1 //===- Dominators.cpp - Dominator Calculation -----------------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements simple dominator construction algorithms for finding
11 // forward dominators. Postdominators are available in libanalysis, but are not
12 // included in libvmcore, because it's not needed. Forward dominators are
13 // needed to support the Verifier pass.
14 //
15 //===----------------------------------------------------------------------===//
16
17 #include "llvm/IR/Dominators.h"
18 #include "llvm/ADT/DepthFirstIterator.h"
19 #include "llvm/ADT/SmallPtrSet.h"
20 #include "llvm/ADT/SmallVector.h"
21 #include "llvm/IR/CFG.h"
22 #include "llvm/IR/Instructions.h"
23 #include "llvm/IR/PassManager.h"
24 #include "llvm/Support/CommandLine.h"
25 #include "llvm/Support/Compiler.h"
26 #include "llvm/Support/Debug.h"
27 #include "llvm/Support/GenericDomTreeConstruction.h"
28 #include "llvm/Support/raw_ostream.h"
29 #include <algorithm>
30 using namespace llvm;
31
32 // Always verify dominfo if expensive checking is enabled.
33 #ifdef XDEBUG
34 static bool VerifyDomInfo = true;
35 #else
36 static bool VerifyDomInfo = false;
37 #endif
38 static cl::opt<bool,true>
39 VerifyDomInfoX("verify-dom-info", cl::location(VerifyDomInfo),
40 cl::desc("Verify dominator info (time consuming)"));
41
isSingleEdge() const42 bool BasicBlockEdge::isSingleEdge() const {
43 const TerminatorInst *TI = Start->getTerminator();
44 unsigned NumEdgesToEnd = 0;
45 for (unsigned int i = 0, n = TI->getNumSuccessors(); i < n; ++i) {
46 if (TI->getSuccessor(i) == End)
47 ++NumEdgesToEnd;
48 if (NumEdgesToEnd >= 2)
49 return false;
50 }
51 assert(NumEdgesToEnd == 1);
52 return true;
53 }
54
55 //===----------------------------------------------------------------------===//
56 // DominatorTree Implementation
57 //===----------------------------------------------------------------------===//
58 //
59 // Provide public access to DominatorTree information. Implementation details
60 // can be found in Dominators.h, GenericDomTree.h, and
61 // GenericDomTreeConstruction.h.
62 //
63 //===----------------------------------------------------------------------===//
64
65 TEMPLATE_INSTANTIATION(class llvm::DomTreeNodeBase<BasicBlock>);
66 TEMPLATE_INSTANTIATION(class llvm::DominatorTreeBase<BasicBlock>);
67
68 #define LLVM_COMMA ,
69 TEMPLATE_INSTANTIATION(void llvm::Calculate<Function LLVM_COMMA BasicBlock *>(
70 DominatorTreeBase<GraphTraits<BasicBlock *>::NodeType> &DT LLVM_COMMA
71 Function &F));
72 TEMPLATE_INSTANTIATION(
73 void llvm::Calculate<Function LLVM_COMMA Inverse<BasicBlock *> >(
74 DominatorTreeBase<GraphTraits<Inverse<BasicBlock *> >::NodeType> &DT
75 LLVM_COMMA Function &F));
76 #undef LLVM_COMMA
77
78 // dominates - Return true if Def dominates a use in User. This performs
79 // the special checks necessary if Def and User are in the same basic block.
80 // Note that Def doesn't dominate a use in Def itself!
dominates(const Instruction * Def,const Instruction * User) const81 bool DominatorTree::dominates(const Instruction *Def,
82 const Instruction *User) const {
83 const BasicBlock *UseBB = User->getParent();
84 const BasicBlock *DefBB = Def->getParent();
85
86 // Any unreachable use is dominated, even if Def == User.
87 if (!isReachableFromEntry(UseBB))
88 return true;
89
90 // Unreachable definitions don't dominate anything.
91 if (!isReachableFromEntry(DefBB))
92 return false;
93
94 // An instruction doesn't dominate a use in itself.
95 if (Def == User)
96 return false;
97
98 // The value defined by an invoke dominates an instruction only if
99 // it dominates every instruction in UseBB.
100 // A PHI is dominated only if the instruction dominates every possible use
101 // in the UseBB.
102 if (isa<InvokeInst>(Def) || isa<PHINode>(User))
103 return dominates(Def, UseBB);
104
105 if (DefBB != UseBB)
106 return dominates(DefBB, UseBB);
107
108 // Loop through the basic block until we find Def or User.
109 BasicBlock::const_iterator I = DefBB->begin();
110 for (; &*I != Def && &*I != User; ++I)
111 /*empty*/;
112
113 return &*I == Def;
114 }
115
116 // true if Def would dominate a use in any instruction in UseBB.
