1 //===-- AArch64TargetTransformInfo.cpp - AArch64 specific TTI -------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 
10 #include "AArch64TargetTransformInfo.h"
11 #include "MCTargetDesc/AArch64AddressingModes.h"
12 #include "llvm/Analysis/TargetTransformInfo.h"
13 #include "llvm/Analysis/LoopInfo.h"
14 #include "llvm/CodeGen/BasicTTIImpl.h"
15 #include "llvm/Support/Debug.h"
16 #include "llvm/Target/CostTable.h"
17 #include "llvm/Target/TargetLowering.h"
18 #include <algorithm>
19 using namespace llvm;
20 
21 #define DEBUG_TYPE "aarch64tti"
22 
23 /// \brief Calculate the cost of materializing a 64-bit value. This helper
24 /// method might only calculate a fraction of a larger immediate. Therefore it
25 /// is valid to return a cost of ZERO.
getIntImmCost(int64_t Val)26 unsigned AArch64TTIImpl::getIntImmCost(int64_t Val) {
27   // Check if the immediate can be encoded within an instruction.
28   if (Val == 0 || AArch64_AM::isLogicalImmediate(Val, 64))
29     return 0;
30 
31   if (Val < 0)
32     Val = ~Val;
33 
34   // Calculate how many moves we will need to materialize this constant.
35   unsigned LZ = countLeadingZeros((uint64_t)Val);
36   return (64 - LZ + 15) / 16;
37 }
38 
39 /// \brief Calculate the cost of materializing the given constant.
getIntImmCost(const APInt & Imm,Type * Ty)40 unsigned AArch64TTIImpl::getIntImmCost(const APInt &Imm, Type *Ty) {
41   assert(Ty->isIntegerTy());
42 
43   unsigned BitSize = Ty->getPrimitiveSizeInBits();
44   if (BitSize == 0)
45     return ~0U;
46 
47   // Sign-extend all constants to a multiple of 64-bit.
48   APInt ImmVal = Imm;
49   if (BitSize & 0x3f)
50     ImmVal = Imm.sext((BitSize + 63) & ~0x3fU);
51 
52   // Split the constant into 64-bit chunks and calculate the cost for each
53   // chunk.
54   unsigned Cost = 0;
55   for (unsigned ShiftVal = 0; ShiftVal < BitSize; ShiftVal += 64) {
56     APInt Tmp = ImmVal.ashr(ShiftVal).sextOrTrunc(64);
57     int64_t Val = Tmp.getSExtValue();
58     Cost += getIntImmCost(Val);
59   }
60   // We need at least one instruction to materialze the constant.
61   return std::max(1U, Cost);
62 }
63 
getIntImmCost(unsigned Opcode,unsigned Idx,const APInt & Imm,Type * Ty)64 unsigned AArch64TTIImpl::getIntImmCost(unsigned Opcode, unsigned Idx,
65                                        const APInt &Imm, Type *Ty) {
66   assert(Ty->isIntegerTy());
67 
68   unsigned BitSize = Ty->getPrimitiveSizeInBits();
69   // There is no cost model for constants with a bit size of 0. Return TCC_Free
70   // here, so that constant hoisting will ignore this constant.
71   if (BitSize == 0)
72     return TTI::TCC_Free;
73 
74   unsigned ImmIdx = ~0U;
75   switch (Opcode) {
76   default:
77     return TTI::TCC_Free;
78   case Instruction::GetElementPtr:
79     // Always hoist the base address of a GetElementPtr.
80     if (Idx == 0)
81       return 2 * TTI::TCC_Basic;
82     return TTI::TCC_Free;
83   case Instruction::Store:
84     ImmIdx = 0;
85     break;
86   case Instruction::Add:
87   case Instruction::Sub:
88   case Instruction::Mul:
89   case Instruction::UDiv:
90   case Instruction::SDiv:
91   case Instruction::URem:
92   case Instruction::SRem:
93   case Instruction::And:
94   case Instruction::Or:
95   case Instruction::Xor:
96   case Instruction::ICmp:
97     ImmIdx = 1;
98     break;
99   // Always return TCC_Free for the shift value of a shift instruction.
