND_VECTOR_INREG:
324     QueryType = Node->getValueType(0);
325     break;
326   case ISD::FP_ROUND_INREG:
327     QueryType = cast<VTSDNode>(Node->getOperand(1))->getVT();
328     break;
329   case ISD::SINT_TO_FP:
330   case ISD::UINT_TO_FP:
331     QueryType = Node->getOperand(0).getValueType();
332     break;
333   }
334 
335   switch (TLI.getOperationAction(Node->getOpcode(), QueryType)) {
336   case TargetLowering::Promote:
337     Result = Promote(Op);
338     Changed = true;
339     break;
340   case TargetLowering::Legal:
341     break;
342   case TargetLowering::Custom: {
343     SDValue Tmp1 = TLI.LowerOperation(Op, DAG);
344     if (Tmp1.getNode()) {
345       Result = Tmp1;
346       break;
347     }
348     // FALL THROUGH
349   }
350   case TargetLowering::Expand:
351     Result = Expand(Op);
352   }
353 
354   // Make sure that the generated code is itself legal.
355   if (Result != Op) {
356     Result = LegalizeOp(Result);
357     Changed = true;
358   }
359 
360   // Note that LegalizeOp may be reentered even from single-use nodes, which
361   // means that we always must cache transformed nodes.
362   AddLegalizedOperand(Op, Result);
363   return Result;
364 }
365 
Promote(SDValue Op)366 SDValue VectorLegalizer::Promote(SDValue Op) {
367   // For a few operations there is a specific concept for promotion based on
368   // the operand's type.
369   switch (Op.getOpcode()) {
370   case ISD::SINT_TO_FP:
371   case ISD::UINT_TO_FP:
372     // "Promote" the operation by extending the operand.
373     return PromoteINT_TO_FP(Op);
374   case ISD::FP_TO_UINT:
375   case ISD::FP_TO_SINT:
376     // Promote the operation by extending the operand.
377     return PromoteFP_TO_INT(Op, Op->getOpcode() == ISD::FP_TO_SINT);
378   }
379 
380   // There are currently two cases of vector promotion:
381   // 1) Bitcasting a vector of integers to a different type to a vector of the
382   //    same overall length. For example, x86 promotes ISD::AND v2i32 to v1i64.
383   // 2) Extending a vector of floats to a vector of the same number of larger
384   //    floats. For example, AArch64 promotes ISD::FADD on v4f16 to v4f32.
385   MVT VT = Op.getSimpleValueType();
386   assert(Op.getNode()->getNumValues() == 1 &&
387          "Can't promote a vector with multiple results!");
388   MVT NVT = TLI.getTypeToPromoteTo(Op.getOpcode(), VT);
389   SDLoc dl(Op);
390   SmallVector<SDValue, 4> Operands(Op.getNumOperands());
391 
392   for (unsigned j = 0; j != Op.getNumOperands(); ++j) {
393     if (Op.getOperand(j).getValueType().isVector())
394       if (Op.getOperand(j)
395               .getValueType()
396               .getVectorElementType()
397               .isFloatingPoint() &&
398           NVT.isVector() && NVT.getVectorElementType().isFloatingPoint())
399         Operands[j] = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Op.getOperand(j));
400       else
401         Operands[j] = DAG.getNode(ISD::BITCAST, dl, NVT, Op.getOperand(j));
402     else
403       Operands[j] = Op.getOperand(j);
404   }
405 
406   Op = DAG.getNode(Op.getOpcode(), dl, NVT, Operands);
407   if ((VT.isFloatingPoint() && NVT.isFloatingPoint()) ||
408       (VT.isVector() && VT.getVectorElementType().isFloatingPoint() &&
409        NVT.isVector() && NVT.getVectorElementType().isFloatingPoint()))
410     return DAG.getNode(ISD::FP_ROUND, dl, VT, Op, DAG.getIntPtrConstant(0));
411   else
412     return DAG.getNode(ISD::BITCAST, dl, VT, Op);
413 }
414 
PromoteINT_TO_FP(SDValue Op)415 SDValue VectorLegalizer::PromoteINT_TO_FP(SDValue Op) {
416   // INT_TO_FP operations may require the input operand be promoted even
417   // when the type is otherwise legal.
418   EVT VT = Op.getOperand(0).getValueType();
419   assert(Op.getNode()->getNumValues() == 1 &&
420          "Can't promote a vector with multiple results!");
421 
422   // Normal getTypeToPromoteTo() doesn't work here, as that will promote
423   // by widening the vector w/ the same element width and twice the number
424   // of elements. We want the other way around, the same number of elements,
425   // each twice the width.
