1//===-- ARMRegisterInfo.td - ARM Register defs -------------*- tablegen -*-===// 2// 3// The LLVM Compiler Infrastructure 4// 5// This file is distributed under the University of Illinois Open Source 6// License. See LICENSE.TXT for details. 7// 8//===----------------------------------------------------------------------===// 9 10//===----------------------------------------------------------------------===// 11// Declarations that describe the ARM register file 12//===----------------------------------------------------------------------===// 13 14// Registers are identified with 4-bit ID numbers. 15class ARMReg<bits<16> Enc, string n, list<Register> subregs = []> : Register<n> { 16 let HWEncoding = Enc; 17 let Namespace = "ARM"; 18 let SubRegs = subregs; 19 // All bits of ARM registers with sub-registers are covered by sub-registers. 20 let CoveredBySubRegs = 1; 21} 22 23class ARMFReg<bits<16> Enc, string n> : Register<n> { 24 let HWEncoding = Enc; 25 let Namespace = "ARM"; 26} 27 28// Subregister indices. 29let Namespace = "ARM" in { 30def qqsub_0 : SubRegIndex<256>; 31def qqsub_1 : SubRegIndex<256, 256>; 32 33// Note: Code depends on these having consecutive numbers. 34def qsub_0 : SubRegIndex<128>; 35def qsub_1 : SubRegIndex<128, 128>; 36def qsub_2 : ComposedSubRegIndex<qqsub_1, qsub_0>; 37def qsub_3 : ComposedSubRegIndex<qqsub_1, qsub_1>; 38 39def dsub_0 : SubRegIndex<64>; 40def dsub_1 : SubRegIndex<64, 64>; 41def dsub_2 : ComposedSubRegIndex<qsub_1, dsub_0>; 42def dsub_3 : ComposedSubRegIndex<qsub_1, dsub_1>; 43def dsub_4 : ComposedSubRegIndex<qsub_2, dsub_0>; 44def dsub_5 : ComposedSubRegIndex<qsub_2, dsub_1>; 45def dsub_6 : ComposedSubRegIndex<qsub_3, dsub_0>; 46def dsub_7 : ComposedSubRegIndex<qsub_3, dsub_1>; 47 48def ssub_0 : SubRegIndex<32>; 49def ssub_1 : SubRegIndex<32, 32>; 50def ssub_2 : ComposedSubRegIndex<dsub_1, ssub_0>; 51def ssub_3 : ComposedSubRegIndex<dsub_1, ssub_1>; 52 53def gsub_0 : SubRegIndex<32>; 54def gsub_1 : SubRegIndex<32, 32>; 55// Let TableGen synthesize the remaining 12 ssub_* indices. 56// We don't need to name them. 57} 58 59// Integer registers 60def R0 : ARMReg< 0, "r0">, DwarfRegNum<[0]>; 61def R1 : ARMReg< 1, "r1">, DwarfRegNum<[1]>; 62def R2 : ARMReg< 2, "r2">, DwarfRegNum<[2]>; 63def R3 : ARMReg< 3, "r3">, DwarfRegNum<[3]>; 64def R4 : ARMReg< 4, "r4">, DwarfRegNum<[4]>; 65def R5 : ARMReg< 5, "r5">, DwarfRegNum<[5]>; 66def R6 : ARMReg< 6, "r6">, DwarfRegNum<[6]>; 67def R7 : ARMReg< 7, "r7">, DwarfRegNum<[7]>; 68// These require 32-bit instructions. 