1 //===-- TwoAddressInstructionPass.cpp - Two-Address instruction pass ------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the TwoAddress instruction pass which is used
11 // by most register allocators. Two-Address instructions are rewritten
12 // from:
13 //
14 // A = B op C
15 //
16 // to:
17 //
18 // A = B
19 // A op= C
20 //
21 // Note that if a register allocator chooses to use this pass, that it
22 // has to be capable of handling the non-SSA nature of these rewritten
23 // virtual registers.
24 //
25 // It is also worth noting that the duplicate operand of the two
26 // address instruction is removed.
27 //
28 //===----------------------------------------------------------------------===//
29
30 #include "llvm/CodeGen/Passes.h"
31 #include "llvm/ADT/BitVector.h"
32 #include "llvm/ADT/DenseMap.h"
33 #include "llvm/ADT/STLExtras.h"
34 #include "llvm/ADT/SmallSet.h"
35 #include "llvm/ADT/Statistic.h"
36 #include "llvm/Analysis/AliasAnalysis.h"
37 #include "llvm/CodeGen/LiveIntervalAnalysis.h"
38 #include "llvm/CodeGen/LiveVariables.h"
39 #include "llvm/CodeGen/MachineFunctionPass.h"
40 #include "llvm/CodeGen/MachineInstr.h"
41 #include "llvm/CodeGen/MachineInstrBuilder.h"
42 #include "llvm/CodeGen/MachineRegisterInfo.h"
43 #include "llvm/IR/Function.h"
44 #include "llvm/MC/MCInstrItineraries.h"
45 #include "llvm/Support/CommandLine.h"
46 #include "llvm/Support/Debug.h"
47 #include "llvm/Support/ErrorHandling.h"
48 #include "llvm/Support/raw_ostream.h"
49 #include "llvm/Target/TargetInstrInfo.h"
50 #include "llvm/Target/TargetMachine.h"
51 #include "llvm/Target/TargetRegisterInfo.h"
52 #include "llvm/Target/TargetSubtargetInfo.h"
53 using namespace llvm;
54
55 #define DEBUG_TYPE "twoaddrinstr"
56
57 STATISTIC(NumTwoAddressInstrs, "Number of two-address instructions");
58 STATISTIC(NumCommuted , "Number of instructions commuted to coalesce");
59 STATISTIC(NumAggrCommuted , "Number of instructions aggressively commuted");
60 STATISTIC(NumConvertedTo3Addr, "Number of instructions promoted to 3-address");
61 STATISTIC(Num3AddrSunk, "Number of 3-address instructions sunk");
62 STATISTIC(NumReSchedUps, "Number of instructions re-scheduled up");
63 STATISTIC(NumReSchedDowns, "Number of instructions re-scheduled down");
64
65 // Temporary flag to disable rescheduling.
66 static cl::opt<bool>
67 EnableRescheduling("twoaddr-reschedule",
68 cl::desc("Coalesce copies by rescheduling (default=true)"),
69 cl::init(true), cl::Hidden);
70
71 namespace {
72 class TwoAddressInstructionPass : public MachineFunctionPass {
73 MachineFunction *MF;
74 const TargetInstrInfo *TII;
75 const TargetRegisterInfo *TRI;
76 const InstrItineraryData *InstrItins;
77 MachineRegisterInfo *MRI;
78 LiveVariables *LV;
79 LiveIntervals *LIS;
80 AliasAnalysis *AA;
81 CodeGenOpt::Level OptLevel;
82
83 // The current basic block being processed.
84 MachineBasicBlock *MBB;
85
86 // DistanceMap - Keep track the distance of a MI from the start of the
87 // current basic block.
88 DenseMap<MachineInstr*, unsigned> DistanceMap;
89
90 // Set of already processed instructions in the current block.
91 SmallPtrSet<MachineInstr*, 8> Processed;
92
93 // SrcRegMap - A map from virtual registers to physical registers which are
94 // likely targets to be coalesced to due to copies from physical registers to
95 // virtual registers. e.g. v1024 = move r0.
96 DenseMap<unsigned, unsigned> SrcRegMap;
97
98 // DstRegMap - A map from virtual registers to physical registers which are
99 // likely targets to be coalesced to due to copies to physical registers from
100 // virtual registers. e.g. r1 = move v1024.
101 DenseMap<unsigned, unsigned> DstRegMap;
102
103 bool sink3AddrInstruction(MachineInstr *MI, unsigned Reg,
104 MachineBasicBlock::iterator OldPos);
105
106 bool isRevCopyChain(unsigned FromReg, unsigned ToReg, int Maxlen);
107
108 bool noUseAfterLastDef(unsigned Reg, unsigned Dist, unsigned &LastDef);
109
110 bool isProfitableToCommute(unsigned regA, unsigned regB, unsigned regC,
111 MachineInstr *MI, unsigned Dist);
112
113 bool commuteInstruction(MachineBasicBlock::iterator &mi,
114 unsigned RegB, unsigned RegC, unsigned Dist);
115
116 bool isProfitableToConv3Addr(unsigned RegA, unsigned RegB);
117
118 bool convertInstTo3Addr(MachineBasicBlock::iterator &mi,
119 MachineBasicBlock::iterator &nmi,
120 unsigned RegA, unsigned RegB, unsigned Dist);
121
122 bool isDefTooClose(unsigned Reg, unsigned Dist, MachineInstr *MI);
123
124 bool rescheduleMIBelowKill(MachineBasicBlock::iterator &mi,
125 MachineBasicBlock::iterator &nmi,
126 unsigned Reg);
127 bool rescheduleKillAboveMI(MachineBasicBlock::iterator &mi,
128 MachineBasicBlock::iterator &nmi,
129 unsigned Reg);
130
131 bool tryInstructionTransform(MachineBasicBlock::iterator &mi,
132 MachineBasicBlock::iterator &nmi,
133 unsigned SrcIdx, unsigned DstIdx,
134 unsigned Dist, bool shouldOnlyCommute);
135
136 void scanUses(unsigned DstReg);
137
138 void processCopy(MachineInstr *MI);
139
140 typedef SmallVector<std::pair<unsigned, unsigned>, 4> TiedPairList;
141 typedef SmallDenseMap<unsigned, TiedPairList> TiedOperandMap;
142 bool collectTiedOperands(MachineInstr *MI, TiedOperandMap&);
143 void processTiedPairs(MachineInstr *MI, TiedPairList&, unsigned &Dist);
144 void eliminateRegSequence(MachineBasicBlock::iterator&);
145
146 public:
147 static char ID; // Pass identification, replacement for typeid
TwoAddressInstructionPass()148 TwoAddressInstructionPass() : MachineFunctionPass(ID) {
149 initializeTwoAddressInstructionPassPass(*PassRegistry::getPassRegistry());
150 }
151
getAnalysisUsage(AnalysisUsage & AU) const152 void getAnalysisUsage(AnalysisUsage &AU) const override {
153 AU.setPreservesCFG();
154 AU.addRequired<AliasAnalysis>();
155 AU.addPreserved<LiveVariables>();
156 AU.addPreserved<SlotIndexes>();
157 AU.addPreserved<LiveIntervals>();
158 AU.addPreservedID(MachineLoopInfoID);
159 AU.addPreservedID(MachineDominatorsID);
160 MachineFunctionPass::getAnalysisUsage(AU);
161 }
162
163 /// runOnMachineFunction - Pass entry point.
164 bool runOnMachineFunction(MachineFunction&) override;
165 };
166 } // end anonymous namespace
167
168 char TwoAddressInstructionPass::ID = 0;
169 INITIALIZE_PASS_BEGIN(TwoAddressInstructionPass, "twoaddressinstruction",
170 "Two-Address instruction pass", false, false)
171 INITIALIZE_AG_DEPENDENCY(AliasAnalysis)
172 INITIALIZE_PASS_END(TwoAddressInstructionPass, "twoaddressinstruction",
173 "Two-Address instruction pass", false, false)
174
175 char &llvm::TwoAddressInstructionPassID = TwoAddressInstructionPass::ID;
176
177 static bool isPlainlyKilled(MachineInstr *MI, unsigned Reg, LiveIntervals *LIS);
178
179 /// sink3AddrInstruction - A two-address instruction has been converted to a
180 /// three-address instruction to avoid clobbering a register. Try to sink it
181 /// past the instruction that would kill the above mentioned register to reduce
182 /// register pressure.
183 bool TwoAddressInstructionPass::
sink3AddrInstruction(MachineInstr * MI,unsigned SavedReg,MachineBasicBlock::iterator OldPos)184 sink3AddrInstruction(MachineInstr *MI, unsigned SavedReg,
185 MachineBasicBlock::iterator OldPos) {
186 // FIXME: Shouldn't we be trying to do this before we three-addressify the
187 // instruction? After this transformation is done, we no longer need
188 // the instruction to be in three-address form.
189
190 // Check if it's safe to move this instruction.
191 bool SeenStore = true; // Be conservative.
192 if (!MI->isSafeToMove(TII, AA, SeenStore))
193 return false;
194
195 unsigned DefReg = 0;
196 SmallSet<unsigned, 4> UseRegs;
197
198 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
199 const MachineOperand &MO = MI->getOperand(i);
200 if (!MO.isReg())
201 continue;
202 unsigned MOReg = MO.getReg();
203 if (!MOReg)
204 continue;
205 if (MO.isUse() && MOReg != SavedReg)
206 UseRegs.insert(MO.getReg());
207 if (!MO.isDef())
208 continue;
209 if (MO.isImplicit())
210 // Don't try to move it if it implicitly defines a register.
211 return false;
212 if (DefReg)
213 // For now, don't move any instructions that define multiple registers.
214 return false;
215 DefReg = MO.getReg();
216 }
217
218 // Find the instruction that kills SavedReg.