426   //
427   // Increase the bitwidth of the element to the next pow-of-two
428   // (which is greater than 8 bits).
429 
430   EVT NVT = VT.widenIntegerVectorElementType(*DAG.getContext());
431   assert(NVT.isSimple() && "Promoting to a non-simple vector type!");
432   SDLoc dl(Op);
433   SmallVector<SDValue, 4> Operands(Op.getNumOperands());
434 
435   unsigned Opc = Op.getOpcode() == ISD::UINT_TO_FP ? ISD::ZERO_EXTEND :
436     ISD::SIGN_EXTEND;
437   for (unsigned j = 0; j != Op.getNumOperands(); ++j) {
438     if (Op.getOperand(j).getValueType().isVector())
439       Operands[j] = DAG.getNode(Opc, dl, NVT, Op.getOperand(j));
440     else
441       Operands[j] = Op.getOperand(j);
442   }
443 
444   return DAG.getNode(Op.getOpcode(), dl, Op.getValueType(), Operands);
445 }
446 
447 // For FP_TO_INT we promote the result type to a vector type with wider
448 // elements and then truncate the result.  This is different from the default
449 // PromoteVector which uses bitcast to promote thus assumning that the
450 // promoted vector type has the same overall size.
PromoteFP_TO_INT(SDValue Op,bool isSigned)451 SDValue VectorLegalizer::PromoteFP_TO_INT(SDValue Op, bool isSigned) {
452   assert(Op.getNode()->getNumValues() == 1 &&
453          "Can't promote a vector with multiple results!");
454   EVT VT = Op.getValueType();
455 
456   EVT NewVT;
457   unsigned NewOpc;
458   while (1) {
459     NewVT = VT.widenIntegerVectorElementType(*DAG.getContext());
460     assert(NewVT.isSimple() && "Promoting to a non-simple vector type!");
461     if (TLI.isOperationLegalOrCustom(ISD::FP_TO_SINT, NewVT)) {
462       NewOpc = ISD::FP_TO_SINT;
463       break;
464     }
465     if (!isSigned && TLI.isOperationLegalOrCustom(ISD::FP_TO_UINT, NewVT)) {
466       NewOpc = ISD::FP_TO_UINT;
467       break;
468     }
469   }
470 
471   SDLoc loc(Op);
472   SDValue promoted  = DAG.getNode(NewOpc, SDLoc(Op), NewVT, Op.getOperand(0));
473   return DAG.getNode(ISD::TRUNCATE, SDLoc(Op), VT, promoted);
474 }
475 
476 
ExpandLoad(SDValue Op)477 SDValue VectorLegalizer::ExpandLoad(SDValue Op) {
478   SDLoc dl(Op);
479   LoadSDNode *LD = cast<LoadSDNode>(Op.getNode());
480   SDValue Chain = LD->getChain();
481   SDValue BasePTR = LD->getBasePtr();
482   EVT SrcVT = LD->getMemoryVT();
483   ISD::LoadExtType ExtType = LD->getExtensionType();
484 
485   SmallVector<SDValue, 8> Vals;
486   SmallVector<SDValue, 8> LoadChains;
487   unsigned NumElem = SrcVT.getVectorNumElements();
488 
489   EVT SrcEltVT = SrcVT.getScalarType();
490   EVT DstEltVT = Op.getNode()->getValueType(0).getScalarType();
491 
492   if (SrcVT.getVectorNumElements() > 1 && !SrcEltVT.isByteSized()) {
493     // When elements in a vector is not byte-addressable, we cannot directly
494     // load each element by advancing pointer, which could only address bytes.
495     // Instead, we load all significant words, mask bits off, and concatenate
496     // them to form each element. Finally, they are extended to destination
497     // scalar type to build the destination vector.
498     EVT WideVT = TLI.getPointerTy();
499 
500     assert(WideVT.isRound() &&
501            "Could not handle the sophisticated case when the widest integer is"
502            " not power of 2.");
503     assert(WideVT.bitsGE(SrcEltVT) &&
504            "Type is not legalized?");
505 
506     unsigned WideBytes = WideVT.getStoreSize();
507     unsigned Offset = 0;
508     unsigned RemainingBytes = SrcVT.getStoreSize();
509     SmallVector<SDValue, 8> LoadVals;
510 
511     while (RemainingBytes > 0) {
512       SDValue ScalarLoad;
513       unsigned LoadBytes = WideBytes;
