1 //===-- AArch64TargetTransformInfo.cpp - AArch64 specific TTI -------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9
10 #include "AArch64TargetTransformInfo.h"
11 #include "MCTargetDesc/AArch64AddressingModes.h"
12 #include "llvm/Analysis/TargetTransformInfo.h"
13 #include "llvm/Analysis/LoopInfo.h"
14 #include "llvm/CodeGen/BasicTTIImpl.h"
15 #include "llvm/Support/Debug.h"
16 #include "llvm/Target/CostTable.h"
17 #include "llvm/Target/TargetLowering.h"
18 #include <algorithm>
19 using namespace llvm;
20
21 #define DEBUG_TYPE "aarch64tti"
22
23 /// \brief Calculate the cost of materializing a 64-bit value. This helper
24 /// method might only calculate a fraction of a larger immediate. Therefore it
25 /// is valid to return a cost of ZERO.
getIntImmCost(int64_t Val)26 unsigned AArch64TTIImpl::getIntImmCost(int64_t Val) {
27 // Check if the immediate can be encoded within an instruction.
28 if (Val == 0 || AArch64_AM::isLogicalImmediate(Val, 64))
29 return 0;
30
31 if (Val < 0)
32 Val = ~Val;
33
34 // Calculate how many moves we will need to materialize this constant.
35 unsigned LZ = countLeadingZeros((uint64_t)Val);
36 return (64 - LZ + 15) / 16;
37 }
38
39 /// \brief Calculate the cost of materializing the given constant.
getIntImmCost(const APInt & Imm,Type * Ty)40 unsigned AArch64TTIImpl::getIntImmCost(const APInt &Imm, Type *Ty) {
41 assert(Ty->isIntegerTy());
42
43 unsigned BitSize = Ty->getPrimitiveSizeInBits();
44 if (BitSize == 0)
45 return ~0U;
46
47 // Sign-extend all constants to a multiple of 64-bit.
48 APInt ImmVal = Imm;
49 if (BitSize & 0x3f)
50 ImmVal = Imm.sext((BitSize + 63) & ~0x3fU);
51
52 // Split the constant into 64-bit chunks and calculate the cost for each
53 // chunk.
54 unsigned Cost = 0;
55 for (unsigned ShiftVal = 0; ShiftVal < BitSize; ShiftVal += 64) {
56 APInt Tmp = ImmVal.ashr(ShiftVal).sextOrTrunc(64);
57 int64_t Val = Tmp.getSExtValue();
58 Cost += getIntImmCost(Val);
59 }
60 // We need at least one instruction to materialze the constant.
61 return std::max(1U, Cost);
62 }
63
getIntImmCost(unsigned Opcode,unsigned Idx,const APInt & Imm,Type * Ty)64 unsigned AArch64TTIImpl::getIntImmCost(unsigned Opcode, unsigned Idx,
65 const APInt &Imm, Type *Ty) {
66 assert(Ty->isIntegerTy());
67
68 unsigned BitSize = Ty->getPrimitiveSizeInBits();
69 // There is no cost model for constants with a bit size of 0. Return TCC_Free
70 // here, so that constant hoisting will ignore this constant.
71 if (BitSize == 0)
72 return TTI::TCC_Free;
73
74 unsigned ImmIdx = ~0U;
75 switch (Opcode) {
76 default:
77 return TTI::TCC_Free;
78 case Instruction::GetElementPtr:
79 // Always hoist the base address of a GetElementPtr.
80 if (Idx == 0)
81 return 2 * TTI::TCC_Basic;
82 return TTI::TCC_Free;
83 case Instruction::Store:
84 ImmIdx = 0;
85 break;
86 case Instruction::Add:
87 case Instruction::Sub:
88 case Instruction::Mul:
89 case Instruction::UDiv:
90 case Instruction::SDiv:
91 case Instruction::URem:
92 case Instruction::SRem:
93 case Instruction::And:
94 case Instruction::Or:
95 case Instruction::Xor:
96 case Instruction::ICmp:
97 ImmIdx = 1;
98 break;
99 // Always return TCC_Free for the shift value of a shift instruction.