219 MachineInstr *KillMI = nullptr;
220 if (LIS) {
221 LiveInterval &LI = LIS->getInterval(SavedReg);
222 assert(LI.end() != LI.begin() &&
223 "Reg should not have empty live interval.");
224
225 SlotIndex MBBEndIdx = LIS->getMBBEndIdx(MBB).getPrevSlot();
226 LiveInterval::const_iterator I = LI.find(MBBEndIdx);
227 if (I != LI.end() && I->start < MBBEndIdx)
228 return false;
229
230 --I;
231 KillMI = LIS->getInstructionFromIndex(I->end);
232 }
233 if (!KillMI) {
234 for (MachineRegisterInfo::use_nodbg_iterator
235 UI = MRI->use_nodbg_begin(SavedReg),
236 UE = MRI->use_nodbg_end(); UI != UE; ++UI) {
237 MachineOperand &UseMO = *UI;
238 if (!UseMO.isKill())
239 continue;
240 KillMI = UseMO.getParent();
241 break;
242 }
243 }
244
245 // If we find the instruction that kills SavedReg, and it is in an
246 // appropriate location, we can try to sink the current instruction
247 // past it.
248 if (!KillMI || KillMI->getParent() != MBB || KillMI == MI ||
249 KillMI == OldPos || KillMI->isTerminator())
250 return false;
251
252 // If any of the definitions are used by another instruction between the
253 // position and the kill use, then it's not safe to sink it.
254 //
255 // FIXME: This can be sped up if there is an easy way to query whether an
256 // instruction is before or after another instruction. Then we can use
257 // MachineRegisterInfo def / use instead.
258 MachineOperand *KillMO = nullptr;
259 MachineBasicBlock::iterator KillPos = KillMI;
260 ++KillPos;
261
262 unsigned NumVisited = 0;
263 for (MachineBasicBlock::iterator I = std::next(OldPos); I != KillPos; ++I) {
264 MachineInstr *OtherMI = I;
265 // DBG_VALUE cannot be counted against the limit.
266 if (OtherMI->isDebugValue())
267 continue;
268 if (NumVisited > 30) // FIXME: Arbitrary limit to reduce compile time cost.
269 return false;
270 ++NumVisited;
271 for (unsigned i = 0, e = OtherMI->getNumOperands(); i != e; ++i) {
272 MachineOperand &MO = OtherMI->getOperand(i);
273 if (!MO.isReg())
274 continue;
275 unsigned MOReg = MO.getReg();
276 if (!MOReg)
277 continue;
278 if (DefReg == MOReg)
279 return false;
280
281 if (MO.isKill() || (LIS && isPlainlyKilled(OtherMI, MOReg, LIS))) {
282 if (OtherMI == KillMI && MOReg == SavedReg)
283 // Save the operand that kills the register. We want to unset the kill
284 // marker if we can sink MI past it.
285 KillMO = &MO;
286 else if (UseRegs.count(MOReg))
287 // One of the uses is killed before the destination.
288 return false;
289 }
290 }
291 }
292 assert(KillMO && "Didn't find kill");
293
294 if (!LIS) {
295 // Update kill and LV information.
296 KillMO->setIsKill(false);
297 KillMO = MI->findRegisterUseOperand(SavedReg, false, TRI);
298 KillMO->setIsKill(true);
299
300 if (LV)
301 LV->replaceKillInstruction(SavedReg, KillMI, MI);
302 }
303
304 // Move instruction to its destination.
305 MBB->remove(MI);
306 MBB->insert(KillPos, MI);
307
308 if (LIS)
309 LIS->handleMove(MI);
310
311 ++Num3AddrSunk;
312 return true;
313 }
314
315 /// getSingleDef -- return the MachineInstr* if it is the single def of the Reg
316 /// in current BB.
getSingleDef(unsigned Reg,MachineBasicBlock * BB,const MachineRegisterInfo * MRI)317 static MachineInstr *getSingleDef(unsigned Reg, MachineBasicBlock *BB,
318 const MachineRegisterInfo *MRI) {
319 MachineInstr *Ret = nullptr;
320 for (MachineInstr &DefMI : MRI->def_instructions(Reg)) {
321 if (DefMI.getParent() != BB || DefMI.isDebugValue())
322 continue;
323 if (!Ret)
324 Ret = &DefMI;
325 else if (Ret != &DefMI)
326 return nullptr;
327 }
328 return Ret;
329 }
330
331 /// Check if there is a reversed copy chain from FromReg to ToReg:
332 /// %Tmp1 = copy %Tmp2;
333 /// %FromReg = copy %Tmp1;
334 /// %ToReg = add %FromReg ...
335 /// %Tmp2 = copy %ToReg;
336 /// MaxLen specifies the maximum length of the copy chain the func
337 /// can walk through.
isRevCopyChain(unsigned FromReg,unsigned ToReg,int Maxlen)338 bool TwoAddressInstructionPass::isRevCopyChain(unsigned FromReg, unsigned ToReg,
339 int Maxlen) {
340 unsigned TmpReg = FromReg;
341 for (int i = 0; i < Maxlen; i++) {
342 MachineInstr *Def = getSingleDef(TmpReg, MBB, MRI);
343 if (!Def || !Def->isCopy())
344 return false;
345
346 TmpReg = Def->getOperand(1).getReg();
347
348 if (TmpReg == ToReg)
349 return true;
350 }
351 return false;
352 }
353
354 /// noUseAfterLastDef - Return true if there are no intervening uses between the
355 /// last instruction in the MBB that defines the specified register and the
356 /// two-address instruction which is being processed. It also returns the last
357 /// def location by reference
noUseAfterLastDef(unsigned Reg,unsigned Dist,unsigned & LastDef)358 bool TwoAddressInstructionPass::noUseAfterLastDef(unsigned Reg, unsigned Dist,
359 unsigned &LastDef) {
360 LastDef = 0;
361 unsigned LastUse = Dist;
362 for (MachineOperand &MO : MRI->reg_operands(Reg)) {
363 MachineInstr *MI = MO.getParent();
364 if (MI->getParent() != MBB || MI->isDebugValue())
365 continue;
366 DenseMap<MachineInstr*, unsigned>::iterator DI = DistanceMap.find(MI);
367 if (DI == DistanceMap.end())
368 continue;
369 if (MO.isUse() && DI->second < LastUse)
370 LastUse = DI->second;
371 if (MO.isDef() && DI->second > LastDef)
372 LastDef = DI->second;
373 }
374
375 return !(LastUse > LastDef && LastUse < Dist);
376 }
377
378 /// isCopyToReg - Return true if the specified MI is a copy instruction or
379 /// a extract_subreg instruction. It also returns the source and destination
380 /// registers and whether they are physical registers by reference.
isCopyToReg(MachineInstr & MI,const TargetInstrInfo * TII,unsigned & SrcReg,unsigned & DstReg,bool & IsSrcPhys,bool & IsDstPhys)381 static bool isCopyToReg(MachineInstr &MI, const TargetInstrInfo *TII,
382 unsigned &SrcReg, unsigned &DstReg,
383 bool &IsSrcPhys, bool &IsDstPhys) {
384 SrcReg = 0;
385 DstReg = 0;
386 if (MI.isCopy()) {
387 DstReg = MI.getOperand(0).getReg();
388 SrcReg = MI.getOperand(1).getReg();
389 } else if (MI.isInsertSubreg() || MI.isSubregToReg()) {
390 DstReg = MI.getOperand(0).getReg();
391 SrcReg = MI.getOperand(2).getReg();
392 } else
393 return false;
394
395 IsSrcPhys = TargetRegisterInfo::isPhysicalRegister(SrcReg);
396 IsDstPhys = TargetRegisterInfo::isPhysicalRegister(DstReg);
397 return true;
398 }
399
400 /// isPLainlyKilled - Test if the given register value, which is used by the
401 // given instruction, is killed by the given instruction.
isPlainlyKilled(MachineInstr * MI,unsigned Reg,LiveIntervals * LIS)402 static bool isPlainlyKilled(MachineInstr *MI, unsigned Reg,
403 LiveIntervals *LIS) {
404 if (LIS && TargetRegisterInfo::isVirtualRegister(Reg) &&
405 !LIS->isNotInMIMap(MI)) {
406 // FIXME: Sometimes tryInstructionTransform() will add instructions and
407 // test whether they can be folded before keeping them. In this case it
408 // sets a kill before recursively calling tryInstructionTransform() again.
409 // If there is no interval available, we assume that this instruction is
410 // one of those. A kill flag is manually inserted on the operand so the
411 // check below will handle it.
412 LiveInterval &LI = LIS->getInterval(Reg);
413 // This is to match the kill flag version where undefs don't have kill
414 // flags.
415 if (!LI.hasAtLeastOneValue())
416 return false;
417
418 SlotIndex useIdx = LIS->getInstructionIndex(MI);
419 LiveInterval::const_iterator I = LI.find(useIdx);
420 assert(I != LI.end() && "Reg must be live-in to use.");
421 return !I->end.isBlock() && SlotIndex::isSameInstr(I->end, useIdx);
422 }
423
424 return MI->killsRegister(Reg);
425 }
426
427 /// isKilled - Test if the given register value, which is used by the given
428 /// instruction, is killed by the given instruction. This looks through
429 /// coalescable copies to see if the original value is potentially not killed.
430 ///
431 /// For example, in this code:
432 ///
433 /// %reg1034 = copy %reg1024
434 /// %reg1035 = copy %reg1025<kill>
435 /// %reg1036 = add %reg1034<kill>, %reg1035<kill>
436 ///
437 /// %reg1034 is not considered to be killed, since it is copied from a
438 /// register which is not killed. Treating it as not killed lets the
439 /// normal heuristics commute the (two-address) add, which lets
440 /// coalescing eliminate the extra copy.
441 ///
442 /// If allowFalsePositives is true then likely kills are treated as kills even
443 /// if it can't be proven that they are kills.
isKilled(MachineInstr & MI,unsigned Reg,const MachineRegisterInfo * MRI,const TargetInstrInfo * TII,LiveIntervals * LIS,bool allowFalsePositives)444 static bool isKilled(MachineInstr &MI, unsigned Reg,
445 const MachineRegisterInfo *MRI,
446 const TargetInstrInfo *TII,
447 LiveIntervals *LIS,
448 bool allowFalsePositives) {
449 MachineInstr *DefMI = &MI;
450 for (;;) {
451 // All uses of physical registers are likely to be kills.