514 
515       if (RemainingBytes >= LoadBytes) {
516         ScalarLoad = DAG.getLoad(WideVT, dl, Chain, BasePTR,
517                                  LD->getPointerInfo().getWithOffset(Offset),
518                                  LD->isVolatile(), LD->isNonTemporal(),
519                                  LD->isInvariant(),
520                                  MinAlign(LD->getAlignment(), Offset),
521                                  LD->getAAInfo());
522       } else {
523         EVT LoadVT = WideVT;
524         while (RemainingBytes < LoadBytes) {
525           LoadBytes >>= 1; // Reduce the load size by half.
526           LoadVT = EVT::getIntegerVT(*DAG.getContext(), LoadBytes << 3);
527         }
528         ScalarLoad = DAG.getExtLoad(ISD::EXTLOAD, dl, WideVT, Chain, BasePTR,
529                                     LD->getPointerInfo().getWithOffset(Offset),
530                                     LoadVT, LD->isVolatile(),
531                                     LD->isNonTemporal(), LD->isInvariant(),
532                                     MinAlign(LD->getAlignment(), Offset),
533                                     LD->getAAInfo());
534       }
535 
536       RemainingBytes -= LoadBytes;
537       Offset += LoadBytes;
538       BasePTR = DAG.getNode(ISD::ADD, dl, BasePTR.getValueType(), BasePTR,
539                             DAG.getConstant(LoadBytes, BasePTR.getValueType()));
540 
541       LoadVals.push_back(ScalarLoad.getValue(0));
542       LoadChains.push_back(ScalarLoad.getValue(1));
543     }
544 
545     // Extract bits, pack and extend/trunc them into destination type.
546     unsigned SrcEltBits = SrcEltVT.getSizeInBits();
547     SDValue SrcEltBitMask = DAG.getConstant((1U << SrcEltBits) - 1, WideVT);
548 
549     unsigned BitOffset = 0;
550     unsigned WideIdx = 0;
551     unsigned WideBits = WideVT.getSizeInBits();
552 
553     for (unsigned Idx = 0; Idx != NumElem; ++Idx) {
554       SDValue Lo, Hi, ShAmt;
555 
556       if (BitOffset < WideBits) {
557         ShAmt = DAG.getConstant(BitOffset, TLI.getShiftAmountTy(WideVT));
558         Lo = DAG.getNode(ISD::SRL, dl, WideVT, LoadVals[WideIdx], ShAmt);
559         Lo = DAG.getNode(ISD::AND, dl, WideVT, Lo, SrcEltBitMask);
560       }
561 
562       BitOffset += SrcEltBits;
563       if (BitOffset >= WideBits) {
564         WideIdx++;
565         BitOffset -= WideBits;
566         if (BitOffset > 0) {
567           ShAmt = DAG.getConstant(SrcEltBits - BitOffset,
568                                   TLI.getShiftAmountTy(WideVT));
569           Hi = DAG.getNode(ISD::SHL, dl, WideVT, LoadVals[WideIdx], ShAmt);
570           Hi = DAG.getNode(ISD::AND, dl, WideVT, Hi, SrcEltBitMask);
571         }
572       }
573 
574       if (Hi.getNode())
575         Lo = DAG.getNode(ISD::OR, dl, WideVT, Lo, Hi);
576 
577       switch (ExtType) {
578       default: llvm_unreachable("Unknown extended-load op!");
579       case ISD::EXTLOAD:
580         Lo = DAG.getAnyExtOrTrunc(Lo, dl, DstEltVT);
581         break;
582       case ISD::ZEXTLOAD:
583         Lo = DAG.getZExtOrTrunc(Lo, dl, DstEltVT);
584         break;
585       case ISD::SEXTLOAD:
586         ShAmt = DAG.getConstant(WideBits - SrcEltBits,
587                                 TLI.getShiftAmountTy(WideVT));
588         Lo = DAG.getNode(ISD::SHL, dl, WideVT, Lo, ShAmt);
589         Lo = DAG.getNode(ISD::SRA, dl, WideVT, Lo, ShAmt);
590         Lo = DAG.getSExtOrTrunc(Lo, dl, DstEltVT);
591         break;
592       }
593       Vals.push_back(Lo);
594     }
595   } else {
596     unsigned Stride = SrcVT.getScalarType().getSizeInBits()/8;
597 
598     for (unsigned Idx=0; Idx<NumElem; Idx++) {
599       SDValue ScalarLoad = DAG.getExtLoad(ExtType, dl,
600                 Op.getNode()->getValueType(0).getScalarType(),
601                 Chain, BasePTR, LD->getPointerInfo().getWithOffset(Idx * Stride),
602                 SrcVT.getScalarType(),
603                 LD->isVolatile(), LD->isNonTemporal(), LD->isInvariant(),