100   case Instruction::Shl:
101   case Instruction::LShr:
102   case Instruction::AShr:
103     if (Idx == 1)
104       return TTI::TCC_Free;
105     break;
106   case Instruction::Trunc:
107   case Instruction::ZExt:
108   case Instruction::SExt:
109   case Instruction::IntToPtr:
110   case Instruction::PtrToInt:
111   case Instruction::BitCast:
112   case Instruction::PHI:
113   case Instruction::Call:
114   case Instruction::Select:
115   case Instruction::Ret:
116   case Instruction::Load:
117     break;
118   }
119 
120   if (Idx == ImmIdx) {
121     unsigned NumConstants = (BitSize + 63) / 64;
122     unsigned Cost = AArch64TTIImpl::getIntImmCost(Imm, Ty);
123     return (Cost <= NumConstants * TTI::TCC_Basic)
124                ? static_cast<unsigned>(TTI::TCC_Free)
125                : Cost;
126   }
127   return AArch64TTIImpl::getIntImmCost(Imm, Ty);
128 }
129 
getIntImmCost(Intrinsic::ID IID,unsigned Idx,const APInt & Imm,Type * Ty)130 unsigned AArch64TTIImpl::getIntImmCost(Intrinsic::ID IID, unsigned Idx,
131                                        const APInt &Imm, Type *Ty) {
132   assert(Ty->isIntegerTy());
133 
134   unsigned BitSize = Ty->getPrimitiveSizeInBits();
135   // There is no cost model for constants with a bit size of 0. Return TCC_Free
136   // here, so that constant hoisting will ignore this constant.
137   if (BitSize == 0)
138     return TTI::TCC_Free;
139 
140   switch (IID) {
141   default:
142     return TTI::TCC_Free;
143   case Intrinsic::sadd_with_overflow:
144   case Intrinsic::uadd_with_overflow:
145   case Intrinsic::ssub_with_overflow:
146   case Intrinsic::usub_with_overflow:
147   case Intrinsic::smul_with_overflow:
148   case Intrinsic::umul_with_overflow:
149     if (Idx == 1) {
150       unsigned NumConstants = (BitSize + 63) / 64;
151       unsigned Cost = AArch64TTIImpl::getIntImmCost(Imm, Ty);
152       return (Cost <= NumConstants * TTI::TCC_Basic)
153                  ? static_cast<unsigned>(TTI::TCC_Free)
154                  : Cost;
155     }
156     break;
157   case Intrinsic::experimental_stackmap:
158     if ((Idx < 2) || (Imm.getBitWidth() <= 64 && isInt<64>(Imm.getSExtValue())))
159       return TTI::TCC_Free;
160     break;
161   case Intrinsic::experimental_patchpoint_void:
162   case Intrinsic::experimental_patchpoint_i64:
163     if ((Idx < 4) || (Imm.getBitWidth() <= 64 && isInt<64>(Imm.getSExtValue())))
164       return TTI::TCC_Free;
165     break;
166   }
167   return AArch64TTIImpl::getIntImmCost(Imm, Ty);
168 }
169 
170 TargetTransformInfo::PopcntSupportKind
getPopcntSupport(unsigned TyWidth)171 AArch64TTIImpl::getPopcntSupport(unsigned TyWidth) {
172   assert(isPowerOf2_32(TyWidth) && "Ty width must be power of 2");
173   if (TyWidth == 32 || TyWidth == 64)
174     return TTI::PSK_FastHardware;
175   // TODO: AArch64TargetLowering::LowerCTPOP() supports 128bit popcount.
