1 //===-- MCJIT.cpp - MC-based Just-in-Time Compiler ------------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9
10 #include "MCJIT.h"
11 #include "llvm/ADT/STLExtras.h"
12 #include "llvm/ExecutionEngine/GenericValue.h"
13 #include "llvm/ExecutionEngine/JITEventListener.h"
14 #include "llvm/ExecutionEngine/MCJIT.h"
15 #include "llvm/ExecutionEngine/SectionMemoryManager.h"
16 #include "llvm/IR/DataLayout.h"
17 #include "llvm/IR/DerivedTypes.h"
18 #include "llvm/IR/Function.h"
19 #include "llvm/IR/LegacyPassManager.h"
20 #include "llvm/IR/Mangler.h"
21 #include "llvm/IR/Module.h"
22 #include "llvm/MC/MCAsmInfo.h"
23 #include "llvm/Object/Archive.h"
24 #include "llvm/Object/ObjectFile.h"
25 #include "llvm/Support/DynamicLibrary.h"
26 #include "llvm/Support/ErrorHandling.h"
27 #include "llvm/Support/MemoryBuffer.h"
28 #include "llvm/Support/MutexGuard.h"
29
30 using namespace llvm;
31
anchor()32 void ObjectCache::anchor() {}
33
34 namespace {
35
36 static struct RegisterJIT {
RegisterJIT__anonc8a000c80111::RegisterJIT37 RegisterJIT() { MCJIT::Register(); }
38 } JITRegistrator;
39
40 }
41
LLVMLinkInMCJIT()42 extern "C" void LLVMLinkInMCJIT() {
43 }
44
45 ExecutionEngine*
createJIT(std::unique_ptr<Module> M,std::string * ErrorStr,std::shared_ptr<MCJITMemoryManager> MemMgr,std::shared_ptr<RuntimeDyld::SymbolResolver> Resolver,std::unique_ptr<TargetMachine> TM)46 MCJIT::createJIT(std::unique_ptr<Module> M,
47 std::string *ErrorStr,
48 std::shared_ptr<MCJITMemoryManager> MemMgr,
49 std::shared_ptr<RuntimeDyld::SymbolResolver> Resolver,
50 std::unique_ptr<TargetMachine> TM) {
51 // Try to register the program as a source of symbols to resolve against.
52 //
53 // FIXME: Don't do this here.
54 sys::DynamicLibrary::LoadLibraryPermanently(nullptr, nullptr);
55
56 if (!MemMgr || !Resolver) {
57 auto RTDyldMM = std::make_shared<SectionMemoryManager>();
58 if (!MemMgr)
59 MemMgr = RTDyldMM;
60 if (!Resolver)
61 Resolver = RTDyldMM;
62 }
63
64 return new MCJIT(std::move(M), std::move(TM), std::move(MemMgr),
65 std::move(Resolver));
66 }
67
MCJIT(std::unique_ptr<Module> M,std::unique_ptr<TargetMachine> tm,std::shared_ptr<MCJITMemoryManager> MemMgr,std::shared_ptr<RuntimeDyld::SymbolResolver> Resolver)68 MCJIT::MCJIT(std::unique_ptr<Module> M, std::unique_ptr<TargetMachine> tm,
69 std::shared_ptr<MCJITMemoryManager> MemMgr,
70 std::shared_ptr<RuntimeDyld::SymbolResolver> Resolver)
71 : ExecutionEngine(std::move(M)), TM(std::move(tm)), Ctx(nullptr),
72 MemMgr(std::move(MemMgr)), Resolver(*this, std::move(Resolver)),
73 Dyld(*this->MemMgr, this->Resolver), ObjCache(nullptr) {
74 // FIXME: We are managing our modules, so we do not want the base class
75 // ExecutionEngine to manage them as well. To avoid double destruction
76 // of the first (and only) module added in ExecutionEngine constructor
77 // we remove it from EE and will destruct it ourselves.