604                 MinAlign(LD->getAlignment(), Idx * Stride), LD->getAAInfo());
605 
606       BasePTR = DAG.getNode(ISD::ADD, dl, BasePTR.getValueType(), BasePTR,
607                          DAG.getConstant(Stride, BasePTR.getValueType()));
608 
609       Vals.push_back(ScalarLoad.getValue(0));
610       LoadChains.push_back(ScalarLoad.getValue(1));
611     }
612   }
613 
614   SDValue NewChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, LoadChains);
615   SDValue Value = DAG.getNode(ISD::BUILD_VECTOR, dl,
616                               Op.getNode()->getValueType(0), Vals);
617 
618   AddLegalizedOperand(Op.getValue(0), Value);
619   AddLegalizedOperand(Op.getValue(1), NewChain);
620 
621   return (Op.getResNo() ? NewChain : Value);
622 }
623 
ExpandStore(SDValue Op)624 SDValue VectorLegalizer::ExpandStore(SDValue Op) {
625   SDLoc dl(Op);
626   StoreSDNode *ST = cast<StoreSDNode>(Op.getNode());
627   SDValue Chain = ST->getChain();
628   SDValue BasePTR = ST->getBasePtr();
629   SDValue Value = ST->getValue();
630   EVT StVT = ST->getMemoryVT();
631 
632   unsigned Alignment = ST->getAlignment();
633   bool isVolatile = ST->isVolatile();
634   bool isNonTemporal = ST->isNonTemporal();
635   AAMDNodes AAInfo = ST->getAAInfo();
636 
637   unsigned NumElem = StVT.getVectorNumElements();
638   // The type of the data we want to save
639   EVT RegVT = Value.getValueType();
640   EVT RegSclVT = RegVT.getScalarType();
641   // The type of data as saved in memory.
642   EVT MemSclVT = StVT.getScalarType();
643 
644   // Cast floats into integers
645   unsigned ScalarSize = MemSclVT.getSizeInBits();
646 
647   // Round odd types to the next pow of two.
648   if (!isPowerOf2_32(ScalarSize))
649     ScalarSize = NextPowerOf2(ScalarSize);
650 
651   // Store Stride in bytes
652   unsigned Stride = ScalarSize/8;
653   // Extract each of the elements from the original vector
654   // and save them into memory individually.
655   SmallVector<SDValue, 8> Stores;
656   for (unsigned Idx = 0; Idx < NumElem; Idx++) {
657     SDValue Ex = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl,
658                RegSclVT, Value, DAG.getConstant(Idx, TLI.getVectorIdxTy()));
659 
660     // This scalar TruncStore may be illegal, but we legalize it later.
661     SDValue Store = DAG.getTruncStore(Chain, dl, Ex, BasePTR,
662                ST->getPointerInfo().getWithOffset(Idx*Stride), MemSclVT,
663                isVolatile, isNonTemporal, MinAlign(Alignment, Idx*Stride),
664                AAInfo);
665 
666     BasePTR = DAG.getNode(ISD::ADD, dl, BasePTR.getValueType(), BasePTR,
667                                DAG.getConstant(Stride, BasePTR.getValueType()));
668 
669     Stores.push_back(Store);
670   }
671   SDValue TF =  DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores);
672   AddLegalizedOperand(Op, TF);
673   return TF;
674 }
675 
Expand(SDValue Op)676 SDValue VectorLegalizer::Expand(SDValue Op) {
677   switch (Op->getOpcode()) {
678   case ISD::SIGN_EXTEND_INREG:
679     return ExpandSEXTINREG(Op);
680   case ISD::ANY_EXTEND_VECTOR_INREG:
681     return ExpandANY_EXTEND_VECTOR_INREG(Op);
682   case ISD::SIGN_EXTEND_VECTOR_INREG:
683     return ExpandSIGN_EXTEND_VECTOR_INREG(Op);
684   case ISD::ZERO_EXTEND_VECTOR_INREG:
685     return ExpandZERO_EXTEND_VECTOR_INREG(Op);
686   case ISD::BSWAP:
687     return ExpandBSWAP(Op);
688   case ISD::VSELECT:
689     return ExpandVSELECT(Op);
690   case ISD::SELECT:
691     return ExpandSELECT(Op);
692   case ISD::UINT_TO_FP:
693     return ExpandUINT_TO_FLOAT(Op);
694   case ISD::FNEG:
695     return ExpandFNEG(Op);
696   case ISD::SETCC:
697     return UnrollVSETCC(Op);
698   default:
699     return DAG.UnrollVectorOp(Op.getNode());
700   }
701 }
702 
ExpandSELECT(SDValue Op)703 SDValue VectorLegalizer::ExpandSELECT(SDValue Op) {
704   // Lower a select instruction where the condition is a scalar and the
705   // operands are vectors. Lower this select to VSELECT and implement it
706   // using XOR AND OR. The selector bit is broadcasted.
