1 //===-- StatepointLowering.cpp - SDAGBuilder's statepoint code -----------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file includes support code use by SelectionDAGBuilder when lowering a
11 // statepoint sequence in SelectionDAG IR.
12 //
13 //===----------------------------------------------------------------------===//
14
15 #include "StatepointLowering.h"
16 #include "SelectionDAGBuilder.h"
17 #include "llvm/ADT/SmallSet.h"
18 #include "llvm/ADT/Statistic.h"
19 #include "llvm/CodeGen/FunctionLoweringInfo.h"
20 #include "llvm/CodeGen/GCMetadata.h"
21 #include "llvm/CodeGen/GCStrategy.h"
22 #include "llvm/CodeGen/SelectionDAG.h"
23 #include "llvm/CodeGen/StackMaps.h"
24 #include "llvm/IR/CallingConv.h"
25 #include "llvm/IR/Instructions.h"
26 #include "llvm/IR/IntrinsicInst.h"
27 #include "llvm/IR/Intrinsics.h"
28 #include "llvm/IR/Statepoint.h"
29 #include "llvm/Target/TargetLowering.h"
30 #include <algorithm>
31 using namespace llvm;
32
33 #define DEBUG_TYPE "statepoint-lowering"
34
35 STATISTIC(NumSlotsAllocatedForStatepoints,
36 "Number of stack slots allocated for statepoints");
37 STATISTIC(NumOfStatepoints, "Number of statepoint nodes encountered");
38 STATISTIC(StatepointMaxSlotsRequired,
39 "Maximum number of stack slots required for a singe statepoint");
40
41 void
startNewStatepoint(SelectionDAGBuilder & Builder)42 StatepointLoweringState::startNewStatepoint(SelectionDAGBuilder &Builder) {
43 // Consistency check
44 assert(PendingGCRelocateCalls.empty() &&
45 "Trying to visit statepoint before finished processing previous one");
46 Locations.clear();
47 RelocLocations.clear();
48 NextSlotToAllocate = 0;
49 // Need to resize this on each safepoint - we need the two to stay in
50 // sync and the clear patterns of a SelectionDAGBuilder have no relation
51 // to FunctionLoweringInfo.
52 AllocatedStackSlots.resize(Builder.FuncInfo.StatepointStackSlots.size());
53 for (size_t i = 0; i < AllocatedStackSlots.size(); i++) {
54 AllocatedStackSlots[i] = false;
55 }
56 }
clear()57 void StatepointLoweringState::clear() {
58 Locations.clear();
59 RelocLocations.clear();
60 AllocatedStackSlots.clear();
61 assert(PendingGCRelocateCalls.empty() &&
62 "cleared before statepoint sequence completed");
63 }
64
65 SDValue
allocateStackSlot(EVT ValueType,SelectionDAGBuilder & Builder)66 StatepointLoweringState::allocateStackSlot(EVT ValueType,
67 SelectionDAGBuilder &Builder) {
68
69 NumSlotsAllocatedForStatepoints++;
70
71 // The basic scheme here is to first look for a previously created stack slot
72 // which is not in use (accounting for the fact arbitrary slots may already
73 // be reserved), or to create a new stack slot and use it.
74
75 // If this doesn't succeed in 40000 iterations, something is seriously wrong
76 for (int i = 0; i < 40000; i++) {
77 assert(Builder.FuncInfo.StatepointStackSlots.size() ==
78 AllocatedStackSlots.size() &&
79 "broken invariant");
80 const size_t NumSlots = AllocatedStackSlots.size();
81 assert(NextSlotToAllocate <= NumSlots && "broken invariant");
82
83 if (NextSlotToAllocate >= NumSlots) {
84 assert(NextSlotToAllocate == NumSlots);
85 // record stats
86 if (NumSlots + 1 > StatepointMaxSlotsRequired) {
87 StatepointMaxSlotsRequired = NumSlots + 1;
88 }
89
90 SDValue SpillSlot = Builder.DAG.CreateStackTemporary(ValueType);
91 const unsigned FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex();
92 Builder.FuncInfo.StatepointStackSlots.push_back(FI);
93 AllocatedStackSlots.push_back(true);
94 return SpillSlot;
95 }
96 if (!AllocatedStackSlots[NextSlotToAllocate]) {
97 const int FI = Builder.FuncInfo.StatepointStackSlots[NextSlotToAllocate];
98 AllocatedStackSlots[NextSlotToAllocate] = true;
99 return Builder.DAG.getFrameIndex(FI, ValueType);
100 }
101 // Note: We deliberately choose to advance this only on the failing path.