176   return TTI::PSK_Software;
177 }
178 
getCastInstrCost(unsigned Opcode,Type * Dst,Type * Src)179 unsigned AArch64TTIImpl::getCastInstrCost(unsigned Opcode, Type *Dst,
180                                           Type *Src) {
181   int ISD = TLI->InstructionOpcodeToISD(Opcode);
182   assert(ISD && "Invalid opcode");
183 
184   EVT SrcTy = TLI->getValueType(Src);
185   EVT DstTy = TLI->getValueType(Dst);
186 
187   if (!SrcTy.isSimple() || !DstTy.isSimple())
188     return BaseT::getCastInstrCost(Opcode, Dst, Src);
189 
190   static const TypeConversionCostTblEntry<MVT> ConversionTbl[] = {
191     // LowerVectorINT_TO_FP:
192     { ISD::SINT_TO_FP, MVT::v2f32, MVT::v2i32, 1 },
193     { ISD::SINT_TO_FP, MVT::v4f32, MVT::v4i32, 1 },
194     { ISD::SINT_TO_FP, MVT::v2f64, MVT::v2i64, 1 },
195     { ISD::UINT_TO_FP, MVT::v2f32, MVT::v2i32, 1 },
196     { ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i32, 1 },
197     { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i64, 1 },
198 
199     // Complex: to v2f32
200     { ISD::SINT_TO_FP, MVT::v2f32, MVT::v2i8,  3 },
201     { ISD::SINT_TO_FP, MVT::v2f32, MVT::v2i16, 3 },
202     { ISD::SINT_TO_FP, MVT::v2f32, MVT::v2i64, 2 },
203     { ISD::UINT_TO_FP, MVT::v2f32, MVT::v2i8,  3 },
204     { ISD::UINT_TO_FP, MVT::v2f32, MVT::v2i16, 3 },
205     { ISD::UINT_TO_FP, MVT::v2f32, MVT::v2i64, 2 },
206 
207     // Complex: to v4f32
208     { ISD::SINT_TO_FP, MVT::v4f32, MVT::v4i8,  4 },
209     { ISD::SINT_TO_FP, MVT::v4f32, MVT::v4i16, 2 },
210     { ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i8,  3 },
211     { ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i16, 2 },
212 
213     // Complex: to v2f64
214     { ISD::SINT_TO_FP, MVT::v2f64, MVT::v2i8,  4 },
215     { ISD::SINT_TO_FP, MVT::v2f64, MVT::v2i16, 4 },
216     { ISD::SINT_TO_FP, MVT::v2f64, MVT::v2i32, 2 },
217     { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i8,  4 },
218     { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i16, 4 },
219     { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i32, 2 },
220 
221 
222     // LowerVectorFP_TO_INT
223     { ISD::FP_TO_SINT, MVT::v2i32, MVT::v2f32, 1 },
224     { ISD::FP_TO_SINT, MVT::v4i32, MVT::v4f32, 1 },
225     { ISD::FP_TO_SINT, MVT::v2i64, MVT::v2f64, 1 },
226     { ISD::FP_TO_UINT, MVT::v2i32, MVT::v2f32, 1 },
227     { ISD::FP_TO_UINT, MVT::v4i32, MVT::v4f32, 1 },
228     { ISD::FP_TO_UINT, MVT::v2i64, MVT::v2f64, 1 },
229 
230     // Complex, from v2f32: legal type is v2i32 (no cost) or v2i64 (1 ext).
231     { ISD::FP_TO_SINT, MVT::v2i64, MVT::v2f32, 2 },
232     { ISD::FP_TO_SINT, MVT::v2i16, MVT::v2f32, 1 },
233     { ISD::FP_TO_SINT, MVT::v2i8,  MVT::v2f32, 1 },
234     { ISD::FP_TO_UINT, MVT::v2i64, MVT::v2f32, 2 },
235     { ISD::FP_TO_UINT, MVT::v2i16, MVT::v2f32, 1 },
236     { ISD::FP_TO_UINT, MVT::v2i8,  MVT::v2f32, 1 },
237 
238     // Complex, from v4f32: legal type is v4i16, 1 narrowing => ~2
239     { ISD::FP_TO_SINT, MVT::v4i16, MVT::v4f32, 2 },
240     { ISD::FP_TO_SINT, MVT::v4i8,  MVT::v4f32, 2 },
241     { ISD::FP_TO_UINT, MVT::v4i16, MVT::v4f32, 2 },
242     { ISD::FP_TO_UINT, MVT::v4i8,  MVT::v4f32, 2 },
243 
244     // Complex, from v2f64: legal type is v2i32, 1 narrowing => ~2.
245     { ISD::FP_TO_SINT, MVT::v2i32, MVT::v2f64, 2 },
246     { ISD::FP_TO_SINT, MVT::v2i16, MVT::v2f64, 2 },
247     { ISD::FP_TO_SINT, MVT::v2i8,  MVT::v2f64, 2 },
248     { ISD::FP_TO_UINT, MVT::v2i32, MVT::v2f64, 2 },
249     { ISD::FP_TO_UINT, MVT::v2i16, MVT::v2f64, 2 },
250     { ISD::FP_TO_UINT, MVT::v2i8,  MVT::v2f64, 2 },
251   };
252 
253   int Idx = ConvertCostTableLookup<MVT>(
254       ConversionTbl, array_lengthof(ConversionTbl), ISD, DstTy.getSimpleVT(),
255       SrcTy.getSimpleVT());
256   if (Idx != -1)
257     return ConversionTbl[Idx].Cost;
258 
259   return BaseT::getCastInstrCost(Opcode, Dst, Src);
260 }
261 
getVectorInstrCost(unsigned Opcode,Type * Val,unsigned Index)262 unsigned AArch64TTIImpl::getVectorInstrCost(unsigned Opcode, Type *Val,
263                                             unsigned Index) {
264   assert(Val->isVectorTy() && "This must be a vector type");
265 
266   if (Index != -1U) {
267     // Legalize the type.