69let CostPerUse = 1 in { 70def R8 : ARMReg< 8, "r8">, DwarfRegNum<[8]>; 71def R9 : ARMReg< 9, "r9">, DwarfRegNum<[9]>; 72def R10 : ARMReg<10, "r10">, DwarfRegNum<[10]>; 73def R11 : ARMReg<11, "r11">, DwarfRegNum<[11]>; 74def R12 : ARMReg<12, "r12">, DwarfRegNum<[12]>; 75def SP : ARMReg<13, "sp">, DwarfRegNum<[13]>; 76def LR : ARMReg<14, "lr">, DwarfRegNum<[14]>; 77def PC : ARMReg<15, "pc">, DwarfRegNum<[15]>; 78} 79 80// Float registers 81def S0 : ARMFReg< 0, "s0">; def S1 : ARMFReg< 1, "s1">; 82def S2 : ARMFReg< 2, "s2">; def S3 : ARMFReg< 3, "s3">; 83def S4 : ARMFReg< 4, "s4">; def S5 : ARMFReg< 5, "s5">; 84def S6 : ARMFReg< 6, "s6">; def S7 : ARMFReg< 7, "s7">; 85def S8 : ARMFReg< 8, "s8">; def S9 : ARMFReg< 9, "s9">; 86def S10 : ARMFReg<10, "s10">; def S11 : ARMFReg<11, "s11">; 87def S12 : ARMFReg<12, "s12">; def S13 : ARMFReg<13, "s13">; 88def S14 : ARMFReg<14, "s14">; def S15 : ARMFReg<15, "s15">; 89def S16 : ARMFReg<16, "s16">; def S17 : ARMFReg<17, "s17">; 90def S18 : ARMFReg<18, "s18">; def S19 : ARMFReg<19, "s19">; 91def S20 : ARMFReg<20, "s20">; def S21 : ARMFReg<21, "s21">; 92def S22 : ARMFReg<22, "s22">; def S23 : ARMFReg<23, "s23">; 93def S24 : ARMFReg<24, "s24">; def S25 : ARMFReg<25, "s25">; 94def S26 : ARMFReg<26, "s26">; def S27 : ARMFReg<27, "s27">; 95def S28 : ARMFReg<28, "s28">; def S29 : ARMFReg<29, "s29">; 96def S30 : ARMFReg<30, "s30">; def S31 : ARMFReg<31, "s31">; 97 98// Aliases of the F* registers used to hold 64-bit fp values (doubles) 99let SubRegIndices = [ssub_0, ssub_1] in { 100def D0 : ARMReg< 0, "d0", [S0, S1]>, DwarfRegNum<[256]>; 101def D1 : ARMReg< 1, "d1", [S2, S3]>, DwarfRegNum<[257]>; 102def D2 : ARMReg< 2, "d2", [S4, S5]>, DwarfRegNum<[258]>; 103def D3 : ARMReg< 3, "d3", [S6, S7]>, DwarfRegNum<[259]>; 104def D4 : ARMReg< 4, "d4", [S8, S9]>, DwarfRegNum<[260]>; 105def D5 : ARMReg< 5, "d5", [S10, S11]>, DwarfRegNum<[261]>; 106def D6 : ARMReg< 6, "d6", [S12, S13]>, DwarfRegNum<[262]>; 107def D7 : ARMReg< 7, "d7", [S14, S15]>, DwarfRegNum<[263]>; 108def D8 : ARMReg< 8, "d8", [S16, S17]>, DwarfRegNum<[264]>; 109def D9 : ARMReg< 9, "d9", [S18, S19]>, DwarfRegNum<[265]>; 110def D10 : ARMReg<10, "d10", [S20, S21]>, DwarfRegNum<[266]>; 111def D11 : ARMReg<11, "d11", [S22, S23]>, DwarfRegNum<[267]>; 112def D12 : ARMReg<12, "d12", [S24, S25]>, DwarfRegNum<[268]>; 113def D13 : ARMReg<13, "d13", [S26, S27]>, DwarfRegNum<[269]>; 114def D14 : ARMReg<14, "d14", [S28, S29]>, DwarfRegNum<[270]>; 115def D15 : ARMReg<15, "d15", [S30, S31]>, DwarfRegNum<[271]>; 116} 117 118// VFP3 defines 16 additional double registers 119def D16 : ARMFReg<16, "d16">, DwarfRegNum<[272]>; 120def D17 : ARMFReg<17, "d17">, DwarfRegNum<[273]>; 121def D18 : ARMFReg<18, "d18">, DwarfRegNum<[274]>; 122def D19 : ARMFReg<19, "d19">, DwarfRegNum<[275]>; 123def D20 : ARMFReg<20, "d20">, DwarfRegNum<[276]>; 124def D21 : ARMFReg<21, "d21">, DwarfRegNum<[277]>; 125def D22 : ARMFReg<22, "d22">, DwarfRegNum<[278]>; 126def D23 : ARMFReg<23, "d23">, DwarfRegNum<[279]>; 127def D24 : ARMFReg<24, "d24">, DwarfRegNum<[280]>; 128def D25 : ARMFReg<25, "d25">, DwarfRegNum<[281]>; 129def D26 : ARMFReg<26, "d26">, DwarfRegNum<[282]>; 130def D27 : ARMFReg<27, "d27">, DwarfRegNum<[283]>; 131def D28 : ARMFReg<28, "d28">, DwarfRegNum<[284]>; 132def D29 : ARMFReg<29, "d29">, DwarfRegNum<[285]>; 