1//==- HexagonInstrInfo.td - Target Description for Hexagon -*- tablegen -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file describes the Hexagon instructions in TableGen format.
11//
12//===----------------------------------------------------------------------===//
13
14include "HexagonInstrFormats.td"
15include "HexagonOperands.td"
16
17// Pattern fragment that combines the value type and the register class
18// into a single parameter.
19// The pat frags in the definitions below need to have a named register,
20// otherwise i32 will be assumed regardless of the register class. The
21// name of the register does not matter.
22def I1  : PatLeaf<(i1 PredRegs:$R)>;
23def I32 : PatLeaf<(i32 IntRegs:$R)>;
24def I64 : PatLeaf<(i64 DoubleRegs:$R)>;
25def F32 : PatLeaf<(f32 IntRegs:$R)>;
26def F64 : PatLeaf<(f64 DoubleRegs:$R)>;
27
28// Pattern fragments to extract the low and high subregisters from a
29// 64-bit value.
30def LoReg: OutPatFrag<(ops node:$Rs),
31                      (EXTRACT_SUBREG (i64 $Rs), subreg_loreg)>;
32def HiReg: OutPatFrag<(ops node:$Rs),
33                      (EXTRACT_SUBREG (i64 $Rs), subreg_hireg)>;
34
35// SDNode for converting immediate C to C-1.
36def DEC_CONST_SIGNED : SDNodeXForm<imm, [{
37   // Return the byte immediate const-1 as an SDNode.
38   int32_t imm = N->getSExtValue();
39   return XformSToSM1Imm(imm);
40}]>;
41
42// SDNode for converting immediate C to C-2.
43def DEC2_CONST_SIGNED : SDNodeXForm<imm, [{
44   // Return the byte immediate const-2 as an SDNode.
45   int32_t imm = N->getSExtValue();
46   return XformSToSM2Imm(imm);
47}]>;
48
49// SDNode for converting immediate C to C-3.
50def DEC3_CONST_SIGNED : SDNodeXForm<imm, [{
51   // Return the byte immediate const-3 as an SDNode.
52   int32_t imm = N->getSExtValue();
53   return XformSToSM3Imm(imm);
54}]>;
55
56// SDNode for converting immediate C to C-1.
57def DEC_CONST_UNSIGNED : SDNodeXForm<imm, [{
58   // Return the byte immediate const-1 as an SDNode.
59   uint32_t imm = N->getZExtValue();
60   return XformUToUM1Imm(imm);
61}]>;
62
63//===----------------------------------------------------------------------===//
64// Compare
65//===----------------------------------------------------------------------===//
66let hasSideEffects = 0, isCompare = 1, InputType = "imm", isExtendable = 1,
67    opExtendable = 2 in
68class T_CMP <string mnemonic, bits<2> MajOp, bit isNot, Operand ImmOp>
69  : ALU32Inst <(outs PredRegs:$dst),
70               (ins IntRegs:$src1, ImmOp:$src2),
71  "$dst = "#!if(isNot, "!","")#mnemonic#"($src1, #$src2)",
72  [], "",ALU32_2op_tc_2early_SLOT0123 >, ImmRegRel {
73    bits<2> dst;
74    bits<5> src1;
75    bits<10> src2;
76    let CextOpcode = mnemonic;
77    let opExtentBits  = !if(!eq(mnemonic, "cmp.gtu"), 9, 10);
78    let isExtentSigned = !if(!eq(mnemonic, "cmp.gtu"), 0, 1);
79
80    let IClass = 0b0111;
81
82    let Inst{27-24} = 0b0101;
83    let Inst{23-22} = MajOp;
84    let Inst{21}    = !if(!eq(mnemonic, "cmp.gtu"), 0, src2{9});
85    let Inst{20-16} = src1;
86    let Inst{13-5}  = src2{8-0};
87    let Inst{4}     = isNot;
88    let Inst{3-2}   = 0b00;
89    let Inst{1-0}   = dst;
90  }
91
92def C2_cmpeqi   : T_CMP <"cmp.eq",  0b00, 0, s10Ext>;
93def C2_cmpgti   : T_CMP <"cmp.gt",  0b01, 0, s10Ext>;
94def C2_cmpgtui  : T_CMP <"cmp.gtu", 0b10, 0, u9Ext>;
95
96class T_CMP_pat <InstHexagon MI, PatFrag OpNode, PatLeaf ImmPred>
97  : Pat<(i1 (OpNode (i32 IntRegs:$src1), ImmPred:$src2)),
98        (MI IntRegs:$src1, ImmPred:$src2)>;
99
100def : T_CMP_pat <C2_cmpeqi,  seteq,  s10ImmPred>;
101def : T_CMP_pat <C2_cmpgti,  setgt,  s10ImmPred>;
102def : T_CMP_pat <C2_cmpgtui, setugt, u9ImmPred>;
103
104//===----------------------------------------------------------------------===//
105// ALU32/ALU +
106//===----------------------------------------------------------------------===//
107// Add.
108
109def SDT_Int32Leaf  : SDTypeProfile<1, 0, [SDTCisVT<0, i32>]>;
110def SDT_Int32Unary : SDTypeProfile<1, 1, [SDTCisVT<0, i32>, SDTCisVT<1, i32>]>;
111
112def SDTHexagonI64I32I32 : SDTypeProfile<1, 2,
113  [SDTCisVT<0, i64>, SDTCisVT<1, i32>, SDTCisSameAs<1, 2>]>;
114
115def HexagonCOMBINE : SDNode<"HexagonISD::COMBINE", SDTHexagonI64I32I32>;
116def HexagonPACKHL  : SDNode<"HexagonISD::PACKHL",  SDTHexagonI64I32I32>;
117
118let hasSideEffects = 0, hasNewValue = 1, InputType = "reg" in
119class T_ALU32_3op<string mnemonic, bits<3> MajOp, bits<3> MinOp, bit OpsRev,
120                  bit IsComm>
121  : ALU32_rr<(outs IntRegs:$Rd), (ins IntRegs:$Rs, IntRegs:$Rt),
122             "$Rd = "#mnemonic#"($Rs, $Rt)",
123             [], "", ALU32_3op_tc_1_SLOT0123>, ImmRegRel, PredRel {
124  let isCommutable = IsComm;
125  let BaseOpcode = mnemonic#_rr;
126  let CextOpcode = mnemonic;
127
128  bits<5> Rs;
129  bits<5> Rt;
130  bits<5> Rd;
131
132  let IClass = 0b1111;
133  let Inst{27} = 0b0;
134  let Inst{26-24} = MajOp;
135  let Inst{23-21} = MinOp;
136  let Inst{20-16} = !if(OpsRev,Rt,Rs);
137  let Inst{12-8} = !if(OpsRev,Rs,Rt);
138  let Inst{4-0} = Rd;
139}
140
141let hasSideEffects = 0, hasNewValue = 1 in
142class T_ALU32_3op_pred<string mnemonic, bits<3> MajOp, bits<3> MinOp,
143                       bit OpsRev, bit PredNot, bit PredNew>
144  : ALU32_rr<(outs IntRegs:$Rd), (ins PredRegs:$Pu, IntRegs:$Rs, IntRegs:$Rt),
145             "if ("#!if(PredNot,"!","")#"$Pu"#!if(PredNew,".new","")#") "#
146             "$Rd = "#mnemonic#"($Rs, $Rt)",
147             [], "", ALU32_3op_tc_1_SLOT0123>, ImmRegRel, PredNewRel {
148  let isPredicated = 1;
149  let isPredicatedFalse = PredNot;
150  let isPredicatedNew = PredNew;
151  let BaseOpcode = mnemonic#_rr;
152  let CextOpcode = mnemonic;
153
154  bits<2> Pu;
155  bits<5> Rs;
156  bits<5> Rt;
157  bits<5> Rd;
158
159  let IClass = 0b1111;
160  let Inst{27} = 0b1;
161  let Inst{26-24} = MajOp;
162  let Inst{23-21} = MinOp;
163  let Inst{20-16} = !if(OpsRev,Rt,Rs);
164  let Inst{13} = PredNew;
165  let Inst{12-8} = !if(OpsRev,Rs,Rt);
166  let Inst{7} = PredNot;
167  let Inst{6-5} = Pu;
168  let Inst{4-0} = Rd;
169}
170
171class T_ALU32_combineh<string Op1, string Op2, bits<3> MajOp, bits<3> MinOp,
172                      bit OpsRev>
173  : T_ALU32_3op<"", MajOp, MinOp, OpsRev, 0> {
174  let AsmString = "$Rd = combine($Rs"#Op1#", $Rt"#Op2#")";
175}
176
177def A2_combine_hh : T_ALU32_combineh<".h", ".h", 0b011, 0b100, 1>;
178def A2_combine_hl : T_ALU32_combineh<".h", ".l", 0b011, 0b101, 1>;
179def A2_combine_lh : T_ALU32_combineh<".l", ".h", 0b011, 0b110, 1>;
180def A2_combine_ll : T_ALU32_combineh<".l", ".l", 0b011, 0b111, 1>;
181
182class T_ALU32_3op_sfx<string mnemonic, string suffix, bits<3> MajOp,
183                      bits<3> MinOp, bit OpsRev, bit IsComm>
184  : T_ALU32_3op<"", MajOp, MinOp, OpsRev, IsComm> {
185  let AsmString = "$Rd = "#mnemonic#"($Rs, $Rt)"#suffix;
186}
187
188def A2_svaddh   : T_ALU32_3op<"vaddh",   0b110, 0b000, 0, 1>;
189def A2_svsubh   : T_ALU32_3op<"vsubh",   0b110, 0b100, 1, 0>;
190
191let Defs = [USR_OVF], Itinerary = ALU32_3op_tc_2_SLOT0123 in {
192  def A2_svaddhs  : T_ALU32_3op_sfx<"vaddh",  ":sat", 0b110, 0b001, 0, 1>;
193  def A2_addsat   : T_ALU32_3op_sfx<"add",    ":sat", 0b110, 0b010, 0, 1>;
194  def A2_svadduhs : T_ALU32_3op_sfx<"vadduh", ":sat", 0b110, 0b011, 0, 1>;
195  def A2_svsubhs  : T_ALU32_3op_sfx<"vsubh",  ":sat", 0b110, 0b101, 1, 0>;
196  def A2_subsat   : T_ALU32_3op_sfx<"sub",    ":sat", 0b110, 0b110, 1, 0>;
197  def A2_svsubuhs : T_ALU32_3op_sfx<"vsubuh", ":sat", 0b110, 0b111, 1, 0>;
198}
199
200let Itinerary = ALU32_3op_tc_2_SLOT0123 in
201def A2_svavghs  : T_ALU32_3op_sfx<"vavgh",  ":rnd", 0b111, 0b001, 0, 1>;
202
203def A2_svavgh   : T_ALU32_3op<"vavgh",   0b111, 0b000, 0, 1>;
204def A2_svnavgh  : T_ALU32_3op<"vnavgh",  0b111, 0b011, 1, 0>;
205
206multiclass T_ALU32_3op_p<string mnemonic, bits<3> MajOp, bits<3> MinOp,
207                         bit OpsRev> {
208  def t    : T_ALU32_3op_pred<mnemonic, MajOp, MinOp, OpsRev, 0, 0>;
209  def f    : T_ALU32_3op_pred<mnemonic, MajOp, MinOp, OpsRev, 1, 0>;
210  def tnew : T_ALU32_3op_pred<mnemonic, MajOp, MinOp, OpsRev, 0, 1>;
211  def fnew : T_ALU32_3op_pred<mnemonic, MajOp, MinOp, OpsRev, 1, 1>;
212}
213
214multiclass T_ALU32_3op_A2<string mnemonic, bits<3> MajOp, bits<3> MinOp,
215                          bit OpsRev, bit IsComm> {
216  let isPredicable = 1 in
217  def  A2_#NAME  : T_ALU32_3op  <mnemonic, MajOp, MinOp, OpsRev, IsComm>;
218  defm A2_p#NAME : T_ALU32_3op_p<mnemonic, MajOp, MinOp, OpsRev>;
219}
220
221defm add : T_ALU32_3op_A2<"add", 0b011, 0b000, 0, 1>;
222defm and : T_ALU32_3op_A2<"and", 0b001, 0b000, 0, 1>;
223defm or  : T_ALU32_3op_A2<"or",  0b001, 0b001, 0, 1>;
224defm sub : T_ALU32_3op_A2<"sub", 0b011, 0b001, 1, 0>;
225defm xor : T_ALU32_3op_A2<"xor", 0b001, 0b011, 0, 1>;
226
227// Pats for instruction selection.
228class BinOp32_pat<SDNode Op, InstHexagon MI, ValueType ResT>
229  : Pat<(ResT (Op (i32 IntRegs:$Rs), (i32 IntRegs:$Rt))),
230        (ResT (MI IntRegs:$Rs, IntRegs:$Rt))>;
231
232def: BinOp32_pat<add, A2_add, i32>;
233def: BinOp32_pat<and, A2_and, i32>;
234def: BinOp32_pat<or,  A2_or,  i32>;
235def: BinOp32_pat<sub, A2_sub, i32>;
236def: BinOp32_pat<xor, A2_xor, i32>;
237
238// A few special cases producing register pairs:
239let OutOperandList = (outs DoubleRegs:$Rd), hasNewValue = 0 in {
240  def S2_packhl    : T_ALU32_3op  <"packhl",  0b101, 0b100, 0, 0>;
241
242  let isPredicable = 1 in
243    def A2_combinew  : T_ALU32_3op  <"combine", 0b101, 0b000, 0, 0>;
244
245  // Conditional combinew uses "newt/f" instead of "t/fnew".
246  def C2_ccombinewt    : T_ALU32_3op_pred<"combine", 0b101, 0b000, 0, 0, 0>;
247  def C2_ccombinewf    : T_ALU32_3op_pred<"combine", 0b101, 0b000, 0, 1, 0>;
248  def C2_ccombinewnewt : T_ALU32_3op_pred<"combine", 0b101, 0b000, 0, 0, 1>;
249  def C2_ccombinewnewf : T_ALU32_3op_pred<"combine", 0b101, 0b000, 0, 1, 1>;
250}
251
252def: BinOp32_pat<HexagonCOMBINE, A2_combinew, i64>;
253def: BinOp32_pat<HexagonPACKHL,  S2_packhl,   i64>;
254
255let hasSideEffects = 0, hasNewValue = 1, isCompare = 1, InputType = "reg"  in
256class T_ALU32_3op_cmp<string mnemonic, bits<2> MinOp, bit IsNeg, bit IsComm>
257  : ALU32_rr<(outs PredRegs:$Pd), (ins IntRegs:$Rs, IntRegs:$Rt),
258             "$Pd = "#mnemonic#"($Rs, $Rt)",
259             [], "", ALU32_3op_tc_1_SLOT0123>, ImmRegRel {
260  let CextOpcode = mnemonic;
261  let isCommutable = IsComm;
262  bits<5> Rs;
263  bits<5> Rt;
264  bits<2> Pd;
265
266  let IClass = 0b1111;
267  let Inst{27-24} = 0b0010;
268  let Inst{22-21} = MinOp;
269  let Inst{20-16} = Rs;
270  let Inst{12-8} = Rt;
271  let Inst{4} = IsNeg;
272  let Inst{3-2} = 0b00;
273  let Inst{1-0} = Pd;
274}
275
276let Itinerary = ALU32_3op_tc_2early_SLOT0123 in {
277  def C2_cmpeq   : T_ALU32_3op_cmp< "cmp.eq",  0b00, 0, 1>;
278  def C2_cmpgt   : T_ALU32_3op_cmp< "cmp.gt",  0b10, 0, 0>;
279  def C2_cmpgtu  : T_ALU32_3op_cmp< "cmp.gtu", 0b11, 0, 0>;
280}
281
282// Patfrag to convert the usual comparison patfrags (e.g. setlt) to ones
283// that reverse the order of the operands.
284class RevCmp<PatFrag F> : PatFrag<(ops node:$rhs, node:$lhs), F.Fragment>;
285
286// Pats for compares. They use PatFrags as operands, not SDNodes,
287// since seteq/setgt/etc. are defined as ParFrags.
288class T_cmp32_rr_pat<InstHexagon MI, PatFrag Op, ValueType VT>
289  : Pat<(VT (Op (i32 IntRegs:$Rs), (i32 IntRegs:$Rt))),
290        (VT (MI IntRegs:$Rs, IntRegs:$Rt))>;
291
292def: T_cmp32_rr_pat<C2_cmpeq,  seteq, i1>;
293def: T_cmp32_rr_pat<C2_cmpgt,  setgt, i1>;
294def: T_cmp32_rr_pat<C2_cmpgtu, setugt, i1>;
295
296def: T_cmp32_rr_pat<C2_cmpgt,  RevCmp<setlt>,  i1>;
297def: T_cmp32_rr_pat<C2_cmpgtu, RevCmp<setult>, i1>;
298
299let CextOpcode = "MUX", InputType = "reg", hasNewValue = 1 in
300def C2_mux: ALU32_rr<(outs IntRegs:$Rd),
301                     (ins PredRegs:$Pu, IntRegs:$Rs, IntRegs:$Rt),
302      "$Rd = mux($Pu, $Rs, $Rt)", [], "", ALU32_3op_tc_1_SLOT0123>, ImmRegRel {
303  bits<5> Rd;
304  bits<2> Pu;
305  bits<5> Rs;
306  bits<5> Rt;
307
308  let CextOpcode = "mux";
309  let InputType = "reg";
310  let hasSideEffects = 0;
311  let IClass = 0b1111;
312
313  let Inst{27-24} = 0b0100;
314  let Inst{20-16} = Rs;
315  let Inst{12-8} = Rt;
316  let Inst{6-5} = Pu;
317  let Inst{4-0} = Rd;
318}
319
320def: Pat<(i32 (select (i1 PredRegs:$Pu), (i32 IntRegs:$Rs), (i32 IntRegs:$Rt))),
321         (C2_mux PredRegs:$Pu, IntRegs:$Rs, IntRegs:$Rt)>;
322
323// Combines the two immediates into a double register.
324// Increase complexity to make it greater than any complexity of a combine
325// that involves a register.
326
327let isReMaterializable = 1, isMoveImm = 1, isAsCheapAsAMove = 1,
328    isExtentSigned = 1, isExtendable = 1, opExtentBits = 8, opExtendable = 1,
329    AddedComplexity = 75 in
330def A2_combineii: ALU32Inst <(outs DoubleRegs:$Rdd), (ins s8Ext:$s8, s8Imm:$S8),
331  "$Rdd = combine(#$s8, #$S8)",
332  [(set (i64 DoubleRegs:$Rdd),
333        (i64 (HexagonCOMBINE(i32 s32ImmPred:$s8), (i32 s8ImmPred:$S8))))]> {
334    bits<5> Rdd;
335    bits<8> s8;
336    bits<8> S8;
337
338    let IClass = 0b0111;
339    let Inst{27-23} = 0b11000;
340    let Inst{22-16} = S8{7-1};
341    let Inst{13}    = S8{0};
342    let Inst{12-5}  = s8;
343    let Inst{4-0}   = Rdd;
344  }
345
346//===----------------------------------------------------------------------===//
347// Template class for predicated ADD of a reg and an Immediate value.
348//===----------------------------------------------------------------------===//
349let hasNewValue = 1, hasSideEffects = 0 in
350class T_Addri_Pred <bit PredNot, bit PredNew>
351  : ALU32_ri <(outs IntRegs:$Rd),
352              (ins PredRegs:$Pu, IntRegs:$Rs, s8Ext:$s8),
353  !if(PredNot, "if (!$Pu", "if ($Pu")#!if(PredNew,".new) $Rd = ",
354  ") $Rd = ")#"add($Rs, #$s8)"> {
355    bits<5> Rd;
356    bits<2> Pu;
357    bits<5> Rs;
358    bits<8> s8;
359
360    let isPredicatedNew = PredNew;
361    let IClass = 0b0111;
362
363    let Inst{27-24} = 0b0100;
364    let Inst{23}    = PredNot;
365    let Inst{22-21} = Pu;
366    let Inst{20-16} = Rs;
367    let Inst{13}    = PredNew;
368    let Inst{12-5}  = s8;
369    let Inst{4-0}   = Rd;
370  }
371
372//===----------------------------------------------------------------------===//
373// A2_addi: Add a signed immediate to a register.
374//===----------------------------------------------------------------------===//
375let hasNewValue = 1, hasSideEffects = 0 in
376class T_Addri <Operand immOp>
377  : ALU32_ri <(outs IntRegs:$Rd),
378              (ins IntRegs:$Rs, immOp:$s16),
379  "$Rd = add($Rs, #$s16)", [], "", ALU32_ADDI_tc_1_SLOT0123> {
380    bits<5> Rd;
381    bits<5> Rs;
382    bits<16> s16;
383
384    let IClass = 0b1011;
385
386    let Inst{27-21} = s16{15-9};
387    let Inst{20-16} = Rs;
388    let Inst{13-5}  = s16{8-0};
389    let Inst{4-0}   = Rd;
390  }
391
392//===----------------------------------------------------------------------===//
393// Multiclass for ADD of a register and an immediate value.
394//===----------------------------------------------------------------------===//
395multiclass Addri_Pred<string mnemonic, bit PredNot> {
396  let isPredicatedFalse = PredNot in {
397    def NAME     : T_Addri_Pred<PredNot, 0>;
398    // Predicate new
399    def NAME#new : T_Addri_Pred<PredNot, 1>;
400  }
401}
402
403let isExtendable = 1, isExtentSigned = 1, InputType = "imm" in
404multiclass Addri_base<string mnemonic, SDNode OpNode> {
405  let CextOpcode = mnemonic, BaseOpcode = mnemonic#_ri in {
406    let opExtendable = 2, opExtentBits = 16, isPredicable = 1 in
407    def A2_#NAME : T_Addri<s16Ext>;
408
409    let opExtendable = 3, opExtentBits = 8, isPredicated = 1 in {
410      defm A2_p#NAME#t : Addri_Pred<mnemonic, 0>;
411      defm A2_p#NAME#f : Addri_Pred<mnemonic, 1>;
412    }
413  }
414}
415
416defm addi : Addri_base<"add", add>, ImmRegRel, PredNewRel;
417
418def: Pat<(i32 (add I32:$Rs, s32ImmPred:$s16)),
419         (i32 (A2_addi I32:$Rs, imm:$s16))>;
420
421//===----------------------------------------------------------------------===//
422// Template class used for the following ALU32 instructions.
423// Rd=and(Rs,#s10)
424// Rd=or(Rs,#s10)
425//===----------------------------------------------------------------------===//
426let isExtendable = 1, opExtendable = 2, isExtentSigned = 1, opExtentBits = 10,
427InputType = "imm", hasNewValue = 1 in
428class T_ALU32ri_logical <string mnemonic, SDNode OpNode, bits<2> MinOp>
429  : ALU32_ri <(outs IntRegs:$Rd),
430              (ins IntRegs:$Rs, s10Ext:$s10),
431  "$Rd = "#mnemonic#"($Rs, #$s10)" ,
432  [(set (i32 IntRegs:$Rd), (OpNode (i32 IntRegs:$Rs), s32ImmPred:$s10))]> {
433    bits<5> Rd;
434    bits<5> Rs;
435    bits<10> s10;
436    let CextOpcode = mnemonic;
437
438    let IClass = 0b0111;
439
440    let Inst{27-24} = 0b0110;
441    let Inst{23-22} = MinOp;
442    let Inst{21}    = s10{9};
443    let Inst{20-16} = Rs;
444    let Inst{13-5}  = s10{8-0};
445    let Inst{4-0}   = Rd;
446  }
447
448def A2_orir  : T_ALU32ri_logical<"or", or, 0b10>, ImmRegRel;
449def A2_andir : T_ALU32ri_logical<"and", and, 0b00>, ImmRegRel;
450
451// Subtract register from immediate
452// Rd32=sub(#s10,Rs32)
453let isExtendable = 1, CextOpcode = "sub", opExtendable = 1, isExtentSigned = 1,
454    opExtentBits = 10, InputType = "imm", hasNewValue = 1, hasSideEffects = 0 in
455def A2_subri: ALU32_ri <(outs IntRegs:$Rd), (ins s10Ext:$s10, IntRegs:$Rs),
456  "$Rd = sub(#$s10, $Rs)", []>, ImmRegRel {
457    bits<5> Rd;
458    bits<10> s10;
459    bits<5> Rs;
460
461    let IClass = 0b0111;
462
463    let Inst{27-22} = 0b011001;
464    let Inst{21}    = s10{9};
465    let Inst{20-16} = Rs;
466    let Inst{13-5}  = s10{8-0};
467    let Inst{4-0}   = Rd;
468  }
469
470// Nop.
471let hasSideEffects = 0 in
472def A2_nop: ALU32Inst <(outs), (ins), "nop" > {
473  let IClass = 0b0111;
474  let Inst{27-24} = 0b1111;
475}
476
477def: Pat<(sub s32ImmPred:$s10, IntRegs:$Rs),
478         (A2_subri imm:$s10, IntRegs:$Rs)>;
479
480// Rd = not(Rs) gets mapped to Rd=sub(#-1, Rs).
481def: Pat<(not (i32 IntRegs:$src1)),
482         (A2_subri -1, IntRegs:$src1)>;
483
484let hasSideEffects = 0, hasNewValue = 1 in
485class T_tfr16<bit isHi>
486  : ALU32Inst <(outs IntRegs:$Rx), (ins IntRegs:$src1, u16Imm:$u16),
487  "$Rx"#!if(isHi, ".h", ".l")#" = #$u16",
488  [], "$src1 = $Rx" > {
489    bits<5> Rx;
490    bits<16> u16;
491
492    let IClass = 0b0111;
493    let Inst{27-26} = 0b00;
494    let Inst{25-24} = !if(isHi, 0b10, 0b01);
495    let Inst{23-22} = u16{15-14};
496    let Inst{21}    = 0b1;
497    let Inst{20-16} = Rx;
498    let Inst{13-0}  = u16{13-0};
499  }
500
501def A2_tfril: T_tfr16<0>;
502def A2_tfrih: T_tfr16<1>;
503
504// Conditional transfer is an alias to conditional "Rd = add(Rs, #0)".
505let isPredicated = 1, hasNewValue = 1, opNewValue = 0 in
506class T_tfr_pred<bit isPredNot, bit isPredNew>
507  : ALU32Inst<(outs IntRegs:$dst),
508              (ins PredRegs:$src1, IntRegs:$src2),
509              "if ("#!if(isPredNot, "!", "")#
510              "$src1"#!if(isPredNew, ".new", "")#
511              ") $dst = $src2"> {
512    bits<5> dst;
513    bits<2> src1;
514    bits<5> src2;
515
516    let isPredicatedFalse = isPredNot;
517    let isPredicatedNew = isPredNew;
518    let IClass = 0b0111;
519
520    let Inst{27-24} = 0b0100;
521    let Inst{23} = isPredNot;
522    let Inst{13} = isPredNew;
523    let Inst{12-5} = 0;
524    let Inst{4-0} = dst;
525    let Inst{22-21} = src1;
526    let Inst{20-16} = src2;
527  }
528
529let isPredicable = 1 in
530class T_tfr : ALU32Inst<(outs IntRegs:$dst), (ins IntRegs:$src),
531              "$dst = $src"> {
532    bits<5> dst;
533    bits<5> src;
534
535    let IClass = 0b0111;
536
537    let Inst{27-21} = 0b0000011;
538    let Inst{20-16} = src;
539    let Inst{13}    = 0b0;
540    let Inst{4-0}   = dst;
541  }
542
543let InputType = "reg", hasNewValue = 1, hasSideEffects = 0 in
544multiclass tfr_base<string CextOp> {
545  let CextOpcode = CextOp, BaseOpcode = CextOp in {
546    def NAME : T_tfr;
547
548    // Predicate
549    def t : T_tfr_pred<0, 0>;
550    def f : T_tfr_pred<1, 0>;
551    // Predicate new
552    def tnew : T_tfr_pred<0, 1>;
553    def fnew : T_tfr_pred<1, 1>;
554  }
555}
556
557// Assembler mapped to C2_ccombinew[t|f|newt|newf].