102 // Doing so on the suceeding path involes a bit of complexity that caused a
103 // minor bug previously. Unless performance shows this matters, please
104 // keep this code as simple as possible.
105 NextSlotToAllocate++;
106 }
107 llvm_unreachable("infinite loop?");
108 }
109
110 /// Try to find existing copies of the incoming values in stack slots used for
111 /// statepoint spilling. If we can find a spill slot for the incoming value,
112 /// mark that slot as allocated, and reuse the same slot for this safepoint.
113 /// This helps to avoid series of loads and stores that only serve to resuffle
114 /// values on the stack between calls.
reservePreviousStackSlotForValue(SDValue Incoming,SelectionDAGBuilder & Builder)115 static void reservePreviousStackSlotForValue(SDValue Incoming,
116 SelectionDAGBuilder &Builder) {
117
118 if (isa<ConstantSDNode>(Incoming) || isa<FrameIndexSDNode>(Incoming)) {
119 // We won't need to spill this, so no need to check for previously
120 // allocated stack slots
121 return;
122 }
123
124 SDValue Loc = Builder.StatepointLowering.getLocation(Incoming);
125 if (Loc.getNode()) {
126 // duplicates in input
127 return;
128 }
129
130 // Search back for the load from a stack slot pattern to find the original
131 // slot we allocated for this value. We could extend this to deal with
132 // simple modification patterns, but simple dealing with trivial load/store
133 // sequences helps a lot already.
134 if (LoadSDNode *Load = dyn_cast<LoadSDNode>(Incoming)) {
135 if (auto *FI = dyn_cast<FrameIndexSDNode>(Load->getBasePtr())) {
136 const int Index = FI->getIndex();
137 auto Itr = std::find(Builder.FuncInfo.StatepointStackSlots.begin(),
138 Builder.FuncInfo.StatepointStackSlots.end(), Index);
139 if (Itr == Builder.FuncInfo.StatepointStackSlots.end()) {
140 // not one of the lowering stack slots, can't reuse!
141 // TODO: Actually, we probably could reuse the stack slot if the value
142 // hasn't changed at all, but we'd need to look for intervening writes
143 return;
144 } else {
145 // This is one of our dedicated lowering slots
146 const int Offset =
147 std::distance(Builder.FuncInfo.StatepointStackSlots.begin(), Itr);
148 if (Builder.StatepointLowering.isStackSlotAllocated(Offset)) {
149 // stack slot already assigned to someone else, can't use it!
150 // TODO: currently we reserve space for gc arguments after doing
151 // normal allocation for deopt arguments. We should reserve for
152 // _all_ deopt and gc arguments, then start allocating. This
153 // will prevent some moves being inserted when vm state changes,
154 // but gc state doesn't between two calls.
155 return;
156 }
157 // Reserve this stack slot
158 Builder.StatepointLowering.reserveStackSlot(Offset);
159 }
160
161 // Cache this slot so we find it when going through the normal
162 // assignment loop.
163 SDValue Loc =
164 Builder.DAG.getTargetFrameIndex(Index, Incoming.getValueType());
165
166 Builder.StatepointLowering.setLocation(Incoming, Loc);
167 }
168 }
169
170 // TODO: handle case where a reloaded value flows through a phi to
171 // another safepoint. e.g.
172 // bb1:
173 // a' = relocated...
174 // bb2: % pred: bb1, bb3, bb4, etc.
175 // a_phi = phi(a', ...)
176 // statepoint ... a_phi
177 // NOTE: This will require reasoning about cross basic block values. This is
178 // decidedly non trivial and this might not be the right place to do it. We
179 // don't really have the information we need here...
180
181 // TODO: handle simple updates. If a value is modified and the original
182 // value is no longer live, it would be nice to put the modified value in the
183 // same slot. This allows folding of the memory accesses for some
184 // instructions types (like an increment).