707   EVT VT = Op.getValueType();
708   SDLoc DL(Op);
709 
710   SDValue Mask = Op.getOperand(0);
711   SDValue Op1 = Op.getOperand(1);
712   SDValue Op2 = Op.getOperand(2);
713 
714   assert(VT.isVector() && !Mask.getValueType().isVector()
715          && Op1.getValueType() == Op2.getValueType() && "Invalid type");
716 
717   unsigned NumElem = VT.getVectorNumElements();
718 
719   // If we can't even use the basic vector operations of
720   // AND,OR,XOR, we will have to scalarize the op.
721   // Notice that the operation may be 'promoted' which means that it is
722   // 'bitcasted' to another type which is handled.
723   // Also, we need to be able to construct a splat vector using BUILD_VECTOR.
724   if (TLI.getOperationAction(ISD::AND, VT) == TargetLowering::Expand ||
725       TLI.getOperationAction(ISD::XOR, VT) == TargetLowering::Expand ||
726       TLI.getOperationAction(ISD::OR,  VT) == TargetLowering::Expand ||
727       TLI.getOperationAction(ISD::BUILD_VECTOR,  VT) == TargetLowering::Expand)
728     return DAG.UnrollVectorOp(Op.getNode());
729 
730   // Generate a mask operand.
731   EVT MaskTy = VT.changeVectorElementTypeToInteger();
732 
733   // What is the size of each element in the vector mask.
734   EVT BitTy = MaskTy.getScalarType();
735 
736   Mask = DAG.getSelect(DL, BitTy, Mask,
737           DAG.getConstant(APInt::getAllOnesValue(BitTy.getSizeInBits()), BitTy),
738           DAG.getConstant(0, BitTy));
739 
740   // Broadcast the mask so that the entire vector is all-one or all zero.
741   SmallVector<SDValue, 8> Ops(NumElem, Mask);
742   Mask = DAG.getNode(ISD::BUILD_VECTOR, DL, MaskTy, Ops);
743 
744   // Bitcast the operands to be the same type as the mask.
745   // This is needed when we select between FP types because
746   // the mask is a vector of integers.
747   Op1 = DAG.getNode(ISD::BITCAST, DL, MaskTy, Op1);
748   Op2 = DAG.getNode(ISD::BITCAST, DL, MaskTy, Op2);
749 
750   SDValue AllOnes = DAG.getConstant(
751             APInt::getAllOnesValue(BitTy.getSizeInBits()), MaskTy);
752   SDValue NotMask = DAG.getNode(ISD::XOR, DL, MaskTy, Mask, AllOnes);
753 
754   Op1 = DAG.getNode(ISD::AND, DL, MaskTy, Op1, Mask);
755   Op2 = DAG.getNode(ISD::AND, DL, MaskTy, Op2, NotMask);
756   SDValue Val = DAG.getNode(ISD::OR, DL, MaskTy, Op1, Op2);
757   return DAG.getNode(ISD::BITCAST, DL, Op.getValueType(), Val);
758 }
759 
ExpandSEXTINREG(SDValue Op)760 SDValue VectorLegalizer::ExpandSEXTINREG(SDValue Op) {
761   EVT VT = Op.getValueType();
762 
763   // Make sure that the SRA and SHL instructions are available.
764   if (TLI.getOperationAction(ISD::SRA, VT) == TargetLowering::Expand ||
765       TLI.getOperationAction(ISD::SHL, VT) == TargetLowering::Expand)
766     return DAG.UnrollVectorOp(Op.getNode());
767 
768   SDLoc DL(Op);
769   EVT OrigTy = cast<VTSDNode>(Op->getOperand(1))->getVT();
770 
771   unsigned BW = VT.getScalarType().getSizeInBits();
772   unsigned OrigBW = OrigTy.getScalarType().getSizeInBits();
773   SDValue ShiftSz = DAG.getConstant(BW - OrigBW, VT);
774 
775   Op = Op.getOperand(0);
776   Op =   DAG.getNode(ISD::SHL, DL, VT, Op, ShiftSz);
777   return DAG.getNode(ISD::SRA, DL, VT, Op, ShiftSz);
778 }
779 
780 // Generically expand a vector anyext in register to a shuffle of the relevant
781 // lanes into the appropriate locations, with other lanes left undef.