78 //
79 // It may make sense to move our module manager (based on SmallStPtr) back
80 // into EE if the JIT and Interpreter can live with it.
81 // If so, additional functions: addModule, removeModule, FindFunctionNamed,
82 // runStaticConstructorsDestructors could be moved back to EE as well.
83 //
84 std::unique_ptr<Module> First = std::move(Modules[0]);
85 Modules.clear();
86
87 OwnedModules.addModule(std::move(First));
88 setDataLayout(TM->getDataLayout());
89 RegisterJITEventListener(JITEventListener::createGDBRegistrationListener());
90 }
91
~MCJIT()92 MCJIT::~MCJIT() {
93 MutexGuard locked(lock);
94
95 Dyld.deregisterEHFrames();
96
97 for (auto &Obj : LoadedObjects)
98 if (Obj)
99 NotifyFreeingObject(*Obj);
100
101 Archives.clear();
102 }
103
addModule(std::unique_ptr<Module> M)104 void MCJIT::addModule(std::unique_ptr<Module> M) {
105 MutexGuard locked(lock);
106 OwnedModules.addModule(std::move(M));
107 }
108
removeModule(Module * M)109 bool MCJIT::removeModule(Module *M) {
110 MutexGuard locked(lock);
111 return OwnedModules.removeModule(M);
112 }
113
addObjectFile(std::unique_ptr<object::ObjectFile> Obj)114 void MCJIT::addObjectFile(std::unique_ptr<object::ObjectFile> Obj) {
115 std::unique_ptr<RuntimeDyld::LoadedObjectInfo> L = Dyld.loadObject(*Obj);
116 if (Dyld.hasError())
117 report_fatal_error(Dyld.getErrorString());
118
119 NotifyObjectEmitted(*Obj, *L);
120
121 LoadedObjects.push_back(std::move(Obj));
122 }
123
addObjectFile(object::OwningBinary<object::ObjectFile> Obj)124 void MCJIT::addObjectFile(object::OwningBinary<object::ObjectFile> Obj) {
125 std::unique_ptr<object::ObjectFile> ObjFile;
126 std::unique_ptr<MemoryBuffer> MemBuf;
127 std::tie(ObjFile, MemBuf) = Obj.takeBinary();
128 addObjectFile(std::move(ObjFile));
129 Buffers.push_back(std::move(MemBuf));
130 }
131
addArchive(object::OwningBinary<object::Archive> A)132 void MCJIT::addArchive(object::OwningBinary<object::Archive> A) {
133 Archives.push_back(std::move(A));
134 }
135
setObjectCache(ObjectCache * NewCache)136 void MCJIT::setObjectCache(ObjectCache* NewCache) {
137 MutexGuard locked(lock);
138 ObjCache = NewCache;
139 }
140
emitObject(Module * M)141 std::unique_ptr<MemoryBuffer> MCJIT::emitObject(Module *M) {
142 MutexGuard locked(lock);
143
144 // This must be a module which has already been added but not loaded to this
145 // MCJIT instance, since these conditions are tested by our caller,
146 // generateCodeForModule.
147
148 legacy::PassManager PM;
149
150 M->setDataLayout(*TM->getDataLayout());
151
152 // The RuntimeDyld will take ownership of this shortly
153 SmallVector<char, 4096> ObjBufferSV;
154 raw_svector_ostream ObjStream(ObjBufferSV);
155
156 // Turn the machine code intermediate representation into bytes in memory
157 // that may be executed.
158 if (TM->addPassesToEmitMC(PM, Ctx, ObjStream, !getVerifyModules()))
159 report_fatal_error("Target does not support MC emission!");
160
161 // Initialize passes.
162 PM.run(*M);
163 // Flush the output buffer to get the generated code into memory
164 ObjStream.flush();
165
166 std::unique_ptr<MemoryBuffer> CompiledObjBuffer(
167 new ObjectMemoryBuffer(std::move(ObjBufferSV)));
168
169 // If we have an object cache, tell it about the new object.