452 if (TargetRegisterInfo::isPhysicalRegister(Reg) &&
453 (allowFalsePositives || MRI->hasOneUse(Reg)))
454 return true;
455 if (!isPlainlyKilled(DefMI, Reg, LIS))
456 return false;
457 if (TargetRegisterInfo::isPhysicalRegister(Reg))
458 return true;
459 MachineRegisterInfo::def_iterator Begin = MRI->def_begin(Reg);
460 // If there are multiple defs, we can't do a simple analysis, so just
461 // go with what the kill flag says.
462 if (std::next(Begin) != MRI->def_end())
463 return true;
464 DefMI = Begin->getParent();
465 bool IsSrcPhys, IsDstPhys;
466 unsigned SrcReg, DstReg;
467 // If the def is something other than a copy, then it isn't going to
468 // be coalesced, so follow the kill flag.
469 if (!isCopyToReg(*DefMI, TII, SrcReg, DstReg, IsSrcPhys, IsDstPhys))
470 return true;
471 Reg = SrcReg;
472 }
473 }
474
475 /// isTwoAddrUse - Return true if the specified MI uses the specified register
476 /// as a two-address use. If so, return the destination register by reference.
isTwoAddrUse(MachineInstr & MI,unsigned Reg,unsigned & DstReg)477 static bool isTwoAddrUse(MachineInstr &MI, unsigned Reg, unsigned &DstReg) {
478 for (unsigned i = 0, NumOps = MI.getNumOperands(); i != NumOps; ++i) {
479 const MachineOperand &MO = MI.getOperand(i);
480 if (!MO.isReg() || !MO.isUse() || MO.getReg() != Reg)
481 continue;
482 unsigned ti;
483 if (MI.isRegTiedToDefOperand(i, &ti)) {
484 DstReg = MI.getOperand(ti).getReg();
485 return true;
486 }
487 }
488 return false;
489 }
490
491 /// findOnlyInterestingUse - Given a register, if has a single in-basic block
492 /// use, return the use instruction if it's a copy or a two-address use.
493 static
findOnlyInterestingUse(unsigned Reg,MachineBasicBlock * MBB,MachineRegisterInfo * MRI,const TargetInstrInfo * TII,bool & IsCopy,unsigned & DstReg,bool & IsDstPhys)494 MachineInstr *findOnlyInterestingUse(unsigned Reg, MachineBasicBlock *MBB,
495 MachineRegisterInfo *MRI,
496 const TargetInstrInfo *TII,
497 bool &IsCopy,
498 unsigned &DstReg, bool &IsDstPhys) {
499 if (!MRI->hasOneNonDBGUse(Reg))
500 // None or more than one use.
501 return nullptr;
502 MachineInstr &UseMI = *MRI->use_instr_nodbg_begin(Reg);
503 if (UseMI.getParent() != MBB)
504 return nullptr;
505 unsigned SrcReg;
506 bool IsSrcPhys;
507 if (isCopyToReg(UseMI, TII, SrcReg, DstReg, IsSrcPhys, IsDstPhys)) {
508 IsCopy = true;
509 return &UseMI;
510 }
511 IsDstPhys = false;
512 if (isTwoAddrUse(UseMI, Reg, DstReg)) {
513 IsDstPhys = TargetRegisterInfo::isPhysicalRegister(DstReg);
514 return &UseMI;
515 }
516 return nullptr;
517 }
518
519 /// getMappedReg - Return the physical register the specified virtual register
520 /// might be mapped to.
521 static unsigned
getMappedReg(unsigned Reg,DenseMap<unsigned,unsigned> & RegMap)522 getMappedReg(unsigned Reg, DenseMap<unsigned, unsigned> &RegMap) {
523 while (TargetRegisterInfo::isVirtualRegister(Reg)) {
524 DenseMap<unsigned, unsigned>::iterator SI = RegMap.find(Reg);
525 if (SI == RegMap.end())
526 return 0;
527 Reg = SI->second;
528 }
529 if (TargetRegisterInfo::isPhysicalRegister(Reg))
530 return Reg;
531 return 0;
532 }
533
534 /// regsAreCompatible - Return true if the two registers are equal or aliased.
535 ///
536 static bool
regsAreCompatible(unsigned RegA,unsigned RegB,const TargetRegisterInfo * TRI)537 regsAreCompatible(unsigned RegA, unsigned RegB, const TargetRegisterInfo *TRI) {
538 if (RegA == RegB)
539 return true;
540 if (!RegA || !RegB)
541 return false;
542 return TRI->regsOverlap(RegA, RegB);
543 }
544
545
546 /// isProfitableToCommute - Return true if it's potentially profitable to commute
547 /// the two-address instruction that's being processed.
548 bool
549 TwoAddressInstructionPass::
isProfitableToCommute(unsigned regA,unsigned regB,unsigned regC,MachineInstr * MI,unsigned Dist)550 isProfitableToCommute(unsigned regA, unsigned regB, unsigned regC,
551 MachineInstr *MI, unsigned Dist) {
552 if (OptLevel == CodeGenOpt::None)
553 return false;
554
555 // Determine if it's profitable to commute this two address instruction. In
556 // general, we want no uses between this instruction and the definition of
557 // the two-address register.
558 // e.g.
559 // %reg1028<def> = EXTRACT_SUBREG %reg1027<kill>, 1
560 // %reg1029<def> = MOV8rr %reg1028
561 // %reg1029<def> = SHR8ri %reg1029, 7, %EFLAGS<imp-def,dead>
562 // insert => %reg1030<def> = MOV8rr %reg1028
563 // %reg1030<def> = ADD8rr %reg1028<kill>, %reg1029<kill>, %EFLAGS<imp-def,dead>
564 // In this case, it might not be possible to coalesce the second MOV8rr
565 // instruction if the first one is coalesced. So it would be profitable to
566 // commute it:
567 // %reg1028<def> = EXTRACT_SUBREG %reg1027<kill>, 1
568 // %reg1029<def> = MOV8rr %reg1028
569 // %reg1029<def> = SHR8ri %reg1029, 7, %EFLAGS<imp-def,dead>
570 // insert => %reg1030<def> = MOV8rr %reg1029
571 // %reg1030<def> = ADD8rr %reg1029<kill>, %reg1028<kill>, %EFLAGS<imp-def,dead>
572
573 if (!isPlainlyKilled(MI, regC, LIS))
574 return false;
575
576 // Ok, we have something like:
577 // %reg1030<def> = ADD8rr %reg1028<kill>, %reg1029<kill>, %EFLAGS<imp-def,dead>
578 // let's see if it's worth commuting it.
579
580 // Look for situations like this:
581 // %reg1024<def> = MOV r1
582 // %reg1025<def> = MOV r0
583 // %reg1026<def> = ADD %reg1024, %reg1025
584 // r0 = MOV %reg1026
585 // Commute the ADD to hopefully eliminate an otherwise unavoidable copy.
586 unsigned ToRegA = getMappedReg(regA, DstRegMap);
587 if (ToRegA) {
588 unsigned FromRegB = getMappedReg(regB, SrcRegMap);
589 unsigned FromRegC = getMappedReg(regC, SrcRegMap);
590 bool CompB = FromRegB && regsAreCompatible(FromRegB, ToRegA, TRI);
591 bool CompC = FromRegC && regsAreCompatible(FromRegC, ToRegA, TRI);
592
593 // Compute if any of the following are true:
594 // -RegB is not tied to a register and RegC is compatible with RegA.
595 // -RegB is tied to the wrong physical register, but RegC is.
596 // -RegB is tied to the wrong physical register, and RegC isn't tied.
597 if ((!FromRegB && CompC) || (FromRegB && !CompB && (!FromRegC || CompC)))
598 return true;
599 // Don't compute if any of the following are true:
600 // -RegC is not tied to a register and RegB is compatible with RegA.
601 // -RegC is tied to the wrong physical register, but RegB is.
602 // -RegC is tied to the wrong physical register, and RegB isn't tied.
603 if ((!FromRegC && CompB) || (FromRegC && !CompC && (!FromRegB || CompB)))
604 return false;
605 }
606
607 // If there is a use of regC between its last def (could be livein) and this
608 // instruction, then bail.
609 unsigned LastDefC = 0;
610 if (!noUseAfterLastDef(regC, Dist, LastDefC))
611 return false;
612
613 // If there is a use of regB between its last def (could be livein) and this
614 // instruction, then go ahead and make this transformation.
615 unsigned LastDefB = 0;
616 if (!noUseAfterLastDef(regB, Dist, LastDefB))
617 return true;
618
619 // Look for situation like this:
620 // %reg101 = MOV %reg100
621 // %reg102 = ...
622 // %reg103 = ADD %reg102, %reg101
623 // ... = %reg103 ...
624 // %reg100 = MOV %reg103
625 // If there is a reversed copy chain from reg101 to reg103, commute the ADD
626 // to eliminate an otherwise unavoidable copy.
627 // FIXME:
628 // We can extend the logic further: If an pair of operands in an insn has
629 // been merged, the insn could be regarded as a virtual copy, and the virtual
630 // copy could also be used to construct a copy chain.
631 // To more generally minimize register copies, ideally the logic of two addr
632 // instruction pass should be integrated with register allocation pass where
633 // interference graph is available.
634 if (isRevCopyChain(regC, regA, 3))
635 return true;
636
637 if (isRevCopyChain(regB, regA, 3))
638 return false;
639
640 // Since there are no intervening uses for both registers, then commute
641 // if the def of regC is closer. Its live interval is shorter.
642 return LastDefB && LastDefC && LastDefC > LastDefB;
643 }
644
645 /// commuteInstruction - Commute a two-address instruction and update the basic
646 /// block, distance map, and live variables if needed. Return true if it is
647 /// successful.
648 bool TwoAddressInstructionPass::
commuteInstruction(MachineBasicBlock::iterator & mi,unsigned RegB,unsigned RegC,unsigned Dist)649 commuteInstruction(MachineBasicBlock::iterator &mi,
650 unsigned RegB, unsigned RegC, unsigned Dist) {
651 MachineInstr *MI = mi;
652 DEBUG(dbgs() << "2addr: COMMUTING : " << *MI);
653 MachineInstr *NewMI = TII->commuteInstruction(MI);
654
655 if (NewMI == nullptr) {
656 DEBUG(dbgs() << "2addr: COMMUTING FAILED!\n");
657 return false;
658 }
659
660 DEBUG(dbgs() << "2addr: COMMUTED TO: " << *NewMI);
661 assert(NewMI == MI &&
662 "TargetInstrInfo::commuteInstruction() should not return a new "
663 "instruction unless it was requested.");
664
665 // Update source register map.