558// Please don't add bits to this instruction as it'll be converted into
559// 'combine' before object code emission.
560let isPredicated = 1 in
561class T_tfrp_pred<bit PredNot, bit PredNew>
562  : ALU32_rr <(outs DoubleRegs:$dst),
563              (ins PredRegs:$src1, DoubleRegs:$src2),
564  "if ("#!if(PredNot, "!", "")#"$src1"
565        #!if(PredNew, ".new", "")#") $dst = $src2" > {
566    let isPredicatedFalse = PredNot;
567    let isPredicatedNew = PredNew;
568  }
569
570// Assembler mapped to A2_combinew.
571// Please don't add bits to this instruction as it'll be converted into
572// 'combine' before object code emission.
573class T_tfrp : ALU32Inst <(outs DoubleRegs:$dst),
574               (ins DoubleRegs:$src),
575    "$dst = $src">;
576
577let hasSideEffects = 0 in
578multiclass TFR64_base<string BaseName> {
579  let BaseOpcode = BaseName in {
580    let isPredicable = 1 in
581    def NAME : T_tfrp;
582    // Predicate
583    def t : T_tfrp_pred <0, 0>;
584    def f : T_tfrp_pred <1, 0>;
585    // Predicate new
586    def tnew : T_tfrp_pred <0, 1>;
587    def fnew : T_tfrp_pred <1, 1>;
588  }
589}
590
591let InputType = "imm", isExtendable = 1, isExtentSigned = 1, opExtentBits = 12,
592    isMoveImm = 1, opExtendable = 2, BaseOpcode = "TFRI", CextOpcode = "TFR",
593    hasSideEffects = 0, isPredicated = 1, hasNewValue = 1 in
594class T_TFRI_Pred<bit PredNot, bit PredNew>
595  : ALU32_ri<(outs IntRegs:$Rd), (ins PredRegs:$Pu, s12Ext:$s12),
596    "if ("#!if(PredNot,"!","")#"$Pu"#!if(PredNew,".new","")#") $Rd = #$s12",
597    [], "", ALU32_2op_tc_1_SLOT0123>, ImmRegRel, PredNewRel {
598  let isPredicatedFalse = PredNot;
599  let isPredicatedNew = PredNew;
600
601  bits<5> Rd;
602  bits<2> Pu;
603  bits<12> s12;
604
605  let IClass = 0b0111;
606  let Inst{27-24} = 0b1110;
607  let Inst{23} = PredNot;
608  let Inst{22-21} = Pu;
609  let Inst{20} = 0b0;
610  let Inst{19-16,12-5} = s12;
611  let Inst{13} = PredNew;
612  let Inst{4-0} = Rd;
613}
614
615def C2_cmoveit    : T_TFRI_Pred<0, 0>;
616def C2_cmoveif    : T_TFRI_Pred<1, 0>;
617def C2_cmovenewit : T_TFRI_Pred<0, 1>;
618def C2_cmovenewif : T_TFRI_Pred<1, 1>;
619
620let InputType = "imm", isExtendable = 1, isExtentSigned = 1,
621    CextOpcode = "TFR", BaseOpcode = "TFRI", hasNewValue = 1, opNewValue = 0,
622    isAsCheapAsAMove = 1 , opExtendable = 1, opExtentBits = 16, isMoveImm = 1,
623    isPredicated = 0, isPredicable = 1, isReMaterializable = 1 in
624def A2_tfrsi : ALU32Inst<(outs IntRegs:$Rd), (ins s16Ext:$s16), "$Rd = #$s16",
625    [(set (i32 IntRegs:$Rd), s32ImmPred:$s16)], "", ALU32_2op_tc_1_SLOT0123>,
626    ImmRegRel, PredRel {
627  bits<5> Rd;
628  bits<16> s16;
629
630  let IClass = 0b0111;
631  let Inst{27-24} = 0b1000;
632  let Inst{23-22,20-16,13-5} = s16;
633  let Inst{4-0} = Rd;
634}
635
636defm A2_tfr  : tfr_base<"TFR">, ImmRegRel, PredNewRel;
637let isAsmParserOnly = 1 in
638defm A2_tfrp : TFR64_base<"TFR64">, PredNewRel;
639
640// Assembler mapped
641let isReMaterializable = 1, isMoveImm = 1, isAsCheapAsAMove = 1,
642    isAsmParserOnly = 1 in
643def A2_tfrpi : ALU64_rr<(outs DoubleRegs:$dst), (ins s8Imm64:$src1),
644                      "$dst = #$src1",
645                      [(set (i64 DoubleRegs:$dst), s8Imm64Pred:$src1)]>;
646
647// TODO: see if this instruction can be deleted..
648let isExtendable = 1, opExtendable = 1, opExtentBits = 6,
649    isAsmParserOnly = 1 in {
650def TFRI64_V4 : ALU64_rr<(outs DoubleRegs:$dst), (ins u64Imm:$src1),
651                         "$dst = #$src1">;
652def TFRI64_V2_ext : ALU64_rr<(outs DoubleRegs:$dst),
653                             (ins s8Ext:$src1, s8Imm:$src2),
654                             "$dst = combine(##$src1, #$src2)">;
655}
656
657//===----------------------------------------------------------------------===//
658// ALU32/ALU -
659//===----------------------------------------------------------------------===//
660
661
662//===----------------------------------------------------------------------===//
663// ALU32/PERM +
664//===----------------------------------------------------------------------===//
665// Scalar mux register immediate.
666let hasSideEffects = 0, isExtentSigned = 1, CextOpcode = "MUX",
667    InputType = "imm", hasNewValue = 1, isExtendable = 1, opExtentBits = 8 in
668class T_MUX1 <bit MajOp, dag ins, string AsmStr>
669      : ALU32Inst <(outs IntRegs:$Rd), ins, AsmStr>, ImmRegRel {
670  bits<5> Rd;
671  bits<2> Pu;
672  bits<8> s8;
673  bits<5> Rs;
674
675  let IClass = 0b0111;
676  let Inst{27-24} = 0b0011;
677  let Inst{23} = MajOp;
678  let Inst{22-21} = Pu;
679  let Inst{20-16} = Rs;
680  let Inst{13}    = 0b0;
681  let Inst{12-5}  = s8;
682  let Inst{4-0}   = Rd;
683}
684
685let opExtendable = 2 in
686def C2_muxri : T_MUX1<0b1, (ins PredRegs:$Pu, s8Ext:$s8, IntRegs:$Rs),
687                           "$Rd = mux($Pu, #$s8, $Rs)">;
688
689let opExtendable = 3 in
690def C2_muxir : T_MUX1<0b0, (ins PredRegs:$Pu, IntRegs:$Rs, s8Ext:$s8),
691                           "$Rd = mux($Pu, $Rs, #$s8)">;
692
693def : Pat<(i32 (select I1:$Pu, s32ImmPred:$s8, I32:$Rs)),
694          (C2_muxri I1:$Pu, s32ImmPred:$s8, I32:$Rs)>;
695
696def : Pat<(i32 (select I1:$Pu, I32:$Rs, s32ImmPred:$s8)),
697          (C2_muxir I1:$Pu, I32:$Rs, s32ImmPred:$s8)>;
698
699// C2_muxii: Scalar mux immediates.
700let isExtentSigned = 1, hasNewValue = 1, isExtendable = 1,
701    opExtentBits = 8, opExtendable = 2 in
702def C2_muxii: ALU32Inst <(outs IntRegs:$Rd),
703                         (ins PredRegs:$Pu, s8Ext:$s8, s8Imm:$S8),
704  "$Rd = mux($Pu, #$s8, #$S8)" ,
705  [(set (i32 IntRegs:$Rd),
706        (i32 (select I1:$Pu, s32ImmPred:$s8, s8ImmPred:$S8)))] > {
707    bits<5> Rd;
708    bits<2> Pu;
709    bits<8> s8;
710    bits<8> S8;
711
712    let IClass = 0b0111;
713
714    let Inst{27-25} = 0b101;
715    let Inst{24-23} = Pu;
716    let Inst{22-16} = S8{7-1};
717    let Inst{13}    = S8{0};
718    let Inst{12-5}  = s8;
719    let Inst{4-0}   = Rd;
720  }
721
722let isCodeGenOnly = 1, isPseudo = 1 in
723def MUX64_rr : ALU64_rr<(outs DoubleRegs:$Rd),
724               (ins PredRegs:$Pu, DoubleRegs:$Rs, DoubleRegs:$Rt),
725               ".error \"should not emit\" ", []>;
726
727
728//===----------------------------------------------------------------------===//
729// template class for non-predicated alu32_2op instructions
730// - aslh, asrh, sxtb, sxth, zxth
731//===----------------------------------------------------------------------===//
732let hasNewValue = 1, opNewValue = 0 in
733class T_ALU32_2op <string mnemonic, bits<3> minOp> :
734  ALU32Inst <(outs IntRegs:$Rd), (ins IntRegs:$Rs),
735             "$Rd = "#mnemonic#"($Rs)", [] > {
736  bits<5> Rd;
737  bits<5> Rs;
738
739  let IClass = 0b0111;
740
741  let Inst{27-24} = 0b0000;
742  let Inst{23-21} = minOp;
743  let Inst{13} = 0b0;
744  let Inst{4-0} = Rd;
745  let Inst{20-16} = Rs;
746}
747
748//===----------------------------------------------------------------------===//
749// template class for predicated alu32_2op instructions
750// - aslh, asrh, sxtb, sxth, zxtb, zxth
751//===----------------------------------------------------------------------===//
752let hasSideEffects = 0, hasNewValue = 1, opNewValue = 0 in
753class T_ALU32_2op_Pred <string mnemonic, bits<3> minOp, bit isPredNot,
754                        bit isPredNew > :
755  ALU32Inst <(outs IntRegs:$Rd), (ins PredRegs:$Pu, IntRegs:$Rs),
756             !if(isPredNot, "if (!$Pu", "if ($Pu")
757             #!if(isPredNew, ".new) ",") ")#"$Rd = "#mnemonic#"($Rs)"> {
758  bits<5> Rd;
759  bits<2> Pu;
760  bits<5> Rs;
761
762  let IClass = 0b0111;
763
764  let Inst{27-24} = 0b0000;
765  let Inst{23-21} = minOp;
766  let Inst{13} = 0b1;
767  let Inst{11} = isPredNot;
768  let Inst{10} = isPredNew;
769  let Inst{4-0} = Rd;
770  let Inst{9-8} = Pu;
771  let Inst{20-16} = Rs;
772}
773
774multiclass ALU32_2op_Pred<string mnemonic, bits<3> minOp, bit PredNot> {
775  let isPredicatedFalse = PredNot in {
776    def NAME : T_ALU32_2op_Pred<mnemonic, minOp, PredNot, 0>;
777
778    // Predicate new
779    let isPredicatedNew = 1 in
780    def NAME#new : T_ALU32_2op_Pred<mnemonic, minOp, PredNot, 1>;
781  }
782}
783
784multiclass ALU32_2op_base<string mnemonic, bits<3> minOp> {
785  let BaseOpcode = mnemonic in {
786    let isPredicable = 1, hasSideEffects = 0 in
787    def A2_#NAME : T_ALU32_2op<mnemonic, minOp>;
788
789    let isPredicated = 1, hasSideEffects = 0 in {
790      defm A4_p#NAME#t : ALU32_2op_Pred<mnemonic, minOp, 0>;
791      defm A4_p#NAME#f : ALU32_2op_Pred<mnemonic, minOp, 1>;
792    }
793  }
794}
795
796defm aslh : ALU32_2op_base<"aslh", 0b000>, PredNewRel;
797defm asrh : ALU32_2op_base<"asrh", 0b001>, PredNewRel;
798defm sxtb : ALU32_2op_base<"sxtb", 0b101>, PredNewRel;
799defm sxth : ALU32_2op_base<"sxth", 0b111>, PredNewRel;
800defm zxth : ALU32_2op_base<"zxth", 0b110>, PredNewRel;
801
802// Rd=zxtb(Rs): assembler mapped to Rd=and(Rs,#255).
803// Compiler would want to generate 'zxtb' instead of 'and' becuase 'zxtb' has
804// predicated forms while 'and' doesn't. Since integrated assembler can't
805// handle 'mapped' instructions, we need to encode 'zxtb' same as 'and' where
806// immediate operand is set to '255'.
807
808let hasNewValue = 1, opNewValue = 0 in
809class T_ZXTB: ALU32Inst < (outs IntRegs:$Rd), (ins IntRegs:$Rs),
810  "$Rd = zxtb($Rs)", [] > { // Rd = and(Rs,255)
811    bits<5> Rd;
812    bits<5> Rs;
813    bits<10> s10 = 255;
814
815    let IClass = 0b0111;
816
817    let Inst{27-22} = 0b011000;
818    let Inst{4-0} = Rd;
819    let Inst{20-16} = Rs;
820    let Inst{21} = s10{9};
821    let Inst{13-5} = s10{8-0};
822}
823
824//Rd=zxtb(Rs): assembler mapped to "Rd=and(Rs,#255)
825multiclass ZXTB_base <string mnemonic, bits<3> minOp> {
826  let BaseOpcode = mnemonic in {
827    let isPredicable = 1, hasSideEffects = 0 in
828    def A2_#NAME : T_ZXTB;
829
830    let isPredicated = 1, hasSideEffects = 0 in {
831      defm A4_p#NAME#t : ALU32_2op_Pred<mnemonic, minOp, 0>;
832      defm A4_p#NAME#f : ALU32_2op_Pred<mnemonic, minOp, 1>;
833    }
834  }
835}
836
837defm zxtb : ZXTB_base<"zxtb",0b100>, PredNewRel;
838
839def: Pat<(shl I32:$src1, (i32 16)),   (A2_aslh I32:$src1)>;
840def: Pat<(sra I32:$src1, (i32 16)),   (A2_asrh I32:$src1)>;
841def: Pat<(sext_inreg I32:$src1, i8),  (A2_sxtb I32:$src1)>;
842def: Pat<(sext_inreg I32:$src1, i16), (A2_sxth I32:$src1)>;
843
844//===----------------------------------------------------------------------===//
845// Template class for vector add and avg
846//===----------------------------------------------------------------------===//
847
848class T_VectALU_64 <string opc, bits<3> majOp, bits<3> minOp,
849                   bit isSat, bit isRnd, bit isCrnd, bit SwapOps >
850  : ALU64_rr < (outs DoubleRegs:$Rdd),
851                (ins DoubleRegs:$Rss, DoubleRegs:$Rtt),
852  "$Rdd = "#opc#"($Rss, $Rtt)"#!if(isRnd, ":rnd", "")
853                             #!if(isCrnd,":crnd","")
854                             #!if(isSat, ":sat", ""),
855  [], "", ALU64_tc_2_SLOT23 > {
856    bits<5> Rdd;
857    bits<5> Rss;
858    bits<5> Rtt;
859
860    let IClass = 0b1101;
861
862    let Inst{27-24} = 0b0011;
863    let Inst{23-21} = majOp;
864    let Inst{20-16} = !if (SwapOps, Rtt, Rss);
865    let Inst{12-8} = !if (SwapOps, Rss, Rtt);
866    let Inst{7-5} = minOp;
867    let Inst{4-0} = Rdd;
868  }
869
870// ALU64 - Vector add
871// Rdd=vadd[u][bhw](Rss,Rtt)
872let Itinerary = ALU64_tc_1_SLOT23 in {
873  def A2_vaddub  : T_VectALU_64 < "vaddub", 0b000, 0b000, 0, 0, 0, 0>;
874  def A2_vaddh   : T_VectALU_64 < "vaddh",  0b000, 0b010, 0, 0, 0, 0>;
875  def A2_vaddw   : T_VectALU_64 < "vaddw",  0b000, 0b101, 0, 0, 0, 0>;
876}
877
878// Rdd=vadd[u][bhw](Rss,Rtt):sat
879let Defs = [USR_OVF] in {
880  def A2_vaddubs : T_VectALU_64 < "vaddub", 0b000, 0b001, 1, 0, 0, 0>;
881  def A2_vaddhs  : T_VectALU_64 < "vaddh",  0b000, 0b011, 1, 0, 0, 0>;
882  def A2_vadduhs : T_VectALU_64 < "vadduh", 0b000, 0b100, 1, 0, 0, 0>;
883  def A2_vaddws  : T_VectALU_64 < "vaddw",  0b000, 0b110, 1, 0, 0, 0>;
884}
885
886// ALU64 - Vector average
887// Rdd=vavg[u][bhw](Rss,Rtt)
888let Itinerary = ALU64_tc_1_SLOT23 in {
889  def A2_vavgub : T_VectALU_64 < "vavgub", 0b010, 0b000, 0, 0, 0, 0>;
890  def A2_vavgh  : T_VectALU_64 < "vavgh",  0b010, 0b010, 0, 0, 0, 0>;
891  def A2_vavguh : T_VectALU_64 < "vavguh", 0b010, 0b101, 0, 0, 0, 0>;
892  def A2_vavgw  : T_VectALU_64 < "vavgw",  0b011, 0b000, 0, 0, 0, 0>;
893  def A2_vavguw : T_VectALU_64 < "vavguw", 0b011, 0b011, 0, 0, 0, 0>;
894}
895
896// Rdd=vavg[u][bhw](Rss,Rtt)[:rnd|:crnd]
897def A2_vavgubr : T_VectALU_64 < "vavgub", 0b010, 0b001, 0, 1, 0, 0>;
898def A2_vavghr  : T_VectALU_64 < "vavgh",  0b010, 0b011, 0, 1, 0, 0>;
899def A2_vavghcr : T_VectALU_64 < "vavgh",  0b010, 0b100, 0, 0, 1, 0>;
900def A2_vavguhr : T_VectALU_64 < "vavguh", 0b010, 0b110, 0, 1, 0, 0>;
901
902def A2_vavgwr  : T_VectALU_64 < "vavgw",  0b011, 0b001, 0, 1, 0, 0>;
903def A2_vavgwcr : T_VectALU_64 < "vavgw",  0b011, 0b010, 0, 0, 1, 0>;
904def A2_vavguwr : T_VectALU_64 < "vavguw", 0b011, 0b100, 0, 1, 0, 0>;
905
906// Rdd=vnavg[bh](Rss,Rtt)
907let Itinerary = ALU64_tc_1_SLOT23 in {
908  def A2_vnavgh   : T_VectALU_64 < "vnavgh", 0b100, 0b000, 0, 0, 0, 1>;
909  def A2_vnavgw   : T_VectALU_64 < "vnavgw", 0b100, 0b011, 0, 0, 0, 1>;
910}
911
912// Rdd=vnavg[bh](Rss,Rtt)[:rnd|:crnd]:sat
913let Defs = [USR_OVF] in {
914  def A2_vnavghr  : T_VectALU_64 < "vnavgh", 0b100, 0b001, 1, 1, 0, 1>;
915  def A2_vnavghcr : T_VectALU_64 < "vnavgh", 0b100, 0b010, 1, 0, 1, 1>;
916  def A2_vnavgwr  : T_VectALU_64 < "vnavgw", 0b100, 0b100, 1, 1, 0, 1>;
917  def A2_vnavgwcr : T_VectALU_64 < "vnavgw", 0b100, 0b110, 1, 0, 1, 1>;
918}
919
920// Rdd=vsub[u][bh](Rss,Rtt)
921let Itinerary = ALU64_tc_1_SLOT23 in {
922  def A2_vsubub  : T_VectALU_64 < "vsubub", 0b001, 0b000, 0, 0, 0, 1>;
923  def A2_vsubh   : T_VectALU_64 < "vsubh",  0b001, 0b010, 0, 0, 0, 1>;
924  def A2_vsubw   : T_VectALU_64 < "vsubw",  0b001, 0b101, 0, 0, 0, 1>;
925}
926
927// Rdd=vsub[u][bh](Rss,Rtt):sat
928let Defs = [USR_OVF] in {
929  def A2_vsububs : T_VectALU_64 < "vsubub", 0b001, 0b001, 1, 0, 0, 1>;
930  def A2_vsubhs  : T_VectALU_64 < "vsubh",  0b001, 0b011, 1, 0, 0, 1>;
931  def A2_vsubuhs : T_VectALU_64 < "vsubuh", 0b001, 0b100, 1, 0, 0, 1>;
932  def A2_vsubws  : T_VectALU_64 < "vsubw",  0b001, 0b110, 1, 0, 0, 1>;
933}
934
935// Rdd=vmax[u][bhw](Rss,Rtt)
936def A2_vmaxb  : T_VectALU_64 < "vmaxb",  0b110, 0b110, 0, 0, 0, 1>;
937def A2_vmaxub : T_VectALU_64 < "vmaxub", 0b110, 0b000, 0, 0, 0, 1>;
938def A2_vmaxh  : T_VectALU_64 < "vmaxh",  0b110, 0b001, 0, 0, 0, 1>;
939def A2_vmaxuh : T_VectALU_64 < "vmaxuh", 0b110, 0b010, 0, 0, 0, 1>;
940def A2_vmaxw  : T_VectALU_64 < "vmaxw",  0b110, 0b011, 0, 0, 0, 1>;
941def A2_vmaxuw : T_VectALU_64 < "vmaxuw", 0b101, 0b101, 0, 0, 0, 1>;
942
943// Rdd=vmin[u][bhw](Rss,Rtt)
944def A2_vminb  : T_VectALU_64 < "vminb",  0b110, 0b111, 0, 0, 0, 1>;
945def A2_vminub : T_VectALU_64 < "vminub", 0b101, 0b000, 0, 0, 0, 1>;
946def A2_vminh  : T_VectALU_64 < "vminh",  0b101, 0b001, 0, 0, 0, 1>;
947def A2_vminuh : T_VectALU_64 < "vminuh", 0b101, 0b010, 0, 0, 0, 1>;
948def A2_vminw  : T_VectALU_64 < "vminw",  0b101, 0b011, 0, 0, 0, 1>;
949def A2_vminuw : T_VectALU_64 < "vminuw", 0b101, 0b100, 0, 0, 0, 1>;
950
951//===----------------------------------------------------------------------===//
952// Template class for vector compare
953//===----------------------------------------------------------------------===//
954let hasSideEffects = 0 in
955class T_vcmp <string Str, bits<4> minOp>
956  : ALU64_rr <(outs PredRegs:$Pd),
957              (ins DoubleRegs:$Rss, DoubleRegs:$Rtt),
958  "$Pd = "#Str#"($Rss, $Rtt)", [],
959  "", ALU64_tc_2early_SLOT23> {
960    bits<2> Pd;
961    bits<5> Rss;
962    bits<5> Rtt;
963
964    let IClass = 0b1101;
965
966    let Inst{27-23} = 0b00100;
967    let Inst{13} = minOp{3};
968    let Inst{7-5} = minOp{2-0};
969    let Inst{1-0} = Pd;
970    let Inst{20-16} = Rss;
971    let Inst{12-8} = Rtt;
972  }
973
974class T_vcmp_pat<InstHexagon MI, PatFrag Op, ValueType T>
975  : Pat<(i1 (Op (T DoubleRegs:$Rss), (T DoubleRegs:$Rtt))),
976        (i1 (MI DoubleRegs:$Rss, DoubleRegs:$Rtt))>;
977
978// Vector compare bytes
979def A2_vcmpbeq  : T_vcmp <"vcmpb.eq",  0b0110>;
980def A2_vcmpbgtu : T_vcmp <"vcmpb.gtu", 0b0111>;
981
982// Vector compare halfwords
983def A2_vcmpheq  : T_vcmp <"vcmph.eq",  0b0011>;
984def A2_vcmphgt  : T_vcmp <"vcmph.gt",  0b0100>;
985def A2_vcmphgtu : T_vcmp <"vcmph.gtu", 0b0101>;
986
987// Vector compare words
988def A2_vcmpweq  : T_vcmp <"vcmpw.eq",  0b0000>;
989def A2_vcmpwgt  : T_vcmp <"vcmpw.gt",  0b0001>;
990def A2_vcmpwgtu : T_vcmp <"vcmpw.gtu", 0b0010>;
991
992def: T_vcmp_pat<A2_vcmpbeq,  seteq,  v8i8>;
993def: T_vcmp_pat<A2_vcmpbgtu, setugt, v8i8>;
994def: T_vcmp_pat<A2_vcmpheq,  seteq,  v4i16>;
995def: T_vcmp_pat<A2_vcmphgt,  setgt,  v4i16>;
996def: T_vcmp_pat<A2_vcmphgtu, setugt, v4i16>;
997def: T_vcmp_pat<A2_vcmpweq,  seteq,  v2i32>;
998def: T_vcmp_pat<A2_vcmpwgt,  setgt,  v2i32>;
999def: T_vcmp_pat<A2_vcmpwgtu, setugt, v2i32>;
1000
1001//===----------------------------------------------------------------------===//
1002// ALU32/PERM -
1003//===----------------------------------------------------------------------===//
1004
1005
1006//===----------------------------------------------------------------------===//
1007// ALU32/PRED +
1008//===----------------------------------------------------------------------===//
1009// No bits needed.  If cmp.ge is found the assembler parser will
1010// transform it to cmp.gt subtracting 1 from the immediate.
1011let isPseudo = 1 in {
1012def C2_cmpgei: ALU32Inst <
1013  (outs PredRegs:$Pd), (ins IntRegs:$Rs, s8Ext:$s8),
1014  "$Pd = cmp.ge($Rs, #$s8)">;
1015def C2_cmpgeui: ALU32Inst <
1016  (outs PredRegs:$Pd), (ins IntRegs:$Rs, u8Ext:$s8),
1017  "$Pd = cmp.geu($Rs, #$s8)">;
1018}
1019
1020
1021//===----------------------------------------------------------------------===//
1022// ALU32/PRED -
1023//===----------------------------------------------------------------------===//
1024
1025
1026//===----------------------------------------------------------------------===//
1027// ALU64/ALU +
1028//===----------------------------------------------------------------------===//
1029// Add.
1030//===----------------------------------------------------------------------===//
1031// Template Class
1032// Add/Subtract halfword
1033// Rd=add(Rt.L,Rs.[HL])[:sat]
1034// Rd=sub(Rt.L,Rs.[HL])[:sat]
1035// Rd=add(Rt.[LH],Rs.[HL])[:sat][:<16]
1036// Rd=sub(Rt.[LH],Rs.[HL])[:sat][:<16]
1037//===----------------------------------------------------------------------===//
1038
1039let  hasNewValue = 1, opNewValue = 0 in
1040class T_XTYPE_ADD_SUB <bits<2> LHbits, bit isSat, bit hasShift, bit isSub>
1041  : ALU64Inst <(outs IntRegs:$Rd), (ins IntRegs:$Rt, IntRegs:$Rs),
1042  "$Rd = "#!if(isSub,"sub","add")#"($Rt."