133def D30 : ARMFReg<30, "d30">, DwarfRegNum<[286]>; 134def D31 : ARMFReg<31, "d31">, DwarfRegNum<[287]>; 135 136// Advanced SIMD (NEON) defines 16 quad-word aliases 137let SubRegIndices = [dsub_0, dsub_1] in { 138def Q0 : ARMReg< 0, "q0", [D0, D1]>; 139def Q1 : ARMReg< 1, "q1", [D2, D3]>; 140def Q2 : ARMReg< 2, "q2", [D4, D5]>; 141def Q3 : ARMReg< 3, "q3", [D6, D7]>; 142def Q4 : ARMReg< 4, "q4", [D8, D9]>; 143def Q5 : ARMReg< 5, "q5", [D10, D11]>; 144def Q6 : ARMReg< 6, "q6", [D12, D13]>; 145def Q7 : ARMReg< 7, "q7", [D14, D15]>; 146} 147let SubRegIndices = [dsub_0, dsub_1] in { 148def Q8 : ARMReg< 8, "q8", [D16, D17]>; 149def Q9 : ARMReg< 9, "q9", [D18, D19]>; 150def Q10 : ARMReg<10, "q10", [D20, D21]>; 151def Q11 : ARMReg<11, "q11", [D22, D23]>; 152def Q12 : ARMReg<12, "q12", [D24, D25]>; 153def Q13 : ARMReg<13, "q13", [D26, D27]>; 154def Q14 : ARMReg<14, "q14", [D28, D29]>; 155def Q15 : ARMReg<15, "q15", [D30, D31]>; 156} 157 158// Current Program Status Register. 159// We model fpscr with two registers: FPSCR models the control bits and will be 160// reserved. FPSCR_NZCV models the flag bits and will be unreserved. APSR_NZCV 161// models the APSR when it's accessed by some special instructions. In such cases 162// it has the same encoding as PC. 163def CPSR : ARMReg<0, "cpsr">; 164def APSR : ARMReg<1, "apsr">; 165def APSR_NZCV : ARMReg<15, "apsr_nzcv">; 166def SPSR : ARMReg<2, "spsr">; 167def FPSCR : ARMReg<3, "fpscr">; 168def FPSCR_NZCV : ARMReg<3, "fpscr_nzcv"> { 169 let Aliases = [FPSCR]; 170} 171def ITSTATE : ARMReg<4, "itstate">; 172 173// Special Registers - only available in privileged mode. 174def FPSID : ARMReg<0, "fpsid">; 175def MVFR2 : ARMReg<5, "mvfr2">; 176def MVFR1 : ARMReg<6, "mvfr1">; 177def MVFR0 : ARMReg<7, "mvfr0">; 178def FPEXC : ARMReg<8, "fpexc">; 179def FPINST : ARMReg<9, "fpinst">; 180def FPINST2 : ARMReg<10, "fpinst2">; 181 182// Register classes. 183// 184// pc == Program Counter 185// lr == Link Register 186// sp == Stack Pointer 187// r12 == ip (scratch) 188// r7 == Frame Pointer (thumb-style backtraces) 189// r9 == May be reserved as Thread Register 190// r11 == Frame Pointer (arm-style backtraces) 191// r10 == Stack Limit 192// 193def GPR : RegisterClass<"ARM", [i32], 32, (add (sequence "R%u", 0, 12), 194 SP, LR, PC)> { 195 // Allocate LR as the first CSR since it is always saved anyway. 196 // For Thumb1 mode, we don't want to allocate hi regs at all, as we don't 197 // know how to spill them. If we make our prologue/epilogue code smarter at 198 // some point, we can go back to using the above allocation orders for the 199 // Thumb1 instructions that know how to use hi regs. 200 let AltOrders = [(add LR, GPR), (trunc GPR, 8)]; 201 let AltOrderSelect = [{ 202 return 1 + MF.getSubtarget<ARMSubtarget>().isThumb1Only(); 203 }]; 204} 205 206// GPRs without the PC. Some ARM instructions do not allow the PC in 207// certain operand slots, particularly as the destination. Primarily 208// useful for disassembly. 