ExpandANY_EXTEND_VECTOR_INREG(SDValue Op)782 SDValue VectorLegalizer::ExpandANY_EXTEND_VECTOR_INREG(SDValue Op) {
783   SDLoc DL(Op);
784   EVT VT = Op.getValueType();
785   int NumElements = VT.getVectorNumElements();
786   SDValue Src = Op.getOperand(0);
787   EVT SrcVT = Src.getValueType();
788   int NumSrcElements = SrcVT.getVectorNumElements();
789 
790   // Build a base mask of undef shuffles.
791   SmallVector<int, 16> ShuffleMask;
792   ShuffleMask.resize(NumSrcElements, -1);
793 
794   // Place the extended lanes into the correct locations.
795   int ExtLaneScale = NumSrcElements / NumElements;
796   int EndianOffset = TLI.isBigEndian() ? ExtLaneScale - 1 : 0;
797   for (int i = 0; i < NumElements; ++i)
798     ShuffleMask[i * ExtLaneScale + EndianOffset] = i;
799 
800   return DAG.getNode(
801       ISD::BITCAST, DL, VT,
802       DAG.getVectorShuffle(SrcVT, DL, Src, DAG.getUNDEF(SrcVT), ShuffleMask));
803 }
804 
ExpandSIGN_EXTEND_VECTOR_INREG(SDValue Op)805 SDValue VectorLegalizer::ExpandSIGN_EXTEND_VECTOR_INREG(SDValue Op) {
806   SDLoc DL(Op);
807   EVT VT = Op.getValueType();
808   SDValue Src = Op.getOperand(0);
809   EVT SrcVT = Src.getValueType();
810 
811   // First build an any-extend node which can be legalized above when we
812   // recurse through it.
813   Op = DAG.getAnyExtendVectorInReg(Src, DL, VT);
814 
815   // Now we need sign extend. Do this by shifting the elements. Even if these
816   // aren't legal operations, they have a better chance of being legalized
817   // without full scalarization than the sign extension does.
818   unsigned EltWidth = VT.getVectorElementType().getSizeInBits();
819   unsigned SrcEltWidth = SrcVT.getVectorElementType().getSizeInBits();
820   SDValue ShiftAmount = DAG.getConstant(EltWidth - SrcEltWidth, VT);
821   return DAG.getNode(ISD::SRA, DL, VT,
822                      DAG.getNode(ISD::SHL, DL, VT, Op, ShiftAmount),
823                      ShiftAmount);
824 }
825 
826 // Generically expand a vector zext in register to a shuffle of the relevant
827 // lanes into the appropriate locations, a blend of zero into the high bits,
828 // and a bitcast to the wider element type.
ExpandZERO_EXTEND_VECTOR_INREG(SDValue Op)829 SDValue VectorLegalizer::ExpandZERO_EXTEND_VECTOR_INREG(SDValue Op) {
830   SDLoc DL(Op);
831   EVT VT = Op.getValueType();
832   int NumElements = VT.getVectorNumElements();
833   SDValue Src = Op.getOperand(0);
834   EVT SrcVT = Src.getValueType();
835   int NumSrcElements = SrcVT.getVectorNumElements();
836 
837   // Build up a zero vector to blend into this one.
838   EVT SrcScalarVT = SrcVT.getScalarType();
839   SDValue ScalarZero = DAG.getTargetConstant(0, SrcScalarVT);
840   SmallVector<SDValue, 4> BuildVectorOperands(NumSrcElements, ScalarZero);
841   SDValue Zero = DAG.getNode(ISD::BUILD_VECTOR, DL, SrcVT, BuildVectorOperands);
842 
843   // Shuffle the incoming lanes into the correct position, and pull all other
844   // lanes from the zero vector.