185 // statepoint (i)
186 // i1 = i+1
187 // statepoint (i1)
188 }
189
190 /// Remove any duplicate (as SDValues) from the derived pointer pairs. This
191 /// is not required for correctness. It's purpose is to reduce the size of
192 /// StackMap section. It has no effect on the number of spill slots required
193 /// or the actual lowering.
removeDuplicatesGCPtrs(SmallVectorImpl<const Value * > & Bases,SmallVectorImpl<const Value * > & Ptrs,SmallVectorImpl<const Value * > & Relocs,SelectionDAGBuilder & Builder)194 static void removeDuplicatesGCPtrs(SmallVectorImpl<const Value *> &Bases,
195 SmallVectorImpl<const Value *> &Ptrs,
196 SmallVectorImpl<const Value *> &Relocs,
197 SelectionDAGBuilder &Builder) {
198
199 // This is horribly ineffecient, but I don't care right now
200 SmallSet<SDValue, 64> Seen;
201
202 SmallVector<const Value *, 64> NewBases, NewPtrs, NewRelocs;
203 for (size_t i = 0; i < Ptrs.size(); i++) {
204 SDValue SD = Builder.getValue(Ptrs[i]);
205 // Only add non-duplicates
206 if (Seen.count(SD) == 0) {
207 NewBases.push_back(Bases[i]);
208 NewPtrs.push_back(Ptrs[i]);
209 NewRelocs.push_back(Relocs[i]);
210 }
211 Seen.insert(SD);
212 }
213 assert(Bases.size() >= NewBases.size());
214 assert(Ptrs.size() >= NewPtrs.size());
215 assert(Relocs.size() >= NewRelocs.size());
216 Bases = NewBases;
217 Ptrs = NewPtrs;
218 Relocs = NewRelocs;
219 assert(Ptrs.size() == Bases.size());
220 assert(Ptrs.size() == Relocs.size());
221 }
222
223 /// Extract call from statepoint, lower it and return pointer to the
224 /// call node. Also update NodeMap so that getValue(statepoint) will
225 /// reference lowered call result
lowerCallFromStatepoint(ImmutableStatepoint StatepointSite,MachineBasicBlock * LandingPad,SelectionDAGBuilder & Builder)226 static SDNode *lowerCallFromStatepoint(ImmutableStatepoint StatepointSite,
227 MachineBasicBlock *LandingPad,
228 SelectionDAGBuilder &Builder) {
229
230 ImmutableCallSite CS(StatepointSite.getCallSite());
231
232 // Lower the actual call itself - This is a bit of a hack, but we want to
233 // avoid modifying the actual lowering code. This is similiar in intent to
234 // the LowerCallOperands mechanism used by PATCHPOINT, but is structured
235 // differently. Hopefully, this is slightly more robust w.r.t. calling
236 // convention, return values, and other function attributes.
237 Value *ActualCallee = const_cast<Value *>(StatepointSite.actualCallee());
238
239 std::vector<Value *> Args;
240 CallInst::const_op_iterator arg_begin = StatepointSite.call_args_begin();
241 CallInst::const_op_iterator arg_end = StatepointSite.call_args_end();
242 Args.insert(Args.end(), arg_begin, arg_end);
243 // TODO: remove the creation of a new instruction! We should not be
244 // modifying the IR (even temporarily) at this point.
245 CallInst *Tmp = CallInst::Create(ActualCallee, Args);
246 Tmp->setTailCall(CS.isTailCall());
247 Tmp->setCallingConv(CS.getCallingConv());
248 Tmp->setAttributes(CS.getAttributes());
249 Builder.LowerCallTo(Tmp, Builder.getValue(ActualCallee), false, LandingPad);
250
251 // Handle the return value of the call iff any.
252 const bool HasDef = !Tmp->getType()->isVoidTy();
253 if (HasDef) {
254 if (CS.isInvoke()) {
255 // Result value will be used in different basic block for invokes
256 // so we need to export it now. But statepoint call has a different type
257 // than the actuall call. It means that standart exporting mechanism will
258 // create register of the wrong type. So instead we need to create
259 // register with correct type and save value into it manually.
260 // TODO: To eliminate this problem we can remove gc.result intrinsics
261 // completelly and make statepoint call to return a tuple.
262 unsigned reg = Builder.FuncInfo.CreateRegs(Tmp->getType());
263 Builder.CopyValueToVirtualRegister(Tmp, reg);
264 Builder.FuncInfo.ValueMap[CS.getInstruction()] = reg;
265 }
266 else {
267 // The value of the statepoint itself will be the value of call itself.
268 // We'll replace the actually call node shortly. gc_result will grab
269 // this value.