1043          #!if(hasShift, !if(LHbits{1},"h","l"),"l") #", $Rs."
1044          #!if(hasShift, !if(LHbits{0},"h)","l)"), !if(LHbits{1},"h)","l)"))
1045          #!if(isSat,":sat","")
1046          #!if(hasShift,":<<16",""), [], "", ALU64_tc_1_SLOT23> {
1047    bits<5> Rd;
1048    bits<5> Rt;
1049    bits<5> Rs;
1050    let IClass = 0b1101;
1051
1052    let Inst{27-23} = 0b01010;
1053    let Inst{22} = hasShift;
1054    let Inst{21} = isSub;
1055    let Inst{7} = isSat;
1056    let Inst{6-5} = LHbits;
1057    let Inst{4-0} = Rd;
1058    let Inst{12-8} = Rt;
1059    let Inst{20-16} = Rs;
1060  }
1061
1062//Rd=sub(Rt.L,Rs.[LH])
1063def A2_subh_l16_ll : T_XTYPE_ADD_SUB <0b00, 0, 0, 1>;
1064def A2_subh_l16_hl : T_XTYPE_ADD_SUB <0b10, 0, 0, 1>;
1065
1066//Rd=add(Rt.L,Rs.[LH])
1067def A2_addh_l16_ll : T_XTYPE_ADD_SUB <0b00, 0, 0, 0>;
1068def A2_addh_l16_hl : T_XTYPE_ADD_SUB <0b10, 0, 0, 0>;
1069
1070let Itinerary = ALU64_tc_2_SLOT23, Defs = [USR_OVF] in {
1071  //Rd=sub(Rt.L,Rs.[LH]):sat
1072  def A2_subh_l16_sat_ll : T_XTYPE_ADD_SUB <0b00, 1, 0, 1>;
1073  def A2_subh_l16_sat_hl : T_XTYPE_ADD_SUB <0b10, 1, 0, 1>;
1074
1075  //Rd=add(Rt.L,Rs.[LH]):sat
1076  def A2_addh_l16_sat_ll : T_XTYPE_ADD_SUB <0b00, 1, 0, 0>;
1077  def A2_addh_l16_sat_hl : T_XTYPE_ADD_SUB <0b10, 1, 0, 0>;
1078}
1079
1080//Rd=sub(Rt.[LH],Rs.[LH]):<<16
1081def A2_subh_h16_ll : T_XTYPE_ADD_SUB <0b00, 0, 1, 1>;
1082def A2_subh_h16_lh : T_XTYPE_ADD_SUB <0b01, 0, 1, 1>;
1083def A2_subh_h16_hl : T_XTYPE_ADD_SUB <0b10, 0, 1, 1>;
1084def A2_subh_h16_hh : T_XTYPE_ADD_SUB <0b11, 0, 1, 1>;
1085
1086//Rd=add(Rt.[LH],Rs.[LH]):<<16
1087def A2_addh_h16_ll : T_XTYPE_ADD_SUB <0b00, 0, 1, 0>;
1088def A2_addh_h16_lh : T_XTYPE_ADD_SUB <0b01, 0, 1, 0>;
1089def A2_addh_h16_hl : T_XTYPE_ADD_SUB <0b10, 0, 1, 0>;
1090def A2_addh_h16_hh : T_XTYPE_ADD_SUB <0b11, 0, 1, 0>;
1091
1092let Itinerary = ALU64_tc_2_SLOT23, Defs = [USR_OVF] in {
1093  //Rd=sub(Rt.[LH],Rs.[LH]):sat:<<16
1094  def A2_subh_h16_sat_ll : T_XTYPE_ADD_SUB <0b00, 1, 1, 1>;
1095  def A2_subh_h16_sat_lh : T_XTYPE_ADD_SUB <0b01, 1, 1, 1>;
1096  def A2_subh_h16_sat_hl : T_XTYPE_ADD_SUB <0b10, 1, 1, 1>;
1097  def A2_subh_h16_sat_hh : T_XTYPE_ADD_SUB <0b11, 1, 1, 1>;
1098
1099  //Rd=add(Rt.[LH],Rs.[LH]):sat:<<16
1100  def A2_addh_h16_sat_ll : T_XTYPE_ADD_SUB <0b00, 1, 1, 0>;
1101  def A2_addh_h16_sat_lh : T_XTYPE_ADD_SUB <0b01, 1, 1, 0>;
1102  def A2_addh_h16_sat_hl : T_XTYPE_ADD_SUB <0b10, 1, 1, 0>;
1103  def A2_addh_h16_sat_hh : T_XTYPE_ADD_SUB <0b11, 1, 1, 0>;
1104}
1105
1106// Add halfword.
1107def: Pat<(sext_inreg (add I32:$src1, I32:$src2), i16),
1108         (A2_addh_l16_ll I32:$src1, I32:$src2)>;
1109
1110def: Pat<(sra (add (shl I32:$src1, (i32 16)), I32:$src2), (i32 16)),
1111         (A2_addh_l16_hl I32:$src1, I32:$src2)>;
1112
1113def: Pat<(shl (add I32:$src1, I32:$src2), (i32 16)),
1114         (A2_addh_h16_ll I32:$src1, I32:$src2)>;
1115
1116// Subtract halfword.
1117def: Pat<(sext_inreg (sub I32:$src1, I32:$src2), i16),
1118         (A2_subh_l16_ll I32:$src1, I32:$src2)>;
1119
1120def: Pat<(shl (sub I32:$src1, I32:$src2), (i32 16)),
1121         (A2_subh_h16_ll I32:$src1, I32:$src2)>;
1122
1123let hasSideEffects = 0, hasNewValue = 1 in
1124def S2_parityp: ALU64Inst<(outs IntRegs:$Rd),
1125      (ins DoubleRegs:$Rs, DoubleRegs:$Rt),
1126      "$Rd = parity($Rs, $Rt)", [], "", ALU64_tc_2_SLOT23> {
1127  bits<5> Rd;
1128  bits<5> Rs;
1129  bits<5> Rt;
1130
1131  let IClass = 0b1101;
1132  let Inst{27-24} = 0b0000;
1133  let Inst{20-16} = Rs;
1134  let Inst{12-8} = Rt;
1135  let Inst{4-0} = Rd;
1136}
1137
1138let hasNewValue = 1, opNewValue = 0, hasSideEffects = 0 in
1139class T_XTYPE_MIN_MAX < bit isMax, bit isUnsigned >
1140  : ALU64Inst < (outs IntRegs:$Rd), (ins IntRegs:$Rt, IntRegs:$Rs),
1141  "$Rd = "#!if(isMax,"max","min")#!if(isUnsigned,"u","")
1142          #"($Rt, $Rs)", [], "", ALU64_tc_2_SLOT23> {
1143    bits<5> Rd;
1144    bits<5> Rt;
1145    bits<5> Rs;
1146
1147    let IClass = 0b1101;
1148
1149    let Inst{27-23} = 0b01011;
1150    let Inst{22-21} = !if(isMax, 0b10, 0b01);
1151    let Inst{7} = isUnsigned;
1152    let Inst{4-0} = Rd;
1153    let Inst{12-8} = !if(isMax, Rs, Rt);
1154    let Inst{20-16} = !if(isMax, Rt, Rs);
1155  }
1156
1157def A2_min  : T_XTYPE_MIN_MAX < 0, 0 >;
1158def A2_minu : T_XTYPE_MIN_MAX < 0, 1 >;
1159def A2_max  : T_XTYPE_MIN_MAX < 1, 0 >;
1160def A2_maxu : T_XTYPE_MIN_MAX < 1, 1 >;
1161
1162// Here, depending on  the operand being selected, we'll either generate a
1163// min or max instruction.
1164// Ex:
1165// (a>b)?a:b --> max(a,b) => Here check performed is '>' and the value selected
1166// is the larger of two. So, the corresponding HexagonInst is passed in 'Inst'.
1167// (a>b)?b:a --> min(a,b) => Here check performed is '>' but the smaller value
1168// is selected and the corresponding HexagonInst is passed in 'SwapInst'.
1169
1170multiclass T_MinMax_pats <PatFrag Op, RegisterClass RC, ValueType VT,
1171                          InstHexagon Inst, InstHexagon SwapInst> {
1172  def: Pat<(select (i1 (Op (VT RC:$src1), (VT RC:$src2))),
1173                   (VT RC:$src1), (VT RC:$src2)),
1174           (Inst RC:$src1, RC:$src2)>;
1175  def: Pat<(select (i1 (Op (VT RC:$src1), (VT RC:$src2))),
1176                   (VT RC:$src2), (VT RC:$src1)),
1177           (SwapInst RC:$src1, RC:$src2)>;
1178}
1179
1180
1181multiclass MinMax_pats <PatFrag Op, InstHexagon Inst, InstHexagon SwapInst> {
1182  defm: T_MinMax_pats<Op, IntRegs, i32, Inst, SwapInst>;
1183
1184  def: Pat<(sext_inreg (i32 (select (i1 (Op (i32 PositiveHalfWord:$src1),
1185                                            (i32 PositiveHalfWord:$src2))),
1186                                    (i32 PositiveHalfWord:$src1),
1187                                    (i32 PositiveHalfWord:$src2))), i16),
1188           (Inst IntRegs:$src1, IntRegs:$src2)>;
1189
1190  def: Pat<(sext_inreg (i32 (select (i1 (Op (i32 PositiveHalfWord:$src1),
1191                                            (i32 PositiveHalfWord:$src2))),
1192                                    (i32 PositiveHalfWord:$src2),
1193                                    (i32 PositiveHalfWord:$src1))), i16),
1194           (SwapInst IntRegs:$src1, IntRegs:$src2)>;
1195}
1196
1197let AddedComplexity = 200 in {
1198  defm: MinMax_pats<setge,  A2_max,  A2_min>;
1199  defm: MinMax_pats<setgt,  A2_max,  A2_min>;
1200  defm: MinMax_pats<setle,  A2_min,  A2_max>;
1201  defm: MinMax_pats<setlt,  A2_min,  A2_max>;
1202  defm: MinMax_pats<setuge, A2_maxu, A2_minu>;
1203  defm: MinMax_pats<setugt, A2_maxu, A2_minu>;
1204  defm: MinMax_pats<setule, A2_minu, A2_maxu>;
1205  defm: MinMax_pats<setult, A2_minu, A2_maxu>;
1206}
1207
1208class T_cmp64_rr<string mnemonic, bits<3> MinOp, bit IsComm>
1209  : ALU64_rr<(outs PredRegs:$Pd), (ins DoubleRegs:$Rs, DoubleRegs:$Rt),
1210             "$Pd = "#mnemonic#"($Rs, $Rt)", [], "", ALU64_tc_2early_SLOT23> {
1211  let isCompare = 1;
1212  let isCommutable = IsComm;
1213  let hasSideEffects = 0;
1214
1215  bits<2> Pd;
1216  bits<5> Rs;
1217  bits<5> Rt;
1218
1219  let IClass = 0b1101;
1220  let Inst{27-21} = 0b0010100;
1221  let Inst{20-16} = Rs;
1222  let Inst{12-8} = Rt;
1223  let Inst{7-5} = MinOp;
1224  let Inst{1-0} = Pd;
1225}
1226
1227def C2_cmpeqp  : T_cmp64_rr<"cmp.eq",  0b000, 1>;
1228def C2_cmpgtp  : T_cmp64_rr<"cmp.gt",  0b010, 0>;
1229def C2_cmpgtup : T_cmp64_rr<"cmp.gtu", 0b100, 0>;
1230
1231class T_cmp64_rr_pat<InstHexagon MI, PatFrag CmpOp>
1232  : Pat<(i1 (CmpOp (i64 DoubleRegs:$Rs), (i64 DoubleRegs:$Rt))),
1233        (i1 (MI DoubleRegs:$Rs, DoubleRegs:$Rt))>;
1234
1235def: T_cmp64_rr_pat<C2_cmpeqp,  seteq>;
1236def: T_cmp64_rr_pat<C2_cmpgtp,  setgt>;
1237def: T_cmp64_rr_pat<C2_cmpgtup, setugt>;
1238def: T_cmp64_rr_pat<C2_cmpgtp,  RevCmp<setlt>>;
1239def: T_cmp64_rr_pat<C2_cmpgtup, RevCmp<setult>>;
1240
1241def C2_vmux : ALU64_rr<(outs DoubleRegs:$Rd),
1242      (ins PredRegs:$Pu, DoubleRegs:$Rs, DoubleRegs:$Rt),
1243      "$Rd = vmux($Pu, $Rs, $Rt)", [], "", ALU64_tc_1_SLOT23> {
1244  let hasSideEffects = 0;
1245
1246  bits<5> Rd;
1247  bits<2> Pu;
1248  bits<5> Rs;
1249  bits<5> Rt;
1250
1251  let IClass = 0b1101;
1252  let Inst{27-24} = 0b0001;
1253  let Inst{20-16} = Rs;
1254  let Inst{12-8} = Rt;
1255  let Inst{6-5} = Pu;
1256  let Inst{4-0} = Rd;
1257}
1258
1259class T_ALU64_rr<string mnemonic, string suffix, bits<4> RegType,
1260                 bits<3> MajOp, bits<3> MinOp, bit OpsRev, bit IsComm,
1261                 string Op2Pfx>
1262  : ALU64_rr<(outs DoubleRegs:$Rd), (ins DoubleRegs:$Rs, DoubleRegs:$Rt),
1263             "$Rd = " #mnemonic# "($Rs, " #Op2Pfx# "$Rt)" #suffix, [],
1264             "", ALU64_tc_1_SLOT23> {
1265  let hasSideEffects = 0;
1266  let isCommutable = IsComm;
1267
1268  bits<5> Rs;
1269  bits<5> Rt;
1270  bits<5> Rd;
1271
1272  let IClass = 0b1101;
1273  let Inst{27-24} = RegType;
1274  let Inst{23-21} = MajOp;
1275  let Inst{20-16} = !if (OpsRev,Rt,Rs);
1276  let Inst{12-8} = !if (OpsRev,Rs,Rt);
1277  let Inst{7-5} = MinOp;
1278  let Inst{4-0} = Rd;
1279}
1280
1281class T_ALU64_arith<string mnemonic, bits<3> MajOp, bits<3> MinOp, bit IsSat,
1282                    bit OpsRev, bit IsComm>
1283  : T_ALU64_rr<mnemonic, !if(IsSat,":sat",""), 0b0011, MajOp, MinOp, OpsRev,
1284               IsComm, "">;
1285
1286def A2_addp : T_ALU64_arith<"add", 0b000, 0b111, 0, 0, 1>;
1287def A2_subp : T_ALU64_arith<"sub", 0b001, 0b111, 0, 1, 0>;
1288
1289def: Pat<(i64 (add I64:$Rs, I64:$Rt)), (A2_addp I64:$Rs, I64:$Rt)>;
1290def: Pat<(i64 (sub I64:$Rs, I64:$Rt)), (A2_subp I64:$Rs, I64:$Rt)>;
1291
1292class T_ALU64_logical<string mnemonic, bits<3> MinOp, bit OpsRev, bit IsComm,
1293                      bit IsNeg>
1294  : T_ALU64_rr<mnemonic, "", 0b0011, 0b111, MinOp, OpsRev, IsComm,
1295               !if(IsNeg,"~","")>;
1296
1297def A2_andp : T_ALU64_logical<"and", 0b000, 0, 1, 0>;
1298def A2_orp  : T_ALU64_logical<"or",  0b010, 0, 1, 0>;
1299def A2_xorp : T_ALU64_logical<"xor", 0b100, 0, 1, 0>;
1300
1301def: Pat<(i64 (and I64:$Rs, I64:$Rt)), (A2_andp I64:$Rs, I64:$Rt)>;
1302def: Pat<(i64 (or  I64:$Rs, I64:$Rt)), (A2_orp  I64:$Rs, I64:$Rt)>;
1303def: Pat<(i64 (xor I64:$Rs, I64:$Rt)), (A2_xorp I64:$Rs, I64:$Rt)>;
1304
1305//===----------------------------------------------------------------------===//
1306// ALU64/ALU -
1307//===----------------------------------------------------------------------===//
1308
1309//===----------------------------------------------------------------------===//
1310// ALU64/BIT +
1311//===----------------------------------------------------------------------===//
1312//
1313//===----------------------------------------------------------------------===//
1314// ALU64/BIT -
1315//===----------------------------------------------------------------------===//
1316
1317//===----------------------------------------------------------------------===//
1318// ALU64/PERM +
1319//===----------------------------------------------------------------------===//
1320//
1321//===----------------------------------------------------------------------===//
1322// ALU64/PERM -
1323//===----------------------------------------------------------------------===//
1324
1325//===----------------------------------------------------------------------===//
1326// CR +
1327//===----------------------------------------------------------------------===//
1328// Logical reductions on predicates.
1329
1330// Looping instructions.
1331
1332// Pipelined looping instructions.
1333
1334// Logical operations on predicates.
1335let hasSideEffects = 0 in
1336class T_LOGICAL_1OP<string MnOp, bits<2> OpBits>
1337    : CRInst<(outs PredRegs:$Pd), (ins PredRegs:$Ps),
1338             "$Pd = " # MnOp # "($Ps)", [], "", CR_tc_2early_SLOT23> {
1339  bits<2> Pd;
1340  bits<2> Ps;
1341
1342  let IClass = 0b0110;
1343  let Inst{27-23} = 0b10111;
1344  let Inst{22-21} = OpBits;
1345  let Inst{20} = 0b0;
1346  let Inst{17-16} = Ps;
1347  let Inst{13} = 0b0;
1348  let Inst{1-0} = Pd;
1349}
1350
1351def C2_any8 : T_LOGICAL_1OP<"any8", 0b00>;
1352def C2_all8 : T_LOGICAL_1OP<"all8", 0b01>;
1353def C2_not  : T_LOGICAL_1OP<"not",  0b10>;
1354
1355def: Pat<(i1 (not (i1 PredRegs:$Ps))),
1356         (C2_not PredRegs:$Ps)>;
1357
1358let hasSideEffects = 0 in
1359class T_LOGICAL_2OP<string MnOp, bits<3> OpBits, bit IsNeg, bit Rev>
1360    : CRInst<(outs PredRegs:$Pd), (ins PredRegs:$Ps, PredRegs:$Pt),
1361             "$Pd = " # MnOp # "($Ps, " # !if (IsNeg,"!","") # "$Pt)",
1362             [], "", CR_tc_2early_SLOT23> {
1363  bits<2> Pd;
1364  bits<2> Ps;
1365  bits<2> Pt;
1366
1367  let IClass = 0b0110;
1368  let Inst{27-24} = 0b1011;
1369  let Inst{23-21} = OpBits;
1370  let Inst{20} = 0b0;
1371  let Inst{17-16} = !if(Rev,Pt,Ps);  // Rs and Rt are reversed for some
1372  let Inst{13} = 0b0;                // instructions.
1373  let Inst{9-8} = !if(Rev,Ps,Pt);
1374  let Inst{1-0} = Pd;
1375}
1376
1377def C2_and  : T_LOGICAL_2OP<"and", 0b000, 0, 1>;
1378def C2_or   : T_LOGICAL_2OP<"or",  0b001, 0, 1>;
1379def C2_xor  : T_LOGICAL_2OP<"xor", 0b010, 0, 0>;
1380def C2_andn : T_LOGICAL_2OP<"and", 0b011, 1, 1>;
1381def C2_orn  : T_LOGICAL_2OP<"or",  0b111, 1, 1>;
1382
1383def: Pat<(i1 (and I1:$Ps, I1:$Pt)),       (C2_and  I1:$Ps, I1:$Pt)>;
1384def: Pat<(i1 (or  I1:$Ps, I1:$Pt)),       (C2_or   I1:$Ps, I1:$Pt)>;
1385def: Pat<(i1 (xor I1:$Ps, I1:$Pt)),       (C2_xor  I1:$Ps, I1:$Pt)>;
1386def: Pat<(i1 (and I1:$Ps, (not I1:$Pt))), (C2_andn I1:$Ps, I1:$Pt)>;
1387def: Pat<(i1 (or  I1:$Ps, (not I1:$Pt))), (C2_orn  I1:$Ps, I1:$Pt)>;
1388
1389let hasSideEffects = 0, hasNewValue = 1 in
1390def C2_vitpack : SInst<(outs IntRegs:$Rd), (ins PredRegs:$Ps, PredRegs:$Pt),
1391      "$Rd = vitpack($Ps, $Pt)", [], "", S_2op_tc_1_SLOT23> {
1392  bits<5> Rd;
1393  bits<2> Ps;
1394  bits<2> Pt;
1395
1396  let IClass = 0b1000;
1397  let Inst{27-24} = 0b1001;
1398  let Inst{22-21} = 0b00;
1399  let Inst{17-16} = Ps;
1400  let Inst{9-8} = Pt;
1401  let Inst{4-0} = Rd;
1402}
1403
1404let hasSideEffects = 0 in
1405def C2_mask : SInst<(outs DoubleRegs:$Rd), (ins PredRegs:$Pt),
1406      "$Rd = mask($Pt)", [], "", S_2op_tc_1_SLOT23> {
1407  bits<5> Rd;
1408  bits<2> Pt;
1409
1410  let IClass = 0b1000;
1411  let Inst{27-24} = 0b0110;
1412  let Inst{9-8} = Pt;
1413  let Inst{4-0} = Rd;
1414}
1415
1416// User control register transfer.
1417//===----------------------------------------------------------------------===//
1418// CR -
1419//===----------------------------------------------------------------------===//
1420
1421//===----------------------------------------------------------------------===//
1422// JR +
1423//===----------------------------------------------------------------------===//
1424
1425def retflag : SDNode<"HexagonISD::RET_FLAG", SDTNone,
1426                     [SDNPHasChain, SDNPOptInGlue, SDNPVariadic]>;
1427def eh_return: SDNode<"HexagonISD::EH_RETURN", SDTNone, [SDNPHasChain]>;
1428
1429def SDHexagonBR_JT: SDTypeProfile<0, 1, [SDTCisVT<0, i32>]>;
1430def HexagonBR_JT: SDNode<"HexagonISD::BR_JT", SDHexagonBR_JT, [SDNPHasChain]>;
1431
1432class CondStr<string CReg, bit True, bit New> {
1433  string S = "if (" # !if(True,"","!") # CReg # !if(New,".new","") # ") ";
1434}
1435class JumpOpcStr<string Mnemonic, bit New, bit Taken> {
1436  string S = Mnemonic # !if(Taken, ":t", !if(New, ":nt", ""));
1437}
1438
1439let isBranch = 1, isBarrier = 1, Defs = [PC], hasSideEffects = 0,
1440    isPredicable = 1,
1441    isExtendable = 1, opExtendable = 0, isExtentSigned = 1,
1442    opExtentBits = 24, opExtentAlign = 2, InputType = "imm" in
1443class T_JMP<string ExtStr>
1444  : JInst<(outs), (ins brtarget:$dst),
1445      "jump " # ExtStr # "$dst",
1446      [], "", J_tc_2early_SLOT23> {
1447    bits<24> dst;
1448    let IClass = 0b0101;
1449
1450    let Inst{27-25} = 0b100;
1451    let Inst{24-16} = dst{23-15};
1452    let Inst{13-1} = dst{14-2};
1453}
1454
1455let isBranch = 1, Defs = [PC], hasSideEffects = 0, isPredicated = 1,
1456    isExtendable = 1, opExtendable = 1, isExtentSigned = 1,
1457    opExtentBits = 17, opExtentAlign = 2, InputType = "imm" in
1458class T_JMP_c<bit PredNot, bit isPredNew, bit isTak, string ExtStr>
1459  : JInst<(outs), (ins PredRegs:$src, brtarget:$dst),
1460      CondStr<"$src", !if(PredNot,0,1), isPredNew>.S #
1461        JumpOpcStr<"jump", isPredNew, isTak>.S # " " #
1462        ExtStr # "$dst",
1463      [], "", J_tc_2early_SLOT23>, ImmRegRel {
1464    let isTaken = isTak;
1465    let isPredicatedFalse = PredNot;
1466    let isPredicatedNew = isPredNew;
1467    bits<2> src;
1468    bits<17> dst;
1469
1470    let IClass = 0b0101;
1471
1472    let Inst{27-24} = 0b1100;
1473    let Inst{21} = PredNot;
1474    let Inst{12} = isTak;
1475    let Inst{11} = isPredNew;
1476    let Inst{9-8} = src;
1477    let Inst{23-22} = dst{16-15};
1478    let Inst{20-16} = dst{14-10};
1479    let Inst{13} = dst{9};
1480    let Inst{7-1} = dst{8-2};
1481  }
1482
1483multiclass JMP_Pred<bit PredNot, string ExtStr> {
1484  def NAME       : T_JMP_c<PredNot, 0, 0, ExtStr>; // not taken
1485  // Predicate new
1486  def NAME#newpt : T_JMP_c<PredNot, 1, 1, ExtStr>; // taken
1487  def NAME#new   : T_JMP_c<PredNot, 1, 0, ExtStr>; // not taken
1488}
1489
1490multiclass JMP_base<string BaseOp, string ExtStr> {
1491  let BaseOpcode = BaseOp in {
1492    def NAME : T_JMP<ExtStr>;
1493    defm t : JMP_Pred<0, ExtStr>;
1494    defm f : JMP_Pred<1, ExtStr>;
1495  }
1496}
1497
1498// Jumps to address stored in a register, JUMPR_MISC
1499// if ([[!]P[.new]]) jumpr[:t/nt] Rs
1500let isBranch = 1, isIndirectBranch = 1, isBarrier = 1, Defs = [PC],
1501    isPredicable = 1, hasSideEffects = 0, InputType = "reg" in
1502class T_JMPr
1503  : JRInst<(outs), (ins IntRegs:$dst),
1504      "jumpr $dst", [], "", J_tc_2early_SLOT2> {
1505    bits<5> dst;
1506
1507    let IClass = 0b0101;
1508    let Inst{27-21} = 0b0010100;
1509    let Inst{20-16} = dst;
1510}
1511
1512let isBranch = 1, isIndirectBranch = 1, Defs = [PC], isPredicated = 1,
1513    hasSideEffects = 0, InputType = "reg" in
1514class T_JMPr_c <bit PredNot, bit isPredNew, bit isTak>
1515  : JRInst <(outs), (ins PredRegs:$src, IntRegs:$dst),
1516      CondStr<"$src", !if(PredNot,0,1), isPredNew>.S #
1517        JumpOpcStr<"jumpr", isPredNew, isTak>.S # " $dst", [],
1518      "", J_tc_2early_SLOT2> {
1519
1520    let isTaken = isTak;
1521    let isPredicatedFalse = PredNot;
1522    let isPredicatedNew = isPredNew;
1523    bits<2> src;
1524    bits<5> dst;
1525
1526    let IClass = 0b0101;
1527
1528    let Inst{27-22} = 0b001101;
1529    let Inst{21} = PredNot;
1530    let Inst{20-16} = dst;
1531    let Inst{12} = isTak;
1532    let Inst{11} = isPredNew;
1533    let Inst{9-8} = src;
1534}
1535
1536multiclass JMPR_Pred<bit PredNot> {
1537  def NAME        : T_JMPr_c<PredNot, 0, 0>; // not taken
1538  // Predicate new
1539  def NAME#newpt  : T_JMPr_c<PredNot, 1, 1>; // taken
1540  def NAME#new    : T_JMPr_c<PredNot, 1, 0>; // not taken
1541}
1542
1543multiclass JMPR_base<string BaseOp> {
1544  let BaseOpcode = BaseOp in {
1545    def NAME : T_JMPr;
1546    defm t : JMPR_Pred<0>;
1547    defm f : JMPR_Pred<1>;
1548  }
1549}
1550
1551let isCall = 1, hasSideEffects = 1 in
1552class JUMPR_MISC_CALLR<bit isPred, bit isPredNot,
1553               dag InputDag = (ins IntRegs:$Rs)>
1554  : JRInst<(outs), InputDag,
1555      !if(isPred, !if(isPredNot, "if (!$Pu) callr $Rs",
1556                                 "if ($Pu) callr $Rs"),
1557                                 "callr $Rs"),
1558      [], "", J_tc_2early_SLOT2> {
1559    bits<5> Rs;
1560    bits<2> Pu;
1561    let isPredicated = isPred;
1562    let isPredicatedFalse = isPredNot;
1563
1564    let IClass = 0b0101;
1565    let Inst{27-25} = 0b000;
1566    let Inst{24-23} = !if (isPred, 0b10, 0b01);
1567    let Inst{22} = 0;
1568    let Inst{21} = isPredNot;
1569    let Inst{9-8} = !if (isPred, Pu, 0b00);
1570    let Inst{20-16} = Rs;
1571
1572  }
1573
1574let Defs = VolatileV3.Regs in {
1575  def J2_callrt : JUMPR_MISC_CALLR<1, 0, (ins PredRegs:$Pu, IntRegs:$Rs)>;
1576  def J2_callrf : JUMPR_MISC_CALLR<1, 1, (ins PredRegs:$Pu, IntRegs:$Rs)>;
1577}
1578
1579let isTerminator = 1, hasSideEffects = 0 in {
1580  defm J2_jump : JMP_base<"JMP", "">, PredNewRel;
1581
1582  // Deal with explicit assembly
1583  //  - never extened a jump #,  always extend a jump ##
1584  let isAsmParserOnly = 1 in {
1585    defm J2_jump_ext   : JMP_base<"JMP", "##">;
1586    defm J2_jump_noext : JMP_base<"JMP", "#">;
1587  }
1588
1589  defm J2_jumpr : JMPR_base<"JMPr">, PredNewRel;
1590
1591  let isReturn = 1, isCodeGenOnly = 1 in
1592  defm JMPret : JMPR_base<"JMPret">, PredNewRel;
1593}
1594
1595def: Pat<(br bb:$dst),
1596         (J2_jump brtarget:$dst)>;
1597def: Pat<(retflag),
1598         (JMPret (i32 R31))>;
1599def: Pat<(brcond (i1 PredRegs:$src1), bb:$offset),
1600         (J2_jumpt PredRegs:$src1, bb:$offset)>;
1601
1602// A return through builtin_eh_return.