845   SmallVector<int, 16> ShuffleMask;
846   ShuffleMask.reserve(NumSrcElements);
847   for (int i = 0; i < NumSrcElements; ++i)
848     ShuffleMask.push_back(i);
849 
850   int ExtLaneScale = NumSrcElements / NumElements;
851   int EndianOffset = TLI.isBigEndian() ? ExtLaneScale - 1 : 0;
852   for (int i = 0; i < NumElements; ++i)
853     ShuffleMask[i * ExtLaneScale + EndianOffset] = NumSrcElements + i;
854 
855   return DAG.getNode(ISD::BITCAST, DL, VT,
856                      DAG.getVectorShuffle(SrcVT, DL, Zero, Src, ShuffleMask));
857 }
858 
ExpandBSWAP(SDValue Op)859 SDValue VectorLegalizer::ExpandBSWAP(SDValue Op) {
860   EVT VT = Op.getValueType();
861 
862   // Generate a byte wise shuffle mask for the BSWAP.
863   SmallVector<int, 16> ShuffleMask;
864   int ScalarSizeInBytes = VT.getScalarSizeInBits() / 8;
865   for (int I = 0, E = VT.getVectorNumElements(); I != E; ++I)
866     for (int J = ScalarSizeInBytes - 1; J >= 0; --J)
867       ShuffleMask.push_back((I * ScalarSizeInBytes) + J);
868 
869   EVT ByteVT = EVT::getVectorVT(*DAG.getContext(), MVT::i8, ShuffleMask.size());
870 
871   // Only emit a shuffle if the mask is legal.
872   if (!TLI.isShuffleMaskLegal(ShuffleMask, ByteVT))
873     return DAG.UnrollVectorOp(Op.getNode());
874 
875   SDLoc DL(Op);
876   Op = DAG.getNode(ISD::BITCAST, DL, ByteVT, Op.getOperand(0));
877   Op = DAG.getVectorShuffle(ByteVT, DL, Op, DAG.getUNDEF(ByteVT),
878                             ShuffleMask.data());
879   return DAG.getNode(ISD::BITCAST, DL, VT, Op);
880 }
881 
ExpandVSELECT(SDValue Op)882 SDValue VectorLegalizer::ExpandVSELECT(SDValue Op) {
883   // Implement VSELECT in terms of XOR, AND, OR
884   // on platforms which do not support blend natively.
885   SDLoc DL(Op);
886 
887   SDValue Mask = Op.getOperand(0);
888   SDValue Op1 = Op.getOperand(1);
889   SDValue Op2 = Op.getOperand(2);
890 
891   EVT VT = Mask.getValueType();
892 
893   // If we can't even use the basic vector operations of
894   // AND,OR,XOR, we will have to scalarize the op.
895   // Notice that the operation may be 'promoted' which means that it is
896   // 'bitcasted' to another type which is handled.
897   // This operation also isn't safe with AND, OR, XOR when the boolean
898   // type is 0/1 as we need an all ones vector constant to mask with.
899   // FIXME: Sign extend 1 to all ones if thats legal on the target.
900   if (TLI.getOperationAction(ISD::AND, VT) == TargetLowering::Expand ||
901       TLI.getOperationAction(ISD::XOR, VT) == TargetLowering::Expand ||
902       TLI.getOperationAction(ISD::OR, VT) == TargetLowering::Expand ||
903       TLI.getBooleanContents(Op1.getValueType()) !=
904           TargetLowering::ZeroOrNegativeOneBooleanContent)
905     return DAG.UnrollVectorOp(Op.getNode());
906 
907   // If the mask and the type are different sizes, unroll the vector op. This
908   // can occur when getSetCCResultType returns something that is different in
909   // size from the operand types. For example, v4i8 = select v4i32, v4i8, v4i8.
910   if (VT.getSizeInBits() != Op1.getValueType().getSizeInBits())
911     return DAG.UnrollVectorOp(Op.getNode());
912 
913   // Bitcast the operands to be the same type as the mask.
914   // This is needed when we select between FP types because
915   // the mask is a vector of integers.
916   Op1 = DAG.getNode(ISD::BITCAST, DL, VT, Op1);
917   Op2 = DAG.getNode(ISD::BITCAST, DL, VT, Op2);
918 
919   SDValue AllOnes = DAG.getConstant(
920     APInt::getAllOnesValue(VT.getScalarType().getSizeInBits()), VT);
921   SDValue NotMask = DAG.getNode(ISD::XOR, DL, VT, Mask, AllOnes);
922 
923   Op1 = DAG.getNode(ISD::AND, DL, VT, Op1, Mask);
924   Op2 = DAG.getNode(ISD::AND, DL, VT, Op2, NotMask);
925   SDValue Val = DAG.getNode(ISD::OR, DL, VT, Op1, Op2);
926   return DAG.getNode(ISD::BITCAST, DL, Op.getValueType(), Val);
927 }
928 
ExpandUINT_TO_FLOAT(SDValue Op)929 SDValue VectorLegalizer::ExpandUINT_TO_FLOAT(SDValue Op) {
930   EVT VT = Op.getOperand(0).getValueType();
931   SDLoc DL(Op);
932 
933   // Make sure that the SINT_TO_FP and SRL instructions are available.