270 Builder.setValue(CS.getInstruction(), Builder.getValue(Tmp));
271 }
272 } else {
273 // The token value is never used from here on, just generate a poison value
274 Builder.setValue(CS.getInstruction(), Builder.DAG.getIntPtrConstant(-1));
275 }
276 // Remove the fake entry we created so we don't have a hanging reference
277 // after we delete this node.
278 Builder.removeValue(Tmp);
279 delete Tmp;
280 Tmp = nullptr;
281
282 // Search for the call node
283 // The following code is essentially reverse engineering X86's
284 // LowerCallTo.
285 // We are expecting DAG to have the following form:
286 // ch = eh_label (only in case of invoke statepoint)
287 // ch, glue = callseq_start ch
288 // ch, glue = X86::Call ch, glue
289 // ch, glue = callseq_end ch, glue
290 // ch = eh_label ch (only in case of invoke statepoint)
291 //
292 // DAG root will be either last eh_label or callseq_end.
293
294 SDNode *CallNode = nullptr;
295
296 // We just emitted a call, so it should be last thing generated
297 SDValue Chain = Builder.DAG.getRoot();
298
299 // Find closest CALLSEQ_END walking back through lowered nodes if needed
300 SDNode *CallEnd = Chain.getNode();
301 int Sanity = 0;
302 while (CallEnd->getOpcode() != ISD::CALLSEQ_END) {
303 assert(CallEnd->getNumOperands() >= 1 &&
304 CallEnd->getOperand(0).getValueType() == MVT::Other);
305
306 CallEnd = CallEnd->getOperand(0).getNode();
307
308 assert(Sanity < 20 && "should have found call end already");
309 Sanity++;
310 }
311 assert(CallEnd->getOpcode() == ISD::CALLSEQ_END &&
312 "Expected a callseq node.");
313 assert(CallEnd->getGluedNode());
314
315 // Step back inside the CALLSEQ
316 CallNode = CallEnd->getGluedNode();
317 return CallNode;
318 }
319
320 /// Callect all gc pointers coming into statepoint intrinsic, clean them up,
321 /// and return two arrays:
322 /// Bases - base pointers incoming to this statepoint
323 /// Ptrs - derived pointers incoming to this statepoint
324 /// Relocs - the gc_relocate corresponding to each base/ptr pair
325 /// Elements of this arrays should be in one-to-one correspondence with each
326 /// other i.e Bases[i], Ptrs[i] are from the same gcrelocate call
327 static void
getIncomingStatepointGCValues(SmallVectorImpl<const Value * > & Bases,SmallVectorImpl<const Value * > & Ptrs,SmallVectorImpl<const Value * > & Relocs,ImmutableStatepoint StatepointSite,SelectionDAGBuilder & Builder)328 getIncomingStatepointGCValues(SmallVectorImpl<const Value *> &Bases,
329 SmallVectorImpl<const Value *> &Ptrs,
330 SmallVectorImpl<const Value *> &Relocs,
331 ImmutableStatepoint StatepointSite,
332 SelectionDAGBuilder &Builder) {
333 for (GCRelocateOperands relocateOpers :
334 StatepointSite.getRelocates(StatepointSite)) {
335 Relocs.push_back(relocateOpers.getUnderlyingCallSite().getInstruction());
336 Bases.push_back(relocateOpers.basePtr());
337 Ptrs.push_back(relocateOpers.derivedPtr());
338 }
339
340 // Remove any redundant llvm::Values which map to the same SDValue as another
341 // input. Also has the effect of removing duplicates in the original
342 // llvm::Value input list as well. This is a useful optimization for
343 // reducing the size of the StackMap section. It has no other impact.