100 case Instruction::Shl:
101 case Instruction::LShr:
102 case Instruction::AShr:
103 if (Idx == 1)
104 return TTI::TCC_Free;
105 break;
106 case Instruction::Trunc:
107 case Instruction::ZExt:
108 case Instruction::SExt:
109 case Instruction::IntToPtr:
110 case Instruction::PtrToInt:
111 case Instruction::BitCast:
112 case Instruction::PHI:
113 case Instruction::Call:
114 case Instruction::Select:
115 case Instruction::Ret:
116 case Instruction::Load:
117 break;
118 }
119
120 if (Idx == ImmIdx) {
121 unsigned NumConstants = (BitSize + 63) / 64;
122 unsigned Cost = AArch64TTIImpl::getIntImmCost(Imm, Ty);
123 return (Cost <= NumConstants * TTI::TCC_Basic)
124 ? static_cast<unsigned>(TTI::TCC_Free)
125 : Cost;
126 }
127 return AArch64TTIImpl::getIntImmCost(Imm, Ty);
128 }
129
getIntImmCost(Intrinsic::ID IID,unsigned Idx,const APInt & Imm,Type * Ty)130 unsigned AArch64TTIImpl::getIntImmCost(Intrinsic::ID IID, unsigned Idx,
131 const APInt &Imm, Type *Ty) {
132 assert(Ty->isIntegerTy());
133
134 unsigned BitSize = Ty->getPrimitiveSizeInBits();
135 // There is no cost model for constants with a bit size of 0. Return TCC_Free
136 // here, so that constant hoisting will ignore this constant.
137 if (BitSize == 0)
138 return TTI::TCC_Free;
139
140 switch (IID) {
141 default:
142 return TTI::TCC_Free;
143 case Intrinsic::sadd_with_overflow:
144 case Intrinsic::uadd_with_overflow:
145 case Intrinsic::ssub_with_overflow:
146 case Intrinsic::usub_with_overflow:
147 case Intrinsic::smul_with_overflow:
148 case Intrinsic::umul_with_overflow:
149 if (Idx == 1) {
150 unsigned NumConstants = (BitSize + 63) / 64;
151 unsigned Cost = AArch64TTIImpl::getIntImmCost(Imm, Ty);
152 return (Cost <= NumConstants * TTI::TCC_Basic)
153 ? static_cast<unsigned>(TTI::TCC_Free)
154 : Cost;
155 }
156 break;
157 case Intrinsic::experimental_stackmap:
158 if ((Idx < 2) || (Imm.getBitWidth() <= 64 && isInt<64>(Imm.getSExtValue())))
159 return TTI::TCC_Free;
160 break;
161 case Intrinsic::experimental_patchpoint_void:
162 case Intrinsic::experimental_patchpoint_i64:
163 if ((Idx < 4) || (Imm.getBitWidth() <= 64 && isInt<64>(Imm.getSExtValue())))
164 return TTI::TCC_Free;
165 break;
166 }
167 return AArch64TTIImpl::getIntImmCost(Imm, Ty);
168 }
169
170 TargetTransformInfo::PopcntSupportKind
getPopcntSupport(unsigned TyWidth)171 AArch64TTIImpl::getPopcntSupport(unsigned TyWidth) {
172 assert(isPowerOf2_32(TyWidth) && "Ty width must be power of 2");
173 if (TyWidth == 32 || TyWidth == 64)
174 return TTI::PSK_FastHardware;
175 // TODO: AArch64TargetLowering::LowerCTPOP() supports 128bit popcount.