1603let isReturn = 1, isTerminator = 1, isBarrier = 1, hasSideEffects = 0,
1604    isCodeGenOnly = 1, Defs = [PC], Uses = [R28], isPredicable = 0 in
1605def EH_RETURN_JMPR : T_JMPr;
1606
1607def: Pat<(eh_return),
1608         (EH_RETURN_JMPR (i32 R31))>;
1609def: Pat<(HexagonBR_JT (i32 IntRegs:$dst)),
1610         (J2_jumpr IntRegs:$dst)>;
1611def: Pat<(brind (i32 IntRegs:$dst)),
1612         (J2_jumpr IntRegs:$dst)>;
1613
1614//===----------------------------------------------------------------------===//
1615// JR -
1616//===----------------------------------------------------------------------===//
1617
1618//===----------------------------------------------------------------------===//
1619// LD +
1620//===----------------------------------------------------------------------===//
1621
1622// Load - Base with Immediate offset addressing mode
1623let isExtendable = 1, opExtendable = 2, isExtentSigned = 1, AddedComplexity = 20 in
1624class T_load_io <string mnemonic, RegisterClass RC, bits<4> MajOp,
1625                 Operand ImmOp>
1626  : LDInst<(outs RC:$dst), (ins IntRegs:$src1, ImmOp:$offset),
1627  "$dst = "#mnemonic#"($src1 + #$offset)", []>, AddrModeRel {
1628    bits<4> name;
1629    bits<5> dst;
1630    bits<5> src1;
1631    bits<14> offset;
1632    bits<11> offsetBits;
1633
1634    string ImmOpStr = !cast<string>(ImmOp);
1635    let offsetBits = !if (!eq(ImmOpStr, "s11_3Ext"), offset{13-3},
1636                     !if (!eq(ImmOpStr, "s11_2Ext"), offset{12-2},
1637                     !if (!eq(ImmOpStr, "s11_1Ext"), offset{11-1},
1638                                      /* s11_0Ext */ offset{10-0})));
1639    let opExtentBits = !if (!eq(ImmOpStr, "s11_3Ext"), 14,
1640                       !if (!eq(ImmOpStr, "s11_2Ext"), 13,
1641                       !if (!eq(ImmOpStr, "s11_1Ext"), 12,
1642                                        /* s11_0Ext */ 11)));
1643    let hasNewValue = !if (!eq(!cast<string>(RC), "DoubleRegs"), 0, 1);
1644
1645    let IClass = 0b1001;
1646
1647    let Inst{27}    = 0b0;
1648    let Inst{26-25} = offsetBits{10-9};
1649    let Inst{24-21} = MajOp;
1650    let Inst{20-16} = src1;
1651    let Inst{13-5}  = offsetBits{8-0};
1652    let Inst{4-0}   = dst;
1653  }
1654
1655let opExtendable = 3, isExtentSigned = 0, isPredicated = 1 in
1656class T_pload_io <string mnemonic, RegisterClass RC, bits<4>MajOp,
1657                  Operand ImmOp, bit isNot, bit isPredNew>
1658  : LDInst<(outs RC:$dst),
1659           (ins PredRegs:$src1, IntRegs:$src2, ImmOp:$offset),
1660  "if ("#!if(isNot, "!$src1", "$src1")
1661       #!if(isPredNew, ".new", "")
1662       #") $dst = "#mnemonic#"($src2 + #$offset)",
1663  [],"", V2LDST_tc_ld_SLOT01> , AddrModeRel {
1664    bits<5> dst;
1665    bits<2> src1;
1666    bits<5> src2;
1667    bits<9> offset;
1668    bits<6> offsetBits;
1669    string ImmOpStr = !cast<string>(ImmOp);
1670
1671    let offsetBits = !if (!eq(ImmOpStr, "u6_3Ext"), offset{8-3},
1672                     !if (!eq(ImmOpStr, "u6_2Ext"), offset{7-2},
1673                     !if (!eq(ImmOpStr, "u6_1Ext"), offset{6-1},
1674                                      /* u6_0Ext */ offset{5-0})));
1675    let opExtentBits = !if (!eq(ImmOpStr, "u6_3Ext"), 9,
1676                       !if (!eq(ImmOpStr, "u6_2Ext"), 8,
1677                       !if (!eq(ImmOpStr, "u6_1Ext"), 7,
1678                                        /* u6_0Ext */ 6)));
1679    let hasNewValue = !if (!eq(ImmOpStr, "u6_3Ext"), 0, 1);
1680    let isPredicatedNew = isPredNew;
1681    let isPredicatedFalse = isNot;
1682
1683    let IClass = 0b0100;
1684
1685    let Inst{27}    = 0b0;
1686    let Inst{27}    = 0b0;
1687    let Inst{26}    = isNot;
1688    let Inst{25}    = isPredNew;
1689    let Inst{24-21} = MajOp;
1690    let Inst{20-16} = src2;
1691    let Inst{13}    = 0b0;
1692    let Inst{12-11} = src1;
1693    let Inst{10-5}  = offsetBits;
1694    let Inst{4-0}   = dst;
1695  }
1696
1697let isExtendable = 1, hasSideEffects = 0, addrMode = BaseImmOffset in
1698multiclass LD_Idxd<string mnemonic, string CextOp, RegisterClass RC,
1699                   Operand ImmOp, Operand predImmOp, bits<4>MajOp> {
1700  let CextOpcode = CextOp, BaseOpcode = CextOp#_indexed in {
1701    let isPredicable = 1 in
1702    def L2_#NAME#_io : T_load_io <mnemonic, RC, MajOp, ImmOp>;
1703
1704    // Predicated
1705    def L2_p#NAME#t_io : T_pload_io <mnemonic, RC, MajOp, predImmOp, 0, 0>;
1706    def L2_p#NAME#f_io : T_pload_io <mnemonic, RC, MajOp, predImmOp, 1, 0>;
1707
1708    // Predicated new
1709    def L2_p#NAME#tnew_io : T_pload_io <mnemonic, RC, MajOp, predImmOp, 0, 1>;
1710    def L2_p#NAME#fnew_io : T_pload_io <mnemonic, RC, MajOp, predImmOp, 1, 1>;
1711  }
1712}
1713
1714let accessSize = ByteAccess in {
1715  defm loadrb:  LD_Idxd <"memb", "LDrib", IntRegs, s11_0Ext, u6_0Ext, 0b1000>;
1716  defm loadrub: LD_Idxd <"memub", "LDriub", IntRegs, s11_0Ext, u6_0Ext, 0b1001>;
1717}
1718
1719let accessSize = HalfWordAccess, opExtentAlign = 1 in {
1720  defm loadrh:  LD_Idxd <"memh", "LDrih", IntRegs, s11_1Ext, u6_1Ext, 0b1010>;
1721  defm loadruh: LD_Idxd <"memuh", "LDriuh", IntRegs, s11_1Ext, u6_1Ext, 0b1011>;
1722}
1723
1724let accessSize = WordAccess, opExtentAlign = 2 in
1725defm loadri: LD_Idxd <"memw", "LDriw", IntRegs, s11_2Ext, u6_2Ext, 0b1100>;
1726
1727let accessSize = DoubleWordAccess, opExtentAlign = 3 in
1728defm loadrd: LD_Idxd <"memd", "LDrid", DoubleRegs, s11_3Ext, u6_3Ext, 0b1110>;
1729
1730let accessSize = HalfWordAccess, opExtentAlign = 1 in {
1731  def L2_loadbsw2_io:   T_load_io<"membh",  IntRegs, 0b0001, s11_1Ext>;
1732  def L2_loadbzw2_io:   T_load_io<"memubh", IntRegs, 0b0011, s11_1Ext>;
1733}
1734
1735let accessSize = WordAccess, opExtentAlign = 2 in {
1736  def L2_loadbzw4_io: T_load_io<"memubh", DoubleRegs, 0b0101, s11_2Ext>;
1737  def L2_loadbsw4_io: T_load_io<"membh",  DoubleRegs, 0b0111, s11_2Ext>;
1738}
1739
1740let addrMode = BaseImmOffset, isExtendable = 1, hasSideEffects = 0,
1741    opExtendable = 3, isExtentSigned = 1  in
1742class T_loadalign_io <string str, bits<4> MajOp, Operand ImmOp>
1743  : LDInst<(outs DoubleRegs:$dst),
1744           (ins DoubleRegs:$src1, IntRegs:$src2, ImmOp:$offset),
1745  "$dst = "#str#"($src2 + #$offset)", [],
1746  "$src1 = $dst">, AddrModeRel {
1747    bits<4> name;
1748    bits<5> dst;
1749    bits<5> src2;
1750    bits<12> offset;
1751    bits<11> offsetBits;
1752
1753    let offsetBits = !if (!eq(!cast<string>(ImmOp), "s11_1Ext"), offset{11-1},
1754                                                  /* s11_0Ext */ offset{10-0});
1755    let IClass = 0b1001;
1756
1757    let Inst{27}    = 0b0;
1758    let Inst{26-25} = offsetBits{10-9};
1759    let Inst{24-21} = MajOp;
1760    let Inst{20-16} = src2;
1761    let Inst{13-5}  = offsetBits{8-0};
1762    let Inst{4-0}   = dst;
1763  }
1764
1765let accessSize = HalfWordAccess, opExtentBits = 12, opExtentAlign = 1 in
1766def L2_loadalignh_io: T_loadalign_io <"memh_fifo", 0b0010, s11_1Ext>;
1767
1768let accessSize = ByteAccess, opExtentBits = 11 in
1769def L2_loadalignb_io: T_loadalign_io <"memb_fifo", 0b0100, s11_0Ext>;
1770
1771// Patterns to select load-indexed (i.e. load from base+offset).
1772multiclass Loadx_pat<PatFrag Load, ValueType VT, PatLeaf ImmPred,
1773                     InstHexagon MI> {
1774  def: Pat<(VT (Load AddrFI:$fi)), (VT (MI AddrFI:$fi, 0))>;
1775  def: Pat<(VT (Load (add (i32 AddrFI:$fi), ImmPred:$Off))),
1776           (VT (MI AddrFI:$fi, imm:$Off))>;
1777  def: Pat<(VT (Load (add (i32 IntRegs:$Rs), ImmPred:$Off))),
1778           (VT (MI IntRegs:$Rs, imm:$Off))>;
1779  def: Pat<(VT (Load (i32 IntRegs:$Rs))), (VT (MI IntRegs:$Rs, 0))>;
1780}
1781
1782let AddedComplexity = 20 in {
1783  defm: Loadx_pat<load,           i32, s30_2ImmPred, L2_loadri_io>;
1784  defm: Loadx_pat<load,           i64, s29_3ImmPred, L2_loadrd_io>;
1785  defm: Loadx_pat<atomic_load_8 , i32, s32_0ImmPred, L2_loadrub_io>;
1786  defm: Loadx_pat<atomic_load_16, i32, s31_1ImmPred, L2_loadruh_io>;
1787  defm: Loadx_pat<atomic_load_32, i32, s30_2ImmPred, L2_loadri_io>;
1788  defm: Loadx_pat<atomic_load_64, i64, s29_3ImmPred, L2_loadrd_io>;
1789
1790  defm: Loadx_pat<extloadi1,      i32, s32_0ImmPred, L2_loadrub_io>;
1791  defm: Loadx_pat<extloadi8,      i32, s32_0ImmPred, L2_loadrub_io>;
1792  defm: Loadx_pat<extloadi16,     i32, s31_1ImmPred, L2_loadruh_io>;
1793  defm: Loadx_pat<sextloadi8,     i32, s32_0ImmPred, L2_loadrb_io>;
1794  defm: Loadx_pat<sextloadi16,    i32, s31_1ImmPred, L2_loadrh_io>;
1795  defm: Loadx_pat<zextloadi1,     i32, s32_0ImmPred, L2_loadrub_io>;
1796  defm: Loadx_pat<zextloadi8,     i32, s32_0ImmPred, L2_loadrub_io>;
1797  defm: Loadx_pat<zextloadi16,    i32, s31_1ImmPred, L2_loadruh_io>;
1798  // No sextloadi1.
1799}
1800
1801// Sign-extending loads of i1 need to replicate the lowest bit throughout
1802// the 32-bit value. Since the loaded value can only be 0 or 1, 0-v should
1803// do the trick.
1804let AddedComplexity = 20 in
1805def: Pat<(i32 (sextloadi1 (i32 IntRegs:$Rs))),
1806         (A2_subri 0, (L2_loadrub_io IntRegs:$Rs, 0))>;
1807
1808//===----------------------------------------------------------------------===//
1809// Post increment load
1810//===----------------------------------------------------------------------===//
1811//===----------------------------------------------------------------------===//
1812// Template class for non-predicated post increment loads with immediate offset.
1813//===----------------------------------------------------------------------===//
1814let hasSideEffects = 0, addrMode = PostInc in
1815class T_load_pi <string mnemonic, RegisterClass RC, Operand ImmOp,
1816                     bits<4> MajOp >
1817  : LDInstPI <(outs RC:$dst, IntRegs:$dst2),
1818  (ins IntRegs:$src1, ImmOp:$offset),
1819  "$dst = "#mnemonic#"($src1++#$offset)" ,
1820  [],
1821  "$src1 = $dst2" > ,
1822  PredNewRel {
1823    bits<5> dst;
1824    bits<5> src1;
1825    bits<7> offset;
1826    bits<4> offsetBits;
1827
1828    string ImmOpStr = !cast<string>(ImmOp);
1829    let offsetBits = !if (!eq(ImmOpStr, "s4_3Imm"), offset{6-3},
1830                     !if (!eq(ImmOpStr, "s4_2Imm"), offset{5-2},
1831                     !if (!eq(ImmOpStr, "s4_1Imm"), offset{4-1},
1832                                      /* s4_0Imm */ offset{3-0})));
1833    let hasNewValue = !if (!eq(ImmOpStr, "s4_3Imm"), 0, 1);
1834
1835    let IClass = 0b1001;
1836
1837    let Inst{27-25} = 0b101;
1838    let Inst{24-21} = MajOp;
1839    let Inst{20-16} = src1;
1840    let Inst{13-12} = 0b00;
1841    let Inst{8-5} = offsetBits;
1842    let Inst{4-0}   = dst;
1843  }
1844
1845//===----------------------------------------------------------------------===//
1846// Template class for predicated post increment loads with immediate offset.
1847//===----------------------------------------------------------------------===//
1848let isPredicated = 1, hasSideEffects = 0, addrMode = PostInc in
1849class T_pload_pi <string mnemonic, RegisterClass RC, Operand ImmOp,
1850                          bits<4> MajOp, bit isPredNot, bit isPredNew >
1851  : LDInst <(outs RC:$dst, IntRegs:$dst2),
1852            (ins PredRegs:$src1, IntRegs:$src2, ImmOp:$offset),
1853  !if(isPredNot, "if (!$src1", "if ($src1")#!if(isPredNew, ".new) ",
1854  ") ")#"$dst = "#mnemonic#"($src2++#$offset)",
1855  [] ,
1856  "$src2 = $dst2" > ,
1857  PredNewRel {
1858    bits<5> dst;
1859    bits<2> src1;
1860    bits<5> src2;
1861    bits<7> offset;
1862    bits<4> offsetBits;
1863
1864    let isPredicatedNew = isPredNew;
1865    let isPredicatedFalse = isPredNot;
1866
1867    string ImmOpStr = !cast<string>(ImmOp);
1868    let offsetBits = !if (!eq(ImmOpStr, "s4_3Imm"), offset{6-3},
1869                     !if (!eq(ImmOpStr, "s4_2Imm"), offset{5-2},
1870                     !if (!eq(ImmOpStr, "s4_1Imm"), offset{4-1},
1871                                      /* s4_0Imm */ offset{3-0})));
1872    let hasNewValue = !if (!eq(ImmOpStr, "s4_3Imm"), 0, 1);
1873
1874    let IClass = 0b1001;
1875
1876    let Inst{27-25} = 0b101;
1877    let Inst{24-21} = MajOp;
1878    let Inst{20-16} = src2;
1879    let Inst{13} = 0b1;
1880    let Inst{12} = isPredNew;
1881    let Inst{11} = isPredNot;
1882    let Inst{10-9} = src1;
1883    let Inst{8-5}  = offsetBits;
1884    let Inst{4-0}  = dst;
1885  }
1886
1887//===----------------------------------------------------------------------===//
1888// Multiclass for post increment loads with immediate offset.
1889//===----------------------------------------------------------------------===//
1890
1891multiclass LD_PostInc <string mnemonic, string BaseOp, RegisterClass RC,
1892                       Operand ImmOp, bits<4> MajOp> {
1893  let BaseOpcode = "POST_"#BaseOp in {
1894    let isPredicable = 1 in
1895    def L2_#NAME#_pi : T_load_pi < mnemonic, RC, ImmOp, MajOp>;
1896
1897    // Predicated
1898    def L2_p#NAME#t_pi : T_pload_pi < mnemonic, RC, ImmOp, MajOp, 0, 0>;
1899    def L2_p#NAME#f_pi : T_pload_pi < mnemonic, RC, ImmOp, MajOp, 1, 0>;
1900
1901    // Predicated new
1902    def L2_p#NAME#tnew_pi : T_pload_pi < mnemonic, RC, ImmOp, MajOp, 0, 1>;
1903    def L2_p#NAME#fnew_pi : T_pload_pi < mnemonic, RC, ImmOp, MajOp, 1, 1>;
1904  }
1905}
1906
1907// post increment byte loads with immediate offset
1908let accessSize = ByteAccess in {
1909  defm loadrb  : LD_PostInc <"memb",  "LDrib", IntRegs, s4_0Imm, 0b1000>;
1910  defm loadrub : LD_PostInc <"memub", "LDriub", IntRegs, s4_0Imm, 0b1001>;
1911}
1912
1913// post increment halfword loads with immediate offset
1914let accessSize = HalfWordAccess, opExtentAlign = 1 in {
1915  defm loadrh  : LD_PostInc <"memh",  "LDrih", IntRegs, s4_1Imm, 0b1010>;
1916  defm loadruh : LD_PostInc <"memuh", "LDriuh", IntRegs, s4_1Imm, 0b1011>;
1917}
1918
1919// post increment word loads with immediate offset
1920let accessSize = WordAccess, opExtentAlign = 2 in
1921defm loadri : LD_PostInc <"memw", "LDriw", IntRegs, s4_2Imm, 0b1100>;
1922
1923// post increment doubleword loads with immediate offset
1924let accessSize = DoubleWordAccess, opExtentAlign = 3 in
1925defm loadrd : LD_PostInc <"memd", "LDrid", DoubleRegs, s4_3Imm, 0b1110>;
1926
1927// Rd=memb[u]h(Rx++#s4:1)
1928// Rdd=memb[u]h(Rx++#s4:2)
1929let accessSize = HalfWordAccess, opExtentAlign = 1 in {
1930  def L2_loadbsw2_pi   : T_load_pi <"membh", IntRegs, s4_1Imm, 0b0001>;
1931  def L2_loadbzw2_pi   : T_load_pi <"memubh", IntRegs, s4_1Imm, 0b0011>;
1932}
1933let accessSize = WordAccess, opExtentAlign = 2, hasNewValue = 0 in {
1934  def L2_loadbsw4_pi   : T_load_pi <"membh", DoubleRegs, s4_2Imm, 0b0111>;
1935  def L2_loadbzw4_pi   : T_load_pi <"memubh", DoubleRegs, s4_2Imm, 0b0101>;
1936}
1937
1938//===----------------------------------------------------------------------===//
1939// Template class for post increment fifo loads with immediate offset.
1940//===----------------------------------------------------------------------===//
1941let hasSideEffects = 0, addrMode = PostInc in
1942class T_loadalign_pi <string mnemonic, Operand ImmOp, bits<4> MajOp >
1943  : LDInstPI <(outs DoubleRegs:$dst, IntRegs:$dst2),
1944  (ins DoubleRegs:$src1, IntRegs:$src2, ImmOp:$offset),
1945  "$dst = "#mnemonic#"($src2++#$offset)" ,
1946  [], "$src2 = $dst2, $src1 = $dst" > ,
1947  PredNewRel {
1948    bits<5> dst;
1949    bits<5> src2;
1950    bits<5> offset;
1951    bits<4> offsetBits;
1952
1953    let offsetBits = !if (!eq(!cast<string>(ImmOp), "s4_1Imm"), offset{4-1},
1954                                                  /* s4_0Imm */ offset{3-0});
1955    let IClass = 0b1001;
1956
1957    let Inst{27-25} = 0b101;
1958    let Inst{24-21} = MajOp;
1959    let Inst{20-16} = src2;
1960    let Inst{13-12} = 0b00;
1961    let Inst{8-5} = offsetBits;
1962    let Inst{4-0}   = dst;
1963  }
1964
1965// Ryy=memh_fifo(Rx++#s4:1)
1966// Ryy=memb_fifo(Rx++#s4:0)
1967let accessSize = ByteAccess in
1968def L2_loadalignb_pi : T_loadalign_pi <"memb_fifo", s4_0Imm, 0b0100>;
1969
1970let accessSize = HalfWordAccess, opExtentAlign = 1 in
1971def L2_loadalignh_pi : T_loadalign_pi <"memh_fifo", s4_1Imm, 0b0010>;
1972
1973//===----------------------------------------------------------------------===//
1974// Template class for post increment loads with register offset.
1975//===----------------------------------------------------------------------===//
1976let hasSideEffects = 0, addrMode = PostInc in
1977class T_load_pr <string mnemonic, RegisterClass RC, bits<4> MajOp,
1978                       MemAccessSize AccessSz>
1979  : LDInstPI <(outs RC:$dst, IntRegs:$_dst_),
1980              (ins IntRegs:$src1, ModRegs:$src2),
1981  "$dst = "#mnemonic#"($src1++$src2)" ,
1982  [], "$src1 = $_dst_" > {
1983    bits<5> dst;
1984    bits<5> src1;
1985    bits<1> src2;
1986
1987    let accessSize = AccessSz;
1988    let IClass = 0b1001;
1989
1990    let Inst{27-25} = 0b110;
1991    let Inst{24-21} = MajOp;
1992    let Inst{20-16} = src1;
1993    let Inst{13}    = src2;
1994    let Inst{12}    = 0b0;
1995    let Inst{7}     = 0b0;
1996    let Inst{4-0}   = dst;
1997  }
1998
1999let hasNewValue = 1 in {
2000  def L2_loadrb_pr  : T_load_pr <"memb",  IntRegs, 0b1000, ByteAccess>;
2001  def L2_loadrub_pr : T_load_pr <"memub", IntRegs, 0b1001, ByteAccess>;
2002  def L2_loadrh_pr  : T_load_pr <"memh",  IntRegs, 0b1010, HalfWordAccess>;
2003  def L2_loadruh_pr : T_load_pr <"memuh", IntRegs, 0b1011, HalfWordAccess>;
2004  def L2_loadri_pr  : T_load_pr <"memw",  IntRegs, 0b1100, WordAccess>;
2005
2006  def L2_loadbzw2_pr : T_load_pr <"memubh", IntRegs, 0b0011, HalfWordAccess>;
2007}
2008
2009def L2_loadrd_pr   : T_load_pr <"memd", DoubleRegs, 0b1110, DoubleWordAccess>;
2010def L2_loadbzw4_pr : T_load_pr <"memubh", DoubleRegs, 0b0101, WordAccess>;
2011
2012// Load predicate.
2013let isExtendable = 1, opExtendable = 2, isExtentSigned = 1, opExtentBits = 13,
2014    isCodeGenOnly = 1, isPseudo = 1, hasSideEffects = 0 in
2015def LDriw_pred : LDInst<(outs PredRegs:$dst),
2016                        (ins IntRegs:$addr, s11_2Ext:$off),
2017                        ".error \"should not emit\"", []>;
2018
2019let Defs = [R29, R30, R31], Uses = [R30], hasSideEffects = 0 in
2020  def L2_deallocframe : LDInst<(outs), (ins),
2021                     "deallocframe",
2022                     []> {
2023    let IClass = 0b1001;
2024
2025    let Inst{27-16} = 0b000000011110;
2026    let Inst{13} = 0b0;
2027    let Inst{4-0} = 0b11110;
2028}
2029
2030// Load / Post increment circular addressing mode.