170 // Note that we're using the compiled image, not the loaded image (as below).
171 if (ObjCache) {
172 // MemoryBuffer is a thin wrapper around the actual memory, so it's OK
173 // to create a temporary object here and delete it after the call.
174 MemoryBufferRef MB = CompiledObjBuffer->getMemBufferRef();
175 ObjCache->notifyObjectCompiled(M, MB);
176 }
177
178 return CompiledObjBuffer;
179 }
180
generateCodeForModule(Module * M)181 void MCJIT::generateCodeForModule(Module *M) {
182 // Get a thread lock to make sure we aren't trying to load multiple times
183 MutexGuard locked(lock);
184
185 // This must be a module which has already been added to this MCJIT instance.
186 assert(OwnedModules.ownsModule(M) &&
187 "MCJIT::generateCodeForModule: Unknown module.");
188
189 // Re-compilation is not supported
190 if (OwnedModules.hasModuleBeenLoaded(M))
191 return;
192
193 std::unique_ptr<MemoryBuffer> ObjectToLoad;
194 // Try to load the pre-compiled object from cache if possible
195 if (ObjCache)
196 ObjectToLoad = ObjCache->getObject(M);
197
198 // If the cache did not contain a suitable object, compile the object
199 if (!ObjectToLoad) {
200 ObjectToLoad = emitObject(M);
201 assert(ObjectToLoad && "Compilation did not produce an object.");
202 }
203
204 // Load the object into the dynamic linker.
205 // MCJIT now owns the ObjectImage pointer (via its LoadedObjects list).
206 ErrorOr<std::unique_ptr<object::ObjectFile>> LoadedObject =
207 object::ObjectFile::createObjectFile(ObjectToLoad->getMemBufferRef());
208 std::unique_ptr<RuntimeDyld::LoadedObjectInfo> L =
209 Dyld.loadObject(*LoadedObject.get());
210
211 if (Dyld.hasError())
212 report_fatal_error(Dyld.getErrorString());
213
214 NotifyObjectEmitted(*LoadedObject.get(), *L);
215
216 Buffers.push_back(std::move(ObjectToLoad));
217 LoadedObjects.push_back(std::move(*LoadedObject));
218
219 OwnedModules.markModuleAsLoaded(M);
220 }
221
finalizeLoadedModules()222 void MCJIT::finalizeLoadedModules() {
223 MutexGuard locked(lock);
224
225 // Resolve any outstanding relocations.
226 Dyld.resolveRelocations();
227
228 OwnedModules.markAllLoadedModulesAsFinalized();
229
230 // Register EH frame data for any module we own which has been loaded
231 Dyld.registerEHFrames();
232
233 // Set page permissions.
234 MemMgr->finalizeMemory();
235 }
236
237 // FIXME: Rename this.
finalizeObject()238 void MCJIT::finalizeObject() {
239 MutexGuard locked(lock);
240
241 // Generate code for module is going to move objects out of the 'added' list,
242 // so we need to copy that out before using it:
243 SmallVector<Module*, 16> ModsToAdd;
244 for (auto M : OwnedModules.added())
245 ModsToAdd.push_back(M);
246
247 for (auto M : ModsToAdd)
248 generateCodeForModule(M);
249
250 finalizeLoadedModules();
251 }
252
finalizeModule(Module * M)253 void MCJIT::finalizeModule(Module *M) {
254 MutexGuard locked(lock);
255
256 // This must be a module which has already been added to this MCJIT instance.
257 assert(OwnedModules.ownsModule(M) && "MCJIT::finalizeModule: Unknown module.");
258
259 // If the module hasn't been compiled, just do that.