344 removeDuplicatesGCPtrs(Bases, Ptrs, Relocs, Builder);
345
346 assert(Bases.size() == Ptrs.size() && Ptrs.size() == Relocs.size());
347 }
348
349 /// Spill a value incoming to the statepoint. It might be either part of
350 /// vmstate
351 /// or gcstate. In both cases unconditionally spill it on the stack unless it
352 /// is a null constant. Return pair with first element being frame index
353 /// containing saved value and second element with outgoing chain from the
354 /// emitted store
355 static std::pair<SDValue, SDValue>
spillIncomingStatepointValue(SDValue Incoming,SDValue Chain,SelectionDAGBuilder & Builder)356 spillIncomingStatepointValue(SDValue Incoming, SDValue Chain,
357 SelectionDAGBuilder &Builder) {
358 SDValue Loc = Builder.StatepointLowering.getLocation(Incoming);
359
360 // Emit new store if we didn't do it for this ptr before
361 if (!Loc.getNode()) {
362 Loc = Builder.StatepointLowering.allocateStackSlot(Incoming.getValueType(),
363 Builder);
364 assert(isa<FrameIndexSDNode>(Loc));
365 int Index = cast<FrameIndexSDNode>(Loc)->getIndex();
366 // We use TargetFrameIndex so that isel will not select it into LEA
367 Loc = Builder.DAG.getTargetFrameIndex(Index, Incoming.getValueType());
368
369 // TODO: We can create TokenFactor node instead of
370 // chaining stores one after another, this may allow
371 // a bit more optimal scheduling for them
372 Chain = Builder.DAG.getStore(Chain, Builder.getCurSDLoc(), Incoming, Loc,
373 MachinePointerInfo::getFixedStack(Index),
374 false, false, 0);
375
376 Builder.StatepointLowering.setLocation(Incoming, Loc);
377 }
378
379 assert(Loc.getNode());
380 return std::make_pair(Loc, Chain);
381 }
382
383 /// Lower a single value incoming to a statepoint node. This value can be
384 /// either a deopt value or a gc value, the handling is the same. We special
385 /// case constants and allocas, then fall back to spilling if required.
lowerIncomingStatepointValue(SDValue Incoming,SmallVectorImpl<SDValue> & Ops,SelectionDAGBuilder & Builder)386 static void lowerIncomingStatepointValue(SDValue Incoming,
387 SmallVectorImpl<SDValue> &Ops,
388 SelectionDAGBuilder &Builder) {
389 SDValue Chain = Builder.getRoot();
390
391 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Incoming)) {
392 // If the original value was a constant, make sure it gets recorded as
393 // such in the stackmap. This is required so that the consumer can
394 // parse any internal format to the deopt state. It also handles null
395 // pointers and other constant pointers in GC states
396 Ops.push_back(
397 Builder.DAG.getTargetConstant(StackMaps::ConstantOp, MVT::i64));
398 Ops.push_back(Builder.DAG.getTargetConstant(C->getSExtValue(), MVT::i64));
399 } else if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Incoming)) {
400 // This handles allocas as arguments to the statepoint (this is only
401 // really meaningful for a deopt value. For GC, we'd be trying to
402 // relocate the address of the alloca itself?)
403 Ops.push_back(Builder.DAG.getTargetFrameIndex(FI->getIndex(),
404 Incoming.getValueType()));
405 } else {
406 // Otherwise, locate a spill slot and explicitly spill it so it
407 // can be found by the runtime later. We currently do not support
408 // tracking values through callee saved registers to their eventual
409 // spill location. This would be a useful optimization, but would
410 // need to be optional since it requires a lot of complexity on the
411 // runtime side which not all would support.
412 std::pair<SDValue, SDValue> Res =
413 spillIncomingStatepointValue(Incoming, Chain, Builder);
414 Ops.push_back(Res.first);
415 Chain = Res.second;
416 }
417
418 Builder.DAG.setRoot(Chain);
419 }
420
421 /// Lower deopt state and gc pointer arguments of the statepoint. The actual
422 /// lowering is described in lowerIncomingStatepointValue. This function is
423 /// responsible for lowering everything in the right position and playing some
424 /// tricks to avoid redundant stack manipulation where possible. On
425 /// completion, 'Ops' will contain ready to use operands for machine code
426 /// statepoint. The chain nodes will have already been created and the DAG root
427 /// will be set to the last value spilled (if any were).
lowerStatepointMetaArgs(SmallVectorImpl<SDValue> & Ops,ImmutableStatepoint StatepointSite,SelectionDAGBuilder & Builder)428 static void lowerStatepointMetaArgs(SmallVectorImpl<SDValue> &Ops,
429 ImmutableStatepoint StatepointSite,
430 SelectionDAGBuilder &Builder) {
431
432 // Lower the deopt and gc arguments for this statepoint. Layout will
433 // be: deopt argument length, deopt arguments.., gc arguments...