209def GPRnopc : RegisterClass<"ARM", [i32], 32, (sub GPR, PC)> { 210 let AltOrders = [(add LR, GPRnopc), (trunc GPRnopc, 8)]; 211 let AltOrderSelect = [{ 212 return 1 + MF.getSubtarget<ARMSubtarget>().isThumb1Only(); 213 }]; 214} 215 216// GPRs without the PC but with APSR. Some instructions allow accessing the 217// APSR, while actually encoding PC in the register field. This is useful 218// for assembly and disassembly only. 219def GPRwithAPSR : RegisterClass<"ARM", [i32], 32, (add (sub GPR, PC), APSR_NZCV)> { 220 let AltOrders = [(add LR, GPRnopc), (trunc GPRnopc, 8)]; 221 let AltOrderSelect = [{ 222 return 1 + MF.getSubtarget<ARMSubtarget>().isThumb1Only(); 223 }]; 224} 225 226// GPRsp - Only the SP is legal. Used by Thumb1 instructions that want the 227// implied SP argument list. 228// FIXME: It would be better to not use this at all and refactor the 229// instructions to not have SP an an explicit argument. That makes 230// frame index resolution a bit trickier, though. 231def GPRsp : RegisterClass<"ARM", [i32], 32, (add SP)>; 232 233// restricted GPR register class. Many Thumb2 instructions allow the full 234// register range for operands, but have undefined behaviours when PC 235// or SP (R13 or R15) are used. The ARM ISA refers to these operands 236// via the BadReg() pseudo-code description. 237def rGPR : RegisterClass<"ARM", [i32], 32, (sub GPR, SP, PC)> { 238 let AltOrders = [(add LR, rGPR), (trunc rGPR, 8)]; 239 let AltOrderSelect = [{ 240 return 1 + MF.getSubtarget<ARMSubtarget>().isThumb1Only(); 241 }]; 242} 243 244// Thumb registers are R0-R7 normally. Some instructions can still use 245// the general GPR register class above (MOV, e.g.) 246def tGPR : RegisterClass<"ARM", [i32], 32, (trunc GPR, 8)>; 247 248// The high registers in thumb mode, R8-R15. 249def hGPR : RegisterClass<"ARM", [i32], 32, (sub GPR, tGPR)>; 250 251// For tail calls, we can't use callee-saved registers, as they are restored 252// to the saved value before the tail call, which would clobber a call address. 253// Note, getMinimalPhysRegClass(R0) returns tGPR because of the names of 254// this class and the preceding one(!) This is what we want. 255def tcGPR : RegisterClass<"ARM", [i32], 32, (add R0, R1, R2, R3, R12)> { 256 let AltOrders = [(and tcGPR, tGPR)]; 257 let AltOrderSelect = [{ 258 return MF.getSubtarget<ARMSubtarget>().isThumb1Only(); 259 }]; 260} 261 262// Condition code registers. 263def CCR : RegisterClass<"ARM", [i32], 32, (add CPSR)> { 264 let CopyCost = -1; // Don't allow copying of status registers. 265 let isAllocatable = 0; 266} 267 268// Scalar single precision floating point register class.. 269// FIXME: Allocation order changed to s0, s2, s4, ... as a quick hack to 270// avoid partial-write dependencies on D registers (S registers are 271// renamed as portions of D registers). 