666 unsigned FromRegC = getMappedReg(RegC, SrcRegMap);
667 if (FromRegC) {
668 unsigned RegA = MI->getOperand(0).getReg();
669 SrcRegMap[RegA] = FromRegC;
670 }
671
672 return true;
673 }
674
675 /// isProfitableToConv3Addr - Return true if it is profitable to convert the
676 /// given 2-address instruction to a 3-address one.
677 bool
isProfitableToConv3Addr(unsigned RegA,unsigned RegB)678 TwoAddressInstructionPass::isProfitableToConv3Addr(unsigned RegA,unsigned RegB){
679 // Look for situations like this:
680 // %reg1024<def> = MOV r1
681 // %reg1025<def> = MOV r0
682 // %reg1026<def> = ADD %reg1024, %reg1025
683 // r2 = MOV %reg1026
684 // Turn ADD into a 3-address instruction to avoid a copy.
685 unsigned FromRegB = getMappedReg(RegB, SrcRegMap);
686 if (!FromRegB)
687 return false;
688 unsigned ToRegA = getMappedReg(RegA, DstRegMap);
689 return (ToRegA && !regsAreCompatible(FromRegB, ToRegA, TRI));
690 }
691
692 /// convertInstTo3Addr - Convert the specified two-address instruction into a
693 /// three address one. Return true if this transformation was successful.
694 bool
convertInstTo3Addr(MachineBasicBlock::iterator & mi,MachineBasicBlock::iterator & nmi,unsigned RegA,unsigned RegB,unsigned Dist)695 TwoAddressInstructionPass::convertInstTo3Addr(MachineBasicBlock::iterator &mi,
696 MachineBasicBlock::iterator &nmi,
697 unsigned RegA, unsigned RegB,
698 unsigned Dist) {
699 // FIXME: Why does convertToThreeAddress() need an iterator reference?
700 MachineFunction::iterator MFI = MBB;
701 MachineInstr *NewMI = TII->convertToThreeAddress(MFI, mi, LV);
702 assert(MBB == MFI && "convertToThreeAddress changed iterator reference");
703 if (!NewMI)
704 return false;
705
706 DEBUG(dbgs() << "2addr: CONVERTING 2-ADDR: " << *mi);
707 DEBUG(dbgs() << "2addr: TO 3-ADDR: " << *NewMI);
708 bool Sunk = false;
709
710 if (LIS)
711 LIS->ReplaceMachineInstrInMaps(mi, NewMI);
712
713 if (NewMI->findRegisterUseOperand(RegB, false, TRI))
714 // FIXME: Temporary workaround. If the new instruction doesn't
715 // uses RegB, convertToThreeAddress must have created more
716 // then one instruction.
717 Sunk = sink3AddrInstruction(NewMI, RegB, mi);
718
719 MBB->erase(mi); // Nuke the old inst.
720
721 if (!Sunk) {
722 DistanceMap.insert(std::make_pair(NewMI, Dist));
723 mi = NewMI;
724 nmi = std::next(mi);
725 }
726
727 // Update source and destination register maps.
728 SrcRegMap.erase(RegA);
729 DstRegMap.erase(RegB);
730 return true;
731 }
732
733 /// scanUses - Scan forward recursively for only uses, update maps if the use
734 /// is a copy or a two-address instruction.
735 void
scanUses(unsigned DstReg)736 TwoAddressInstructionPass::scanUses(unsigned DstReg) {
737 SmallVector<unsigned, 4> VirtRegPairs;
738 bool IsDstPhys;
739 bool IsCopy = false;
740 unsigned NewReg = 0;
741 unsigned Reg = DstReg;
742 while (MachineInstr *UseMI = findOnlyInterestingUse(Reg, MBB, MRI, TII,IsCopy,
743 NewReg, IsDstPhys)) {
744 if (IsCopy && !Processed.insert(UseMI).second)
745 break;
746
747 DenseMap<MachineInstr*, unsigned>::iterator DI = DistanceMap.find(UseMI);
748 if (DI != DistanceMap.end())
749 // Earlier in the same MBB.Reached via a back edge.
750 break;
751
752 if (IsDstPhys) {
753 VirtRegPairs.push_back(NewReg);
754 break;
755 }
756 bool isNew = SrcRegMap.insert(std::make_pair(NewReg, Reg)).second;
757 if (!isNew)
758 assert(SrcRegMap[NewReg] == Reg && "Can't map to two src registers!");
759 VirtRegPairs.push_back(NewReg);
760 Reg = NewReg;
761 }
762
763 if (!VirtRegPairs.empty()) {
764 unsigned ToReg = VirtRegPairs.back();
765 VirtRegPairs.pop_back();
766 while (!VirtRegPairs.empty()) {
767 unsigned FromReg = VirtRegPairs.back();
768 VirtRegPairs.pop_back();
769 bool isNew = DstRegMap.insert(std::make_pair(FromReg, ToReg)).second;
770 if (!isNew)
771 assert(DstRegMap[FromReg] == ToReg &&"Can't map to two dst registers!");
772 ToReg = FromReg;
773 }
774 bool isNew = DstRegMap.insert(std::make_pair(DstReg, ToReg)).second;
775 if (!isNew)
776 assert(DstRegMap[DstReg] == ToReg && "Can't map to two dst registers!");
777 }
778 }
779
780 /// processCopy - If the specified instruction is not yet processed, process it
781 /// if it's a copy. For a copy instruction, we find the physical registers the
782 /// source and destination registers might be mapped to. These are kept in
783 /// point-to maps used to determine future optimizations. e.g.
784 /// v1024 = mov r0
785 /// v1025 = mov r1
786 /// v1026 = add v1024, v1025
787 /// r1 = mov r1026
788 /// If 'add' is a two-address instruction, v1024, v1026 are both potentially
789 /// coalesced to r0 (from the input side). v1025 is mapped to r1. v1026 is
790 /// potentially joined with r1 on the output side. It's worthwhile to commute
791 /// 'add' to eliminate a copy.
processCopy(MachineInstr * MI)792 void TwoAddressInstructionPass::processCopy(MachineInstr *MI) {
793 if (Processed.count(MI))
794 return;
795
796 bool IsSrcPhys, IsDstPhys;
797 unsigned SrcReg, DstReg;
798 if (!isCopyToReg(*MI, TII, SrcReg, DstReg, IsSrcPhys, IsDstPhys))
799 return;
800
801 if (IsDstPhys && !IsSrcPhys)
802 DstRegMap.insert(std::make_pair(SrcReg, DstReg));
803 else if (!IsDstPhys && IsSrcPhys) {
804 bool isNew = SrcRegMap.insert(std::make_pair(DstReg, SrcReg)).second;
805 if (!isNew)
806 assert(SrcRegMap[DstReg] == SrcReg &&
807 "Can't map to two src physical registers!");
808
809 scanUses(DstReg);
810 }
811
812 Processed.insert(MI);
813 return;
814 }
815
816 /// rescheduleMIBelowKill - If there is one more local instruction that reads
817 /// 'Reg' and it kills 'Reg, consider moving the instruction below the kill
818 /// instruction in order to eliminate the need for the copy.
819 bool TwoAddressInstructionPass::
rescheduleMIBelowKill(MachineBasicBlock::iterator & mi,MachineBasicBlock::iterator & nmi,unsigned Reg)820 rescheduleMIBelowKill(MachineBasicBlock::iterator &mi,
821 MachineBasicBlock::iterator &nmi,
822 unsigned Reg) {
823 // Bail immediately if we don't have LV or LIS available. We use them to find
824 // kills efficiently.
825 if (!LV && !LIS)
826 return false;
827
828 MachineInstr *MI = &*mi;
829 DenseMap<MachineInstr*, unsigned>::iterator DI = DistanceMap.find(MI);
830 if (DI == DistanceMap.end())
831 // Must be created from unfolded load. Don't waste time trying this.
832 return false;
833
834 MachineInstr *KillMI = nullptr;
835 if (LIS) {
836 LiveInterval &LI = LIS->getInterval(Reg);
837 assert(LI.end() != LI.begin() &&
838 "Reg should not have empty live interval.");
839
840 SlotIndex MBBEndIdx = LIS->getMBBEndIdx(MBB).getPrevSlot();
841 LiveInterval::const_iterator I = LI.find(MBBEndIdx);
842 if (I != LI.end() && I->start < MBBEndIdx)
843 return false;
844
845 --I;
846 KillMI = LIS->getInstructionFromIndex(I->end);
847 } else {
848 KillMI = LV->getVarInfo(Reg).findKill(MBB);
849 }
850 if (!KillMI || MI == KillMI || KillMI->isCopy() || KillMI->isCopyLike())
851 // Don't mess with copies, they may be coalesced later.
852 return false;
853
854 if (KillMI->hasUnmodeledSideEffects() || KillMI->isCall() ||
855 KillMI->isBranch() || KillMI->isTerminator())
856 // Don't move pass calls, etc.
857 return false;
858
859 unsigned DstReg;
860 if (isTwoAddrUse(*KillMI, Reg, DstReg))
861 return false;
862
863 bool SeenStore = true;
864 if (!MI->isSafeToMove(TII, AA, SeenStore))
865 return false;
866
867 if (TII->getInstrLatency(InstrItins, MI) > 1)
868 // FIXME: Needs more sophisticated heuristics.
869 return false;
870
871 SmallSet<unsigned, 2> Uses;
872 SmallSet<unsigned, 2> Kills;
873 SmallSet<unsigned, 2> Defs;
874 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
875 const MachineOperand &MO = MI->getOperand(i);
876 if (!MO.isReg())
877 continue;
878 unsigned MOReg = MO.getReg();
879 if (!MOReg)
880 continue;
881 if (MO.isDef())
882 Defs.insert(MOReg);
883 else {
884 Uses.insert(MOReg);
885 if (MOReg != Reg && (MO.isKill() ||
886 (LIS && isPlainlyKilled(MI, MOReg, LIS))))
887 Kills.insert(MOReg);
888 }
889 }
890
891 // Move the copies connected to MI down as well.