434
435 SmallVector<const Value *, 64> Bases, Ptrs, Relocations;
436 getIncomingStatepointGCValues(Bases, Ptrs, Relocations,
437 StatepointSite, Builder);
438
439 #ifndef NDEBUG
440 // Check that each of the gc pointer and bases we've gotten out of the
441 // safepoint is something the strategy thinks might be a pointer into the GC
442 // heap. This is basically just here to help catch errors during statepoint
443 // insertion. TODO: This should actually be in the Verifier, but we can't get
444 // to the GCStrategy from there (yet).
445 GCStrategy &S = Builder.GFI->getStrategy();
446 for (const Value *V : Bases) {
447 auto Opt = S.isGCManagedPointer(V);
448 if (Opt.hasValue()) {
449 assert(Opt.getValue() &&
450 "non gc managed base pointer found in statepoint");
451 }
452 }
453 for (const Value *V : Ptrs) {
454 auto Opt = S.isGCManagedPointer(V);
455 if (Opt.hasValue()) {
456 assert(Opt.getValue() &&
457 "non gc managed derived pointer found in statepoint");
458 }
459 }
460 for (const Value *V : Relocations) {
461 auto Opt = S.isGCManagedPointer(V);
462 if (Opt.hasValue()) {
463 assert(Opt.getValue() && "non gc managed pointer relocated");
464 }
465 }
466 #endif
467
468
469
470 // Before we actually start lowering (and allocating spill slots for values),
471 // reserve any stack slots which we judge to be profitable to reuse for a
472 // particular value. This is purely an optimization over the code below and
473 // doesn't change semantics at all. It is important for performance that we
474 // reserve slots for both deopt and gc values before lowering either.
475 for (auto I = StatepointSite.vm_state_begin() + 1,
476 E = StatepointSite.vm_state_end();
477 I != E; ++I) {
478 Value *V = *I;
479 SDValue Incoming = Builder.getValue(V);
480 reservePreviousStackSlotForValue(Incoming, Builder);
481 }
482 for (unsigned i = 0; i < Bases.size() * 2; ++i) {
483 // Even elements will contain base, odd elements - derived ptr
484 const Value *V = i % 2 ? Bases[i / 2] : Ptrs[i / 2];
485 SDValue Incoming = Builder.getValue(V);
486 reservePreviousStackSlotForValue(Incoming, Builder);
487 }
488
489 // First, prefix the list with the number of unique values to be
490 // lowered. Note that this is the number of *Values* not the
491 // number of SDValues required to lower them.
492 const int NumVMSArgs = StatepointSite.numTotalVMSArgs();
493 Ops.push_back(
494 Builder.DAG.getTargetConstant(StackMaps::ConstantOp, MVT::i64));
495 Ops.push_back(Builder.DAG.getTargetConstant(NumVMSArgs, MVT::i64));
496
497 assert(NumVMSArgs + 1 == std::distance(StatepointSite.vm_state_begin(),
498 StatepointSite.vm_state_end()));
499
500 // The vm state arguments are lowered in an opaque manner. We do
501 // not know what type of values are contained within. We skip the
502 // first one since that happens to be the total number we lowered
503 // explicitly just above. We could have left it in the loop and
504 // not done it explicitly, but it's far easier to understand this
505 // way.
506 for (auto I = StatepointSite.vm_state_begin() + 1,
507 E = StatepointSite.vm_state_end();
508 I != E; ++I) {
509 const Value *V = *I;
510 SDValue Incoming = Builder.getValue(V);
511 lowerIncomingStatepointValue(Incoming, Ops, Builder);
512 }
513
514 // Finally, go ahead and lower all the gc arguments. There's no prefixed
515 // length for this one. After lowering, we'll have the base and pointer
516 // arrays interwoven with each (lowered) base pointer immediately followed by
517 // it's (lowered) derived pointer. i.e
518 // (base[0], ptr[0], base[1], ptr[1], ...)