2031let Uses = [CS], hasSideEffects = 0 in
2032class T_load_pcr<string mnemonic, RegisterClass RC, bits<4> MajOp>
2033  : LDInst <(outs RC:$dst, IntRegs:$_dst_),
2034            (ins IntRegs:$Rz, ModRegs:$Mu),
2035  "$dst = "#mnemonic#"($Rz ++ I:circ($Mu))", [],
2036  "$Rz = $_dst_" > {
2037    bits<5> dst;
2038    bits<5> Rz;
2039    bit Mu;
2040
2041    let hasNewValue = !if (!eq(!cast<string>(RC), "DoubleRegs"), 0, 1);
2042    let IClass = 0b1001;
2043
2044    let Inst{27-25} = 0b100;
2045    let Inst{24-21} = MajOp;
2046    let Inst{20-16} = Rz;
2047    let Inst{13} = Mu;
2048    let Inst{12} = 0b0;
2049    let Inst{9} = 0b1;
2050    let Inst{7} = 0b0;
2051    let Inst{4-0} = dst;
2052 }
2053
2054let accessSize = ByteAccess in {
2055  def L2_loadrb_pcr  : T_load_pcr <"memb",  IntRegs, 0b1000>;
2056  def L2_loadrub_pcr : T_load_pcr <"memub", IntRegs, 0b1001>;
2057}
2058
2059let accessSize = HalfWordAccess in {
2060  def L2_loadrh_pcr   : T_load_pcr <"memh",   IntRegs, 0b1010>;
2061  def L2_loadruh_pcr  : T_load_pcr <"memuh",  IntRegs, 0b1011>;
2062  def L2_loadbsw2_pcr : T_load_pcr <"membh",  IntRegs, 0b0001>;
2063  def L2_loadbzw2_pcr : T_load_pcr <"memubh", IntRegs, 0b0011>;
2064}
2065
2066let accessSize = WordAccess in {
2067  def  L2_loadri_pcr  : T_load_pcr <"memw", IntRegs, 0b1100>;
2068  let hasNewValue = 0 in {
2069    def L2_loadbzw4_pcr : T_load_pcr <"memubh", DoubleRegs, 0b0101>;
2070    def L2_loadbsw4_pcr : T_load_pcr <"membh",  DoubleRegs, 0b0111>;
2071  }
2072}
2073
2074let accessSize = DoubleWordAccess in
2075def L2_loadrd_pcr  : T_load_pcr <"memd", DoubleRegs, 0b1110>;
2076
2077// Load / Post increment circular addressing mode.
2078let Uses = [CS], hasSideEffects = 0 in
2079class T_loadalign_pcr<string mnemonic, bits<4> MajOp, MemAccessSize AccessSz >
2080  : LDInst <(outs DoubleRegs:$dst, IntRegs:$_dst_),
2081            (ins DoubleRegs:$_src_, IntRegs:$Rz, ModRegs:$Mu),
2082  "$dst = "#mnemonic#"($Rz ++ I:circ($Mu))", [],
2083  "$Rz = $_dst_, $dst = $_src_" > {
2084    bits<5> dst;
2085    bits<5> Rz;
2086    bit Mu;
2087
2088    let accessSize = AccessSz;
2089    let IClass = 0b1001;
2090
2091    let Inst{27-25} = 0b100;
2092    let Inst{24-21} = MajOp;
2093    let Inst{20-16} = Rz;
2094    let Inst{13}    = Mu;
2095    let Inst{12}    = 0b0;
2096    let Inst{9}     = 0b1;
2097    let Inst{7}     = 0b0;
2098    let Inst{4-0}   = dst;
2099 }
2100
2101def L2_loadalignb_pcr : T_loadalign_pcr <"memb_fifo", 0b0100, ByteAccess>;
2102def L2_loadalignh_pcr : T_loadalign_pcr <"memh_fifo", 0b0010, HalfWordAccess>;
2103
2104//===----------------------------------------------------------------------===//
2105// Circular loads with immediate offset.
2106//===----------------------------------------------------------------------===//
2107let Uses = [CS], mayLoad = 1, hasSideEffects = 0 in
2108class T_load_pci <string mnemonic, RegisterClass RC,
2109                  Operand ImmOp, bits<4> MajOp>
2110  : LDInstPI<(outs RC:$dst, IntRegs:$_dst_),
2111             (ins IntRegs:$Rz, ImmOp:$offset, ModRegs:$Mu),
2112  "$dst = "#mnemonic#"($Rz ++ #$offset:circ($Mu))", [],
2113  "$Rz = $_dst_"> {
2114    bits<5> dst;
2115    bits<5> Rz;
2116    bits<1> Mu;
2117    bits<7> offset;
2118    bits<4> offsetBits;
2119
2120    string ImmOpStr = !cast<string>(ImmOp);
2121    let hasNewValue = !if (!eq(!cast<string>(RC), "DoubleRegs"), 0, 1);
2122    let offsetBits = !if (!eq(ImmOpStr, "s4_3Imm"), offset{6-3},
2123                     !if (!eq(ImmOpStr, "s4_2Imm"), offset{5-2},
2124                     !if (!eq(ImmOpStr, "s4_1Imm"), offset{4-1},
2125                                      /* s4_0Imm */ offset{3-0})));
2126    let IClass      = 0b1001;
2127    let Inst{27-25} = 0b100;
2128    let Inst{24-21} = MajOp;
2129    let Inst{20-16} = Rz;
2130    let Inst{13}    = Mu;
2131    let Inst{12}    = 0b0;
2132    let Inst{9}     = 0b0;
2133    let Inst{8-5}   = offsetBits;
2134    let Inst{4-0}   = dst;
2135  }
2136
2137// Byte variants of circ load
2138let accessSize = ByteAccess in {
2139  def L2_loadrb_pci  : T_load_pci <"memb",  IntRegs, s4_0Imm, 0b1000>;
2140  def L2_loadrub_pci : T_load_pci <"memub", IntRegs, s4_0Imm, 0b1001>;
2141}
2142
2143// Half word variants of circ load
2144let accessSize = HalfWordAccess in {
2145  def L2_loadrh_pci   : T_load_pci <"memh",   IntRegs, s4_1Imm, 0b1010>;
2146  def L2_loadruh_pci  : T_load_pci <"memuh",  IntRegs, s4_1Imm, 0b1011>;
2147  def L2_loadbzw2_pci : T_load_pci <"memubh", IntRegs, s4_1Imm, 0b0011>;
2148  def L2_loadbsw2_pci : T_load_pci <"membh",  IntRegs, s4_1Imm, 0b0001>;
2149}
2150
2151// Word variants of circ load
2152let accessSize = WordAccess in
2153def L2_loadri_pci   : T_load_pci <"memw",   IntRegs,    s4_2Imm, 0b1100>;
2154
2155let accessSize = WordAccess, hasNewValue = 0 in {
2156  def L2_loadbzw4_pci : T_load_pci <"memubh", DoubleRegs, s4_2Imm, 0b0101>;
2157  def L2_loadbsw4_pci : T_load_pci <"membh",  DoubleRegs, s4_2Imm, 0b0111>;
2158}
2159
2160let accessSize = DoubleWordAccess, hasNewValue = 0 in
2161def L2_loadrd_pci : T_load_pci <"memd", DoubleRegs, s4_3Imm, 0b1110>;
2162
2163//===----------------------------------------------------------------------===//
2164// Circular loads - Pseudo
2165//
2166// Please note that the input operand order in the pseudo instructions
2167// doesn't match with the real instructions. Pseudo instructions operand
2168// order should mimics the ordering in the intrinsics. Also, 'src2' doesn't
2169// appear in the AsmString because it's same as 'dst'.
2170//===----------------------------------------------------------------------===//
2171let isCodeGenOnly = 1,  mayLoad = 1, hasSideEffects = 0, isPseudo = 1 in
2172class T_load_pci_pseudo <string opc, RegisterClass RC>
2173  : LDInstPI<(outs IntRegs:$_dst_, RC:$dst),
2174             (ins IntRegs:$src1, IntRegs:$src2, IntRegs:$src3, s4Imm:$src4),
2175  ".error \"$dst = "#opc#"($src1++#$src4:circ($src3))\"",
2176  [], "$src1 = $_dst_">;
2177
2178def L2_loadrb_pci_pseudo  : T_load_pci_pseudo <"memb",  IntRegs>;
2179def L2_loadrub_pci_pseudo : T_load_pci_pseudo <"memub", IntRegs>;
2180def L2_loadrh_pci_pseudo  : T_load_pci_pseudo <"memh",  IntRegs>;
2181def L2_loadruh_pci_pseudo : T_load_pci_pseudo <"memuh", IntRegs>;
2182def L2_loadri_pci_pseudo  : T_load_pci_pseudo <"memw",  IntRegs>;
2183def L2_loadrd_pci_pseudo  : T_load_pci_pseudo <"memd",  DoubleRegs>;
2184
2185
2186// TODO: memb_fifo and memh_fifo must take destination register as input.
2187// One-off circ loads - not enough in common to break into a class.
2188let accessSize = ByteAccess in
2189def L2_loadalignb_pci : T_load_pci <"memb_fifo", DoubleRegs, s4_0Imm, 0b0100>;
2190
2191let accessSize = HalfWordAccess, opExtentAlign = 1 in
2192def L2_loadalignh_pci : T_load_pci <"memh_fifo", DoubleRegs, s4_1Imm, 0b0010>;
2193
2194// L[24]_load[wd]_locked: Load word/double with lock.
2195let isSoloAX = 1 in
2196class T_load_locked <string mnemonic, RegisterClass RC>
2197  : LD0Inst <(outs RC:$dst),
2198             (ins IntRegs:$src),
2199    "$dst = "#mnemonic#"($src)"> {
2200    bits<5> dst;
2201    bits<5> src;
2202    let IClass = 0b1001;
2203    let Inst{27-21} = 0b0010000;
2204    let Inst{20-16} = src;
2205    let Inst{13-12} = !if (!eq(mnemonic, "memd_locked"), 0b01, 0b00);
2206    let Inst{5}   = 0;
2207    let Inst{4-0} = dst;
2208}
2209let hasNewValue = 1, accessSize = WordAccess, opNewValue = 0 in
2210  def L2_loadw_locked : T_load_locked <"memw_locked", IntRegs>;
2211let accessSize = DoubleWordAccess in
2212  def L4_loadd_locked : T_load_locked <"memd_locked", DoubleRegs>;
2213
2214// S[24]_store[wd]_locked: Store word/double conditionally.
2215let isSoloAX = 1, isPredicateLate = 1 in
2216class T_store_locked <string mnemonic, RegisterClass RC>
2217  : ST0Inst <(outs PredRegs:$Pd), (ins IntRegs:$Rs, RC:$Rt),
2218    mnemonic#"($Rs, $Pd) = $Rt"> {
2219    bits<2> Pd;
2220    bits<5> Rs;
2221    bits<5> Rt;
2222
2223    let IClass = 0b1010;
2224    let Inst{27-23} = 0b00001;
2225    let Inst{22} = !if (!eq(mnemonic, "memw_locked"), 0b0, 0b1);
2226    let Inst{21} = 0b1;
2227    let Inst{20-16} = Rs;
2228    let Inst{12-8} = Rt;
2229    let Inst{1-0} = Pd;
2230}
2231
2232let accessSize = WordAccess in
2233def S2_storew_locked : T_store_locked <"memw_locked", IntRegs>;
2234
2235let accessSize = DoubleWordAccess in
2236def S4_stored_locked : T_store_locked <"memd_locked", DoubleRegs>;
2237
2238//===----------------------------------------------------------------------===//
2239// Bit-reversed loads with auto-increment register
2240//===----------------------------------------------------------------------===//
2241let hasSideEffects = 0 in
2242class T_load_pbr<string mnemonic, RegisterClass RC,
2243                            MemAccessSize addrSize, bits<4> majOp>
2244  : LDInst
2245    <(outs RC:$dst, IntRegs:$_dst_),
2246     (ins IntRegs:$Rz, ModRegs:$Mu),
2247     "$dst = "#mnemonic#"($Rz ++ $Mu:brev)" ,
2248      [] , "$Rz = $_dst_" > {
2249
2250      let accessSize = addrSize;
2251
2252      bits<5> dst;
2253      bits<5> Rz;
2254      bits<1> Mu;
2255
2256      let IClass = 0b1001;
2257
2258      let Inst{27-25} = 0b111;
2259      let Inst{24-21} = majOp;
2260      let Inst{20-16} = Rz;
2261      let Inst{13} = Mu;
2262      let Inst{12} = 0b0;
2263      let Inst{7} = 0b0;
2264      let Inst{4-0} = dst;
2265  }
2266
2267let hasNewValue =1, opNewValue = 0 in {
2268  def L2_loadrb_pbr   : T_load_pbr <"memb",  IntRegs, ByteAccess, 0b1000>;
2269  def L2_loadrub_pbr  : T_load_pbr <"memub", IntRegs, ByteAccess, 0b1001>;
2270  def L2_loadrh_pbr   : T_load_pbr <"memh",  IntRegs, HalfWordAccess, 0b1010>;
2271  def L2_loadruh_pbr  : T_load_pbr <"memuh", IntRegs, HalfWordAccess, 0b1011>;
2272  def L2_loadbsw2_pbr : T_load_pbr <"membh", IntRegs, HalfWordAccess, 0b0001>;
2273  def L2_loadbzw2_pbr : T_load_pbr <"memubh", IntRegs, HalfWordAccess, 0b0011>;
2274  def L2_loadri_pbr : T_load_pbr <"memw", IntRegs, WordAccess, 0b1100>;
2275}
2276
2277def L2_loadbzw4_pbr : T_load_pbr <"memubh", DoubleRegs, WordAccess, 0b0101>;
2278def L2_loadbsw4_pbr : T_load_pbr <"membh",  DoubleRegs, WordAccess, 0b0111>;
2279def L2_loadrd_pbr : T_load_pbr <"memd", DoubleRegs, DoubleWordAccess, 0b1110>;
2280
2281def L2_loadalignb_pbr :T_load_pbr <"memb_fifo", DoubleRegs, ByteAccess, 0b0100>;
2282def L2_loadalignh_pbr :T_load_pbr <"memh_fifo", DoubleRegs,
2283                                   HalfWordAccess, 0b0010>;
2284
2285//===----------------------------------------------------------------------===//
2286// Bit-reversed loads - Pseudo
2287//
2288// Please note that 'src2' doesn't appear in the AsmString because
2289// it's same as 'dst'.
2290//===----------------------------------------------------------------------===//
2291let isCodeGenOnly = 1, mayLoad = 1, hasSideEffects = 0, isPseudo = 1 in
2292class T_load_pbr_pseudo <string opc, RegisterClass RC>
2293  : LDInstPI<(outs IntRegs:$_dst_, RC:$dst),
2294             (ins IntRegs:$src1, IntRegs:$src2, IntRegs:$src3),
2295  ".error \"$dst = "#opc#"($src1++$src3:brev)\"",
2296  [], "$src1 = $_dst_">;
2297
2298def L2_loadrb_pbr_pseudo  : T_load_pbr_pseudo <"memb",  IntRegs>;
2299def L2_loadrub_pbr_pseudo : T_load_pbr_pseudo <"memub", IntRegs>;
2300def L2_loadrh_pbr_pseudo  : T_load_pbr_pseudo <"memh",  IntRegs>;
2301def L2_loadruh_pbr_pseudo : T_load_pbr_pseudo <"memuh", IntRegs>;
2302def L2_loadri_pbr_pseudo  : T_load_pbr_pseudo <"memw",  IntRegs>;
2303def L2_loadrd_pbr_pseudo  : T_load_pbr_pseudo <"memd",  DoubleRegs>;
2304
2305//===----------------------------------------------------------------------===//
2306// LD -
2307//===----------------------------------------------------------------------===//
2308
2309//===----------------------------------------------------------------------===//
2310// MTYPE/ALU +
2311//===----------------------------------------------------------------------===//
2312//===----------------------------------------------------------------------===//
2313// MTYPE/ALU -
2314//===----------------------------------------------------------------------===//
2315
2316//===----------------------------------------------------------------------===//
2317// MTYPE/COMPLEX +
2318//===----------------------------------------------------------------------===//
2319//===----------------------------------------------------------------------===//
2320// MTYPE/COMPLEX -
2321//===----------------------------------------------------------------------===//
2322
2323//===----------------------------------------------------------------------===//
2324// MTYPE/MPYH +
2325//===----------------------------------------------------------------------===//
2326
2327//===----------------------------------------------------------------------===//
2328// Template Class
2329// MPYS / Multipy signed/unsigned halfwords
2330//Rd=mpy[u](Rs.[H|L],Rt.[H|L])[:<<1][:rnd][:sat]
2331//===----------------------------------------------------------------------===//
2332
2333let hasNewValue = 1, opNewValue = 0 in
2334class T_M2_mpy < bits<2> LHbits, bit isSat, bit isRnd,
2335                 bit hasShift, bit isUnsigned>
2336  : MInst < (outs IntRegs:$Rd), (ins IntRegs:$Rs, IntRegs:$Rt),
2337  "$Rd = "#!if(isUnsigned,"mpyu","mpy")#"($Rs."#!if(LHbits{1},"h","l")
2338                                       #", $Rt."#!if(LHbits{0},"h)","l)")
2339                                       #!if(hasShift,":<<1","")
2340                                       #!if(isRnd,":rnd","")
2341                                       #!if(isSat,":sat",""),
2342  [], "", M_tc_3x_SLOT23 > {
2343    bits<5> Rd;
2344    bits<5> Rs;
2345    bits<5> Rt;
2346
2347    let IClass = 0b1110;
2348
2349    let Inst{27-24} = 0b1100;
2350    let Inst{23} = hasShift;
2351    let Inst{22} = isUnsigned;
2352    let Inst{21} = isRnd;
2353    let Inst{7} = isSat;
2354    let Inst{6-5} = LHbits;
2355    let Inst{4-0} = Rd;
2356    let Inst{20-16} = Rs;
2357    let Inst{12-8} = Rt;
2358  }
2359
2360//Rd=mpy(Rs.[H|L],Rt.[H|L])[:<<1]
2361def M2_mpy_ll_s1: T_M2_mpy<0b00, 0, 0, 1, 0>;
2362def M2_mpy_ll_s0: T_M2_mpy<0b00, 0, 0, 0, 0>;
2363def M2_mpy_lh_s1: T_M2_mpy<0b01, 0, 0, 1, 0>;
2364def M2_mpy_lh_s0: T_M2_mpy<0b01, 0, 0, 0, 0>;
2365def M2_mpy_hl_s1: T_M2_mpy<0b10, 0, 0, 1, 0>;
2366def M2_mpy_hl_s0: T_M2_mpy<0b10, 0, 0, 0, 0>;
2367def M2_mpy_hh_s1: T_M2_mpy<0b11, 0, 0, 1, 0>;
2368def M2_mpy_hh_s0: T_M2_mpy<0b11, 0, 0, 0, 0>;
2369
2370//Rd=mpyu(Rs.[H|L],Rt.[H|L])[:<<1]
2371def M2_mpyu_ll_s1: T_M2_mpy<0b00, 0, 0, 1, 1>;
2372def M2_mpyu_ll_s0: T_M2_mpy<0b00, 0, 0, 0, 1>;
2373def M2_mpyu_lh_s1: T_M2_mpy<0b01, 0, 0, 1, 1>;
2374def M2_mpyu_lh_s0: T_M2_mpy<0b01, 0, 0, 0, 1>;
2375def M2_mpyu_hl_s1: T_M2_mpy<0b10, 0, 0, 1, 1>;
2376def M2_mpyu_hl_s0: T_M2_mpy<0b10, 0, 0, 0, 1>;
2377def M2_mpyu_hh_s1: T_M2_mpy<0b11, 0, 0, 1, 1>;
2378def M2_mpyu_hh_s0: T_M2_mpy<0b11, 0, 0, 0, 1>;
2379
2380//Rd=mpy(Rs.[H|L],Rt.[H|L])[:<<1]:rnd
2381def M2_mpy_rnd_ll_s1: T_M2_mpy <0b00, 0, 1, 1, 0>;
2382def M2_mpy_rnd_ll_s0: T_M2_mpy <0b00, 0, 1, 0, 0>;
2383def M2_mpy_rnd_lh_s1: T_M2_mpy <0b01, 0, 1, 1, 0>;
2384def M2_mpy_rnd_lh_s0: T_M2_mpy <0b01, 0, 1, 0, 0>;
2385def M2_mpy_rnd_hl_s1: T_M2_mpy <0b10, 0, 1, 1, 0>;
2386def M2_mpy_rnd_hl_s0: T_M2_mpy <0b10, 0, 1, 0, 0>;
2387def M2_mpy_rnd_hh_s1: T_M2_mpy <0b11, 0, 1, 1, 0>;
2388def M2_mpy_rnd_hh_s0: T_M2_mpy <0b11, 0, 1, 0, 0>;
2389
2390//Rd=mpy(Rs.[H|L],Rt.[H|L])[:<<1][:sat]
2391//Rd=mpy(Rs.[H|L],Rt.[H|L])[:<<1][:rnd][:sat]
2392let Defs = [USR_OVF] in {
2393  def M2_mpy_sat_ll_s1: T_M2_mpy <0b00, 1, 0, 1, 0>;
2394  def M2_mpy_sat_ll_s0: T_M2_mpy <0b00, 1, 0, 0, 0>;
2395  def M2_mpy_sat_lh_s1: T_M2_mpy <0b01, 1, 0, 1, 0>;
2396  def M2_mpy_sat_lh_s0: T_M2_mpy <0b01, 1, 0, 0, 0>;
2397  def M2_mpy_sat_hl_s1: T_M2_mpy <0b10, 1, 0, 1, 0>;
2398  def M2_mpy_sat_hl_s0: T_M2_mpy <0b10, 1, 0, 0, 0>;
2399  def M2_mpy_sat_hh_s1: T_M2_mpy <0b11, 1, 0, 1, 0>;
2400  def M2_mpy_sat_hh_s0: T_M2_mpy <0b11, 1, 0, 0, 0>;
2401
2402  def M2_mpy_sat_rnd_ll_s1: T_M2_mpy <0b00, 1, 1, 1, 0>;
2403  def M2_mpy_sat_rnd_ll_s0: T_M2_mpy <0b00, 1, 1, 0, 0>;
2404  def M2_mpy_sat_rnd_lh_s1: T_M2_mpy <0b01, 1, 1, 1, 0>;
2405  def M2_mpy_sat_rnd_lh_s0: T_M2_mpy <0b01, 1, 1, 0, 0>;
2406  def M2_mpy_sat_rnd_hl_s1: T_M2_mpy <0b10, 1, 1, 1, 0>;
2407  def M2_mpy_sat_rnd_hl_s0: T_M2_mpy <0b10, 1, 1, 0, 0>;
2408  def M2_mpy_sat_rnd_hh_s1: T_M2_mpy <0b11, 1, 1, 1, 0>;
2409  def M2_mpy_sat_rnd_hh_s0: T_M2_mpy <0b11, 1, 1, 0, 0>;
2410}
2411
2412//===----------------------------------------------------------------------===//
2413// Template Class
2414// MPYS / Multipy signed/unsigned halfwords and add/subtract the
2415// result from the accumulator.
2416//Rx [-+]= mpy[u](Rs.[H|L],Rt.[H|L])[:<<1][:sat]
2417//===----------------------------------------------------------------------===//
2418
2419let hasNewValue = 1, opNewValue = 0 in
2420class T_M2_mpy_acc < bits<2> LHbits, bit isSat, bit isNac,
2421                 bit hasShift, bit isUnsigned >
2422  : MInst_acc<(outs IntRegs:$Rx), (ins IntRegs:$dst2, IntRegs:$Rs, IntRegs:$Rt),
2423  "$Rx "#!if(isNac,"-= ","+= ")#!if(isUnsigned,"mpyu","mpy")
2424                              #"($Rs."#!if(LHbits{1},"h","l")
2425                              #", $Rt."#!if(LHbits{0},"h)","l)")
2426                              #!if(hasShift,":<<1","")
2427                              #!if(isSat,":sat",""),
2428  [], "$dst2 = $Rx", M_tc_3x_SLOT23 > {
2429    bits<5> Rx;
2430    bits<5> Rs;
2431    bits<5> Rt;
2432
2433    let IClass = 0b1110;
2434    let Inst{27-24} = 0b1110;
2435    let Inst{23} = hasShift;
2436    let Inst{22} = isUnsigned;
2437    let Inst{21} = isNac;
2438    let Inst{7} = isSat;
2439    let Inst{6-5} = LHbits;
2440    let Inst{4-0} = Rx;
2441    let Inst{20-16} = Rs;
2442    let Inst{12-8} = Rt;
2443  }
2444
2445//Rx += mpy(Rs.[H|L],Rt.[H|L])[:<<1]
2446def M2_mpy_acc_ll_s1: T_M2_mpy_acc <0b00, 0, 0, 1, 0>;
2447def M2_mpy_acc_ll_s0: T_M2_mpy_acc <0b00, 0, 0, 0, 0>;
2448def M2_mpy_acc_lh_s1: T_M2_mpy_acc <0b01, 0, 0, 1, 0>;
2449def M2_mpy_acc_lh_s0: T_M2_mpy_acc <0b01, 0, 0, 0, 0>;
2450def M2_mpy_acc_hl_s1: T_M2_mpy_acc <0b10, 0, 0, 1, 0>;
2451def M2_mpy_acc_hl_s0: T_M2_mpy_acc <0b10, 0, 0, 0, 0>;
2452def M2_mpy_acc_hh_s1: T_M2_mpy_acc <0b11, 0, 0, 1, 0>;
2453def M2_mpy_acc_hh_s0: T_M2_mpy_acc <0b11, 0, 0, 0, 0>;
2454
2455//Rx += mpyu(Rs.[H|L],Rt.[H|L])[:<<1]
2456def M2_mpyu_acc_ll_s1: T_M2_mpy_acc <0b00, 0, 0, 1, 1>;
2457def M2_mpyu_acc_ll_s0: T_M2_mpy_acc <0b00, 0, 0, 0, 1>;
2458def M2_mpyu_acc_lh_s1: T_M2_mpy_acc <0b01, 0, 0, 1, 1>;
2459def M2_mpyu_acc_lh_s0: T_M2_mpy_acc <0b01, 0, 0, 0, 1>;
2460def M2_mpyu_acc_hl_s1: T_M2_mpy_acc <0b10, 0, 0, 1, 1>;
2461def M2_mpyu_acc_hl_s0: T_M2_mpy_acc <0b10, 0, 0, 0, 1>;
2462def M2_mpyu_acc_hh_s1: T_M2_mpy_acc <0b11, 0, 0, 1, 1>;
2463def M2_mpyu_acc_hh_s0: T_M2_mpy_acc <0b11, 0, 0, 0, 1>;
2464
2465//Rx -= mpy(Rs.[H|L],Rt.[H|L])[:<<1]
2466def M2_mpy_nac_ll_s1: T_M2_mpy_acc <0b00, 0, 1, 1, 0>;
2467def M2_mpy_nac_ll_s0: T_M2_mpy_acc <0b00, 0, 1, 0, 0>;
2468def M2_mpy_nac_lh_s1: T_M2_mpy_acc <0b01, 0, 1, 1, 0>;
2469def M2_mpy_nac_lh_s0: T_M2_mpy_acc <0b01, 0, 1, 0, 0>;
2470def M2_mpy_nac_hl_s1: T_M2_mpy_acc <0b10, 0, 1, 1, 0>;
2471def M2_mpy_nac_hl_s0: T_M2_mpy_acc <0b10, 0, 1, 0, 0>;
2472def M2_mpy_nac_hh_s1: T_M2_mpy_acc <0b11, 0, 1, 1, 0>;
2473def M2_mpy_nac_hh_s0: T_M2_mpy_acc <0b11, 0, 1, 0, 0>;
2474
2475//Rx -= mpyu(Rs.[H|L],Rt.[H|L])[:<<1]
2476def M2_mpyu_nac_ll_s1: T_M2_mpy_acc <0b00, 0, 1, 1, 1>;
2477def M2_mpyu_nac_ll_s0: T_M2_mpy_acc <0b00, 0, 1, 0, 1>;
2478def M2_mpyu_nac_lh_s1: T_M2_mpy_acc <0b01, 0, 1, 1, 1>;
2479def M2_mpyu_nac_lh_s0: T_M2_mpy_acc <0b01, 0, 1, 0, 1>;
2480def M2_mpyu_nac_hl_s1: T_M2_mpy_acc <0b10, 0, 1, 1, 1>;
2481def M2_mpyu_nac_hl_s0: T_M2_mpy_acc <0b10, 0, 1, 0, 1>;
2482def M2_mpyu_nac_hh_s1: T_M2_mpy_acc <0b11, 0, 1, 1, 1>;
2483def M2_mpyu_nac_hh_s0: T_M2_mpy_acc <0b11, 0, 1, 0, 1>;
2484
2485//Rx += mpy(Rs.[H|L],Rt.[H|L])[:<<1]:sat
2486def M2_mpy_acc_sat_ll_s1: T_M2_mpy_acc <0b00, 1, 0, 1, 0>;
2487def M2_mpy_acc_sat_ll_s0: T_M2_mpy_acc <0b00, 1, 0, 0, 0>;
2488def M2_mpy_acc_sat_lh_s1: T_M2_mpy_acc <0b01, 1, 0, 1, 0>;
2489def M2_mpy_acc_sat_lh_s0: T_M2_mpy_acc <0b01, 1, 0, 0, 0>;
2490def M2_mpy_acc_sat_hl_s1: T_M2_mpy_acc <0b10, 1, 0, 1, 0>;
2491def M2_mpy_acc_sat_hl_s0: T_M2_mpy_acc <0b10, 1, 0, 0, 0>;
2492def M2_mpy_acc_sat_hh_s1: T_M2_mpy_acc <0b11, 1, 0, 1, 0>;
2493def M2_mpy_acc_sat_hh_s0: T_M2_mpy_acc <0b11, 1, 0, 0, 0>;
2494
2495//Rx -= mpy(Rs.[H|L],Rt.[H|L])[:<<1]:sat
2496def M2_mpy_nac_sat_ll_s1: T_M2_mpy_acc <0b00, 1, 1, 1, 0>;
2497def M2_mpy_nac_sat_ll_s0: T_M2_mpy_acc <0b00, 1, 1, 0, 0>;
2498def M2_mpy_nac_sat_lh_s1: T_M2_mpy_acc <0b01, 1, 1, 1, 0>;
2499def M2_mpy_nac_sat_lh_s0: T_M2_mpy_acc <0b01, 1, 1, 0, 0>;
2500def M2_mpy_nac_sat_hl_s1: T_M2_mpy_acc <0b10, 1, 1, 1, 0>;
2501def M2_mpy_nac_sat_hl_s0: T_M2_mpy_acc <0b10, 1, 1, 0, 0>;
2502def M2_mpy_nac_sat_hh_s1: T_M2_mpy_acc <0b11, 1, 1, 1, 0>;
2503def M2_mpy_nac_sat_hh_s0: T_M2_mpy_acc <0b11, 1, 1, 0, 0>;
2504
2505//===----------------------------------------------------------------------===//
2506// Template Class
2507// MPYS / Multipy signed/unsigned halfwords and add/subtract the
2508// result from the 64-bit destination register.