176 return TTI::PSK_Software;
177 }
178
getCastInstrCost(unsigned Opcode,Type * Dst,Type * Src)179 unsigned AArch64TTIImpl::getCastInstrCost(unsigned Opcode, Type *Dst,
180 Type *Src) {
181 int ISD = TLI->InstructionOpcodeToISD(Opcode);
182 assert(ISD && "Invalid opcode");
183
184 EVT SrcTy = TLI->getValueType(Src);
185 EVT DstTy = TLI->getValueType(Dst);
186
187 if (!SrcTy.isSimple() || !DstTy.isSimple())
188 return BaseT::getCastInstrCost(Opcode, Dst, Src);
189
190 static const TypeConversionCostTblEntry<MVT> ConversionTbl[] = {
191 // LowerVectorINT_TO_FP:
192 { ISD::SINT_TO_FP, MVT::v2f32, MVT::v2i32, 1 },
193 { ISD::SINT_TO_FP, MVT::v4f32, MVT::v4i32, 1 },
194 { ISD::SINT_TO_FP, MVT::v2f64, MVT::v2i64, 1 },
195 { ISD::UINT_TO_FP, MVT::v2f32, MVT::v2i32, 1 },
196 { ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i32, 1 },
197 { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i64, 1 },
198
199 // Complex: to v2f32
200 { ISD::SINT_TO_FP, MVT::v2f32, MVT::v2i8, 3 },
201 { ISD::SINT_TO_FP, MVT::v2f32, MVT::v2i16, 3 },
202 { ISD::SINT_TO_FP, MVT::v2f32, MVT::v2i64, 2 },
203 { ISD::UINT_TO_FP, MVT::v2f32, MVT::v2i8, 3 },
204 { ISD::UINT_TO_FP, MVT::v2f32, MVT::v2i16, 3 },
205 { ISD::UINT_TO_FP, MVT::v2f32, MVT::v2i64, 2 },
206
207 // Complex: to v4f32
208 { ISD::SINT_TO_FP, MVT::v4f32, MVT::v4i8, 4 },
209 { ISD::SINT_TO_FP, MVT::v4f32, MVT::v4i16, 2 },
210 { ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i8, 3 },
211 { ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i16, 2 },
212
213 // Complex: to v2f64
214 { ISD::SINT_TO_FP, MVT::v2f64, MVT::v2i8, 4 },
215 { ISD::SINT_TO_FP, MVT::v2f64, MVT::v2i16, 4 },
216 { ISD::SINT_TO_FP, MVT::v2f64, MVT::v2i32, 2 },
217 { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i8, 4 },
218 { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i16, 4 },
219 { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i32, 2 },
220
221
222 // LowerVectorFP_TO_INT
223 { ISD::FP_TO_SINT, MVT::v2i32, MVT::v2f32, 1 },
224 { ISD::FP_TO_SINT, MVT::v4i32, MVT::v4f32, 1 },
225 { ISD::FP_TO_SINT, MVT::v2i64, MVT::v2f64, 1 },
226 { ISD::FP_TO_UINT, MVT::v2i32, MVT::v2f32, 1 },
227 { ISD::FP_TO_UINT, MVT::v4i32, MVT::v4f32, 1 },
228 { ISD::FP_TO_UINT, MVT::v2i64, MVT::v2f64, 1 },
229
230 // Complex, from v2f32: legal type is v2i32 (no cost) or v2i64 (1 ext).
231 { ISD::FP_TO_SINT, MVT::v2i64, MVT::v2f32, 2 },
232 { ISD::FP_TO_SINT, MVT::v2i16, MVT::v2f32, 1 },
233 { ISD::FP_TO_SINT, MVT::v2i8, MVT::v2f32, 1 },
234 { ISD::FP_TO_UINT, MVT::v2i64, MVT::v2f32, 2 },
235 { ISD::FP_TO_UINT, MVT::v2i16, MVT::v2f32, 1 },
236 { ISD::FP_TO_UINT, MVT::v2i8, MVT::v2f32, 1 },
237
238 // Complex, from v4f32: legal type is v4i16, 1 narrowing => ~2
239 { ISD::FP_TO_SINT, MVT::v4i16, MVT::v4f32, 2 },
240 { ISD::FP_TO_SINT, MVT::v4i8, MVT::v4f32, 2 },
241 { ISD::FP_TO_UINT, MVT::v4i16, MVT::v4f32, 2 },
242 { ISD::FP_TO_UINT, MVT::v4i8, MVT::v4f32, 2 },
243
244 // Complex, from v2f64: legal type is v2i32, 1 narrowing => ~2.
245 { ISD::FP_TO_SINT, MVT::v2i32, MVT::v2f64, 2 },
246 { ISD::FP_TO_SINT, MVT::v2i16, MVT::v2f64, 2 },
247 { ISD::FP_TO_SINT, MVT::v2i8, MVT::v2f64, 2 },
248 { ISD::FP_TO_UINT, MVT::v2i32, MVT::v2f64, 2 },
249 { ISD::FP_TO_UINT, MVT::v2i16, MVT::v2f64, 2 },
250 { ISD::FP_TO_UINT, MVT::v2i8, MVT::v2f64, 2 },
251 };
252
253 int Idx = ConvertCostTableLookup<MVT>(
254 ConversionTbl, array_lengthof(ConversionTbl), ISD, DstTy.getSimpleVT(),
255 SrcTy.getSimpleVT());
256 if (Idx != -1)
257 return ConversionTbl[Idx].Cost;
258
259 return BaseT::getCastInstrCost(Opcode, Dst, Src);
260 }
261
getVectorInstrCost(unsigned Opcode,Type * Val,unsigned Index)262 unsigned AArch64TTIImpl::getVectorInstrCost(unsigned Opcode, Type *Val,
263 unsigned Index) {
264 assert(Val->isVectorTy() && "This must be a vector type");
265
266 if (Index != -1U) {
267 // Legalize the type.