117 // note that dominates(Def, Def->getParent()) is false.
dominates(const Instruction * Def,const BasicBlock * UseBB) const118 bool DominatorTree::dominates(const Instruction *Def,
119 const BasicBlock *UseBB) const {
120 const BasicBlock *DefBB = Def->getParent();
121
122 // Any unreachable use is dominated, even if DefBB == UseBB.
123 if (!isReachableFromEntry(UseBB))
124 return true;
125
126 // Unreachable definitions don't dominate anything.
127 if (!isReachableFromEntry(DefBB))
128 return false;
129
130 if (DefBB == UseBB)
131 return false;
132
133 const InvokeInst *II = dyn_cast<InvokeInst>(Def);
134 if (!II)
135 return dominates(DefBB, UseBB);
136
137 // Invoke results are only usable in the normal destination, not in the
138 // exceptional destination.
139 BasicBlock *NormalDest = II->getNormalDest();
140 BasicBlockEdge E(DefBB, NormalDest);
141 return dominates(E, UseBB);
142 }
143
dominates(const BasicBlockEdge & BBE,const BasicBlock * UseBB) const144 bool DominatorTree::dominates(const BasicBlockEdge &BBE,
145 const BasicBlock *UseBB) const {
146 // Assert that we have a single edge. We could handle them by simply
147 // returning false, but since isSingleEdge is linear on the number of
148 // edges, the callers can normally handle them more efficiently.
149 assert(BBE.isSingleEdge());
150
151 // If the BB the edge ends in doesn't dominate the use BB, then the
152 // edge also doesn't.
153 const BasicBlock *Start = BBE.getStart();
154 const BasicBlock *End = BBE.getEnd();
155 if (!dominates(End, UseBB))
156 return false;
157
158 // Simple case: if the end BB has a single predecessor, the fact that it
159 // dominates the use block implies that the edge also does.
160 if (End->getSinglePredecessor())
161 return true;
162
163 // The normal edge from the invoke is critical. Conceptually, what we would
164 // like to do is split it and check if the new block dominates the use.
165 // With X being the new block, the graph would look like:
166 //
167 // DefBB
168 // /\ . .
169 // / \ . .
170 // / \ . .
171 // / \ | |
172 // A X B C
173 // | \ | /
174 // . \|/
175 // . NormalDest
176 // .
177 //
178 // Given the definition of dominance, NormalDest is dominated by X iff X
179 // dominates all of NormalDest's predecessors (X, B, C in the example). X
180 // trivially dominates itself, so we only have to find if it dominates the
181 // other predecessors. Since the only way out of X is via NormalDest, X can
182 // only properly dominate a node if NormalDest dominates that node too.
183 for (const_pred_iterator PI = pred_begin(End), E = pred_end(End);
184 PI != E; ++PI) {
185 const BasicBlock *BB = *PI;
186 if (BB == Start)
187 continue;
188
189 if (!dominates(End, BB))
190 return false;
191 }
192 return true;
193 }
194
dominates(const BasicBlockEdge & BBE,const Use & U) const195 bool DominatorTree::dominates(const BasicBlockEdge &BBE, const Use &U) const {
196 // Assert that we have a single edge. We could handle them by simply
197 // returning false, but since isSingleEdge is linear on the number of
198 // edges, the callers can normally handle them more efficiently.
199 assert(BBE.isSingleEdge());
200
201 Instruction *UserInst = cast<Instruction>(U.getUser());
202 // A PHI in the end of the edge is dominated by it.
203 PHINode *PN = dyn_cast<PHINode>(UserInst);
204 if (PN && PN->getParent() == BBE.getEnd() &&
205 PN->getIncomingBlock(U) == BBE.getStart())
206 return true;
207
208 // Otherwise use the edge-dominates-block query, which
209 // handles the crazy critical edge cases properly.
210 const BasicBlock *UseBB;
211 if (PN)
212 UseBB = PN->getIncomingBlock(U);
213 else
214 UseBB = UserInst->getParent();
215 return dominates(BBE, UseBB);
216 }
217
dominates(const Instruction * Def,const Use & U) const218 bool DominatorTree::dominates(const Instruction *Def, const Use &U) const {
219 Instruction *UserInst = cast<Instruction>(U.getUser());
220 const BasicBlock *DefBB = Def->getParent();
221
222 // Determine the block in which the use happens. PHI nodes use
223 // their operands on edges; simulate this by thinking of the use
224 // happening at the end of the predecessor block.
225 const BasicBlock *UseBB;
226 if (PHINode *PN = dyn_cast<PHINode>(UserInst))
227 UseBB = PN->getIncomingBlock(U);
228 else
229 UseBB = UserInst->getParent();
230
231 // Any unreachable use is dominated, even if Def == User.
232 if (!isReachableFromEntry(UseBB))
233 return true;
234
235 // Unreachable definitions don't dominate anything.