260 if (!OwnedModules.hasModuleBeenLoaded(M))
261 generateCodeForModule(M);
262
263 finalizeLoadedModules();
264 }
265
findExistingSymbol(const std::string & Name)266 RuntimeDyld::SymbolInfo MCJIT::findExistingSymbol(const std::string &Name) {
267 Mangler Mang(TM->getDataLayout());
268 SmallString<128> FullName;
269 Mang.getNameWithPrefix(FullName, Name);
270 return Dyld.getSymbol(FullName);
271 }
272
findModuleForSymbol(const std::string & Name,bool CheckFunctionsOnly)273 Module *MCJIT::findModuleForSymbol(const std::string &Name,
274 bool CheckFunctionsOnly) {
275 MutexGuard locked(lock);
276
277 // If it hasn't already been generated, see if it's in one of our modules.
278 for (ModulePtrSet::iterator I = OwnedModules.begin_added(),
279 E = OwnedModules.end_added();
280 I != E; ++I) {
281 Module *M = *I;
282 Function *F = M->getFunction(Name);
283 if (F && !F->isDeclaration())
284 return M;
285 if (!CheckFunctionsOnly) {
286 GlobalVariable *G = M->getGlobalVariable(Name);
287 if (G && !G->isDeclaration())
288 return M;
289 // FIXME: Do we need to worry about global aliases?
290 }
291 }
292 // We didn't find the symbol in any of our modules.
293 return nullptr;
294 }
295
getSymbolAddress(const std::string & Name,bool CheckFunctionsOnly)296 uint64_t MCJIT::getSymbolAddress(const std::string &Name,
297 bool CheckFunctionsOnly) {
298 return findSymbol(Name, CheckFunctionsOnly).getAddress();
299 }
300
findSymbol(const std::string & Name,bool CheckFunctionsOnly)301 RuntimeDyld::SymbolInfo MCJIT::findSymbol(const std::string &Name,
302 bool CheckFunctionsOnly) {
303 MutexGuard locked(lock);
304
305 // First, check to see if we already have this symbol.
306 if (auto Sym = findExistingSymbol(Name))
307 return Sym;
308
309 for (object::OwningBinary<object::Archive> &OB : Archives) {
310 object::Archive *A = OB.getBinary();
311 // Look for our symbols in each Archive
312 object::Archive::child_iterator ChildIt = A->findSym(Name);
313 if (ChildIt != A->child_end()) {
314 // FIXME: Support nested archives?
315 ErrorOr<std::unique_ptr<object::Binary>> ChildBinOrErr =
316 ChildIt->getAsBinary();
317 if (ChildBinOrErr.getError())
318 continue;
319 std::unique_ptr<object::Binary> &ChildBin = ChildBinOrErr.get();
320 if (ChildBin->isObject()) {
321 std::unique_ptr<object::ObjectFile> OF(
322 static_cast<object::ObjectFile *>(ChildBin.release()));
323 // This causes the object file to be loaded.
324 addObjectFile(std::move(OF));
325 // The address should be here now.
326 if (auto Sym = findExistingSymbol(Name))
327 return Sym;
328 }
329 }
330 }
331
332 // If it hasn't already been generated, see if it's in one of our modules.
333 Module *M = findModuleForSymbol(Name, CheckFunctionsOnly);
334 if (M) {
335 generateCodeForModule(M);
336
337 // Check the RuntimeDyld table again, it should be there now.
338 return findExistingSymbol(Name);
339 }
340
341 // If a LazyFunctionCreator is installed, use it to get/create the function.
342 // FIXME: Should we instead have a LazySymbolCreator callback?
343 if (LazyFunctionCreator) {
344 auto Addr = static_cast<uint64_t>(
345 reinterpret_cast<uintptr_t>(LazyFunctionCreator(Name)));
346 return RuntimeDyld::SymbolInfo(Addr, JITSymbolFlags::Exported);
347 }
348
349 return nullptr;
350 }
351
getGlobalValueAddress(const std::string & Name)352 uint64_t MCJIT::getGlobalValueAddress(const std::string &Name) {
353 MutexGuard locked(lock);
354 uint64_t Result = getSymbolAddress(Name, false);
355 if (Result != 0)
356 finalizeLoadedModules();
357 return Result;
358 }
359
getFunctionAddress(const std::string & Name)360 uint64_t MCJIT::getFunctionAddress(const std::string &Name) {
361 MutexGuard locked(lock);
362 uint64_t Result = getSymbolAddress(Name, true);
363 if (Result != 0)
364 finalizeLoadedModules();
365 return Result;
366 }
367
368 // Deprecated. Use getFunctionAddress instead.