892 MachineBasicBlock::iterator Begin = MI;
893 MachineBasicBlock::iterator AfterMI = std::next(Begin);
894
895 MachineBasicBlock::iterator End = AfterMI;
896 while (End->isCopy() && Defs.count(End->getOperand(1).getReg())) {
897 Defs.insert(End->getOperand(0).getReg());
898 ++End;
899 }
900
901 // Check if the reschedule will not break depedencies.
902 unsigned NumVisited = 0;
903 MachineBasicBlock::iterator KillPos = KillMI;
904 ++KillPos;
905 for (MachineBasicBlock::iterator I = End; I != KillPos; ++I) {
906 MachineInstr *OtherMI = I;
907 // DBG_VALUE cannot be counted against the limit.
908 if (OtherMI->isDebugValue())
909 continue;
910 if (NumVisited > 10) // FIXME: Arbitrary limit to reduce compile time cost.
911 return false;
912 ++NumVisited;
913 if (OtherMI->hasUnmodeledSideEffects() || OtherMI->isCall() ||
914 OtherMI->isBranch() || OtherMI->isTerminator())
915 // Don't move pass calls, etc.
916 return false;
917 for (unsigned i = 0, e = OtherMI->getNumOperands(); i != e; ++i) {
918 const MachineOperand &MO = OtherMI->getOperand(i);
919 if (!MO.isReg())
920 continue;
921 unsigned MOReg = MO.getReg();
922 if (!MOReg)
923 continue;
924 if (MO.isDef()) {
925 if (Uses.count(MOReg))
926 // Physical register use would be clobbered.
927 return false;
928 if (!MO.isDead() && Defs.count(MOReg))
929 // May clobber a physical register def.
930 // FIXME: This may be too conservative. It's ok if the instruction
931 // is sunken completely below the use.
932 return false;
933 } else {
934 if (Defs.count(MOReg))
935 return false;
936 bool isKill = MO.isKill() ||
937 (LIS && isPlainlyKilled(OtherMI, MOReg, LIS));
938 if (MOReg != Reg &&
939 ((isKill && Uses.count(MOReg)) || Kills.count(MOReg)))
940 // Don't want to extend other live ranges and update kills.
941 return false;
942 if (MOReg == Reg && !isKill)
943 // We can't schedule across a use of the register in question.
944 return false;
945 // Ensure that if this is register in question, its the kill we expect.
946 assert((MOReg != Reg || OtherMI == KillMI) &&
947 "Found multiple kills of a register in a basic block");
948 }
949 }
950 }
951
952 // Move debug info as well.
953 while (Begin != MBB->begin() && std::prev(Begin)->isDebugValue())
954 --Begin;
955
956 nmi = End;
957 MachineBasicBlock::iterator InsertPos = KillPos;
958 if (LIS) {
959 // We have to move the copies first so that the MBB is still well-formed
960 // when calling handleMove().
961 for (MachineBasicBlock::iterator MBBI = AfterMI; MBBI != End;) {
962 MachineInstr *CopyMI = MBBI;
963 ++MBBI;
964 MBB->splice(InsertPos, MBB, CopyMI);
965 LIS->handleMove(CopyMI);
966 InsertPos = CopyMI;
967 }
968 End = std::next(MachineBasicBlock::iterator(MI));
969 }
970
971 // Copies following MI may have been moved as well.
972 MBB->splice(InsertPos, MBB, Begin, End);
973 DistanceMap.erase(DI);
974
975 // Update live variables
976 if (LIS) {
977 LIS->handleMove(MI);
978 } else {
979 LV->removeVirtualRegisterKilled(Reg, KillMI);
980 LV->addVirtualRegisterKilled(Reg, MI);
981 }
982
983 DEBUG(dbgs() << "\trescheduled below kill: " << *KillMI);
984 return true;
985 }
986
987 /// isDefTooClose - Return true if the re-scheduling will put the given
988 /// instruction too close to the defs of its register dependencies.
isDefTooClose(unsigned Reg,unsigned Dist,MachineInstr * MI)989 bool TwoAddressInstructionPass::isDefTooClose(unsigned Reg, unsigned Dist,
990 MachineInstr *MI) {
991 for (MachineInstr &DefMI : MRI->def_instructions(Reg)) {
992 if (DefMI.getParent() != MBB || DefMI.isCopy() || DefMI.isCopyLike())
993 continue;
994 if (&DefMI == MI)
995 return true; // MI is defining something KillMI uses
996 DenseMap<MachineInstr*, unsigned>::iterator DDI = DistanceMap.find(&DefMI);
997 if (DDI == DistanceMap.end())
998 return true; // Below MI
999 unsigned DefDist = DDI->second;
1000 assert(Dist > DefDist && "Visited def already?");
1001 if (TII->getInstrLatency(InstrItins, &DefMI) > (Dist - DefDist))
1002 return true;
1003 }
1004 return false;
1005 }
1006
1007 /// rescheduleKillAboveMI - If there is one more local instruction that reads
1008 /// 'Reg' and it kills 'Reg, consider moving the kill instruction above the
1009 /// current two-address instruction in order to eliminate the need for the
1010 /// copy.
1011 bool TwoAddressInstructionPass::
rescheduleKillAboveMI(MachineBasicBlock::iterator & mi,MachineBasicBlock::iterator & nmi,unsigned Reg)1012 rescheduleKillAboveMI(MachineBasicBlock::iterator &mi,
1013 MachineBasicBlock::iterator &nmi,
1014 unsigned Reg) {
1015 // Bail immediately if we don't have LV or LIS available. We use them to find
1016 // kills efficiently.
1017 if (!LV && !LIS)
1018 return false;
1019
1020 MachineInstr *MI = &*mi;
1021 DenseMap<MachineInstr*, unsigned>::iterator DI = DistanceMap.find(MI);
1022 if (DI == DistanceMap.end())
1023 // Must be created from unfolded load. Don't waste time trying this.
1024 return false;
1025
1026 MachineInstr *KillMI = nullptr;
1027 if (LIS) {
1028 LiveInterval &LI = LIS->getInterval(Reg);
1029 assert(LI.end() != LI.begin() &&
1030 "Reg should not have empty live interval.");
1031
1032 SlotIndex MBBEndIdx = LIS->getMBBEndIdx(MBB).getPrevSlot();
1033 LiveInterval::const_iterator I = LI.find(MBBEndIdx);
1034 if (I != LI.end() && I->start < MBBEndIdx)
1035 return false;
1036
1037 --I;
1038 KillMI = LIS->getInstructionFromIndex(I->end);
1039 } else {
1040 KillMI = LV->getVarInfo(Reg).findKill(MBB);
1041 }
1042 if (!KillMI || MI == KillMI || KillMI->isCopy() || KillMI->isCopyLike())
1043 // Don't mess with copies, they may be coalesced later.
1044 return false;
1045
1046 unsigned DstReg;
1047 if (isTwoAddrUse(*KillMI, Reg, DstReg))
1048 return false;
1049
1050 bool SeenStore = true;
1051 if (!KillMI->isSafeToMove(TII, AA, SeenStore))
1052 return false;
1053
1054 SmallSet<unsigned, 2> Uses;
1055 SmallSet<unsigned, 2> Kills;
1056 SmallSet<unsigned, 2> Defs;
1057 SmallSet<unsigned, 2> LiveDefs;
1058 for (unsigned i = 0, e = KillMI->getNumOperands(); i != e; ++i) {
1059 const MachineOperand &MO = KillMI->getOperand(i);
1060 if (!MO.isReg())
1061 continue;
1062 unsigned MOReg = MO.getReg();
1063 if (MO.isUse()) {
1064 if (!MOReg)
1065 continue;
1066 if (isDefTooClose(MOReg, DI->second, MI))
1067 return false;
1068 bool isKill = MO.isKill() || (LIS && isPlainlyKilled(KillMI, MOReg, LIS));
1069 if (MOReg == Reg && !isKill)
1070 return false;
1071 Uses.insert(MOReg);
1072 if (isKill && MOReg != Reg)
1073 Kills.insert(MOReg);
1074 } else if (TargetRegisterInfo::isPhysicalRegister(MOReg)) {
1075 Defs.insert(MOReg);
1076 if (!MO.isDead())
1077 LiveDefs.insert(MOReg);
1078 }
1079 }
1080
1081 // Check if the reschedule will not break depedencies.
1082 unsigned NumVisited = 0;
1083 MachineBasicBlock::iterator KillPos = KillMI;
1084 for (MachineBasicBlock::iterator I = mi; I != KillPos; ++I) {
1085 MachineInstr *OtherMI = I;
1086 // DBG_VALUE cannot be counted against the limit.
1087 if (OtherMI->isDebugValue())
1088 continue;
1089 if (NumVisited > 10) // FIXME: Arbitrary limit to reduce compile time cost.
1090 return false;
1091 ++NumVisited;
1092 if (OtherMI->hasUnmodeledSideEffects() || OtherMI->isCall() ||
1093 OtherMI->isBranch() || OtherMI->isTerminator())
1094 // Don't move pass calls, etc.
1095 return false;
1096 SmallVector<unsigned, 2> OtherDefs;
1097 for (unsigned i = 0, e = OtherMI->getNumOperands(); i != e; ++i) {
1098 const MachineOperand &MO = OtherMI->getOperand(i);
1099 if (!MO.isReg())
1100 continue;
1101 unsigned MOReg = MO.getReg();
1102 if (!MOReg)
1103 continue;
1104 if (MO.isUse()) {
1105 if (Defs.count(MOReg))
1106 // Moving KillMI can clobber the physical register if the def has
1107 // not been seen.
1108 return false;
1109 if (Kills.count(MOReg))
1110 // Don't want to extend other live ranges and update kills.
1111 return false;
1112 if (OtherMI != MI && MOReg == Reg &&
1113 !(MO.isKill() || (LIS && isPlainlyKilled(OtherMI, MOReg, LIS))))
1114 // We can't schedule across a use of the register in question.