236 if (!isReachableFromEntry(DefBB))
237 return false;
238
239 // Invoke instructions define their return values on the edges
240 // to their normal successors, so we have to handle them specially.
241 // Among other things, this means they don't dominate anything in
242 // their own block, except possibly a phi, so we don't need to
243 // walk the block in any case.
244 if (const InvokeInst *II = dyn_cast<InvokeInst>(Def)) {
245 BasicBlock *NormalDest = II->getNormalDest();
246 BasicBlockEdge E(DefBB, NormalDest);
247 return dominates(E, U);
248 }
249
250 // If the def and use are in different blocks, do a simple CFG dominator
251 // tree query.
252 if (DefBB != UseBB)
253 return dominates(DefBB, UseBB);
254
255 // Ok, def and use are in the same block. If the def is an invoke, it
256 // doesn't dominate anything in the block. If it's a PHI, it dominates
257 // everything in the block.
258 if (isa<PHINode>(UserInst))
259 return true;
260
261 // Otherwise, just loop through the basic block until we find Def or User.
262 BasicBlock::const_iterator I = DefBB->begin();
263 for (; &*I != Def && &*I != UserInst; ++I)
264 /*empty*/;
265
266 return &*I != UserInst;
267 }
268
isReachableFromEntry(const Use & U) const269 bool DominatorTree::isReachableFromEntry(const Use &U) const {
270 Instruction *I = dyn_cast<Instruction>(U.getUser());
271
272 // ConstantExprs aren't really reachable from the entry block, but they
273 // don't need to be treated like unreachable code either.
274 if (!I) return true;
275
276 // PHI nodes use their operands on their incoming edges.
277 if (PHINode *PN = dyn_cast<PHINode>(I))
278 return isReachableFromEntry(PN->getIncomingBlock(U));
279
280 // Everything else uses their operands in their own block.
281 return isReachableFromEntry(I->getParent());
282 }
283
verifyDomTree() const284 void DominatorTree::verifyDomTree() const {
285 if (!VerifyDomInfo)
286 return;
287
288 Function &F = *getRoot()->getParent();
289
290 DominatorTree OtherDT;
291 OtherDT.recalculate(F);
292 if (compare(OtherDT)) {
293 errs() << "DominatorTree is not up to date!\nComputed:\n";
294 print(errs());
295 errs() << "\nActual:\n";
296 OtherDT.print(errs());
297 abort();
298 }
299 }
300
301 //===----------------------------------------------------------------------===//
302 // DominatorTreeAnalysis and related pass implementations
303 //===----------------------------------------------------------------------===//
304 //
305 // This implements the DominatorTreeAnalysis which is used with the new pass
306 // manager. It also implements some methods from utility passes.
307 //
308 //===----------------------------------------------------------------------===//
309
run(Function & F)310 DominatorTree DominatorTreeAnalysis::run(Function &F) {
311 DominatorTree DT;
312 DT.recalculate(F);
313 return DT;
314 }
315
316 char DominatorTreeAnalysis::PassID;
317
DominatorTreePrinterPass(raw_ostream & OS)318 DominatorTreePrinterPass::DominatorTreePrinterPass(raw_ostream &OS) : OS(OS) {}
319
run(Function & F,FunctionAnalysisManager * AM)320 PreservedAnalyses DominatorTreePrinterPass::run(Function &F,
321 FunctionAnalysisManager *AM) {
322 OS << "DominatorTree for function: " << F.getName() << "\n";
323 AM->getResult<DominatorTreeAnalysis>(F).print(OS);
324
325 return PreservedAnalyses::all();
326 }
327
run(Function & F,FunctionAnalysisManager * AM)328 PreservedAnalyses DominatorTreeVerifierPass::run(Function &F,
329 FunctionAnalysisManager *AM) {
330 AM->getResult<DominatorTreeAnalysis>(F).verifyDomTree();
331
332 return PreservedAnalyses::all();
333 }
334
335 //===----------------------------------------------------------------------===//
336 // DominatorTreeWrapperPass Implementation
337 //===----------------------------------------------------------------------===//
338 //
339 // The implementation details of the wrapper pass that holds a DominatorTree
340 // suitable for use with the legacy pass manager.
341 //
342 //===----------------------------------------------------------------------===//
343
344 char DominatorTreeWrapperPass::ID = 0;
345 INITIALIZE_PASS(DominatorTreeWrapperPass, "domtree",
346 "Dominator Tree Construction", true, true)
347
runOnFunction(Function & F)348 bool DominatorTreeWrapperPass::runOnFunction(Function &F) {
349 DT.recalculate(F);
350 return false;
351 }
352
verifyAnalysis() const353 void DominatorTreeWrapperPass::verifyAnalysis() const { DT.verifyDomTree(); }
354
print(raw_ostream & OS,const Module *) const355 void DominatorTreeWrapperPass::print(raw_ostream &OS, const Module *) const {
356 DT.print(OS);
357 }
358
359