getPointerToFunction(Function * F)369 void *MCJIT::getPointerToFunction(Function *F) {
370 MutexGuard locked(lock);
371
372 Mangler Mang(TM->getDataLayout());
373 SmallString<128> Name;
374 TM->getNameWithPrefix(Name, F, Mang);
375
376 if (F->isDeclaration() || F->hasAvailableExternallyLinkage()) {
377 bool AbortOnFailure = !F->hasExternalWeakLinkage();
378 void *Addr = getPointerToNamedFunction(Name, AbortOnFailure);
379 updateGlobalMapping(F, Addr);
380 return Addr;
381 }
382
383 Module *M = F->getParent();
384 bool HasBeenAddedButNotLoaded = OwnedModules.hasModuleBeenAddedButNotLoaded(M);
385
386 // Make sure the relevant module has been compiled and loaded.
387 if (HasBeenAddedButNotLoaded)
388 generateCodeForModule(M);
389 else if (!OwnedModules.hasModuleBeenLoaded(M)) {
390 // If this function doesn't belong to one of our modules, we're done.
391 // FIXME: Asking for the pointer to a function that hasn't been registered,
392 // and isn't a declaration (which is handled above) should probably
393 // be an assertion.
394 return nullptr;
395 }
396
397 // FIXME: Should the Dyld be retaining module information? Probably not.
398 //
399 // This is the accessor for the target address, so make sure to check the
400 // load address of the symbol, not the local address.
401 return (void*)Dyld.getSymbol(Name).getAddress();
402 }
403
runStaticConstructorsDestructorsInModulePtrSet(bool isDtors,ModulePtrSet::iterator I,ModulePtrSet::iterator E)404 void MCJIT::runStaticConstructorsDestructorsInModulePtrSet(
405 bool isDtors, ModulePtrSet::iterator I, ModulePtrSet::iterator E) {
406 for (; I != E; ++I) {
407 ExecutionEngine::runStaticConstructorsDestructors(**I, isDtors);
408 }
409 }
410
runStaticConstructorsDestructors(bool isDtors)411 void MCJIT::runStaticConstructorsDestructors(bool isDtors) {
412 // Execute global ctors/dtors for each module in the program.
413 runStaticConstructorsDestructorsInModulePtrSet(
414 isDtors, OwnedModules.begin_added(), OwnedModules.end_added());
415 runStaticConstructorsDestructorsInModulePtrSet(
416 isDtors, OwnedModules.begin_loaded(), OwnedModules.end_loaded());
417 runStaticConstructorsDestructorsInModulePtrSet(
418 isDtors, OwnedModules.begin_finalized(), OwnedModules.end_finalized());
419 }
420
FindFunctionNamedInModulePtrSet(const char * FnName,ModulePtrSet::iterator I,ModulePtrSet::iterator E)421 Function *MCJIT::FindFunctionNamedInModulePtrSet(const char *FnName,
422 ModulePtrSet::iterator I,
423 ModulePtrSet::iterator E) {
424 for (; I != E; ++I) {
425 Function *F = (*I)->getFunction(FnName);
426 if (F && !F->isDeclaration())
427 return F;
428 }
429 return nullptr;
430 }
431
FindFunctionNamed(const char * FnName)432 Function *MCJIT::FindFunctionNamed(const char *FnName) {
433 Function *F = FindFunctionNamedInModulePtrSet(
434 FnName, OwnedModules.begin_added(), OwnedModules.end_added());
435 if (!F)
436 F = FindFunctionNamedInModulePtrSet(FnName, OwnedModules.begin_loaded(),
437 OwnedModules.end_loaded());
438 if (!F)
439 F = FindFunctionNamedInModulePtrSet(FnName, OwnedModules.begin_finalized(),
440 OwnedModules.end_finalized());
441 return F;
442 }
443
runFunction(Function * F,const std::vector<GenericValue> & ArgValues)444 GenericValue MCJIT::runFunction(Function *F,
445 const std::vector<GenericValue> &ArgValues) {
446 assert(F && "Function *F was null at entry to run()");
447
448 void *FPtr = getPointerToFunction(F);
449 assert(FPtr && "Pointer to fn's code was null after getPointerToFunction");
450 FunctionType *FTy = F->getFunctionType();
451 Type *RetTy = FTy->getReturnType();
452
453 assert((FTy->getNumParams() == ArgValues.size() ||
454 (FTy->isVarArg() && FTy->getNumParams() <= ArgValues.size())) &&
455 "Wrong number of arguments passed into function!");
456 assert(FTy->getNumParams() == ArgValues.size() &&
457 "This doesn't support passing arguments through varargs (yet)!");
458
459 // Handle some common cases first. These cases correspond to common `main'
460 // prototypes.