268 std::pair<unsigned, MVT> LT = TLI->getTypeLegalizationCost(Val);
269
270 // This type is legalized to a scalar type.
271 if (!LT.second.isVector())
272 return 0;
273
274 // The type may be split. Normalize the index to the new type.
275 unsigned Width = LT.second.getVectorNumElements();
276 Index = Index % Width;
277
278 // The element at index zero is already inside the vector.
279 if (Index == 0)
280 return 0;
281 }
282
283 // All other insert/extracts cost this much.
284 return 2;
285 }
286
getArithmeticInstrCost(unsigned Opcode,Type * Ty,TTI::OperandValueKind Opd1Info,TTI::OperandValueKind Opd2Info,TTI::OperandValueProperties Opd1PropInfo,TTI::OperandValueProperties Opd2PropInfo)287 unsigned AArch64TTIImpl::getArithmeticInstrCost(
288 unsigned Opcode, Type *Ty, TTI::OperandValueKind Opd1Info,
289 TTI::OperandValueKind Opd2Info, TTI::OperandValueProperties Opd1PropInfo,
290 TTI::OperandValueProperties Opd2PropInfo) {
291 // Legalize the type.
292 std::pair<unsigned, MVT> LT = TLI->getTypeLegalizationCost(Ty);
293
294 int ISD = TLI->InstructionOpcodeToISD(Opcode);
295
296 if (ISD == ISD::SDIV &&
297 Opd2Info == TargetTransformInfo::OK_UniformConstantValue &&
298 Opd2PropInfo == TargetTransformInfo::OP_PowerOf2) {
299 // On AArch64, scalar signed division by constants power-of-two are
300 // normally expanded to the sequence ADD + CMP + SELECT + SRA.
301 // The OperandValue properties many not be same as that of previous
302 // operation; conservatively assume OP_None.
303 unsigned Cost =
304 getArithmeticInstrCost(Instruction::Add, Ty, Opd1Info, Opd2Info,
305 TargetTransformInfo::OP_None,
306 TargetTransformInfo::OP_None);
307 Cost += getArithmeticInstrCost(Instruction::Sub, Ty, Opd1Info, Opd2Info,
308 TargetTransformInfo::OP_None,
309 TargetTransformInfo::OP_None);
310 Cost += getArithmeticInstrCost(Instruction::Select, Ty, Opd1Info, Opd2Info,
311 TargetTransformInfo::OP_None,
312 TargetTransformInfo::OP_None);
313 Cost += getArithmeticInstrCost(Instruction::AShr, Ty, Opd1Info, Opd2Info,
314 TargetTransformInfo::OP_None,
315 TargetTransformInfo::OP_None);
316 return Cost;
317 }
318
319 switch (ISD) {
320 default:
321 return BaseT::getArithmeticInstrCost(Opcode, Ty, Opd1Info, Opd2Info,
322 Opd1PropInfo, Opd2PropInfo);
323 case ISD::ADD:
324 case ISD::MUL:
325 case ISD::XOR:
326 case ISD::OR:
327 case ISD::AND:
328 // These nodes are marked as 'custom' for combining purposes only.
329 // We know that they are legal. See LowerAdd in ISelLowering.
330 return 1 * LT.first;
331 }
332 }
333
getAddressComputationCost(Type * Ty,bool IsComplex)334 unsigned AArch64TTIImpl::getAddressComputationCost(Type *Ty, bool IsComplex) {
335 // Address computations in vectorized code with non-consecutive addresses will
336 // likely result in more instructions compared to scalar code where the
337 // computation can more often be merged into the index mode. The resulting
338 // extra micro-ops can significantly decrease throughput.
339 unsigned NumVectorInstToHideOverhead = 10;
340
341 if (Ty->isVectorTy() && IsComplex)
342 return NumVectorInstToHideOverhead;
343
344 // In many cases the address computation is not merged into the instruction
345 // addressing mode.