2509//Rxx [-+]= mpy[u](Rs.[H|L],Rt.[H|L])[:<<1][:sat]
2510//===----------------------------------------------------------------------===//
2511
2512class T_M2_mpyd_acc < bits<2> LHbits, bit isNac, bit hasShift, bit isUnsigned>
2513  : MInst_acc<(outs DoubleRegs:$Rxx),
2514              (ins DoubleRegs:$dst2, IntRegs:$Rs, IntRegs:$Rt),
2515  "$Rxx "#!if(isNac,"-= ","+= ")#!if(isUnsigned,"mpyu","mpy")
2516                                #"($Rs."#!if(LHbits{1},"h","l")
2517                                #", $Rt."#!if(LHbits{0},"h)","l)")
2518                                #!if(hasShift,":<<1",""),
2519  [], "$dst2 = $Rxx", M_tc_3x_SLOT23 > {
2520    bits<5> Rxx;
2521    bits<5> Rs;
2522    bits<5> Rt;
2523
2524    let IClass = 0b1110;
2525
2526    let Inst{27-24} = 0b0110;
2527    let Inst{23} = hasShift;
2528    let Inst{22} = isUnsigned;
2529    let Inst{21} = isNac;
2530    let Inst{7} = 0;
2531    let Inst{6-5} = LHbits;
2532    let Inst{4-0} = Rxx;
2533    let Inst{20-16} = Rs;
2534    let Inst{12-8} = Rt;
2535  }
2536
2537def M2_mpyd_acc_hh_s0: T_M2_mpyd_acc <0b11, 0, 0, 0>;
2538def M2_mpyd_acc_hl_s0: T_M2_mpyd_acc <0b10, 0, 0, 0>;
2539def M2_mpyd_acc_lh_s0: T_M2_mpyd_acc <0b01, 0, 0, 0>;
2540def M2_mpyd_acc_ll_s0: T_M2_mpyd_acc <0b00, 0, 0, 0>;
2541
2542def M2_mpyd_acc_hh_s1: T_M2_mpyd_acc <0b11, 0, 1, 0>;
2543def M2_mpyd_acc_hl_s1: T_M2_mpyd_acc <0b10, 0, 1, 0>;
2544def M2_mpyd_acc_lh_s1: T_M2_mpyd_acc <0b01, 0, 1, 0>;
2545def M2_mpyd_acc_ll_s1: T_M2_mpyd_acc <0b00, 0, 1, 0>;
2546
2547def M2_mpyd_nac_hh_s0: T_M2_mpyd_acc <0b11, 1, 0, 0>;
2548def M2_mpyd_nac_hl_s0: T_M2_mpyd_acc <0b10, 1, 0, 0>;
2549def M2_mpyd_nac_lh_s0: T_M2_mpyd_acc <0b01, 1, 0, 0>;
2550def M2_mpyd_nac_ll_s0: T_M2_mpyd_acc <0b00, 1, 0, 0>;
2551
2552def M2_mpyd_nac_hh_s1: T_M2_mpyd_acc <0b11, 1, 1, 0>;
2553def M2_mpyd_nac_hl_s1: T_M2_mpyd_acc <0b10, 1, 1, 0>;
2554def M2_mpyd_nac_lh_s1: T_M2_mpyd_acc <0b01, 1, 1, 0>;
2555def M2_mpyd_nac_ll_s1: T_M2_mpyd_acc <0b00, 1, 1, 0>;
2556
2557def M2_mpyud_acc_hh_s0: T_M2_mpyd_acc <0b11, 0, 0, 1>;
2558def M2_mpyud_acc_hl_s0: T_M2_mpyd_acc <0b10, 0, 0, 1>;
2559def M2_mpyud_acc_lh_s0: T_M2_mpyd_acc <0b01, 0, 0, 1>;
2560def M2_mpyud_acc_ll_s0: T_M2_mpyd_acc <0b00, 0, 0, 1>;
2561
2562def M2_mpyud_acc_hh_s1: T_M2_mpyd_acc <0b11, 0, 1, 1>;
2563def M2_mpyud_acc_hl_s1: T_M2_mpyd_acc <0b10, 0, 1, 1>;
2564def M2_mpyud_acc_lh_s1: T_M2_mpyd_acc <0b01, 0, 1, 1>;
2565def M2_mpyud_acc_ll_s1: T_M2_mpyd_acc <0b00, 0, 1, 1>;
2566
2567def M2_mpyud_nac_hh_s0: T_M2_mpyd_acc <0b11, 1, 0, 1>;
2568def M2_mpyud_nac_hl_s0: T_M2_mpyd_acc <0b10, 1, 0, 1>;
2569def M2_mpyud_nac_lh_s0: T_M2_mpyd_acc <0b01, 1, 0, 1>;
2570def M2_mpyud_nac_ll_s0: T_M2_mpyd_acc <0b00, 1, 0, 1>;
2571
2572def M2_mpyud_nac_hh_s1: T_M2_mpyd_acc <0b11, 1, 1, 1>;
2573def M2_mpyud_nac_hl_s1: T_M2_mpyd_acc <0b10, 1, 1, 1>;
2574def M2_mpyud_nac_lh_s1: T_M2_mpyd_acc <0b01, 1, 1, 1>;
2575def M2_mpyud_nac_ll_s1: T_M2_mpyd_acc <0b00, 1, 1, 1>;
2576
2577//===----------------------------------------------------------------------===//
2578// Template Class -- Vector Multipy
2579// Used for complex multiply real or imaginary, dual multiply and even halfwords
2580//===----------------------------------------------------------------------===//
2581class T_M2_vmpy < string opc, bits<3> MajOp, bits<3> MinOp, bit hasShift,
2582                  bit isRnd, bit isSat >
2583  : MInst <(outs DoubleRegs:$Rdd), (ins DoubleRegs:$Rss, DoubleRegs:$Rtt),
2584  "$Rdd = "#opc#"($Rss, $Rtt)"#!if(hasShift,":<<1","")
2585                              #!if(isRnd,":rnd","")
2586                              #!if(isSat,":sat",""),
2587  [] > {
2588    bits<5> Rdd;
2589    bits<5> Rss;
2590    bits<5> Rtt;
2591
2592    let IClass = 0b1110;
2593
2594    let Inst{27-24} = 0b1000;
2595    let Inst{23-21} = MajOp;
2596    let Inst{7-5} = MinOp;
2597    let Inst{4-0} = Rdd;
2598    let Inst{20-16} = Rss;
2599    let Inst{12-8} = Rtt;
2600  }
2601
2602// Vector complex multiply imaginary: Rdd=vcmpyi(Rss,Rtt)[:<<1]:sat
2603let Defs = [USR_OVF] in {
2604def M2_vcmpy_s1_sat_i: T_M2_vmpy <"vcmpyi", 0b110, 0b110, 1, 0, 1>;
2605def M2_vcmpy_s0_sat_i: T_M2_vmpy <"vcmpyi", 0b010, 0b110, 0, 0, 1>;
2606
2607// Vector complex multiply real: Rdd=vcmpyr(Rss,Rtt)[:<<1]:sat
2608def M2_vcmpy_s1_sat_r: T_M2_vmpy <"vcmpyr", 0b101, 0b110, 1, 0, 1>;
2609def M2_vcmpy_s0_sat_r: T_M2_vmpy <"vcmpyr", 0b001, 0b110, 0, 0, 1>;
2610
2611// Vector dual multiply: Rdd=vdmpy(Rss,Rtt)[:<<1]:sat
2612def M2_vdmpys_s1: T_M2_vmpy <"vdmpy", 0b100, 0b100, 1, 0, 1>;
2613def M2_vdmpys_s0: T_M2_vmpy <"vdmpy", 0b000, 0b100, 0, 0, 1>;
2614
2615// Vector multiply even halfwords: Rdd=vmpyeh(Rss,Rtt)[:<<1]:sat
2616def M2_vmpy2es_s1: T_M2_vmpy <"vmpyeh", 0b100, 0b110, 1, 0, 1>;
2617def M2_vmpy2es_s0: T_M2_vmpy <"vmpyeh", 0b000, 0b110, 0, 0, 1>;
2618
2619//Rdd=vmpywoh(Rss,Rtt)[:<<1][:rnd]:sat
2620def M2_mmpyh_s0:  T_M2_vmpy <"vmpywoh", 0b000, 0b111, 0, 0, 1>;
2621def M2_mmpyh_s1:  T_M2_vmpy <"vmpywoh", 0b100, 0b111, 1, 0, 1>;
2622def M2_mmpyh_rs0: T_M2_vmpy <"vmpywoh", 0b001, 0b111, 0, 1, 1>;
2623def M2_mmpyh_rs1: T_M2_vmpy <"vmpywoh", 0b101, 0b111, 1, 1, 1>;
2624
2625//Rdd=vmpyweh(Rss,Rtt)[:<<1][:rnd]:sat
2626def M2_mmpyl_s0:  T_M2_vmpy <"vmpyweh", 0b000, 0b101, 0, 0, 1>;
2627def M2_mmpyl_s1:  T_M2_vmpy <"vmpyweh", 0b100, 0b101, 1, 0, 1>;
2628def M2_mmpyl_rs0: T_M2_vmpy <"vmpyweh", 0b001, 0b101, 0, 1, 1>;
2629def M2_mmpyl_rs1: T_M2_vmpy <"vmpyweh", 0b101, 0b101, 1, 1, 1>;
2630
2631//Rdd=vmpywouh(Rss,Rtt)[:<<1][:rnd]:sat
2632def M2_mmpyuh_s0:  T_M2_vmpy <"vmpywouh", 0b010, 0b111, 0, 0, 1>;
2633def M2_mmpyuh_s1:  T_M2_vmpy <"vmpywouh", 0b110, 0b111, 1, 0, 1>;
2634def M2_mmpyuh_rs0: T_M2_vmpy <"vmpywouh", 0b011, 0b111, 0, 1, 1>;
2635def M2_mmpyuh_rs1: T_M2_vmpy <"vmpywouh", 0b111, 0b111, 1, 1, 1>;
2636
2637//Rdd=vmpyweuh(Rss,Rtt)[:<<1][:rnd]:sat
2638def M2_mmpyul_s0:  T_M2_vmpy <"vmpyweuh", 0b010, 0b101, 0, 0, 1>;
2639def M2_mmpyul_s1:  T_M2_vmpy <"vmpyweuh", 0b110, 0b101, 1, 0, 1>;
2640def M2_mmpyul_rs0: T_M2_vmpy <"vmpyweuh", 0b011, 0b101, 0, 1, 1>;
2641def M2_mmpyul_rs1: T_M2_vmpy <"vmpyweuh", 0b111, 0b101, 1, 1, 1>;
2642}
2643
2644let hasNewValue = 1, opNewValue = 0 in
2645class T_MType_mpy <string mnemonic, bits<4> RegTyBits, RegisterClass RC,
2646                   bits<3> MajOp, bits<3> MinOp, bit isSat = 0, bit isRnd = 0,
2647                   string op2Suffix = "", bit isRaw = 0, bit isHi = 0 >
2648  : MInst <(outs IntRegs:$dst), (ins RC:$src1, RC:$src2),
2649  "$dst = "#mnemonic
2650           #"($src1, $src2"#op2Suffix#")"
2651           #!if(MajOp{2}, ":<<1", "")
2652           #!if(isRnd, ":rnd", "")
2653           #!if(isSat, ":sat", "")
2654           #!if(isRaw, !if(isHi, ":raw:hi", ":raw:lo"), ""), [] > {
2655    bits<5> dst;
2656    bits<5> src1;
2657    bits<5> src2;
2658
2659    let IClass = 0b1110;
2660
2661    let Inst{27-24} = RegTyBits;
2662    let Inst{23-21} = MajOp;
2663    let Inst{20-16} = src1;
2664    let Inst{13}    = 0b0;
2665    let Inst{12-8}  = src2;
2666    let Inst{7-5}   = MinOp;
2667    let Inst{4-0}   = dst;
2668  }
2669
2670class T_MType_vrcmpy <string mnemonic, bits<3> MajOp, bits<3> MinOp, bit isHi>
2671  : T_MType_mpy <mnemonic, 0b1001, DoubleRegs, MajOp, MinOp, 1, 1, "", 1, isHi>;
2672
2673class T_MType_dd  <string mnemonic, bits<3> MajOp, bits<3> MinOp,
2674                   bit isSat = 0, bit isRnd = 0 >
2675  : T_MType_mpy <mnemonic, 0b1001, DoubleRegs, MajOp, MinOp, isSat, isRnd>;
2676
2677class T_MType_rr1  <string mnemonic, bits<3> MajOp, bits<3> MinOp,
2678                    bit isSat = 0, bit isRnd = 0 >
2679  : T_MType_mpy<mnemonic, 0b1101, IntRegs, MajOp, MinOp, isSat, isRnd>;
2680
2681class T_MType_rr2 <string mnemonic, bits<3> MajOp, bits<3> MinOp,
2682                   bit isSat = 0, bit isRnd = 0, string op2str = "" >
2683  : T_MType_mpy<mnemonic, 0b1101, IntRegs, MajOp, MinOp, isSat, isRnd, op2str>;
2684
2685def M2_vradduh    : T_MType_dd <"vradduh", 0b000, 0b001, 0, 0>;
2686def M2_vdmpyrs_s0 : T_MType_dd <"vdmpy",   0b000, 0b000, 1, 1>;
2687def M2_vdmpyrs_s1 : T_MType_dd <"vdmpy",   0b100, 0b000, 1, 1>;
2688
2689let CextOpcode = "mpyi", InputType = "reg" in
2690def M2_mpyi    : T_MType_rr1 <"mpyi", 0b000, 0b000>, ImmRegRel;
2691
2692def M2_mpy_up  : T_MType_rr1 <"mpy",  0b000, 0b001>;
2693def M2_mpyu_up : T_MType_rr1 <"mpyu", 0b010, 0b001>;
2694
2695def M2_dpmpyss_rnd_s0 : T_MType_rr1 <"mpy", 0b001, 0b001, 0, 1>;
2696
2697def M2_vmpy2s_s0pack : T_MType_rr1 <"vmpyh", 0b001, 0b111, 1, 1>;
2698def M2_vmpy2s_s1pack : T_MType_rr1 <"vmpyh", 0b101, 0b111, 1, 1>;
2699
2700def M2_hmmpyh_rs1 : T_MType_rr2 <"mpy", 0b101, 0b100, 1, 1, ".h">;
2701def M2_hmmpyl_rs1 : T_MType_rr2 <"mpy", 0b111, 0b100, 1, 1, ".l">;
2702
2703def M2_cmpyrs_s0  : T_MType_rr2 <"cmpy", 0b001, 0b110, 1, 1>;
2704def M2_cmpyrs_s1  : T_MType_rr2 <"cmpy", 0b101, 0b110, 1, 1>;
2705def M2_cmpyrsc_s0 : T_MType_rr2 <"cmpy", 0b011, 0b110, 1, 1, "*">;
2706def M2_cmpyrsc_s1 : T_MType_rr2 <"cmpy", 0b111, 0b110, 1, 1, "*">;
2707
2708// V4 Instructions
2709def M2_vraddh : T_MType_dd <"vraddh", 0b001, 0b111, 0>;
2710def M2_mpysu_up : T_MType_rr1 <"mpysu", 0b011, 0b001, 0>;
2711def M2_mpy_up_s1 : T_MType_rr1 <"mpy", 0b101, 0b010, 0>;
2712def M2_mpy_up_s1_sat : T_MType_rr1 <"mpy", 0b111, 0b000, 1>;
2713
2714def M2_hmmpyh_s1 : T_MType_rr2 <"mpy", 0b101, 0b000, 1, 0, ".h">;
2715def M2_hmmpyl_s1 : T_MType_rr2 <"mpy", 0b101, 0b001, 1, 0, ".l">;
2716
2717def: Pat<(i32 (mul   I32:$src1, I32:$src2)), (M2_mpyi    I32:$src1, I32:$src2)>;
2718def: Pat<(i32 (mulhs I32:$src1, I32:$src2)), (M2_mpy_up  I32:$src1, I32:$src2)>;
2719def: Pat<(i32 (mulhu I32:$src1, I32:$src2)), (M2_mpyu_up I32:$src1, I32:$src2)>;
2720
2721let hasNewValue = 1, opNewValue = 0 in
2722class T_MType_mpy_ri <bit isNeg, Operand ImmOp, list<dag> pattern>
2723  : MInst < (outs IntRegs:$Rd), (ins IntRegs:$Rs, ImmOp:$u8),
2724  "$Rd ="#!if(isNeg, "- ", "+ ")#"mpyi($Rs, #$u8)" ,
2725   pattern, "", M_tc_3x_SLOT23> {
2726    bits<5> Rd;
2727    bits<5> Rs;
2728    bits<8> u8;
2729
2730    let IClass = 0b1110;
2731
2732    let Inst{27-24} = 0b0000;
2733    let Inst{23} = isNeg;
2734    let Inst{13} = 0b0;
2735    let Inst{4-0} = Rd;
2736    let Inst{20-16} = Rs;
2737    let Inst{12-5} = u8;
2738  }
2739
2740let isExtendable = 1, opExtentBits = 8, opExtendable = 2 in
2741def M2_mpysip : T_MType_mpy_ri <0, u8Ext,
2742                [(set (i32 IntRegs:$Rd), (mul IntRegs:$Rs, u32ImmPred:$u8))]>;
2743
2744def M2_mpysin :  T_MType_mpy_ri <1, u8Imm,
2745                [(set (i32 IntRegs:$Rd), (ineg (mul IntRegs:$Rs,
2746                                                    u8ImmPred:$u8)))]>;
2747
2748// Assember mapped to M2_mpyi
2749let isAsmParserOnly = 1 in
2750def M2_mpyui : MInst<(outs IntRegs:$dst),
2751                     (ins IntRegs:$src1, IntRegs:$src2),
2752  "$dst = mpyui($src1, $src2)">;
2753
2754// Rd=mpyi(Rs,#m9)
2755// s9 is NOT the same as m9 - but it works.. so far.
2756// Assembler maps to either Rd=+mpyi(Rs,#u8) or Rd=-mpyi(Rs,#u8)
2757// depending on the value of m9. See Arch Spec.