1115 return false;
1116 } else {
1117 OtherDefs.push_back(MOReg);
1118 }
1119 }
1120
1121 for (unsigned i = 0, e = OtherDefs.size(); i != e; ++i) {
1122 unsigned MOReg = OtherDefs[i];
1123 if (Uses.count(MOReg))
1124 return false;
1125 if (TargetRegisterInfo::isPhysicalRegister(MOReg) &&
1126 LiveDefs.count(MOReg))
1127 return false;
1128 // Physical register def is seen.
1129 Defs.erase(MOReg);
1130 }
1131 }
1132
1133 // Move the old kill above MI, don't forget to move debug info as well.
1134 MachineBasicBlock::iterator InsertPos = mi;
1135 while (InsertPos != MBB->begin() && std::prev(InsertPos)->isDebugValue())
1136 --InsertPos;
1137 MachineBasicBlock::iterator From = KillMI;
1138 MachineBasicBlock::iterator To = std::next(From);
1139 while (std::prev(From)->isDebugValue())
1140 --From;
1141 MBB->splice(InsertPos, MBB, From, To);
1142
1143 nmi = std::prev(InsertPos); // Backtrack so we process the moved instr.
1144 DistanceMap.erase(DI);
1145
1146 // Update live variables
1147 if (LIS) {
1148 LIS->handleMove(KillMI);
1149 } else {
1150 LV->removeVirtualRegisterKilled(Reg, KillMI);
1151 LV->addVirtualRegisterKilled(Reg, MI);
1152 }
1153
1154 DEBUG(dbgs() << "\trescheduled kill: " << *KillMI);
1155 return true;
1156 }
1157
1158 /// tryInstructionTransform - For the case where an instruction has a single
1159 /// pair of tied register operands, attempt some transformations that may
1160 /// either eliminate the tied operands or improve the opportunities for
1161 /// coalescing away the register copy. Returns true if no copy needs to be
1162 /// inserted to untie mi's operands (either because they were untied, or
1163 /// because mi was rescheduled, and will be visited again later). If the
1164 /// shouldOnlyCommute flag is true, only instruction commutation is attempted.
1165 bool TwoAddressInstructionPass::
tryInstructionTransform(MachineBasicBlock::iterator & mi,MachineBasicBlock::iterator & nmi,unsigned SrcIdx,unsigned DstIdx,unsigned Dist,bool shouldOnlyCommute)1166 tryInstructionTransform(MachineBasicBlock::iterator &mi,
1167 MachineBasicBlock::iterator &nmi,
1168 unsigned SrcIdx, unsigned DstIdx,
1169 unsigned Dist, bool shouldOnlyCommute) {
1170 if (OptLevel == CodeGenOpt::None)
1171 return false;
1172
1173 MachineInstr &MI = *mi;
1174 unsigned regA = MI.getOperand(DstIdx).getReg();
1175 unsigned regB = MI.getOperand(SrcIdx).getReg();
1176
1177 assert(TargetRegisterInfo::isVirtualRegister(regB) &&
1178 "cannot make instruction into two-address form");
1179 bool regBKilled = isKilled(MI, regB, MRI, TII, LIS, true);
1180
1181 if (TargetRegisterInfo::isVirtualRegister(regA))
1182 scanUses(regA);
1183
1184 // Check if it is profitable to commute the operands.
1185 unsigned SrcOp1, SrcOp2;
1186 unsigned regC = 0;
1187 unsigned regCIdx = ~0U;
1188 bool TryCommute = false;
1189 bool AggressiveCommute = false;
1190 if (MI.isCommutable() && MI.getNumOperands() >= 3 &&
1191 TII->findCommutedOpIndices(&MI, SrcOp1, SrcOp2)) {
1192 if (SrcIdx == SrcOp1)
1193 regCIdx = SrcOp2;
1194 else if (SrcIdx == SrcOp2)
1195 regCIdx = SrcOp1;
1196
1197 if (regCIdx != ~0U) {
1198 regC = MI.getOperand(regCIdx).getReg();
1199 if (!regBKilled && isKilled(MI, regC, MRI, TII, LIS, false))
1200 // If C dies but B does not, swap the B and C operands.
1201 // This makes the live ranges of A and C joinable.
1202 TryCommute = true;
1203 else if (isProfitableToCommute(regA, regB, regC, &MI, Dist)) {
1204 TryCommute = true;
1205 AggressiveCommute = true;
1206 }
1207 }
1208 }
1209
1210 // If it's profitable to commute, try to do so.
1211 if (TryCommute && commuteInstruction(mi, regB, regC, Dist)) {
1212 ++NumCommuted;
1213 if (AggressiveCommute)
1214 ++NumAggrCommuted;
1215 return false;
1216 }
1217
1218 if (shouldOnlyCommute)
1219 return false;
1220
1221 // If there is one more use of regB later in the same MBB, consider
1222 // re-schedule this MI below it.
1223 if (EnableRescheduling && rescheduleMIBelowKill(mi, nmi, regB)) {
1224 ++NumReSchedDowns;
1225 return true;
1226 }
1227
1228 if (MI.isConvertibleTo3Addr()) {
1229 // This instruction is potentially convertible to a true
1230 // three-address instruction. Check if it is profitable.
1231 if (!regBKilled || isProfitableToConv3Addr(regA, regB)) {
1232 // Try to convert it.
1233 if (convertInstTo3Addr(mi, nmi, regA, regB, Dist)) {
1234 ++NumConvertedTo3Addr;
1235 return true; // Done with this instruction.
1236 }
1237 }
1238 }
1239
1240 // If there is one more use of regB later in the same MBB, consider
1241 // re-schedule it before this MI if it's legal.
1242 if (EnableRescheduling && rescheduleKillAboveMI(mi, nmi, regB)) {
1243 ++NumReSchedUps;
1244 return true;
1245 }
1246
1247 // If this is an instruction with a load folded into it, try unfolding
1248 // the load, e.g. avoid this:
1249 // movq %rdx, %rcx
1250 // addq (%rax), %rcx
1251 // in favor of this:
1252 // movq (%rax), %rcx
1253 // addq %rdx, %rcx
1254 // because it's preferable to schedule a load than a register copy.
1255 if (MI.mayLoad() && !regBKilled) {
1256 // Determine if a load can be unfolded.
1257 unsigned LoadRegIndex;
1258 unsigned NewOpc =
1259 TII->getOpcodeAfterMemoryUnfold(MI.getOpcode(),
1260 /*UnfoldLoad=*/true,
1261 /*UnfoldStore=*/false,
1262 &LoadRegIndex);
1263 if (NewOpc != 0) {
1264 const MCInstrDesc &UnfoldMCID = TII->get(NewOpc);
1265 if (UnfoldMCID.getNumDefs() == 1) {
1266 // Unfold the load.
1267 DEBUG(dbgs() << "2addr: UNFOLDING: " << MI);
1268 const TargetRegisterClass *RC =
1269 TRI->getAllocatableClass(
1270 TII->getRegClass(UnfoldMCID, LoadRegIndex, TRI, *MF));
1271 unsigned Reg = MRI->createVirtualRegister(RC);
1272 SmallVector<MachineInstr *, 2> NewMIs;
1273 if (!TII->unfoldMemoryOperand(*MF, &MI, Reg,
1274 /*UnfoldLoad=*/true,/*UnfoldStore=*/false,
1275 NewMIs)) {
1276 DEBUG(dbgs() << "2addr: ABANDONING UNFOLD\n");
1277 return false;
1278 }
1279 assert(NewMIs.size() == 2 &&
1280 "Unfolded a load into multiple instructions!");
1281 // The load was previously folded, so this is the only use.
1282 NewMIs[1]->addRegisterKilled(Reg, TRI);
1283
1284 // Tentatively insert the instructions into the block so that they
1285 // look "normal" to the transformation logic.
1286 MBB->insert(mi, NewMIs[0]);
1287 MBB->insert(mi, NewMIs[1]);
1288
1289 DEBUG(dbgs() << "2addr: NEW LOAD: " << *NewMIs[0]
1290 << "2addr: NEW INST: " << *NewMIs[1]);
1291
1292 // Transform the instruction, now that it no longer has a load.
1293 unsigned NewDstIdx = NewMIs[1]->findRegisterDefOperandIdx(regA);
1294 unsigned NewSrcIdx = NewMIs[1]->findRegisterUseOperandIdx(regB);
1295 MachineBasicBlock::iterator NewMI = NewMIs[1];
1296 bool TransformResult =
1297 tryInstructionTransform(NewMI, mi, NewSrcIdx, NewDstIdx, Dist, true);
1298 (void)TransformResult;
1299 assert(!TransformResult &&
1300 "tryInstructionTransform() should return false.");
1301 if (NewMIs[1]->getOperand(NewSrcIdx).isKill()) {
1302 // Success, or at least we made an improvement. Keep the unfolded
1303 // instructions and discard the original.
1304 if (LV) {
1305 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
1306 MachineOperand &MO = MI.getOperand(i);
1307 if (MO.isReg() &&
1308 TargetRegisterInfo::isVirtualRegister(MO.getReg())) {
1309 if (MO.isUse()) {
1310 if (MO.isKill()) {
1311 if (NewMIs[0]->killsRegister(MO.getReg()))
1312 LV->replaceKillInstruction(MO.getReg(), &MI, NewMIs[0]);
1313 else {
1314 assert(NewMIs[1]->killsRegister(MO.getReg()) &&
1315 "Kill missing after load unfold!");
1316 LV->replaceKillInstruction(MO.getReg(), &MI, NewMIs[1]);
1317 }
1318 }
1319 } else if (LV->removeVirtualRegisterDead(MO.getReg(), &MI)) {
1320 if (NewMIs[1]->registerDefIsDead(MO.getReg()))
1321 LV->addVirtualRegisterDead(MO.getReg(), NewMIs[1]);
1322 else {
1323 assert(NewMIs[0]->registerDefIsDead(MO.getReg()) &&
1324 "Dead flag missing after load unfold!");
1325 LV->addVirtualRegisterDead(MO.getReg(), NewMIs[0]);
1326 }
1327 }
1328 }
1329 }
1330 LV->addVirtualRegisterKilled(Reg, NewMIs[1]);
1331 }
1332
1333 SmallVector<unsigned, 4> OrigRegs;
1334 if (LIS) {
1335 for (MachineInstr::const_mop_iterator MOI = MI.operands_begin(),
1336 MOE = MI.operands_end(); MOI != MOE; ++MOI) {
1337 if (MOI->isReg())
1338 OrigRegs.push_back(MOI->getReg());
1339 }
1340 }
1341
1342 MI.eraseFromParent();
1343
1344 // Update LiveIntervals.