346 return 1;
347 }
348
getCmpSelInstrCost(unsigned Opcode,Type * ValTy,Type * CondTy)349 unsigned AArch64TTIImpl::getCmpSelInstrCost(unsigned Opcode, Type *ValTy,
350 Type *CondTy) {
351
352 int ISD = TLI->InstructionOpcodeToISD(Opcode);
353 // We don't lower vector selects well that are wider than the register width.
354 if (ValTy->isVectorTy() && ISD == ISD::SELECT) {
355 // We would need this many instructions to hide the scalarization happening.
356 const unsigned AmortizationCost = 20;
357 static const TypeConversionCostTblEntry<MVT::SimpleValueType>
358 VectorSelectTbl[] = {
359 { ISD::SELECT, MVT::v16i1, MVT::v16i16, 16 * AmortizationCost },
360 { ISD::SELECT, MVT::v8i1, MVT::v8i32, 8 * AmortizationCost },
361 { ISD::SELECT, MVT::v16i1, MVT::v16i32, 16 * AmortizationCost },
362 { ISD::SELECT, MVT::v4i1, MVT::v4i64, 4 * AmortizationCost },
363 { ISD::SELECT, MVT::v8i1, MVT::v8i64, 8 * AmortizationCost },
364 { ISD::SELECT, MVT::v16i1, MVT::v16i64, 16 * AmortizationCost }
365 };
366
367 EVT SelCondTy = TLI->getValueType(CondTy);
368 EVT SelValTy = TLI->getValueType(ValTy);
369 if (SelCondTy.isSimple() && SelValTy.isSimple()) {
370 int Idx =
371 ConvertCostTableLookup(VectorSelectTbl, ISD, SelCondTy.getSimpleVT(),
372 SelValTy.getSimpleVT());
373 if (Idx != -1)
374 return VectorSelectTbl[Idx].Cost;
375 }
376 }
377 return BaseT::getCmpSelInstrCost(Opcode, ValTy, CondTy);
378 }
379
getMemoryOpCost(unsigned Opcode,Type * Src,unsigned Alignment,unsigned AddressSpace)380 unsigned AArch64TTIImpl::getMemoryOpCost(unsigned Opcode, Type *Src,
381 unsigned Alignment,
382 unsigned AddressSpace) {
383 std::pair<unsigned, MVT> LT = TLI->getTypeLegalizationCost(Src);
384
385 if (Opcode == Instruction::Store && Src->isVectorTy() && Alignment != 16 &&
386 Src->getVectorElementType()->isIntegerTy(64)) {
387 // Unaligned stores are extremely inefficient. We don't split
388 // unaligned v2i64 stores because the negative impact that has shown in
389 // practice on inlined memcpy code.
390 // We make v2i64 stores expensive so that we will only vectorize if there
391 // are 6 other instructions getting vectorized.
392 unsigned AmortizationCost = 6;
393
394 return LT.first * 2 * AmortizationCost;
395 }
396
397 if (Src->isVectorTy() && Src->getVectorElementType()->isIntegerTy(8) &&
398 Src->getVectorNumElements() < 8) {
399 // We scalarize the loads/stores because there is not v.4b register and we
400 // have to promote the elements to v.4h.
401 unsigned NumVecElts = Src->getVectorNumElements();
402 unsigned NumVectorizableInstsToAmortize = NumVecElts * 2;
403 // We generate 2 instructions per vector element.
404 return NumVectorizableInstsToAmortize * NumVecElts * 2;
405 }
406
407 return LT.first;
408 }
409
getCostOfKeepingLiveOverCall(ArrayRef<Type * > Tys)410 unsigned AArch64TTIImpl::getCostOfKeepingLiveOverCall(ArrayRef<Type *> Tys) {
411 unsigned Cost = 0;
412 for (auto *I : Tys) {
413 if (!I->isVectorTy())
414 continue;
415 if (I->getScalarSizeInBits() * I->getVectorNumElements() == 128)
416 Cost += getMemoryOpCost(Instruction::Store, I, 128, 0) +
417 getMemoryOpCost(Instruction::Load, I, 128, 0);
418 }
419 return Cost;
420 }
421
getMaxInterleaveFactor()422 unsigned AArch64TTIImpl::getMaxInterleaveFactor() {
423 if (ST->isCortexA57())
424 return 4;
425 return 2;
426 }
427
getUnrollingPreferences(Loop * L,TTI::UnrollingPreferences & UP)428 void AArch64TTIImpl::getUnrollingPreferences(Loop *L,
429 TTI::UnrollingPreferences &UP) {
430 // Enable partial unrolling and runtime unrolling.