2758let isExtendable = 1, opExtendable = 2, isExtentSigned = 1, opExtentBits = 9,
2759    CextOpcode = "mpyi", InputType = "imm", hasNewValue = 1,
2760    isAsmParserOnly = 1 in
2761def M2_mpysmi : MInst<(outs IntRegs:$dst), (ins IntRegs:$src1, s9Ext:$src2),
2762    "$dst = mpyi($src1, #$src2)",
2763    [(set (i32 IntRegs:$dst), (mul (i32 IntRegs:$src1),
2764                                   s32ImmPred:$src2))]>, ImmRegRel;
2765
2766let hasNewValue = 1, isExtendable = 1,  opExtentBits = 8, opExtendable = 3,
2767    InputType = "imm" in
2768class T_MType_acc_ri <string mnemonic, bits<3> MajOp, Operand ImmOp,
2769                      list<dag> pattern = []>
2770 : MInst < (outs IntRegs:$dst), (ins IntRegs:$src1, IntRegs:$src2, ImmOp:$src3),
2771  "$dst "#mnemonic#"($src2, #$src3)",
2772  pattern, "$src1 = $dst", M_tc_2_SLOT23> {
2773    bits<5> dst;
2774    bits<5> src2;
2775    bits<8> src3;
2776
2777    let IClass = 0b1110;
2778
2779    let Inst{27-26} = 0b00;
2780    let Inst{25-23} = MajOp;
2781    let Inst{20-16} = src2;
2782    let Inst{13} = 0b0;
2783    let Inst{12-5} = src3;
2784    let Inst{4-0} = dst;
2785  }
2786
2787let InputType = "reg", hasNewValue = 1 in
2788class T_MType_acc_rr <string mnemonic, bits<3> MajOp, bits<3> MinOp,
2789                      bit isSwap = 0, list<dag> pattern = [], bit hasNot = 0,
2790                      bit isSat = 0, bit isShift = 0>
2791  : MInst < (outs IntRegs:$dst),
2792            (ins IntRegs:$src1, IntRegs:$src2, IntRegs:$src3),
2793  "$dst "#mnemonic#"($src2, "#!if(hasNot, "~$src3)","$src3)")
2794                          #!if(isShift, ":<<1", "")
2795                          #!if(isSat, ":sat", ""),
2796  pattern, "$src1 = $dst", M_tc_2_SLOT23 > {
2797    bits<5> dst;
2798    bits<5> src2;
2799    bits<5> src3;
2800
2801    let IClass = 0b1110;
2802
2803    let Inst{27-24} = 0b1111;
2804    let Inst{23-21} = MajOp;
2805    let Inst{20-16} = !if(isSwap, src3, src2);
2806    let Inst{13} = 0b0;
2807    let Inst{12-8} = !if(isSwap, src2, src3);
2808    let Inst{7-5} = MinOp;
2809    let Inst{4-0} = dst;
2810  }
2811
2812let CextOpcode = "MPYI_acc", Itinerary = M_tc_3x_SLOT23 in {
2813  def M2_macsip : T_MType_acc_ri <"+= mpyi", 0b010, u8Ext,
2814                  [(set (i32 IntRegs:$dst),
2815                        (add (mul IntRegs:$src2, u32ImmPred:$src3),
2816                             IntRegs:$src1))]>, ImmRegRel;
2817
2818  def M2_maci   : T_MType_acc_rr <"+= mpyi", 0b000, 0b000, 0,
2819                 [(set (i32 IntRegs:$dst),
2820                       (add (mul IntRegs:$src2, IntRegs:$src3),
2821                            IntRegs:$src1))]>, ImmRegRel;
2822}
2823
2824let CextOpcode = "ADD_acc" in {
2825  let isExtentSigned = 1 in
2826  def M2_accii : T_MType_acc_ri <"+= add", 0b100, s8Ext,
2827                 [(set (i32 IntRegs:$dst),
2828                       (add (add (i32 IntRegs:$src2), s16_16ImmPred:$src3),
2829                            (i32 IntRegs:$src1)))]>, ImmRegRel;
2830
2831  def M2_acci  : T_MType_acc_rr <"+= add",  0b000, 0b001, 0,
2832                 [(set (i32 IntRegs:$dst),
2833                       (add (add (i32 IntRegs:$src2), (i32 IntRegs:$src3)),
2834                            (i32 IntRegs:$src1)))]>, ImmRegRel;
2835}
2836
2837let CextOpcode = "SUB_acc" in {
2838  let isExtentSigned = 1 in
2839  def M2_naccii : T_MType_acc_ri <"-= add", 0b101, s8Ext>, ImmRegRel;
2840
2841  def M2_nacci  : T_MType_acc_rr <"-= add",  0b100, 0b001, 0>, ImmRegRel;
2842}
2843
2844let Itinerary = M_tc_3x_SLOT23 in
2845def M2_macsin : T_MType_acc_ri <"-= mpyi", 0b011, u8Ext>;
2846
2847def M2_xor_xacc : T_MType_acc_rr < "^= xor", 0b100, 0b011, 0>;
2848def M2_subacc : T_MType_acc_rr <"+= sub",  0b000, 0b011, 1>;
2849
2850class T_MType_acc_pat1 <InstHexagon MI, SDNode firstOp, SDNode secOp,
2851                        PatLeaf ImmPred>
2852  : Pat <(secOp IntRegs:$src1, (firstOp IntRegs:$src2, ImmPred:$src3)),
2853         (MI IntRegs:$src1, IntRegs:$src2, ImmPred:$src3)>;
2854
2855class T_MType_acc_pat2 <InstHexagon MI, SDNode firstOp, SDNode secOp>
2856  : Pat <(i32 (secOp IntRegs:$src1, (firstOp IntRegs:$src2, IntRegs:$src3))),
2857         (MI IntRegs:$src1, IntRegs:$src2, IntRegs:$src3)>;
2858
2859def : T_MType_acc_pat2 <M2_xor_xacc, xor, xor>;
2860def : T_MType_acc_pat1 <M2_macsin, mul, sub, u32ImmPred>;
2861
2862def : T_MType_acc_pat1 <M2_naccii, add, sub, s16_16ImmPred>;
2863def : T_MType_acc_pat2 <M2_nacci, add, sub>;
2864
2865//===----------------------------------------------------------------------===//
2866// Template Class -- XType Vector Instructions
2867//===----------------------------------------------------------------------===//
2868class T_XTYPE_Vect < string opc, bits<3> MajOp, bits<3> MinOp, bit isConj >
2869  : MInst <(outs DoubleRegs:$Rdd), (ins DoubleRegs:$Rss, DoubleRegs:$Rtt),
2870  "$Rdd = "#opc#"($Rss, $Rtt"#!if(isConj,"*)",")"),
2871  [] > {
2872    bits<5> Rdd;
2873    bits<5> Rss;
2874    bits<5> Rtt;
2875
2876    let IClass = 0b1110;
2877
2878    let Inst{27-24} = 0b1000;
2879    let Inst{23-21} = MajOp;
2880    let Inst{7-5} = MinOp;
2881    let Inst{4-0} = Rdd;
2882    let Inst{20-16} = Rss;
2883    let Inst{12-8} = Rtt;
2884  }
2885
2886class T_XTYPE_Vect_acc < string opc, bits<3> MajOp, bits<3> MinOp, bit isConj >
2887  : MInst <(outs DoubleRegs:$Rdd),
2888           (ins DoubleRegs:$dst2, DoubleRegs:$Rss, DoubleRegs:$Rtt),
2889  "$Rdd += "#opc#"($Rss, $Rtt"#!if(isConj,"*)",")"),
2890  [], "$dst2 = $Rdd",M_tc_3x_SLOT23 > {
2891    bits<5> Rdd;
2892    bits<5> Rss;
2893    bits<5> Rtt;
2894
2895    let IClass = 0b1110;
2896
2897    let Inst{27-24} = 0b1010;
2898    let Inst{23-21} = MajOp;
2899    let Inst{7-5} = MinOp;
2900    let Inst{4-0} = Rdd;
2901    let Inst{20-16} = Rss;
2902    let Inst{12-8} = Rtt;
2903  }
2904
2905class T_XTYPE_Vect_diff < bits<3> MajOp, string opc >
2906  : MInst <(outs DoubleRegs:$Rdd), (ins DoubleRegs:$Rtt, DoubleRegs:$Rss),
2907  "$Rdd = "#opc#"($Rtt, $Rss)",
2908  [], "",M_tc_2_SLOT23 > {
2909    bits<5> Rdd;
2910    bits<5> Rss;
2911    bits<5> Rtt;
2912
2913    let IClass = 0b1110;
2914
2915    let Inst{27-24} = 0b1000;
2916    let Inst{23-21} = MajOp;
2917    let Inst{7-5} = 0b000;
2918    let Inst{4-0} = Rdd;
2919    let Inst{20-16} = Rss;
2920    let Inst{12-8} = Rtt;
2921  }
2922
2923// Vector reduce add unsigned bytes: Rdd32=vrmpybu(Rss32,Rtt32)
2924def A2_vraddub: T_XTYPE_Vect <"vraddub", 0b010, 0b001, 0>;
2925def A2_vraddub_acc: T_XTYPE_Vect_acc <"vraddub", 0b010, 0b001, 0>;
2926
2927// Vector sum of absolute differences unsigned bytes: Rdd=vrsadub(Rss,Rtt)
2928def A2_vrsadub: T_XTYPE_Vect <"vrsadub", 0b010, 0b010, 0>;
2929def A2_vrsadub_acc: T_XTYPE_Vect_acc <"vrsadub", 0b010, 0b010, 0>;
2930
2931// Vector absolute difference: Rdd=vabsdiffh(Rtt,Rss)
2932def M2_vabsdiffh: T_XTYPE_Vect_diff<0b011, "vabsdiffh">;
2933
2934// Vector absolute difference words: Rdd=vabsdiffw(Rtt,Rss)
2935def M2_vabsdiffw: T_XTYPE_Vect_diff<0b001, "vabsdiffw">;
2936
2937// Vector reduce complex multiply real or imaginary:
2938// Rdd[+]=vrcmpy[ir](Rss,Rtt[*])
2939def M2_vrcmpyi_s0:  T_XTYPE_Vect <"vrcmpyi", 0b000, 0b000, 0>;
2940def M2_vrcmpyi_s0c: T_XTYPE_Vect <"vrcmpyi", 0b010, 0b000, 1>;
2941def M2_vrcmaci_s0:  T_XTYPE_Vect_acc <"vrcmpyi", 0b000, 0b000, 0>;
2942def M2_vrcmaci_s0c: T_XTYPE_Vect_acc <"vrcmpyi", 0b010, 0b000, 1>;
2943
2944def M2_vrcmpyr_s0:  T_XTYPE_Vect <"vrcmpyr", 0b000, 0b001, 0>;
2945def M2_vrcmpyr_s0c: T_XTYPE_Vect <"vrcmpyr", 0b011, 0b001, 1>;
2946def M2_vrcmacr_s0:  T_XTYPE_Vect_acc <"vrcmpyr", 0b000, 0b001, 0>;
2947def M2_vrcmacr_s0c: T_XTYPE_Vect_acc <"vrcmpyr", 0b011, 0b001, 1>;
2948
2949// Vector reduce halfwords:
2950// Rdd[+]=vrmpyh(Rss,Rtt)
2951def M2_vrmpy_s0: T_XTYPE_Vect <"vrmpyh", 0b000, 0b010, 0>;
2952def M2_vrmac_s0: T_XTYPE_Vect_acc <"vrmpyh", 0b000, 0b010, 0>;
2953
2954//===----------------------------------------------------------------------===//
2955// Template Class -- Vector Multipy with accumulation.
2956// Used for complex multiply real or imaginary, dual multiply and even halfwords
2957//===----------------------------------------------------------------------===//
2958let Defs = [USR_OVF] in
2959class T_M2_vmpy_acc_sat < string opc, bits<3> MajOp, bits<3> MinOp,
2960                          bit hasShift, bit isRnd >
2961  : MInst <(outs DoubleRegs:$Rxx),
2962           (ins DoubleRegs:$dst2, DoubleRegs:$Rss, DoubleRegs:$Rtt),
2963  "$Rxx += "#opc#"($Rss, $Rtt)"#!if(hasShift,":<<1","")
2964                               #!if(isRnd,":rnd","")#":sat",
2965  [], "$dst2 = $Rxx",M_tc_3x_SLOT23 > {
2966    bits<5> Rxx;
2967    bits<5> Rss;
2968    bits<5> Rtt;
2969
2970    let IClass = 0b1110;
2971
2972    let Inst{27-24} = 0b1010;
2973    let Inst{23-21} = MajOp;
2974    let Inst{7-5} = MinOp;
2975    let Inst{4-0} = Rxx;
2976    let Inst{20-16} = Rss;
2977    let Inst{12-8} = Rtt;
2978  }
2979
2980class T_M2_vmpy_acc < string opc, bits<3> MajOp, bits<3> MinOp,
2981                      bit hasShift, bit isRnd >
2982  : MInst <(outs DoubleRegs:$Rxx),
2983           (ins DoubleRegs:$dst2, DoubleRegs:$Rss, DoubleRegs:$Rtt),
2984  "$Rxx += "#opc#"($Rss, $Rtt)"#!if(hasShift,":<<1","")
2985                               #!if(isRnd,":rnd",""),
2986  [], "$dst2 = $Rxx",M_tc_3x_SLOT23 > {
2987    bits<5> Rxx;
2988    bits<5> Rss;
2989    bits<5> Rtt;
2990
2991    let IClass = 0b1110;
2992
2993    let Inst{27-24} = 0b1010;
2994    let Inst{23-21} = MajOp;
2995    let Inst{7-5} = MinOp;
2996    let Inst{4-0} = Rxx;
2997    let Inst{20-16} = Rss;
2998    let Inst{12-8} = Rtt;
2999  }
3000
3001// Vector multiply word by signed half with accumulation
3002// Rxx+=vmpyw[eo]h(Rss,Rtt)[:<<1][:rnd]:sat
3003def M2_mmacls_s1:  T_M2_vmpy_acc_sat <"vmpyweh", 0b100, 0b101, 1, 0>;
3004def M2_mmacls_s0:  T_M2_vmpy_acc_sat <"vmpyweh", 0b000, 0b101, 0, 0>;
3005def M2_mmacls_rs1: T_M2_vmpy_acc_sat <"vmpyweh", 0b101, 0b101, 1, 1>;
3006def M2_mmacls_rs0: T_M2_vmpy_acc_sat <"vmpyweh", 0b001, 0b101, 0, 1>;
3007
3008def M2_mmachs_s1:  T_M2_vmpy_acc_sat <"vmpywoh", 0b100, 0b111, 1, 0>;
3009def M2_mmachs_s0:  T_M2_vmpy_acc_sat <"vmpywoh", 0b000, 0b111, 0, 0>;
3010def M2_mmachs_rs1: T_M2_vmpy_acc_sat <"vmpywoh", 0b101, 0b111, 1, 1>;
3011def M2_mmachs_rs0: T_M2_vmpy_acc_sat <"vmpywoh", 0b001, 0b111, 0, 1>;
3012
3013// Vector multiply word by unsigned half with accumulation
3014// Rxx+=vmpyw[eo]uh(Rss,Rtt)[:<<1][:rnd]:sat
3015def M2_mmaculs_s1:  T_M2_vmpy_acc_sat <"vmpyweuh", 0b110, 0b101, 1, 0>;
3016def M2_mmaculs_s0:  T_M2_vmpy_acc_sat <"vmpyweuh", 0b010, 0b101, 0, 0>;
3017def M2_mmaculs_rs1: T_M2_vmpy_acc_sat <"vmpyweuh", 0b111, 0b101, 1, 1>;
3018def M2_mmaculs_rs0: T_M2_vmpy_acc_sat <"vmpyweuh", 0b011, 0b101, 0, 1>;
3019
3020def M2_mmacuhs_s1:  T_M2_vmpy_acc_sat <"vmpywouh", 0b110, 0b111, 1, 0>;
3021def M2_mmacuhs_s0:  T_M2_vmpy_acc_sat <"vmpywouh", 0b010, 0b111, 0, 0>;
3022def M2_mmacuhs_rs1: T_M2_vmpy_acc_sat <"vmpywouh", 0b111, 0b111, 1, 1>;
3023def M2_mmacuhs_rs0: T_M2_vmpy_acc_sat <"vmpywouh", 0b011, 0b111, 0, 1>;
3024
3025// Vector multiply even halfwords with accumulation
3026// Rxx+=vmpyeh(Rss,Rtt)[:<<1][:sat]
3027def M2_vmac2es:    T_M2_vmpy_acc     <"vmpyeh", 0b001, 0b010, 0, 0>;
3028def M2_vmac2es_s1: T_M2_vmpy_acc_sat <"vmpyeh", 0b100, 0b110, 1, 0>;
3029def M2_vmac2es_s0: T_M2_vmpy_acc_sat <"vmpyeh", 0b000, 0b110, 0, 0>;
3030
3031// Vector dual multiply with accumulation
3032// Rxx+=vdmpy(Rss,Rtt)[:sat]
3033def M2_vdmacs_s1: T_M2_vmpy_acc_sat <"vdmpy", 0b100, 0b100, 1, 0>;
3034def M2_vdmacs_s0: T_M2_vmpy_acc_sat <"vdmpy", 0b000, 0b100, 0, 0>;
3035
3036// Vector complex multiply real or imaginary with accumulation
3037// Rxx+=vcmpy[ir](Rss,Rtt):sat
3038def M2_vcmac_s0_sat_r: T_M2_vmpy_acc_sat <"vcmpyr", 0b001, 0b100, 0, 0>;
3039def M2_vcmac_s0_sat_i: T_M2_vmpy_acc_sat <"vcmpyi", 0b010, 0b100, 0, 0>;
3040
3041//===----------------------------------------------------------------------===//
3042// Template Class -- Multiply signed/unsigned halfwords with and without
3043// saturation and rounding
3044//===----------------------------------------------------------------------===//
3045class T_M2_mpyd < bits<2> LHbits, bit isRnd, bit hasShift, bit isUnsigned >
3046  : MInst < (outs DoubleRegs:$Rdd), (ins IntRegs:$Rs, IntRegs:$Rt),
3047  "$Rdd = "#!if(isUnsigned,"mpyu","mpy")#"($Rs."#!if(LHbits{1},"h","l")
3048                                       #", $Rt."#!if(LHbits{0},"h)","l)")
3049                                       #!if(hasShift,":<<1","")
3050                                       #!if(isRnd,":rnd",""),
3051  [] > {
3052    bits<5> Rdd;
3053    bits<5> Rs;
3054    bits<5> Rt;
3055
3056    let IClass = 0b1110;
3057
3058    let Inst{27-24} = 0b0100;
3059    let Inst{23} = hasShift;
3060    let Inst{22} = isUnsigned;
3061    let Inst{21} = isRnd;
3062    let Inst{6-5} = LHbits;
3063    let Inst{4-0} = Rdd;
3064    let Inst{20-16} = Rs;
3065    let Inst{12-8} = Rt;
3066}
3067
3068def M2_mpyd_hh_s0: T_M2_mpyd<0b11, 0, 0, 0>;
3069def M2_mpyd_hl_s0: T_M2_mpyd<0b10, 0, 0, 0>;
3070def M2_mpyd_lh_s0: T_M2_mpyd<0b01, 0, 0, 0>;
3071def M2_mpyd_ll_s0: T_M2_mpyd<0b00, 0, 0, 0>;
3072
3073def M2_mpyd_hh_s1: T_M2_mpyd<0b11, 0, 1, 0>;
3074def M2_mpyd_hl_s1: T_M2_mpyd<0b10, 0, 1, 0>;
3075def M2_mpyd_lh_s1: T_M2_mpyd<0b01, 0, 1, 0>;
3076def M2_mpyd_ll_s1: T_M2_mpyd<0b00, 0, 1, 0>;
3077
3078def M2_mpyd_rnd_hh_s0: T_M2_mpyd<0b11, 1, 0, 0>;
3079def M2_mpyd_rnd_hl_s0: T_M2_mpyd<0b10, 1, 0, 0>;
3080def M2_mpyd_rnd_lh_s0: T_M2_mpyd<0b01, 1, 0, 0>;
3081def M2_mpyd_rnd_ll_s0: T_M2_mpyd<0b00, 1, 0, 0>;
3082
3083def M2_mpyd_rnd_hh_s1: T_M2_mpyd<0b11, 1, 1, 0>;
3084def M2_mpyd_rnd_hl_s1: T_M2_mpyd<0b10, 1, 1, 0>;
3085def M2_mpyd_rnd_lh_s1: T_M2_mpyd<0b01, 1, 1, 0>;
3086def M2_mpyd_rnd_ll_s1: T_M2_mpyd<0b00, 1, 1, 0>;
3087
3088//Rdd=mpyu(Rs.[HL],Rt.[HL])[:<<1]
3089def M2_mpyud_hh_s0: T_M2_mpyd<0b11, 0, 0, 1>;
3090def M2_mpyud_hl_s0: T_M2_mpyd<0b10, 0, 0, 1>;
3091def M2_mpyud_lh_s0: T_M2_mpyd<0b01, 0, 0, 1>;
3092def M2_mpyud_ll_s0: T_M2_mpyd<0b00, 0, 0, 1>;
3093
3094def M2_mpyud_hh_s1: T_M2_mpyd<0b11, 0, 1, 1>;
3095def M2_mpyud_hl_s1: T_M2_mpyd<0b10, 0, 1, 1>;
3096def M2_mpyud_lh_s1: T_M2_mpyd<0b01, 0, 1, 1>;
3097def M2_mpyud_ll_s1: T_M2_mpyd<0b00, 0, 1, 1>;
3098
3099//===----------------------------------------------------------------------===//
3100// Template Class for xtype mpy:
3101// Vector multiply
3102// Complex multiply
3103// multiply 32X32 and use full result
3104//===----------------------------------------------------------------------===//
3105let hasSideEffects = 0 in
3106class T_XTYPE_mpy64 <string mnemonic, bits<3> MajOp, bits<3> MinOp,
3107                     bit isSat, bit hasShift, bit isConj>
3108   : MInst <(outs DoubleRegs:$Rdd),
3109            (ins IntRegs:$Rs, IntRegs:$Rt),
3110  "$Rdd = "#mnemonic#"($Rs, $Rt"#!if(isConj,"*)",")")
3111                                #!if(hasShift,":<<1","")
3112                                #!if(isSat,":sat",""),
3113  [] > {
3114    bits<5> Rdd;
3115    bits<5> Rs;
3116    bits<5> Rt;
3117
3118    let IClass = 0b1110;
3119
3120    let Inst{27-24} = 0b0101;
3121    let Inst{23-21} = MajOp;
3122    let Inst{20-16} = Rs;
3123    let Inst{12-8} = Rt;
3124    let Inst{7-5} = MinOp;
3125    let Inst{4-0} = Rdd;
3126  }
3127
3128//===----------------------------------------------------------------------===//
3129// Template Class for xtype mpy with accumulation into 64-bit:
3130// Vector multiply
3131// Complex multiply
3132// multiply 32X32 and use full result
3133//===----------------------------------------------------------------------===//
3134class T_XTYPE_mpy64_acc <string op1, string op2, bits<3> MajOp, bits<3> MinOp,
3135                         bit isSat, bit hasShift, bit isConj>
3136  : MInst <(outs DoubleRegs:$Rxx),
3137           (ins DoubleRegs:$dst2, IntRegs:$Rs, IntRegs:$Rt),
3138  "$Rxx "#op2#"= "#op1#"($Rs, $Rt"#!if(isConj,"*)",")")
3139                                   #!if(hasShift,":<<1","")
3140                                   #!if(isSat,":sat",""),
3141
3142  [] , "$dst2 = $Rxx" > {
3143    bits<5> Rxx;
3144    bits<5> Rs;
3145    bits<5> Rt;
3146
3147    let IClass = 0b1110;
3148
3149    let Inst{27-24} = 0b0111;
3150    let Inst{23-21} = MajOp;
3151    let Inst{20-16} = Rs;
3152    let Inst{12-8} = Rt;
3153    let Inst{7-5} = MinOp;
3154    let Inst{4-0} = Rxx;
3155  }
3156
3157// MPY - Multiply and use full result
3158// Rdd = mpy[u](Rs,Rt)
3159def M2_dpmpyss_s0 : T_XTYPE_mpy64 < "mpy", 0b000, 0b000, 0, 0, 0>;
3160def M2_dpmpyuu_s0 : T_XTYPE_mpy64 < "mpyu", 0b010, 0b000, 0, 0, 0>;
3161
3162// Rxx[+-]= mpy[u](Rs,Rt)
3163def M2_dpmpyss_acc_s0 : T_XTYPE_mpy64_acc < "mpy",  "+", 0b000, 0b000, 0, 0, 0>;
3164def M2_dpmpyss_nac_s0 : T_XTYPE_mpy64_acc < "mpy",  "-", 0b001, 0b000, 0, 0, 0>;
3165def M2_dpmpyuu_acc_s0 : T_XTYPE_mpy64_acc < "mpyu", "+", 0b010, 0b000, 0, 0, 0>;
3166def M2_dpmpyuu_nac_s0 : T_XTYPE_mpy64_acc < "mpyu", "-", 0b011, 0b000, 0, 0, 0>;
3167
3168// Complex multiply real or imaginary
3169// Rxx=cmpy[ir](Rs,Rt)
3170def M2_cmpyi_s0 : T_XTYPE_mpy64 < "cmpyi", 0b000, 0b001, 0, 0, 0>;
3171def M2_cmpyr_s0 : T_XTYPE_mpy64 < "cmpyr", 0b000, 0b010, 0, 0, 0>;
3172
3173// Rxx+=cmpy[ir](Rs,Rt)
3174def M2_cmaci_s0 : T_XTYPE_mpy64_acc < "cmpyi", "+", 0b000, 0b001, 0, 0, 0>;
3175def M2_cmacr_s0 : T_XTYPE_mpy64_acc < "cmpyr", "+", 0b000, 0b010, 0, 0, 0>;
3176
3177// Complex multiply
3178// Rdd=cmpy(Rs,Rt)[:<<]:sat
3179def M2_cmpys_s0 : T_XTYPE_mpy64 < "cmpy", 0b000, 0b110, 1, 0, 0>;
3180def M2_cmpys_s1 : T_XTYPE_mpy64 < "cmpy", 0b100, 0b110, 1, 1, 0>;
3181
3182// Rdd=cmpy(Rs,Rt*)[:<<]:sat
3183def M2_cmpysc_s0 : T_XTYPE_mpy64 < "cmpy", 0b010, 0b110, 1, 0, 1>;
3184def M2_cmpysc_s1 : T_XTYPE_mpy64 < "cmpy", 0b110, 0b110, 1, 1, 1>;
3185
3186// Rxx[-+]=cmpy(Rs,Rt)[:<<1]:sat
3187def M2_cmacs_s0  : T_XTYPE_mpy64_acc < "cmpy", "+", 0b000, 0b110, 1, 0, 0>;
3188def M2_cnacs_s0  : T_XTYPE_mpy64_acc < "cmpy", "-", 0b000, 0b111, 1, 0, 0>;
3189def M2_cmacs_s1  : T_XTYPE_mpy64_acc < "cmpy", "+", 0b100, 0b110, 1, 1, 0>;
3190def M2_cnacs_s1  : T_XTYPE_mpy64_acc < "cmpy", "-", 0b100, 0b111, 1, 1, 0>;
3191
3192// Rxx[-+]=cmpy(Rs,Rt*)[:<<1]:sat
3193def M2_cmacsc_s0 : T_XTYPE_mpy64_acc < "cmpy", "+", 0b010, 0b110, 1, 0, 1>;
3194def M2_cnacsc_s0 : T_XTYPE_mpy64_acc < "cmpy", "-", 0b010, 0b111, 1, 0, 1>;
3195def M2_cmacsc_s1 : T_XTYPE_mpy64_acc < "cmpy", "+", 0b110, 0b110, 1, 1, 1>;
3196def M2_cnacsc_s1 : T_XTYPE_mpy64_acc < "cmpy", "-", 0b110, 0b111, 1, 1, 1>;
3197
3198// Vector multiply halfwords
3199// Rdd=vmpyh(Rs,Rt)[:<<]:sat
3200//let Defs = [USR_OVF] in {
3201  def M2_vmpy2s_s1 : T_XTYPE_mpy64 < "vmpyh", 0b100, 0b101, 1, 1, 0>;
3202  def M2_vmpy2s_s0 : T_XTYPE_mpy64 < "vmpyh", 0b000, 0b101, 1, 0, 0>;
3203//}
3204
3205// Rxx+=vmpyh(Rs,Rt)[:<<1][:sat]
3206def M2_vmac2     : T_XTYPE_mpy64_acc < "vmpyh", "+", 0b001, 0b001, 0, 0, 0>;
3207def M2_vmac2s_s1 : T_XTYPE_mpy64_acc < "vmpyh", "+", 0b100, 0b101, 1, 1, 0>;
3208def M2_vmac2s_s0 : T_XTYPE_mpy64_acc < "vmpyh", "+", 0b000, 0b101, 1, 0, 0>;
3209
3210def: Pat<(i64 (mul (i64 (anyext (i32 IntRegs:$src1))),
3211                   (i64 (anyext (i32 IntRegs:$src2))))),
3212         (M2_dpmpyuu_s0 IntRegs:$src1, IntRegs:$src2)>;
3213
3214def: Pat<(i64 (mul (i64 (sext (i32 IntRegs:$src1))),
3215                   (i64 (sext (i32 IntRegs:$src2))))),
3216         (M2_dpmpyss_s0 IntRegs:$src1, IntRegs:$src2)>;
3217
3218def: Pat<(i64 (mul (is_sext_i32:$src1),
3219                   (is_sext_i32:$src2))),
3220         (M2_dpmpyss_s0 (LoReg DoubleRegs:$src1), (LoReg DoubleRegs:$src2))>;
3221
3222// Multiply and accumulate, use full result.
3223// Rxx[+-]=mpy(Rs,Rt)
3224
3225def: Pat<(i64 (add (i64 DoubleRegs:$src1),
3226                   (mul (i64 (sext (i32 IntRegs:$src2))),
3227                        (i64 (sext (i32 IntRegs:$src3)))))),
3228         (M2_dpmpyss_acc_s0 DoubleRegs:$src1, IntRegs:$src2, IntRegs:$src3)>;
3229
3230def: Pat<(i64 (sub (i64 DoubleRegs:$src1),
3231                   (mul (i64 (sext (i32 IntRegs:$src2))),
3232                        (i64 (sext (i32 IntRegs:$src3)))))),
3233         (M2_dpmpyss_nac_s0 DoubleRegs:$src1, IntRegs:$src2, IntRegs:$src3)>;
3234
3235def: Pat<(i64 (add (i64 DoubleRegs:$src1),
3236                   (mul (i64 (anyext (i32 IntRegs:$src2))),
3237                        (i64 (anyext (i32 IntRegs:$src3)))))),
3238         (M2_dpmpyuu_acc_s0 DoubleRegs:$src1, IntRegs:$src2, IntRegs:$src3)>;
3239
3240def: Pat<(i64 (add (i64 DoubleRegs:$src1),
3241                   (mul (i64 (zext (i32 IntRegs:$src2))),
3242                        (i64 (zext (i32 IntRegs:$src3)))))),
3243         (M2_dpmpyuu_acc_s0 DoubleRegs:$src1, IntRegs:$src2, IntRegs:$src3)>;
3244
3245def: Pat<(i64 (sub (i64 DoubleRegs:$src1),
3246                   (mul (i64 (anyext (i32 IntRegs:$src2))),
3247                        (i64 (anyext (i32 IntRegs:$src3)))))),
3248         (M2_dpmpyuu_nac_s0 DoubleRegs:$src1, IntRegs:$src2, IntRegs:$src3)>;
3249
3250def: Pat<(i64 (sub (i64 DoubleRegs:$src1),
3251                   (mul (i64 (zext (i32 IntRegs:$src2))),
3252                        (i64 (zext (i32 IntRegs:$src3)))))),
3253         (M2_dpmpyuu_nac_s0 DoubleRegs:$src1, IntRegs:$src2, IntRegs:$src3)>;
3254
3255//===----------------------------------------------------------------------===//
3256// MTYPE/MPYH -
3257//===----------------------------------------------------------------------===//
3258
3259//===----------------------------------------------------------------------===//
3260// MTYPE/MPYS +
3261//===----------------------------------------------------------------------===//
3262//===----------------------------------------------------------------------===//
3263// MTYPE/MPYS -
3264//===----------------------------------------------------------------------===//
3265
3266//===----------------------------------------------------------------------===//
3267// MTYPE/VB +
3268//===----------------------------------------------------------------------===//
3269//===----------------------------------------------------------------------===//
3270// MTYPE/VB -
3271//===----------------------------------------------------------------------===//
3272
3273//===----------------------------------------------------------------------===//
3274// MTYPE/VH  +
3275//===----------------------------------------------------------------------===//
3276//===----------------------------------------------------------------------===//
3277// MTYPE/VH  -
3278//===----------------------------------------------------------------------===//
3279
3280//===----------------------------------------------------------------------===//
3281// ST +
3282//===----------------------------------------------------------------------===//
3283///
3284// Store doubleword.