461 if (RetTy->isIntegerTy(32) || RetTy->isVoidTy()) {
462 switch (ArgValues.size()) {
463 case 3:
464 if (FTy->getParamType(0)->isIntegerTy(32) &&
465 FTy->getParamType(1)->isPointerTy() &&
466 FTy->getParamType(2)->isPointerTy()) {
467 int (*PF)(int, char **, const char **) =
468 (int(*)(int, char **, const char **))(intptr_t)FPtr;
469
470 // Call the function.
471 GenericValue rv;
472 rv.IntVal = APInt(32, PF(ArgValues[0].IntVal.getZExtValue(),
473 (char **)GVTOP(ArgValues[1]),
474 (const char **)GVTOP(ArgValues[2])));
475 return rv;
476 }
477 break;
478 case 2:
479 if (FTy->getParamType(0)->isIntegerTy(32) &&
480 FTy->getParamType(1)->isPointerTy()) {
481 int (*PF)(int, char **) = (int(*)(int, char **))(intptr_t)FPtr;
482
483 // Call the function.
484 GenericValue rv;
485 rv.IntVal = APInt(32, PF(ArgValues[0].IntVal.getZExtValue(),
486 (char **)GVTOP(ArgValues[1])));
487 return rv;
488 }
489 break;
490 case 1:
491 if (FTy->getNumParams() == 1 &&
492 FTy->getParamType(0)->isIntegerTy(32)) {
493 GenericValue rv;
494 int (*PF)(int) = (int(*)(int))(intptr_t)FPtr;
495 rv.IntVal = APInt(32, PF(ArgValues[0].IntVal.getZExtValue()));
496 return rv;
497 }
498 break;
499 }
500 }
501
502 // Handle cases where no arguments are passed first.