1345 if (LIS) {
1346 MachineBasicBlock::iterator Begin(NewMIs[0]);
1347 MachineBasicBlock::iterator End(NewMIs[1]);
1348 LIS->repairIntervalsInRange(MBB, Begin, End, OrigRegs);
1349 }
1350
1351 mi = NewMIs[1];
1352 } else {
1353 // Transforming didn't eliminate the tie and didn't lead to an
1354 // improvement. Clean up the unfolded instructions and keep the
1355 // original.
1356 DEBUG(dbgs() << "2addr: ABANDONING UNFOLD\n");
1357 NewMIs[0]->eraseFromParent();
1358 NewMIs[1]->eraseFromParent();
1359 }
1360 }
1361 }
1362 }
1363
1364 return false;
1365 }
1366
1367 // Collect tied operands of MI that need to be handled.
1368 // Rewrite trivial cases immediately.
1369 // Return true if any tied operands where found, including the trivial ones.
1370 bool TwoAddressInstructionPass::
collectTiedOperands(MachineInstr * MI,TiedOperandMap & TiedOperands)1371 collectTiedOperands(MachineInstr *MI, TiedOperandMap &TiedOperands) {
1372 const MCInstrDesc &MCID = MI->getDesc();
1373 bool AnyOps = false;
1374 unsigned NumOps = MI->getNumOperands();
1375
1376 for (unsigned SrcIdx = 0; SrcIdx < NumOps; ++SrcIdx) {
1377 unsigned DstIdx = 0;
1378 if (!MI->isRegTiedToDefOperand(SrcIdx, &DstIdx))
1379 continue;
1380 AnyOps = true;
1381 MachineOperand &SrcMO = MI->getOperand(SrcIdx);
1382 MachineOperand &DstMO = MI->getOperand(DstIdx);
1383 unsigned SrcReg = SrcMO.getReg();
1384 unsigned DstReg = DstMO.getReg();
1385 // Tied constraint already satisfied?
1386 if (SrcReg == DstReg)
1387 continue;
1388
1389 assert(SrcReg && SrcMO.isUse() && "two address instruction invalid");
1390
1391 // Deal with <undef> uses immediately - simply rewrite the src operand.
1392 if (SrcMO.isUndef() && !DstMO.getSubReg()) {
1393 // Constrain the DstReg register class if required.
1394 if (TargetRegisterInfo::isVirtualRegister(DstReg))
1395 if (const TargetRegisterClass *RC = TII->getRegClass(MCID, SrcIdx,
1396 TRI, *MF))
1397 MRI->constrainRegClass(DstReg, RC);
1398 SrcMO.setReg(DstReg);
1399 SrcMO.setSubReg(0);
1400 DEBUG(dbgs() << "\t\trewrite undef:\t" << *MI);
1401 continue;
1402 }
1403 TiedOperands[SrcReg].push_back(std::make_pair(SrcIdx, DstIdx));
1404 }
1405 return AnyOps;
1406 }
1407
1408 // Process a list of tied MI operands that all use the same source register.
1409 // The tied pairs are of the form (SrcIdx, DstIdx).
1410 void
processTiedPairs(MachineInstr * MI,TiedPairList & TiedPairs,unsigned & Dist)1411 TwoAddressInstructionPass::processTiedPairs(MachineInstr *MI,
1412 TiedPairList &TiedPairs,
1413 unsigned &Dist) {
1414 bool IsEarlyClobber = false;
1415 for (unsigned tpi = 0, tpe = TiedPairs.size(); tpi != tpe; ++tpi) {
1416 const MachineOperand &DstMO = MI->getOperand(TiedPairs[tpi].second);
1417 IsEarlyClobber |= DstMO.isEarlyClobber();
1418 }
1419
1420 bool RemovedKillFlag = false;
1421 bool AllUsesCopied = true;
1422 unsigned LastCopiedReg = 0;
1423 SlotIndex LastCopyIdx;
1424 unsigned RegB = 0;
1425 unsigned SubRegB = 0;
1426 for (unsigned tpi = 0, tpe = TiedPairs.size(); tpi != tpe; ++tpi) {
1427 unsigned SrcIdx = TiedPairs[tpi].first;
1428 unsigned DstIdx = TiedPairs[tpi].second;
1429
1430 const MachineOperand &DstMO = MI->getOperand(DstIdx);
1431 unsigned RegA = DstMO.getReg();
1432
1433 // Grab RegB from the instruction because it may have changed if the
1434 // instruction was commuted.
1435 RegB = MI->getOperand(SrcIdx).getReg();
1436 SubRegB = MI->getOperand(SrcIdx).getSubReg();
1437
1438 if (RegA == RegB) {
1439 // The register is tied to multiple destinations (or else we would
1440 // not have continued this far), but this use of the register
1441 // already matches the tied destination. Leave it.
1442 AllUsesCopied = false;
1443 continue;
1444 }
1445 LastCopiedReg = RegA;
1446
1447 assert(TargetRegisterInfo::isVirtualRegister(RegB) &&
1448 "cannot make instruction into two-address form");
1449
1450 #ifndef NDEBUG
1451 // First, verify that we don't have a use of "a" in the instruction
1452 // (a = b + a for example) because our transformation will not
1453 // work. This should never occur because we are in SSA form.
1454 for (unsigned i = 0; i != MI->getNumOperands(); ++i)
1455 assert(i == DstIdx ||
1456 !MI->getOperand(i).isReg() ||
1457 MI->getOperand(i).getReg() != RegA);
1458 #endif
1459
1460 // Emit a copy.
1461 MachineInstrBuilder MIB = BuildMI(*MI->getParent(), MI, MI->getDebugLoc(),
1462 TII->get(TargetOpcode::COPY), RegA);
1463 // If this operand is folding a truncation, the truncation now moves to the
1464 // copy so that the register classes remain valid for the operands.
1465 MIB.addReg(RegB, 0, SubRegB);
1466 const TargetRegisterClass *RC = MRI->getRegClass(RegB);
1467 if (SubRegB) {
1468 if (TargetRegisterInfo::isVirtualRegister(RegA)) {
1469 assert(TRI->getMatchingSuperRegClass(RC, MRI->getRegClass(RegA),
1470 SubRegB) &&
1471 "tied subregister must be a truncation");
1472 // The superreg class will not be used to constrain the subreg class.
1473 RC = nullptr;
1474 }
1475 else {
1476 assert(TRI->getMatchingSuperReg(RegA, SubRegB, MRI->getRegClass(RegB))
1477 && "tied subregister must be a truncation");
1478 }
1479 }
1480
1481 // Update DistanceMap.
1482 MachineBasicBlock::iterator PrevMI = MI;
1483 --PrevMI;
1484 DistanceMap.insert(std::make_pair(PrevMI, Dist));
1485 DistanceMap[MI] = ++Dist;
1486
1487 if (LIS) {
1488 LastCopyIdx = LIS->InsertMachineInstrInMaps(PrevMI).getRegSlot();
1489
1490 if (TargetRegisterInfo::isVirtualRegister(RegA)) {
1491 LiveInterval &LI = LIS->getInterval(RegA);
1492 VNInfo *VNI = LI.getNextValue(LastCopyIdx, LIS->getVNInfoAllocator());
1493 SlotIndex endIdx =
1494 LIS->getInstructionIndex(MI).getRegSlot(IsEarlyClobber);
1495 LI.addSegment(LiveInterval::Segment(LastCopyIdx, endIdx, VNI));
1496 }
1497 }
1498
1499 DEBUG(dbgs() << "\t\tprepend:\t" << *MIB);
1500
1501 MachineOperand &MO = MI->getOperand(SrcIdx);
1502 assert(MO.isReg() && MO.getReg() == RegB && MO.isUse() &&
1503 "inconsistent operand info for 2-reg pass");
1504 if (MO.isKill()) {
1505 MO.setIsKill(false);
1506 RemovedKillFlag = true;
1507 }
1508
1509 // Make sure regA is a legal regclass for the SrcIdx operand.
1510 if (TargetRegisterInfo::isVirtualRegister(RegA) &&
1511 TargetRegisterInfo::isVirtualRegister(RegB))
1512 MRI->constrainRegClass(RegA, RC);
1513 MO.setReg(RegA);
1514 // The getMatchingSuper asserts guarantee that the register class projected
1515 // by SubRegB is compatible with RegA with no subregister. So regardless of
1516 // whether the dest oper writes a subreg, the source oper should not.
1517 MO.setSubReg(0);
1518
1519 // Propagate SrcRegMap.
1520 SrcRegMap[RegA] = RegB;
1521 }
1522
1523
1524 if (AllUsesCopied) {
1525 if (!IsEarlyClobber) {
1526 // Replace other (un-tied) uses of regB with LastCopiedReg.
1527 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
1528 MachineOperand &MO = MI->getOperand(i);
1529 if (MO.isReg() && MO.getReg() == RegB && MO.getSubReg() == SubRegB &&
1530 MO.isUse()) {
1531 if (MO.isKill()) {
1532 MO.setIsKill(false);
1533 RemovedKillFlag = true;
1534 }
1535 MO.setReg(LastCopiedReg);
1536 MO.setSubReg(0);
1537 }
1538 }
1539 }
1540
1541 // Update live variables for regB.
1542 if (RemovedKillFlag && LV && LV->getVarInfo(RegB).removeKill(MI)) {
1543 MachineBasicBlock::iterator PrevMI = MI;
1544 --PrevMI;
1545 LV->addVirtualRegisterKilled(RegB, PrevMI);
1546 }
1547
1548 // Update LiveIntervals.