519 for (unsigned i = 0; i < Bases.size() * 2; ++i) {
520 // Even elements will contain base, odd elements - derived ptr
521 const Value *V = i % 2 ? Bases[i / 2] : Ptrs[i / 2];
522 SDValue Incoming = Builder.getValue(V);
523 lowerIncomingStatepointValue(Incoming, Ops, Builder);
524 }
525
526 // If there are any explicit spill slots passed to the statepoint, record
527 // them, but otherwise do not do anything special. These are user provided
528 // allocas and give control over placement to the consumer. In this case,
529 // it is the contents of the slot which may get updated, not the pointer to
530 // the alloca
531 for (Value *V : StatepointSite.gc_args()) {
532 SDValue Incoming = Builder.getValue(V);
533 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Incoming)) {
534 // This handles allocas as arguments to the statepoint
535 Ops.push_back(Builder.DAG.getTargetFrameIndex(FI->getIndex(),
536 Incoming.getValueType()));
537
538 }
539 }
540 }
541
visitStatepoint(const CallInst & CI)542 void SelectionDAGBuilder::visitStatepoint(const CallInst &CI) {
543 // Check some preconditions for sanity
544 assert(isStatepoint(&CI) &&
545 "function called must be the statepoint function");
546
547 LowerStatepoint(ImmutableStatepoint(&CI));
548 }
549
550 void
LowerStatepoint(ImmutableStatepoint ISP,MachineBasicBlock * LandingPad)551 SelectionDAGBuilder::LowerStatepoint(ImmutableStatepoint ISP,
552 MachineBasicBlock *LandingPad/*=nullptr*/) {
553 // The basic scheme here is that information about both the original call and
554 // the safepoint is encoded in the CallInst. We create a temporary call and
555 // lower it, then reverse engineer the calling sequence.
556
557 NumOfStatepoints++;
558 // Clear state
559 StatepointLowering.startNewStatepoint(*this);
560
561 ImmutableCallSite CS(ISP.getCallSite());
562
563 #ifndef NDEBUG
564 // Consistency check
565 for (const User *U : CS->users()) {
566 const CallInst *Call = cast<CallInst>(U);
567 if (isGCRelocate(Call))
568 StatepointLowering.scheduleRelocCall(*Call);
569 }
570 #endif
571
572 #ifndef NDEBUG
573 // If this is a malformed statepoint, report it early to simplify debugging.
574 // This should catch any IR level mistake that's made when constructing or
575 // transforming statepoints.
576 ISP.verify();
577
578 // Check that the associated GCStrategy expects to encounter statepoints.
579 // TODO: This if should become an assert. For now, we allow the GCStrategy
580 // to be optional for backwards compatibility. This will only last a short
581 // period (i.e. a couple of weeks).
582 assert(GFI->getStrategy().useStatepoints() &&
583 "GCStrategy does not expect to encounter statepoints");
584 #endif
585
586 // Lower statepoint vmstate and gcstate arguments
587 SmallVector<SDValue, 10> LoweredArgs;
588 lowerStatepointMetaArgs(LoweredArgs, ISP, *this);
589
590 // Get call node, we will replace it later with statepoint
591 SDNode *CallNode = lowerCallFromStatepoint(ISP, LandingPad, *this);
592
593 // Construct the actual STATEPOINT node with all the appropriate arguments
594 // and return values.
595
596 // TODO: Currently, all of these operands are being marked as read/write in
597 // PrologEpilougeInserter.cpp, we should special case the VMState arguments
598 // and flags to be read-only.
599 SmallVector<SDValue, 40> Ops;
600
601 // Calculate and push starting position of vmstate arguments
602 // Call Node: Chain, Target, {Args}, RegMask, [Glue]
603 SDValue Glue;
604 if (CallNode->getGluedNode()) {
605 // Glue is always last operand
606 Glue = CallNode->getOperand(CallNode->getNumOperands() - 1);
607 }
608 // Get number of arguments incoming directly into call node
609 unsigned NumCallRegArgs =
610 CallNode->getNumOperands() - (Glue.getNode() ? 4 : 3);
611 Ops.push_back(DAG.getTargetConstant(NumCallRegArgs, MVT::i32));
612
613 // Add call target
614 SDValue CallTarget = SDValue(CallNode->getOperand(1).getNode(), 0);
615 Ops.push_back(CallTarget);
616
617 // Add call arguments
618 // Get position of register mask in the call
619 SDNode::op_iterator RegMaskIt;
620 if (Glue.getNode())
621 RegMaskIt = CallNode->op_end() - 2;
622 else
623 RegMaskIt = CallNode->op_end() - 1;
624 Ops.insert(Ops.end(), CallNode->op_begin() + 2, RegMaskIt);
625
626 // Add a leading constant argument with the Flags and the calling convention
627 // masked together
628 CallingConv::ID CallConv = CS.getCallingConv();
629 int Flags = cast<ConstantInt>(CS.getArgument(2))->getZExtValue();
630 assert(Flags == 0 && "not expected to be used");
631 Ops.push_back(DAG.getTargetConstant(StackMaps::ConstantOp, MVT::i64));
632 Ops.push_back(
633 DAG.getTargetConstant(Flags | ((unsigned)CallConv << 1), MVT::i64));
634
635 // Insert all vmstate and gcstate arguments
636 Ops.insert(Ops.end(), LoweredArgs.begin(), LoweredArgs.end());
637
638 // Add register mask from call node
639 Ops.push_back(*RegMaskIt);
640
641 // Add chain
642 Ops.push_back(CallNode->getOperand(0));
643
644 // Same for the glue, but we add it only if original call had it
645 if (Glue.getNode())
646 Ops.push_back(Glue);
647
648 // Compute return values. Provide a glue output since we consume one as
649 // input. This allows someone else to chain off us as needed.