268     std::pair<unsigned, MVT> LT = TLI->getTypeLegalizationCost(Val);
269 
270     // This type is legalized to a scalar type.
271     if (!LT.second.isVector())
272       return 0;
273 
274     // The type may be split. Normalize the index to the new type.
275     unsigned Width = LT.second.getVectorNumElements();
276     Index = Index % Width;
277 
278     // The element at index zero is already inside the vector.
279     if (Index == 0)
280       return 0;
281   }
282 
283   // All other insert/extracts cost this much.
284   return 2;
285 }
286 
getArithmeticInstrCost(unsigned Opcode,Type * Ty,TTI::OperandValueKind Opd1Info,TTI::OperandValueKind Opd2Info,TTI::OperandValueProperties Opd1PropInfo,TTI::OperandValueProperties Opd2PropInfo)287 unsigned AArch64TTIImpl::getArithmeticInstrCost(
288     unsigned Opcode, Type *Ty, TTI::OperandValueKind Opd1Info,
289     TTI::OperandValueKind Opd2Info, TTI::OperandValueProperties Opd1PropInfo,
290     TTI::OperandValueProperties Opd2PropInfo) {
291   // Legalize the type.
292   std::pair<unsigned, MVT> LT = TLI->getTypeLegalizationCost(Ty);
293 
294   int ISD = TLI->InstructionOpcodeToISD(Opcode);
295 
296   if (ISD == ISD::SDIV &&
297       Opd2Info == TargetTransformInfo::OK_UniformConstantValue &&
298       Opd2PropInfo == TargetTransformInfo::OP_PowerOf2) {
299     // On AArch64, scalar signed division by constants power-of-two are
300     // normally expanded to the sequence ADD + CMP + SELECT + SRA.
301     // The OperandValue properties many not be same as that of previous
302     // operation; conservatively assume OP_None.
303     unsigned Cost =
304       getArithmeticInstrCost(Instruction::Add, Ty, Opd1Info, Opd2Info,
305                              TargetTransformInfo::OP_None,
306                              TargetTransformInfo::OP_None);
307     Cost += getArithmeticInstrCost(Instruction::Sub, Ty, Opd1Info, Opd2Info,
308                                    TargetTransformInfo::OP_None,
309                                    TargetTransformInfo::OP_None);
310     Cost += getArithmeticInstrCost(Instruction::Select, Ty, Opd1Info, Opd2Info,
311                                    TargetTransformInfo::OP_None,
312                                    TargetTransformInfo::OP_None);
313     Cost += getArithmeticInstrCost(Instruction::AShr, Ty, Opd1Info, Opd2Info,
314                                    TargetTransformInfo::OP_None,
315                                    TargetTransformInfo::OP_None);
316     return Cost;
317   }
318 
319   switch (ISD) {
320   default:
321     return BaseT::getArithmeticInstrCost(Opcode, Ty, Opd1Info, Opd2Info,
322                                          Opd1PropInfo, Opd2PropInfo);
323   case ISD::ADD:
324   case ISD::MUL:
325   case ISD::XOR:
326   case ISD::OR:
327   case ISD::AND:
328     // These nodes are marked as 'custom' for combining purposes only.
329     // We know that they are legal. See LowerAdd in ISelLowering.
330     return 1 * LT.first;
331   }
332 }
333 
getAddressComputationCost(Type * Ty,bool IsComplex)334 unsigned AArch64TTIImpl::getAddressComputationCost(Type *Ty, bool IsComplex) {
335   // Address computations in vectorized code with non-consecutive addresses will
336   // likely result in more instructions compared to scalar code where the
337   // computation can more often be merged into the index mode. The resulting
338   // extra micro-ops can significantly decrease throughput.
339   unsigned NumVectorInstToHideOverhead = 10;
340 
341   if (Ty->isVectorTy() && IsComplex)
342     return NumVectorInstToHideOverhead;
343 
344   // In many cases the address computation is not merged into the instruction
345   // addressing mode.