503 if (ArgValues.empty()) {
504 GenericValue rv;
505 switch (RetTy->getTypeID()) {
506 default: llvm_unreachable("Unknown return type for function call!");
507 case Type::IntegerTyID: {
508 unsigned BitWidth = cast<IntegerType>(RetTy)->getBitWidth();
509 if (BitWidth == 1)
510 rv.IntVal = APInt(BitWidth, ((bool(*)())(intptr_t)FPtr)());
511 else if (BitWidth <= 8)
512 rv.IntVal = APInt(BitWidth, ((char(*)())(intptr_t)FPtr)());
513 else if (BitWidth <= 16)
514 rv.IntVal = APInt(BitWidth, ((short(*)())(intptr_t)FPtr)());
515 else if (BitWidth <= 32)
516 rv.IntVal = APInt(BitWidth, ((int(*)())(intptr_t)FPtr)());
517 else if (BitWidth <= 64)
518 rv.IntVal = APInt(BitWidth, ((int64_t(*)())(intptr_t)FPtr)());
519 else
520 llvm_unreachable("Integer types > 64 bits not supported");
521 return rv;
522 }
523 case Type::VoidTyID:
524 rv.IntVal = APInt(32, ((int(*)())(intptr_t)FPtr)());
525 return rv;
526 case Type::FloatTyID:
527 rv.FloatVal = ((float(*)())(intptr_t)FPtr)();
528 return rv;
529 case Type::DoubleTyID:
530 rv.DoubleVal = ((double(*)())(intptr_t)FPtr)();
531 return rv;
532 case Type::X86_FP80TyID:
533 case Type::FP128TyID:
534 case Type::PPC_FP128TyID:
535 llvm_unreachable("long double not supported yet");
536 case Type::PointerTyID:
537 return PTOGV(((void*(*)())(intptr_t)FPtr)());
538 }
539 }
540
541 llvm_unreachable("Full-featured argument passing not supported yet!");
542 }
543
getPointerToNamedFunction(StringRef Name,bool AbortOnFailure)544 void *MCJIT::getPointerToNamedFunction(StringRef Name, bool AbortOnFailure) {
545 if (!isSymbolSearchingDisabled()) {
546 void *ptr =
547 reinterpret_cast<void*>(
548 static_cast<uintptr_t>(Resolver.findSymbol(Name).getAddress()));
549 if (ptr)
550 return ptr;
551 }
552
553 /// If a LazyFunctionCreator is installed, use it to get/create the function.
554 if (LazyFunctionCreator)
555 if (void *RP = LazyFunctionCreator(Name))
556 return RP;
557
558 if (AbortOnFailure) {
559 report_fatal_error("Program used external function '"+Name+
560 "' which could not be resolved!");
561 }
562 return nullptr;
563 }
564
RegisterJITEventListener(JITEventListener * L)565 void MCJIT::RegisterJITEventListener(JITEventListener *L) {
566 if (!L)
567 return;
568 MutexGuard locked(lock);
569 EventListeners.push_back(L);
570 }
571
UnregisterJITEventListener(JITEventListener * L)572 void MCJIT::UnregisterJITEventListener(JITEventListener *L) {
573 if (!L)
574 return;
575 MutexGuard locked(lock);
576 auto I = std::find(EventListeners.rbegin(), EventListeners.rend(), L);
577 if (I != EventListeners.rend()) {
578 std::swap(*I, EventListeners.back());
579 EventListeners.pop_back();
580 }
581 }
582
NotifyObjectEmitted(const object::ObjectFile & Obj,const RuntimeDyld::LoadedObjectInfo & L)583 void MCJIT::NotifyObjectEmitted(const object::ObjectFile& Obj,
584 const RuntimeDyld::LoadedObjectInfo &L) {
585 MutexGuard locked(lock);
586 MemMgr->notifyObjectLoaded(this, Obj);
587 for (unsigned I = 0, S = EventListeners.size(); I < S; ++I) {
588 EventListeners[I]->NotifyObjectEmitted(Obj, L);
589 }
590 }
591
NotifyFreeingObject(const object::ObjectFile & Obj)592 void MCJIT::NotifyFreeingObject(const object::ObjectFile& Obj) {
593 MutexGuard locked(lock);
594 for (JITEventListener *L : EventListeners)
595 L->NotifyFreeingObject(Obj);
596 }
597
598 RuntimeDyld::SymbolInfo
findSymbol(const std::string & Name)599 LinkingSymbolResolver::findSymbol(const std::string &Name) {
600 auto Result = ParentEngine.findSymbol(Name, false);
601 // If the symbols wasn't found and it begins with an underscore, try again
602 // without the underscore.
603 if (!Result && Name[0] == '_')
604 Result = ParentEngine.findSymbol(Name.substr(1), false);
605 if (Result)
606 return Result;
607 if (ParentEngine.isSymbolSearchingDisabled())
608 return nullptr;
609 return ClientResolver->findSymbol(Name);
610 }
611