650 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
651
652 SDNode *StatepointMCNode = DAG.getMachineNode(TargetOpcode::STATEPOINT,
653 getCurSDLoc(), NodeTys, Ops);
654
655 // Replace original call
656 DAG.ReplaceAllUsesWith(CallNode, StatepointMCNode); // This may update Root
657 // Remove originall call node
658 DAG.DeleteNode(CallNode);
659
660 // DON'T set the root - under the assumption that it's already set past the
661 // inserted node we created.
662
663 // TODO: A better future implementation would be to emit a single variable
664 // argument, variable return value STATEPOINT node here and then hookup the
665 // return value of each gc.relocate to the respective output of the
666 // previously emitted STATEPOINT value. Unfortunately, this doesn't appear
667 // to actually be possible today.
668 }
669
visitGCResult(const CallInst & CI)670 void SelectionDAGBuilder::visitGCResult(const CallInst &CI) {
671 // The result value of the gc_result is simply the result of the actual
672 // call. We've already emitted this, so just grab the value.
673 Instruction *I = cast<Instruction>(CI.getArgOperand(0));
674 assert(isStatepoint(I) &&
675 "first argument must be a statepoint token");
676
677 if (isa<InvokeInst>(I)) {
678 // For invokes we should have stored call result in a virtual register.
679 // We can not use default getValue() functionality to copy value from this
680 // register because statepoint and actuall call return types can be
681 // different, and getValue() will use CopyFromReg of the wrong type,
682 // which is always i32 in our case.
683 PointerType *CalleeType = cast<PointerType>(
684 ImmutableStatepoint(I).actualCallee()->getType());
685 Type *RetTy = cast<FunctionType>(
686 CalleeType->getElementType())->getReturnType();
687 SDValue CopyFromReg = getCopyFromRegs(I, RetTy);
688
689 assert(CopyFromReg.getNode());
690 setValue(&CI, CopyFromReg);
691 }
692 else {
693 setValue(&CI, getValue(I));
694 }
695 }
696
visitGCRelocate(const CallInst & CI)697 void SelectionDAGBuilder::visitGCRelocate(const CallInst &CI) {
698 #ifndef NDEBUG
699 // Consistency check
700 StatepointLowering.relocCallVisited(CI);
701 #endif
702
703 GCRelocateOperands relocateOpers(&CI);
704 SDValue SD = getValue(relocateOpers.derivedPtr());
705
706 if (isa<ConstantSDNode>(SD) || isa<FrameIndexSDNode>(SD)) {
707 // We didn't need to spill these special cases (constants and allocas).
708 // See the handling in spillIncomingValueForStatepoint for detail.
709 setValue(&CI, SD);
710 return;
711 }
712
713 SDValue Loc = StatepointLowering.getRelocLocation(SD);
714 // Emit new load if we did not emit it before
715 if (!Loc.getNode()) {
716 SDValue SpillSlot = StatepointLowering.getLocation(SD);
717 int FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex();
718
719 // Be conservative: flush all pending loads
720 // TODO: Probably we can be less restrictive on this,
721 // it may allow more scheduling opprtunities
722 SDValue Chain = getRoot();
723
724 Loc = DAG.getLoad(SpillSlot.getValueType(), getCurSDLoc(), Chain,
725 SpillSlot, MachinePointerInfo::getFixedStack(FI), false,
726 false, false, 0);
727
728 StatepointLowering.setRelocLocation(SD, Loc);
729
730 // Again, be conservative, don't emit pending loads
731 DAG.setRoot(Loc.getValue(1));
732 }
733
734 assert(Loc.getNode());
735 setValue(&CI, Loc);
736 }
737