346   return 1;
347 }
348 
getCmpSelInstrCost(unsigned Opcode,Type * ValTy,Type * CondTy)349 unsigned AArch64TTIImpl::getCmpSelInstrCost(unsigned Opcode, Type *ValTy,
350                                             Type *CondTy) {
351 
352   int ISD = TLI->InstructionOpcodeToISD(Opcode);
353   // We don't lower vector selects well that are wider than the register width.
354   if (ValTy->isVectorTy() && ISD == ISD::SELECT) {
355     // We would need this many instructions to hide the scalarization happening.
356     const unsigned AmortizationCost = 20;
357     static const TypeConversionCostTblEntry<MVT::SimpleValueType>
358     VectorSelectTbl[] = {
359       { ISD::SELECT, MVT::v16i1, MVT::v16i16, 16 * AmortizationCost },
360       { ISD::SELECT, MVT::v8i1, MVT::v8i32, 8 * AmortizationCost },
361       { ISD::SELECT, MVT::v16i1, MVT::v16i32, 16 * AmortizationCost },
362       { ISD::SELECT, MVT::v4i1, MVT::v4i64, 4 * AmortizationCost },
363       { ISD::SELECT, MVT::v8i1, MVT::v8i64, 8 * AmortizationCost },
364       { ISD::SELECT, MVT::v16i1, MVT::v16i64, 16 * AmortizationCost }
365     };
366 
367     EVT SelCondTy = TLI->getValueType(CondTy);
368     EVT SelValTy = TLI->getValueType(ValTy);
369     if (SelCondTy.isSimple() && SelValTy.isSimple()) {
370       int Idx =
371           ConvertCostTableLookup(VectorSelectTbl, ISD, SelCondTy.getSimpleVT(),
372                                  SelValTy.getSimpleVT());
373       if (Idx != -1)
374         return VectorSelectTbl[Idx].Cost;
375     }
376   }
377   return BaseT::getCmpSelInstrCost(Opcode, ValTy, CondTy);
378 }
379 
getMemoryOpCost(unsigned Opcode,Type * Src,unsigned Alignment,unsigned AddressSpace)380 unsigned AArch64TTIImpl::getMemoryOpCost(unsigned Opcode, Type *Src,
381                                          unsigned Alignment,
382                                          unsigned AddressSpace) {
383   std::pair<unsigned, MVT> LT = TLI->getTypeLegalizationCost(Src);
384 
385   if (Opcode == Instruction::Store && Src->isVectorTy() && Alignment != 16 &&
386       Src->getVectorElementType()->isIntegerTy(64)) {
387     // Unaligned stores are extremely inefficient. We don't split
388     // unaligned v2i64 stores because the negative impact that has shown in
389     // practice on inlined memcpy code.
390     // We make v2i64 stores expensive so that we will only vectorize if there
391     // are 6 other instructions getting vectorized.
392     unsigned AmortizationCost = 6;
393 
394     return LT.first * 2 * AmortizationCost;
395   }
396 
397   if (Src->isVectorTy() && Src->getVectorElementType()->isIntegerTy(8) &&
398       Src->getVectorNumElements() < 8) {
399     // We scalarize the loads/stores because there is not v.4b register and we
400     // have to promote the elements to v.4h.
401     unsigned NumVecElts = Src->getVectorNumElements();
402     unsigned NumVectorizableInstsToAmortize = NumVecElts * 2;
403     // We generate 2 instructions per vector element.
404     return NumVectorizableInstsToAmortize * NumVecElts * 2;
405   }
406 
407   return LT.first;
408 }
409 
getCostOfKeepingLiveOverCall(ArrayRef<Type * > Tys)410 unsigned AArch64TTIImpl::getCostOfKeepingLiveOverCall(ArrayRef<Type *> Tys) {
411   unsigned Cost = 0;
412   for (auto *I : Tys) {
413     if (!I->isVectorTy())
414       continue;
415     if (I->getScalarSizeInBits() * I->getVectorNumElements() == 128)
416       Cost += getMemoryOpCost(Instruction::Store, I, 128, 0) +
417         getMemoryOpCost(Instruction::Load, I, 128, 0);
418   }
419   return Cost;
420 }
421 
getMaxInterleaveFactor()422 unsigned AArch64TTIImpl::getMaxInterleaveFactor() {
423   if (ST->isCortexA57())
424     return 4;
425   return 2;
426 }
427 
getUnrollingPreferences(Loop * L,TTI::UnrollingPreferences & UP)428 void AArch64TTIImpl::getUnrollingPreferences(Loop *L,
429                                              TTI::UnrollingPreferences &UP) {
430   // Enable partial unrolling and runtime unrolling.