431 BaseT::getUnrollingPreferences(L, UP);
432
433 // For inner loop, it is more likely to be a hot one, and the runtime check
434 // can be promoted out from LICM pass, so the overhead is less, let's try
435 // a larger threshold to unroll more loops.
436 if (L->getLoopDepth() > 1)
437 UP.PartialThreshold *= 2;
438
439 // Disable partial & runtime unrolling on -Os.
440 UP.PartialOptSizeThreshold = 0;
441 }
442
getOrCreateResultFromMemIntrinsic(IntrinsicInst * Inst,Type * ExpectedType)443 Value *AArch64TTIImpl::getOrCreateResultFromMemIntrinsic(IntrinsicInst *Inst,
444 Type *ExpectedType) {
445 switch (Inst->getIntrinsicID()) {
446 default:
447 return nullptr;
448 case Intrinsic::aarch64_neon_st2:
449 case Intrinsic::aarch64_neon_st3:
450 case Intrinsic::aarch64_neon_st4: {
451 // Create a struct type
452 StructType *ST = dyn_cast<StructType>(ExpectedType);
453 if (!ST)
454 return nullptr;
455 unsigned NumElts = Inst->getNumArgOperands() - 1;
456 if (ST->getNumElements() != NumElts)
457 return nullptr;
458 for (unsigned i = 0, e = NumElts; i != e; ++i) {
459 if (Inst->getArgOperand(i)->getType() != ST->getElementType(i))
460 return nullptr;
461 }
462 Value *Res = UndefValue::get(ExpectedType);
463 IRBuilder<> Builder(Inst);
464 for (unsigned i = 0, e = NumElts; i != e; ++i) {
465 Value *L = Inst->getArgOperand(i);
466 Res = Builder.CreateInsertValue(Res, L, i);
467 }
468 return Res;
469 }
470 case Intrinsic::aarch64_neon_ld2:
471 case Intrinsic::aarch64_neon_ld3:
472 case Intrinsic::aarch64_neon_ld4:
473 if (Inst->getType() == ExpectedType)
474 return Inst;
475 return nullptr;
476 }
477 }
478
getTgtMemIntrinsic(IntrinsicInst * Inst,MemIntrinsicInfo & Info)479 bool AArch64TTIImpl::getTgtMemIntrinsic(IntrinsicInst *Inst,
480 MemIntrinsicInfo &Info) {
481 switch (Inst->getIntrinsicID()) {
482 default:
483 break;
484 case Intrinsic::aarch64_neon_ld2:
485 case Intrinsic::aarch64_neon_ld3:
486 case Intrinsic::aarch64_neon_ld4:
487 Info.ReadMem = true;
488 Info.WriteMem = false;
489 Info.Vol = false;
490 Info.NumMemRefs = 1;
491 Info.PtrVal = Inst->getArgOperand(0);
492 break;
493 case Intrinsic::aarch64_neon_st2:
494 case Intrinsic::aarch64_neon_st3:
495 case Intrinsic::aarch64_neon_st4:
496 Info.ReadMem = false;
497 Info.WriteMem = true;
498 Info.Vol = false;
499 Info.NumMemRefs = 1;
500 Info.PtrVal = Inst->getArgOperand(Inst->getNumArgOperands() - 1);
501 break;
502 }
503
504 switch (Inst->getIntrinsicID()) {
505 default:
506 return false;
507 case Intrinsic::aarch64_neon_ld2:
508 case Intrinsic::aarch64_neon_st2:
509 Info.MatchingId = VECTOR_LDST_TWO_ELEMENTS;
510 break;
511 case Intrinsic::aarch64_neon_ld3:
512 case Intrinsic::aarch64_neon_st3:
513 Info.MatchingId = VECTOR_LDST_THREE_ELEMENTS;
514 break;
515 case Intrinsic::aarch64_neon_ld4:
516 case Intrinsic::aarch64_neon_st4:
517 Info.MatchingId = VECTOR_LDST_FOUR_ELEMENTS;
518 break;
519 }
520 return true;
521 }
522