272def SPR : RegisterClass<"ARM", [f32], 32, (add (decimate 273 (sequence "S%u", 0, 31), 2), 274 (sequence "S%u", 0, 31))>; 275 276// Subset of SPR which can be used as a source of NEON scalars for 16-bit 277// operations 278def SPR_8 : RegisterClass<"ARM", [f32], 32, (sequence "S%u", 0, 15)>; 279 280// Scalar double precision floating point / generic 64-bit vector register 281// class. 282// ARM requires only word alignment for double. It's more performant if it 283// is double-word alignment though. 284def DPR : RegisterClass<"ARM", [f64, v8i8, v4i16, v2i32, v1i64, v2f32], 64, 285 (sequence "D%u", 0, 31)> { 286 // Allocate non-VFP2 registers D16-D31 first. 287 let AltOrders = [(rotl DPR, 16)]; 288 let AltOrderSelect = [{ return 1; }]; 289} 290 291// Subset of DPR that are accessible with VFP2 (and so that also have 292// 32-bit SPR subregs). 293def DPR_VFP2 : RegisterClass<"ARM", [f64, v8i8, v4i16, v2i32, v1i64, v2f32], 64, 294 (trunc DPR, 16)>; 295 296// Subset of DPR which can be used as a source of NEON scalars for 16-bit 297// operations 298def DPR_8 : RegisterClass<"ARM", [f64, v8i8, v4i16, v2i32, v1i64, v2f32], 64, 299 (trunc DPR, 8)>; 300 301// Generic 128-bit vector register class. 302def QPR : RegisterClass<"ARM", [v16i8, v8i16, v4i32, v2i64, v4f32, v2f64], 128, 303 (sequence "Q%u", 0, 15)> { 304 // Allocate non-VFP2 aliases Q8-Q15 first. 305 let AltOrders = [(rotl QPR, 8)]; 306 let AltOrderSelect = [{ return 1; }]; 307} 308 309// Subset of QPR that have 32-bit SPR subregs. 310def QPR_VFP2 : RegisterClass<"ARM", [v16i8, v8i16, v4i32, v2i64, v4f32, v2f64], 311 128, (trunc QPR, 8)>; 312 313// Subset of QPR that have DPR_8 and SPR_8 subregs. 314def QPR_8 : RegisterClass<"ARM", [v16i8, v8i16, v4i32, v2i64, v4f32, v2f64], 315 128, (trunc QPR, 4)>; 316 317// Pseudo-registers representing odd-even pairs of D registers. The even-odd 318// pairs are already represented by the Q registers. 319// These are needed by NEON instructions requiring two consecutive D registers. 320// There is no D31_D0 register as that is always an UNPREDICTABLE encoding. 321def TuplesOE2D : RegisterTuples<[dsub_0, dsub_1], 322 [(decimate (shl DPR, 1), 2), 323 (decimate (shl DPR, 2), 2)]>; 324 325// Register class representing a pair of consecutive D registers. 326// Use the Q registers for the even-odd pairs. 327def DPair : RegisterClass<"ARM", [v16i8, v8i16, v4i32, v2i64, v4f32, v2f64], 328 128, (interleave QPR, TuplesOE2D)> { 329 // Allocate starting at non-VFP2 registers D16-D31 first. 330 // Prefer even-odd pairs as they are easier to copy. 331 let AltOrders = [(add (rotl QPR, 8), (rotl DPair, 16))]; 332 let AltOrderSelect = [{ return 1; }]; 333} 334 335// Pseudo-registers representing even-odd pairs of GPRs from R1 to R13/SP. 336// These are needed by instructions (e.g. ldrexd/strexd) requiring even-odd GPRs. 337def Tuples2R : RegisterTuples<[gsub_0, gsub_1], 338 [(add R0, R2, R4, R6, R8, R10, R12), 339 (add R1, R3, R5, R7, R9, R11, SP)]>; 340 341// Register class representing a pair of even-odd GPRs. 342def GPRPair : RegisterClass<"ARM", [untyped], 64, (add Tuples2R)> { 343 let Size = 64; // 2 x 32 bits, we have no predefined type of that size. 344} 345 346// Pseudo-registers representing 3 consecutive D registers. 