431   BaseT::getUnrollingPreferences(L, UP);
432 
433   // For inner loop, it is more likely to be a hot one, and the runtime check
434   // can be promoted out from LICM pass, so the overhead is less, let's try
435   // a larger threshold to unroll more loops.
436   if (L->getLoopDepth() > 1)
437     UP.PartialThreshold *= 2;
438 
439   // Disable partial & runtime unrolling on -Os.
440   UP.PartialOptSizeThreshold = 0;
441 }
442 
getOrCreateResultFromMemIntrinsic(IntrinsicInst * Inst,Type * ExpectedType)443 Value *AArch64TTIImpl::getOrCreateResultFromMemIntrinsic(IntrinsicInst *Inst,
444                                                          Type *ExpectedType) {
445   switch (Inst->getIntrinsicID()) {
446   default:
447     return nullptr;
448   case Intrinsic::aarch64_neon_st2:
449   case Intrinsic::aarch64_neon_st3:
450   case Intrinsic::aarch64_neon_st4: {
451     // Create a struct type
452     StructType *ST = dyn_cast<StructType>(ExpectedType);
453     if (!ST)
454       return nullptr;
455     unsigned NumElts = Inst->getNumArgOperands() - 1;
456     if (ST->getNumElements() != NumElts)
457       return nullptr;
458     for (unsigned i = 0, e = NumElts; i != e; ++i) {
459       if (Inst->getArgOperand(i)->getType() != ST->getElementType(i))
460         return nullptr;
461     }
462     Value *Res = UndefValue::get(ExpectedType);
463     IRBuilder<> Builder(Inst);
464     for (unsigned i = 0, e = NumElts; i != e; ++i) {
465       Value *L = Inst->getArgOperand(i);
466       Res = Builder.CreateInsertValue(Res, L, i);
467     }
468     return Res;
469   }
470   case Intrinsic::aarch64_neon_ld2:
471   case Intrinsic::aarch64_neon_ld3:
472   case Intrinsic::aarch64_neon_ld4:
473     if (Inst->getType() == ExpectedType)
474       return Inst;
475     return nullptr;
476   }
477 }
478 
getTgtMemIntrinsic(IntrinsicInst * Inst,MemIntrinsicInfo & Info)479 bool AArch64TTIImpl::getTgtMemIntrinsic(IntrinsicInst *Inst,
480                                         MemIntrinsicInfo &Info) {
481   switch (Inst->getIntrinsicID()) {
482   default:
483     break;
484   case Intrinsic::aarch64_neon_ld2:
485   case Intrinsic::aarch64_neon_ld3:
486   case Intrinsic::aarch64_neon_ld4:
487     Info.ReadMem = true;
488     Info.WriteMem = false;
489     Info.Vol = false;
490     Info.NumMemRefs = 1;
491     Info.PtrVal = Inst->getArgOperand(0);
492     break;
493   case Intrinsic::aarch64_neon_st2:
494   case Intrinsic::aarch64_neon_st3:
495   case Intrinsic::aarch64_neon_st4:
496     Info.ReadMem = false;
497     Info.WriteMem = true;
498     Info.Vol = false;
499     Info.NumMemRefs = 1;
500     Info.PtrVal = Inst->getArgOperand(Inst->getNumArgOperands() - 1);
501     break;
502   }
503 
504   switch (Inst->getIntrinsicID()) {
505   default:
506     return false;
507   case Intrinsic::aarch64_neon_ld2:
508   case Intrinsic::aarch64_neon_st2:
509     Info.MatchingId = VECTOR_LDST_TWO_ELEMENTS;
510     break;
511   case Intrinsic::aarch64_neon_ld3:
512   case Intrinsic::aarch64_neon_st3:
513     Info.MatchingId = VECTOR_LDST_THREE_ELEMENTS;
514     break;
515   case Intrinsic::aarch64_neon_ld4:
516   case Intrinsic::aarch64_neon_st4:
517     Info.MatchingId = VECTOR_LDST_FOUR_ELEMENTS;
518     break;
519   }
520   return true;
521 }
522