1549 if (LIS) {
1550 LiveInterval &LI = LIS->getInterval(RegB);
1551 SlotIndex MIIdx = LIS->getInstructionIndex(MI);
1552 LiveInterval::const_iterator I = LI.find(MIIdx);
1553 assert(I != LI.end() && "RegB must be live-in to use.");
1554
1555 SlotIndex UseIdx = MIIdx.getRegSlot(IsEarlyClobber);
1556 if (I->end == UseIdx)
1557 LI.removeSegment(LastCopyIdx, UseIdx);
1558 }
1559
1560 } else if (RemovedKillFlag) {
1561 // Some tied uses of regB matched their destination registers, so
1562 // regB is still used in this instruction, but a kill flag was
1563 // removed from a different tied use of regB, so now we need to add
1564 // a kill flag to one of the remaining uses of regB.
1565 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
1566 MachineOperand &MO = MI->getOperand(i);
1567 if (MO.isReg() && MO.getReg() == RegB && MO.isUse()) {
1568 MO.setIsKill(true);
1569 break;
1570 }
1571 }
1572 }
1573 }
1574
1575 /// runOnMachineFunction - Reduce two-address instructions to two operands.
1576 ///
runOnMachineFunction(MachineFunction & Func)1577 bool TwoAddressInstructionPass::runOnMachineFunction(MachineFunction &Func) {
1578 MF = &Func;
1579 const TargetMachine &TM = MF->getTarget();
1580 MRI = &MF->getRegInfo();
1581 TII = MF->getSubtarget().getInstrInfo();
1582 TRI = MF->getSubtarget().getRegisterInfo();
1583 InstrItins = MF->getSubtarget().getInstrItineraryData();
1584 LV = getAnalysisIfAvailable<LiveVariables>();
1585 LIS = getAnalysisIfAvailable<LiveIntervals>();
1586 AA = &getAnalysis<AliasAnalysis>();
1587 OptLevel = TM.getOptLevel();
1588
1589 bool MadeChange = false;
1590
1591 DEBUG(dbgs() << "********** REWRITING TWO-ADDR INSTRS **********\n");
1592 DEBUG(dbgs() << "********** Function: "
1593 << MF->getName() << '\n');
1594
1595 // This pass takes the function out of SSA form.
1596 MRI->leaveSSA();
1597
1598 TiedOperandMap TiedOperands;
1599 for (MachineFunction::iterator MBBI = MF->begin(), MBBE = MF->end();
1600 MBBI != MBBE; ++MBBI) {
1601 MBB = MBBI;
1602 unsigned Dist = 0;
1603 DistanceMap.clear();
1604 SrcRegMap.clear();
1605 DstRegMap.clear();
1606 Processed.clear();
1607 for (MachineBasicBlock::iterator mi = MBB->begin(), me = MBB->end();
1608 mi != me; ) {
1609 MachineBasicBlock::iterator nmi = std::next(mi);
1610 if (mi->isDebugValue()) {
1611 mi = nmi;
1612 continue;
1613 }
1614
1615 // Expand REG_SEQUENCE instructions. This will position mi at the first
1616 // expanded instruction.
1617 if (mi->isRegSequence())
1618 eliminateRegSequence(mi);
1619
1620 DistanceMap.insert(std::make_pair(mi, ++Dist));
1621
1622 processCopy(&*mi);
1623
1624 // First scan through all the tied register uses in this instruction
1625 // and record a list of pairs of tied operands for each register.
1626 if (!collectTiedOperands(mi, TiedOperands)) {
1627 mi = nmi;
1628 continue;
1629 }
1630
1631 ++NumTwoAddressInstrs;
1632 MadeChange = true;
1633 DEBUG(dbgs() << '\t' << *mi);
1634
1635 // If the instruction has a single pair of tied operands, try some
1636 // transformations that may either eliminate the tied operands or
1637 // improve the opportunities for coalescing away the register copy.
1638 if (TiedOperands.size() == 1) {
1639 SmallVectorImpl<std::pair<unsigned, unsigned> > &TiedPairs
1640 = TiedOperands.begin()->second;
1641 if (TiedPairs.size() == 1) {
1642 unsigned SrcIdx = TiedPairs[0].first;
1643 unsigned DstIdx = TiedPairs[0].second;
1644 unsigned SrcReg = mi->getOperand(SrcIdx).getReg();
1645 unsigned DstReg = mi->getOperand(DstIdx).getReg();
1646 if (SrcReg != DstReg &&
1647 tryInstructionTransform(mi, nmi, SrcIdx, DstIdx, Dist, false)) {
1648 // The tied operands have been eliminated or shifted further down the
1649 // block to ease elimination. Continue processing with 'nmi'.
1650 TiedOperands.clear();
1651 mi = nmi;
1652 continue;
1653 }
1654 }
1655 }
1656
1657 // Now iterate over the information collected above.
1658 for (TiedOperandMap::iterator OI = TiedOperands.begin(),
1659 OE = TiedOperands.end(); OI != OE; ++OI) {
1660 processTiedPairs(mi, OI->second, Dist);
1661 DEBUG(dbgs() << "\t\trewrite to:\t" << *mi);
1662 }
1663
1664 // Rewrite INSERT_SUBREG as COPY now that we no longer need SSA form.
1665 if (mi->isInsertSubreg()) {
1666 // From %reg = INSERT_SUBREG %reg, %subreg, subidx
1667 // To %reg:subidx = COPY %subreg
1668 unsigned SubIdx = mi->getOperand(3).getImm();
1669 mi->RemoveOperand(3);
1670 assert(mi->getOperand(0).getSubReg() == 0 && "Unexpected subreg idx");
1671 mi->getOperand(0).setSubReg(SubIdx);
1672 mi->getOperand(0).setIsUndef(mi->getOperand(1).isUndef());
1673 mi->RemoveOperand(1);
1674 mi->setDesc(TII->get(TargetOpcode::COPY));
1675 DEBUG(dbgs() << "\t\tconvert to:\t" << *mi);
1676 }
1677
1678 // Clear TiedOperands here instead of at the top of the loop
1679 // since most instructions do not have tied operands.
1680 TiedOperands.clear();
1681 mi = nmi;
1682 }
1683 }
1684
1685 if (LIS)
1686 MF->verify(this, "After two-address instruction pass");
1687
1688 return MadeChange;
1689 }
1690
1691 /// Eliminate a REG_SEQUENCE instruction as part of the de-ssa process.
1692 ///
1693 /// The instruction is turned into a sequence of sub-register copies:
1694 ///
1695 /// %dst = REG_SEQUENCE %v1, ssub0, %v2, ssub1
1696 ///
1697 /// Becomes:
1698 ///
1699 /// %dst:ssub0<def,undef> = COPY %v1
1700 /// %dst:ssub1<def> = COPY %v2
1701 ///
1702 void TwoAddressInstructionPass::
eliminateRegSequence(MachineBasicBlock::iterator & MBBI)1703 eliminateRegSequence(MachineBasicBlock::iterator &MBBI) {
1704 MachineInstr *MI = MBBI;
1705 unsigned DstReg = MI->getOperand(0).getReg();
1706 if (MI->getOperand(0).getSubReg() ||
1707 TargetRegisterInfo::isPhysicalRegister(DstReg) ||
1708 !(MI->getNumOperands() & 1)) {
1709 DEBUG(dbgs() << "Illegal REG_SEQUENCE instruction:" << *MI);
1710 llvm_unreachable(nullptr);
1711 }
1712
1713 SmallVector<unsigned, 4> OrigRegs;
1714 if (LIS) {
1715 OrigRegs.push_back(MI->getOperand(0).getReg());
1716 for (unsigned i = 1, e = MI->getNumOperands(); i < e; i += 2)
1717 OrigRegs.push_back(MI->getOperand(i).getReg());
1718 }
1719
1720 bool DefEmitted = false;
1721 for (unsigned i = 1, e = MI->getNumOperands(); i < e; i += 2) {
1722 MachineOperand &UseMO = MI->getOperand(i);
1723 unsigned SrcReg = UseMO.getReg();
1724 unsigned SubIdx = MI->getOperand(i+1).getImm();
1725 // Nothing needs to be inserted for <undef> operands.
1726 if (UseMO.isUndef())
1727 continue;
1728
1729 // Defer any kill flag to the last operand using SrcReg. Otherwise, we
1730 // might insert a COPY that uses SrcReg after is was killed.
1731 bool isKill = UseMO.isKill();
1732 if (isKill)
1733 for (unsigned j = i + 2; j < e; j += 2)
1734 if (MI->getOperand(j).getReg() == SrcReg) {
1735 MI->getOperand(j).setIsKill();
1736 UseMO.setIsKill(false);
1737 isKill = false;
1738 break;
1739 }
1740
1741 // Insert the sub-register copy.
1742 MachineInstr *CopyMI = BuildMI(*MI->getParent(), MI, MI->getDebugLoc(),
1743 TII->get(TargetOpcode::COPY))
1744 .addReg(DstReg, RegState::Define, SubIdx)
1745 .addOperand(UseMO);
1746
1747 // The first def needs an <undef> flag because there is no live register
1748 // before it.
1749 if (!DefEmitted) {
1750 CopyMI->getOperand(0).setIsUndef(true);
1751 // Return an iterator pointing to the first inserted instr.
1752 MBBI = CopyMI;
1753 }
1754 DefEmitted = true;
1755
1756 // Update LiveVariables' kill info.
1757 if (LV && isKill && !TargetRegisterInfo::isPhysicalRegister(SrcReg))
1758 LV->replaceKillInstruction(SrcReg, MI, CopyMI);
1759
1760 DEBUG(dbgs() << "Inserted: " << *CopyMI);
1761 }
1762
1763 MachineBasicBlock::iterator EndMBBI =
1764 std::next(MachineBasicBlock::iterator(MI));
1765
1766 if (!DefEmitted) {
1767 DEBUG(dbgs() << "Turned: " << *MI << " into an IMPLICIT_DEF");
1768 MI->setDesc(TII->get(TargetOpcode::IMPLICIT_DEF));
1769 for (int j = MI->getNumOperands() - 1, ee = 0; j > ee; --j)
1770 MI->RemoveOperand(j);
1771 } else {
1772 DEBUG(dbgs() << "Eliminated: " << *MI);
1773 MI->eraseFromParent();
1774 }
1775
1776 // Udpate LiveIntervals.
1777 if (LIS)
1778 LIS->repairIntervalsInRange(MBB, MBBI, EndMBBI, OrigRegs);
1779 }
1780