347def Tuples3D : RegisterTuples<[dsub_0, dsub_1, dsub_2], 348 [(shl DPR, 0), 349 (shl DPR, 1), 350 (shl DPR, 2)]>; 351 352// 3 consecutive D registers. 353def DTriple : RegisterClass<"ARM", [untyped], 64, (add Tuples3D)> { 354 let Size = 192; // 3 x 64 bits, we have no predefined type of that size. 355} 356 357// Pseudo 256-bit registers to represent pairs of Q registers. These should 358// never be present in the emitted code. 359// These are used for NEON load / store instructions, e.g., vld4, vst3. 360def Tuples2Q : RegisterTuples<[qsub_0, qsub_1], [(shl QPR, 0), (shl QPR, 1)]>; 361 362// Pseudo 256-bit vector register class to model pairs of Q registers 363// (4 consecutive D registers). 364def QQPR : RegisterClass<"ARM", [v4i64], 256, (add Tuples2Q)> { 365 // Allocate non-VFP2 aliases first. 366 let AltOrders = [(rotl QQPR, 8)]; 367 let AltOrderSelect = [{ return 1; }]; 368} 369 370// Tuples of 4 D regs that isn't also a pair of Q regs. 371def TuplesOE4D : RegisterTuples<[dsub_0, dsub_1, dsub_2, dsub_3], 372 [(decimate (shl DPR, 1), 2), 373 (decimate (shl DPR, 2), 2), 374 (decimate (shl DPR, 3), 2), 375 (decimate (shl DPR, 4), 2)]>; 376 377// 4 consecutive D registers. 378def DQuad : RegisterClass<"ARM", [v4i64], 256, 379 (interleave Tuples2Q, TuplesOE4D)>; 380 381// Pseudo 512-bit registers to represent four consecutive Q registers. 382def Tuples2QQ : RegisterTuples<[qqsub_0, qqsub_1], 383 [(shl QQPR, 0), (shl QQPR, 2)]>; 384 385// Pseudo 512-bit vector register class to model 4 consecutive Q registers 386// (8 consecutive D registers). 387def QQQQPR : RegisterClass<"ARM", [v8i64], 256, (add Tuples2QQ)> { 388 // Allocate non-VFP2 aliases first. 389 let AltOrders = [(rotl QQQQPR, 8)]; 390 let AltOrderSelect = [{ return 1; }]; 391} 392 393 394// Pseudo-registers representing 2-spaced consecutive D registers. 395def Tuples2DSpc : RegisterTuples<[dsub_0, dsub_2], 396 [(shl DPR, 0), 397 (shl DPR, 2)]>; 398 399// Spaced pairs of D registers. 400def DPairSpc : RegisterClass<"ARM", [v2i64], 64, (add Tuples2DSpc)>; 401 402def Tuples3DSpc : RegisterTuples<[dsub_0, dsub_2, dsub_4], 403 [(shl DPR, 0), 404 (shl DPR, 2), 405 (shl DPR, 4)]>; 406 407// Spaced triples of D registers. 408def DTripleSpc : RegisterClass<"ARM", [untyped], 64, (add Tuples3DSpc)> { 409 let Size = 192; // 3 x 64 bits, we have no predefined type of that size. 410} 411 412def Tuples4DSpc : RegisterTuples<[dsub_0, dsub_2, dsub_4, dsub_6], 413 [(shl DPR, 0), 414 (shl DPR, 2), 415 (shl DPR, 4), 416 (shl DPR, 6)]>; 417 418// Spaced quads of D registers. 419def DQuadSpc : RegisterClass<"ARM", [v4i64], 64, (add Tuples3DSpc)>; 420