934   if (TLI.getOperationAction(ISD::SINT_TO_FP, VT) == TargetLowering::Expand ||
935       TLI.getOperationAction(ISD::SRL,        VT) == TargetLowering::Expand)
936     return DAG.UnrollVectorOp(Op.getNode());
937 
938  EVT SVT = VT.getScalarType();
939   assert((SVT.getSizeInBits() == 64 || SVT.getSizeInBits() == 32) &&
940       "Elements in vector-UINT_TO_FP must be 32 or 64 bits wide");
941 
942   unsigned BW = SVT.getSizeInBits();
943   SDValue HalfWord = DAG.getConstant(BW/2, VT);
944 
945   // Constants to clear the upper part of the word.
946   // Notice that we can also use SHL+SHR, but using a constant is slightly
947   // faster on x86.
948   uint64_t HWMask = (SVT.getSizeInBits()==64)?0x00000000FFFFFFFF:0x0000FFFF;
949   SDValue HalfWordMask = DAG.getConstant(HWMask, VT);
950 
951   // Two to the power of half-word-size.
952   SDValue TWOHW = DAG.getConstantFP((1<<(BW/2)), Op.getValueType());
953 
954   // Clear upper part of LO, lower HI
955   SDValue HI = DAG.getNode(ISD::SRL, DL, VT, Op.getOperand(0), HalfWord);
956   SDValue LO = DAG.getNode(ISD::AND, DL, VT, Op.getOperand(0), HalfWordMask);
957 
958   // Convert hi and lo to floats
959   // Convert the hi part back to the upper values
960   SDValue fHI = DAG.getNode(ISD::SINT_TO_FP, DL, Op.getValueType(), HI);
961           fHI = DAG.getNode(ISD::FMUL, DL, Op.getValueType(), fHI, TWOHW);
962   SDValue fLO = DAG.getNode(ISD::SINT_TO_FP, DL, Op.getValueType(), LO);
963 
964   // Add the two halves
965   return DAG.getNode(ISD::FADD, DL, Op.getValueType(), fHI, fLO);
966 }
967 
968 
ExpandFNEG(SDValue Op)969 SDValue VectorLegalizer::ExpandFNEG(SDValue Op) {
970   if (TLI.isOperationLegalOrCustom(ISD::FSUB, Op.getValueType())) {
971     SDValue Zero = DAG.getConstantFP(-0.0, Op.getValueType());
972     return DAG.getNode(ISD::FSUB, SDLoc(Op), Op.getValueType(),
973                        Zero, Op.getOperand(0));
974   }
975   return DAG.UnrollVectorOp(Op.getNode());
976 }
977 
UnrollVSETCC(SDValue Op)978 SDValue VectorLegalizer::UnrollVSETCC(SDValue Op) {
979   EVT VT = Op.getValueType();
980   unsigned NumElems = VT.getVectorNumElements();
981   EVT EltVT = VT.getVectorElementType();
982   SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1), CC = Op.getOperand(2);
983   EVT TmpEltVT = LHS.getValueType().getVectorElementType();
984   SDLoc dl(Op);
985   SmallVector<SDValue, 8> Ops(NumElems);
986   for (unsigned i = 0; i < NumElems; ++i) {
987     SDValue LHSElem = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, TmpEltVT, LHS,
988                                   DAG.getConstant(i, TLI.getVectorIdxTy()));
989     SDValue RHSElem = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, TmpEltVT, RHS,
990                                   DAG.getConstant(i, TLI.getVectorIdxTy()));
991     Ops[i] = DAG.getNode(ISD::SETCC, dl,
992                          TLI.getSetCCResultType(*DAG.getContext(), TmpEltVT),
993                          LHSElem, RHSElem, CC);
994     Ops[i] = DAG.getSelect(dl, EltVT, Ops[i],
995                            DAG.getConstant(APInt::getAllOnesValue
996                                            (EltVT.getSizeInBits()), EltVT),
997                            DAG.getConstant(0, EltVT));
998   }
999   return DAG.getNode(ISD::BUILD_VECTOR, dl, VT, Ops);
1000 }
1001 
1002 }
1003 
LegalizeVectors()1004 bool SelectionDAG::LegalizeVectors() {
1005   return VectorLegalizer(*this).Run();
1006 }
1007