3285//===----------------------------------------------------------------------===//
3286// Template class for non-predicated post increment stores with immediate offset
3287//===----------------------------------------------------------------------===//
3288let isPredicable = 1, hasSideEffects = 0, addrMode = PostInc in
3289class T_store_pi <string mnemonic, RegisterClass RC, Operand ImmOp,
3290                 bits<4> MajOp, bit isHalf >
3291  : STInst <(outs IntRegs:$_dst_),
3292            (ins IntRegs:$src1, ImmOp:$offset, RC:$src2),
3293  mnemonic#"($src1++#$offset) = $src2"#!if(isHalf, ".h", ""),
3294  [], "$src1 = $_dst_" >,
3295  AddrModeRel {
3296    bits<5> src1;
3297    bits<5> src2;
3298    bits<7> offset;
3299    bits<4> offsetBits;
3300
3301    string ImmOpStr = !cast<string>(ImmOp);
3302    let offsetBits = !if (!eq(ImmOpStr, "s4_3Imm"), offset{6-3},
3303                     !if (!eq(ImmOpStr, "s4_2Imm"), offset{5-2},
3304                     !if (!eq(ImmOpStr, "s4_1Imm"), offset{4-1},
3305                                      /* s4_0Imm */ offset{3-0})));
3306    let isNVStorable = !if (!eq(ImmOpStr, "s4_3Imm"), 0, 1);
3307
3308    let IClass = 0b1010;
3309
3310    let Inst{27-25} = 0b101;
3311    let Inst{24-21} = MajOp;
3312    let Inst{20-16} = src1;
3313    let Inst{13}    = 0b0;
3314    let Inst{12-8}  = src2;
3315    let Inst{7}     = 0b0;
3316    let Inst{6-3}   = offsetBits;
3317    let Inst{1}     = 0b0;
3318  }
3319
3320//===----------------------------------------------------------------------===//
3321// Template class for predicated post increment stores with immediate offset
3322//===----------------------------------------------------------------------===//
3323let isPredicated = 1, hasSideEffects = 0, addrMode = PostInc in
3324class T_pstore_pi <string mnemonic, RegisterClass RC, Operand ImmOp,
3325                      bits<4> MajOp, bit isHalf, bit isPredNot, bit isPredNew >
3326  : STInst <(outs IntRegs:$_dst_),
3327            (ins PredRegs:$src1, IntRegs:$src2, ImmOp:$offset, RC:$src3),
3328  !if(isPredNot, "if (!$src1", "if ($src1")#!if(isPredNew, ".new) ",
3329  ") ")#mnemonic#"($src2++#$offset) = $src3"#!if(isHalf, ".h", ""),
3330  [], "$src2 = $_dst_" >,
3331  AddrModeRel {
3332    bits<2> src1;
3333    bits<5> src2;
3334    bits<7> offset;
3335    bits<5> src3;
3336    bits<4> offsetBits;
3337
3338    string ImmOpStr = !cast<string>(ImmOp);
3339    let offsetBits = !if (!eq(ImmOpStr, "s4_3Imm"), offset{6-3},
3340                     !if (!eq(ImmOpStr, "s4_2Imm"), offset{5-2},
3341                     !if (!eq(ImmOpStr, "s4_1Imm"), offset{4-1},
3342                                      /* s4_0Imm */ offset{3-0})));
3343
3344    let isNVStorable = !if (!eq(ImmOpStr, "s4_3Imm"), 0, 1);
3345    let isPredicatedNew = isPredNew;
3346    let isPredicatedFalse = isPredNot;
3347
3348    let IClass = 0b1010;
3349
3350    let Inst{27-25} = 0b101;
3351    let Inst{24-21} = MajOp;
3352    let Inst{20-16} = src2;
3353    let Inst{13} = 0b1;
3354    let Inst{12-8} = src3;
3355    let Inst{7} = isPredNew;
3356    let Inst{6-3} = offsetBits;
3357    let Inst{2} = isPredNot;
3358    let Inst{1-0} = src1;
3359  }
3360
3361multiclass ST_PostInc<string mnemonic, string BaseOp, RegisterClass RC,
3362                      Operand ImmOp, bits<4> MajOp, bit isHalf = 0 > {
3363
3364  let BaseOpcode = "POST_"#BaseOp in {
3365    def S2_#NAME#_pi : T_store_pi <mnemonic, RC, ImmOp, MajOp, isHalf>;
3366
3367    // Predicated
3368    def S2_p#NAME#t_pi : T_pstore_pi <mnemonic, RC, ImmOp, MajOp, isHalf, 0, 0>;
3369    def S2_p#NAME#f_pi : T_pstore_pi <mnemonic, RC, ImmOp, MajOp, isHalf, 1, 0>;
3370
3371    // Predicated new
3372    def S2_p#NAME#tnew_pi : T_pstore_pi <mnemonic, RC, ImmOp, MajOp,
3373                                          isHalf, 0, 1>;
3374    def S2_p#NAME#fnew_pi : T_pstore_pi <mnemonic, RC, ImmOp, MajOp,
3375                                          isHalf, 1, 1>;
3376  }
3377}
3378
3379let accessSize = ByteAccess in
3380defm storerb: ST_PostInc <"memb", "STrib", IntRegs, s4_0Imm, 0b1000>;
3381
3382let accessSize = HalfWordAccess in
3383defm storerh: ST_PostInc <"memh", "STrih", IntRegs, s4_1Imm, 0b1010>;
3384
3385let accessSize = WordAccess in
3386defm storeri: ST_PostInc <"memw", "STriw", IntRegs, s4_2Imm, 0b1100>;
3387
3388let accessSize = DoubleWordAccess in
3389defm storerd: ST_PostInc <"memd", "STrid", DoubleRegs, s4_3Imm, 0b1110>;
3390
3391let accessSize = HalfWordAccess, isNVStorable = 0 in
3392defm storerf: ST_PostInc <"memh", "STrih_H", IntRegs, s4_1Imm, 0b1011, 1>;
3393
3394class Storepi_pat<PatFrag Store, PatFrag Value, PatFrag Offset,
3395                  InstHexagon MI>
3396  : Pat<(Store Value:$src1, I32:$src2, Offset:$offset),
3397        (MI I32:$src2, imm:$offset, Value:$src1)>;
3398
3399def: Storepi_pat<post_truncsti8,  I32, s4_0ImmPred, S2_storerb_pi>;
3400def: Storepi_pat<post_truncsti16, I32, s4_1ImmPred, S2_storerh_pi>;
3401def: Storepi_pat<post_store,      I32, s4_2ImmPred, S2_storeri_pi>;
3402def: Storepi_pat<post_store,      I64, s4_3ImmPred, S2_storerd_pi>;
3403
3404//===----------------------------------------------------------------------===//
3405// Template class for post increment stores with register offset.
3406//===----------------------------------------------------------------------===//
3407let isNVStorable = 1 in
3408class T_store_pr <string mnemonic, RegisterClass RC, bits<3> MajOp,
3409                     MemAccessSize AccessSz, bit isHalf = 0>
3410  : STInst <(outs IntRegs:$_dst_),
3411            (ins IntRegs:$src1, ModRegs:$src2, RC:$src3),
3412  mnemonic#"($src1++$src2) = $src3"#!if(isHalf, ".h", ""),
3413  [], "$src1 = $_dst_" > {
3414    bits<5> src1;
3415    bits<1> src2;
3416    bits<5> src3;
3417    let accessSize = AccessSz;
3418
3419    let IClass = 0b1010;
3420
3421    let Inst{27-24} = 0b1101;
3422    let Inst{23-21} = MajOp;
3423    let Inst{20-16} = src1;
3424    let Inst{13} = src2;
3425    let Inst{12-8} = src3;
3426    let Inst{7} = 0b0;
3427  }
3428
3429def S2_storerb_pr : T_store_pr<"memb", IntRegs, 0b000, ByteAccess>;
3430def S2_storerh_pr : T_store_pr<"memh", IntRegs, 0b010, HalfWordAccess>;
3431def S2_storeri_pr : T_store_pr<"memw", IntRegs, 0b100, WordAccess>;
3432def S2_storerd_pr : T_store_pr<"memd", DoubleRegs, 0b110, DoubleWordAccess>;
3433
3434def S2_storerf_pr : T_store_pr<"memh", IntRegs, 0b011, HalfWordAccess, 1>;
3435
3436let opExtendable = 1, isExtentSigned = 1, isPredicable = 1 in
3437class T_store_io <string mnemonic, RegisterClass RC, Operand ImmOp,
3438                 bits<3>MajOp, bit isH = 0>
3439  : STInst <(outs),
3440            (ins IntRegs:$src1, ImmOp:$src2, RC:$src3),
3441  mnemonic#"($src1+#$src2) = $src3"#!if(isH,".h","")>,
3442  AddrModeRel, ImmRegRel {
3443    bits<5> src1;
3444    bits<14> src2; // Actual address offset
3445    bits<5> src3;
3446    bits<11> offsetBits; // Represents offset encoding
3447
3448    string ImmOpStr = !cast<string>(ImmOp);
3449
3450    let opExtentBits = !if (!eq(ImmOpStr, "s11_3Ext"), 14,
3451                       !if (!eq(ImmOpStr, "s11_2Ext"), 13,
3452                       !if (!eq(ImmOpStr, "s11_1Ext"), 12,
3453                                        /* s11_0Ext */ 11)));
3454    let offsetBits = !if (!eq(ImmOpStr, "s11_3Ext"), src2{13-3},
3455                     !if (!eq(ImmOpStr, "s11_2Ext"), src2{12-2},
3456                     !if (!eq(ImmOpStr, "s11_1Ext"), src2{11-1},
3457                                      /* s11_0Ext */ src2{10-0})));
3458    let IClass = 0b1010;
3459
3460    let Inst{27} = 0b0;
3461    let Inst{26-25} = offsetBits{10-9};
3462    let Inst{24} = 0b1;
3463    let Inst{23-21} = MajOp;
3464    let Inst{20-16} = src1;
3465    let Inst{13} = offsetBits{8};
3466    let Inst{12-8} = src3;
3467    let Inst{7-0} = offsetBits{7-0};
3468  }
3469
3470let opExtendable = 2, isPredicated = 1 in
3471class T_pstore_io <string mnemonic, RegisterClass RC, Operand ImmOp,
3472                   bits<3>MajOp, bit PredNot, bit isPredNew, bit isH = 0>
3473  : STInst <(outs),
3474            (ins PredRegs:$src1, IntRegs:$src2, ImmOp:$src3, RC:$src4),
3475  !if(PredNot, "if (!$src1", "if ($src1")#!if(isPredNew, ".new) ",
3476  ") ")#mnemonic#"($src2+#$src3) = $src4"#!if(isH,".h",""),
3477  [],"",V2LDST_tc_st_SLOT01 >,
3478   AddrModeRel, ImmRegRel {
3479    bits<2> src1;
3480    bits<5> src2;
3481    bits<9> src3; // Actual address offset
3482    bits<5> src4;
3483    bits<6> offsetBits; // Represents offset encoding
3484
3485    let isPredicatedNew = isPredNew;
3486    let isPredicatedFalse = PredNot;
3487
3488    string ImmOpStr = !cast<string>(ImmOp);
3489    let opExtentBits = !if (!eq(ImmOpStr, "u6_3Ext"), 9,
3490                       !if (!eq(ImmOpStr, "u6_2Ext"), 8,
3491                       !if (!eq(ImmOpStr, "u6_1Ext"), 7,
3492                                        /* u6_0Ext */ 6)));
3493    let offsetBits = !if (!eq(ImmOpStr, "u6_3Ext"), src3{8-3},
3494                     !if (!eq(ImmOpStr, "u6_2Ext"), src3{7-2},
3495                     !if (!eq(ImmOpStr, "u6_1Ext"), src3{6-1},
3496                                      /* u6_0Ext */ src3{5-0})));
3497     let IClass = 0b0100;
3498
3499    let Inst{27} = 0b0;
3500    let Inst{26} = PredNot;
3501    let Inst{25} = isPredNew;
3502    let Inst{24} = 0b0;
3503    let Inst{23-21} = MajOp;
3504    let Inst{20-16} = src2;
3505    let Inst{13} = offsetBits{5};
3506    let Inst{12-8} = src4;
3507    let Inst{7-3} = offsetBits{4-0};
3508    let Inst{1-0} = src1;
3509  }
3510
3511let isExtendable = 1, isNVStorable = 1, hasSideEffects = 0 in
3512multiclass ST_Idxd<string mnemonic, string CextOp, RegisterClass RC,
3513                 Operand ImmOp, Operand predImmOp, bits<3> MajOp, bit isH = 0> {
3514  let CextOpcode = CextOp, BaseOpcode = CextOp#_indexed in {
3515    def S2_#NAME#_io : T_store_io <mnemonic, RC, ImmOp, MajOp, isH>;
3516
3517    // Predicated
3518    def S2_p#NAME#t_io : T_pstore_io<mnemonic, RC, predImmOp, MajOp, 0, 0, isH>;
3519    def S2_p#NAME#f_io : T_pstore_io<mnemonic, RC, predImmOp, MajOp, 1, 0, isH>;
3520
3521    // Predicated new
3522    def S4_p#NAME#tnew_io : T_pstore_io <mnemonic, RC, predImmOp,
3523                                         MajOp, 0, 1, isH>;
3524    def S4_p#NAME#fnew_io : T_pstore_io <mnemonic, RC, predImmOp,
3525                                         MajOp, 1, 1, isH>;
3526  }
3527}
3528
3529let addrMode = BaseImmOffset, InputType = "imm" in {
3530  let accessSize = ByteAccess in
3531    defm storerb: ST_Idxd < "memb", "STrib", IntRegs, s11_0Ext, u6_0Ext, 0b000>;
3532
3533  let accessSize = HalfWordAccess, opExtentAlign = 1 in
3534    defm storerh: ST_Idxd < "memh", "STrih", IntRegs, s11_1Ext, u6_1Ext, 0b010>;
3535
3536  let accessSize = WordAccess, opExtentAlign = 2 in
3537    defm storeri: ST_Idxd < "memw", "STriw", IntRegs, s11_2Ext, u6_2Ext, 0b100>;
3538
3539  let accessSize = DoubleWordAccess, isNVStorable = 0, opExtentAlign = 3 in
3540    defm storerd: ST_Idxd < "memd", "STrid", DoubleRegs, s11_3Ext,
3541                            u6_3Ext, 0b110>;
3542
3543  let accessSize = HalfWordAccess, opExtentAlign = 1 in
3544    defm storerf: ST_Idxd < "memh", "STrif", IntRegs, s11_1Ext,
3545                            u6_1Ext, 0b011, 1>;
3546}
3547
3548// Patterns for generating stores, where the address takes different forms:
3549// - frameindex,
3550// - frameindex + offset,
3551// - base + offset,
3552// - simple (base address without offset).
3553// These would usually be used together (via Storex_pat defined below), but
3554// in some cases one may want to apply different properties (such as
3555// AddedComplexity) to the individual patterns.
3556class Storex_fi_pat<PatFrag Store, PatFrag Value, InstHexagon MI>
3557  : Pat<(Store Value:$Rs, AddrFI:$fi), (MI AddrFI:$fi, 0, Value:$Rs)>;
3558class Storex_fi_add_pat<PatFrag Store, PatFrag Value, PatFrag ImmPred,
3559                        InstHexagon MI>
3560  : Pat<(Store Value:$Rs, (add (i32 AddrFI:$fi), ImmPred:$Off)),
3561        (MI AddrFI:$fi, imm:$Off, Value:$Rs)>;
3562class Storex_add_pat<PatFrag Store, PatFrag Value, PatFrag ImmPred,
3563                     InstHexagon MI>
3564  : Pat<(Store Value:$Rt, (add (i32 IntRegs:$Rs), ImmPred:$Off)),
3565        (MI IntRegs:$Rs, imm:$Off, Value:$Rt)>;
3566class Storex_simple_pat<PatFrag Store, PatFrag Value, InstHexagon MI>
3567  : Pat<(Store Value:$Rt, (i32 IntRegs:$Rs)),
3568        (MI IntRegs:$Rs, 0, Value:$Rt)>;
3569
3570// Patterns for generating stores, where the address takes different forms,
3571// and where the value being stored is transformed through the value modifier
3572// ValueMod.  The address forms are same as above.
3573class Storexm_fi_pat<PatFrag Store, PatFrag Value, PatFrag ValueMod,
3574                     InstHexagon MI>
3575  : Pat<(Store Value:$Rs, AddrFI:$fi),
3576        (MI AddrFI:$fi, 0, (ValueMod Value:$Rs))>;
3577class Storexm_fi_add_pat<PatFrag Store, PatFrag Value, PatFrag ImmPred,
3578                         PatFrag ValueMod, InstHexagon MI>
3579  : Pat<(Store Value:$Rs, (add (i32 AddrFI:$fi), ImmPred:$Off)),
3580        (MI AddrFI:$fi, imm:$Off, (ValueMod Value:$Rs))>;
3581class Storexm_add_pat<PatFrag Store, PatFrag Value, PatFrag ImmPred,
3582                      PatFrag ValueMod, InstHexagon MI>
3583  : Pat<(Store Value:$Rt, (add (i32 IntRegs:$Rs), ImmPred:$Off)),
3584        (MI IntRegs:$Rs, imm:$Off, (ValueMod Value:$Rt))>;
3585class Storexm_simple_pat<PatFrag Store, PatFrag Value, PatFrag ValueMod,
3586                         InstHexagon MI>
3587  : Pat<(Store Value:$Rt, (i32 IntRegs:$Rs)),
3588        (MI IntRegs:$Rs, 0, (ValueMod Value:$Rt))>;
3589
3590multiclass Storex_pat<PatFrag Store, PatFrag Value, PatLeaf ImmPred,
3591                      InstHexagon MI> {
3592  def: Storex_fi_pat     <Store, Value,          MI>;
3593  def: Storex_fi_add_pat <Store, Value, ImmPred, MI>;
3594  def: Storex_add_pat    <Store, Value, ImmPred, MI>;
3595}
3596
3597multiclass Storexm_pat<PatFrag Store, PatFrag Value, PatLeaf ImmPred,
3598                       PatFrag ValueMod, InstHexagon MI> {
3599  def: Storexm_fi_pat     <Store, Value,          ValueMod, MI>;
3600  def: Storexm_fi_add_pat <Store, Value, ImmPred, ValueMod, MI>;
3601  def: Storexm_add_pat    <Store, Value, ImmPred, ValueMod, MI>;
3602}
3603
3604// Regular stores in the DAG have two operands: value and address.
3605// Atomic stores also have two, but they are reversed: address, value.
3606// To use atomic stores with the patterns, they need to have their operands
3607// swapped. This relies on the knowledge that the F.Fragment uses names
3608// "ptr" and "val".
3609class SwapSt<PatFrag F>
3610  : PatFrag<(ops node:$val, node:$ptr), F.Fragment>;
3611
3612let AddedComplexity = 20 in {
3613  defm: Storex_pat<truncstorei8,    I32, s32_0ImmPred, S2_storerb_io>;
3614  defm: Storex_pat<truncstorei16,   I32, s31_1ImmPred, S2_storerh_io>;
3615  defm: Storex_pat<store,           I32, s30_2ImmPred, S2_storeri_io>;
3616  defm: Storex_pat<store,           I64, s29_3ImmPred, S2_storerd_io>;
3617
3618  defm: Storex_pat<SwapSt<atomic_store_8>,  I32, s32_0ImmPred, S2_storerb_io>;
3619  defm: Storex_pat<SwapSt<atomic_store_16>, I32, s31_1ImmPred, S2_storerh_io>;
3620  defm: Storex_pat<SwapSt<atomic_store_32>, I32, s30_2ImmPred, S2_storeri_io>;
3621  defm: Storex_pat<SwapSt<atomic_store_64>, I64, s29_3ImmPred, S2_storerd_io>;
3622}
3623
3624// Simple patterns should be tried with the least priority.
3625def: Storex_simple_pat<truncstorei8,    I32, S2_storerb_io>;
3626def: Storex_simple_pat<truncstorei16,   I32, S2_storerh_io>;
3627def: Storex_simple_pat<store,           I32, S2_storeri_io>;
3628def: Storex_simple_pat<store,           I64, S2_storerd_io>;
3629
3630def: Storex_simple_pat<SwapSt<atomic_store_8>,  I32, S2_storerb_io>;
3631def: Storex_simple_pat<SwapSt<atomic_store_16>, I32, S2_storerh_io>;
3632def: Storex_simple_pat<SwapSt<atomic_store_32>, I32, S2_storeri_io>;
3633def: Storex_simple_pat<SwapSt<atomic_store_64>, I64, S2_storerd_io>;
3634
3635let AddedComplexity = 20 in {
3636  defm: Storexm_pat<truncstorei8,  I64, s32_0ImmPred, LoReg, S2_storerb_io>;
3637  defm: Storexm_pat<truncstorei16, I64, s31_1ImmPred, LoReg, S2_storerh_io>;
3638  defm: Storexm_pat<truncstorei32, I64, s30_2ImmPred, LoReg, S2_storeri_io>;
3639}
3640
3641def: Storexm_simple_pat<truncstorei8,  I64, LoReg, S2_storerb_io>;
3642def: Storexm_simple_pat<truncstorei16, I64, LoReg, S2_storerh_io>;
3643def: Storexm_simple_pat<truncstorei32, I64, LoReg, S2_storeri_io>;
3644
3645// Store predicate.
3646let isExtendable = 1, opExtendable = 1, isExtentSigned = 1, opExtentBits = 13,
3647    isCodeGenOnly = 1, isPseudo = 1, hasSideEffects = 0 in
3648def STriw_pred : STInst<(outs),
3649      (ins IntRegs:$addr, s11_2Ext:$off, PredRegs:$src1),
3650      ".error \"should not emit\"", []>;
3651
3652// S2_allocframe: Allocate stack frame.
3653let Defs = [R29, R30], Uses = [R29, R31, R30],
3654    hasSideEffects = 0, accessSize = DoubleWordAccess in
3655def S2_allocframe: ST0Inst <
3656  (outs), (ins u11_3Imm:$u11_3),
3657  "allocframe(#$u11_3)" > {
3658    bits<14> u11_3;
3659
3660    let IClass = 0b1010;
3661    let Inst{27-16} = 0b000010011101;
3662    let Inst{13-11} = 0b000;
3663    let Inst{10-0} = u11_3{13-3};
3664  }
3665
3666// S2_storer[bhwdf]_pci: Store byte/half/word/double.
3667// S2_storer[bhwdf]_pci -> S2_storerbnew_pci
3668let Uses = [CS], isNVStorable = 1 in
3669class T_store_pci <string mnemonic, RegisterClass RC,
3670                         Operand Imm, bits<4>MajOp,
3671                         MemAccessSize AlignSize, string RegSrc = "Rt">
3672  : STInst <(outs IntRegs:$_dst_),
3673  (ins IntRegs:$Rz, Imm:$offset, ModRegs:$Mu, RC:$Rt),
3674  #mnemonic#"($Rz ++ #$offset:circ($Mu)) = $"#RegSrc#"",
3675  [] ,
3676  "$Rz = $_dst_" > {
3677    bits<5> Rz;
3678    bits<7> offset;
3679    bits<1> Mu;
3680    bits<5> Rt;
3681    let accessSize = AlignSize;
3682
3683    let IClass = 0b1010;
3684    let Inst{27-25} = 0b100;
3685    let Inst{24-21} = MajOp;
3686    let Inst{20-16} = Rz;
3687    let Inst{13} = Mu;
3688    let Inst{12-8} = Rt;
3689    let Inst{7} = 0b0;
3690    let Inst{6-3} =
3691      !if (!eq(!cast<string>(AlignSize), "DoubleWordAccess"), offset{6-3},
3692      !if (!eq(!cast<string>(AlignSize), "WordAccess"),       offset{5-2},
3693      !if (!eq(!cast<string>(AlignSize), "HalfWordAccess"),   offset{4-1},
3694                                       /* ByteAccess */       offset{3-0})));
3695    let Inst{1} = 0b0;
3696  }
3697
3698def S2_storerb_pci : T_store_pci<"memb", IntRegs, s4_0Imm, 0b1000,
3699                                        ByteAccess>;
3700def S2_storerh_pci : T_store_pci<"memh", IntRegs, s4_1Imm, 0b1010,
3701                                        HalfWordAccess>;
3702def S2_storerf_pci : T_store_pci<"memh", IntRegs, s4_1Imm, 0b1011,
3703                                        HalfWordAccess, "Rt.h">;
3704def S2_storeri_pci : T_store_pci<"memw", IntRegs, s4_2Imm, 0b1100,
3705                                        WordAccess>;
3706def S2_storerd_pci : T_store_pci<"memd", DoubleRegs, s4_3Imm, 0b1110,
3707                                        DoubleWordAccess>;
3708
3709let Uses = [CS], isNewValue = 1, mayStore = 1, isNVStore = 1, opNewValue = 4 in
3710class T_storenew_pci <string mnemonic, Operand Imm,
3711                             bits<2>MajOp, MemAccessSize AlignSize>
3712  : NVInst < (outs IntRegs:$_dst_),
3713  (ins IntRegs:$Rz, Imm:$offset, ModRegs:$Mu, IntRegs:$Nt),
3714  #mnemonic#"($Rz ++ #$offset:circ($Mu)) = $Nt.new",
3715  [],
3716  "$Rz = $_dst_"> {
3717    bits<5> Rz;
3718    bits<6> offset;
3719    bits<1> Mu;
3720    bits<3> Nt;
3721
3722    let accessSize = AlignSize;
3723
3724    let IClass = 0b1010;
3725    let Inst{27-21} = 0b1001101;
3726    let Inst{20-16} = Rz;
3727    let Inst{13} = Mu;
3728    let Inst{12-11} = MajOp;
3729    let Inst{10-8} = Nt;
3730    let Inst{7} = 0b0;
3731    let Inst{6-3} =
3732      !if (!eq(!cast<string>(AlignSize), "WordAccess"),     offset{5-2},
3733      !if (!eq(!cast<string>(AlignSize), "HalfWordAccess"), offset{4-1},
3734                                       /* ByteAccess */     offset{3-0}));
3735    let Inst{1} = 0b0;
3736  }
3737
3738def S2_storerbnew_pci : T_storenew_pci <"memb", s4_0Imm, 0b00, ByteAccess>;
3739def S2_storerhnew_pci : T_storenew_pci <"memh", s4_1Imm, 0b01, HalfWordAccess>;
3740def S2_storerinew_pci : T_storenew_pci <"memw", s4_2Imm, 0b10, WordAccess>;
3741
3742//===----------------------------------------------------------------------===//
3743// Circular stores - Pseudo
3744//
3745// Please note that the input operand order in the pseudo instructions
3746// doesn't match with the real instructions. Pseudo instructions operand
3747// order should mimics the ordering in the intrinsics.
3748//===----------------------------------------------------------------------===//
3749let isCodeGenOnly = 1, mayStore = 1, hasSideEffects = 0, isPseudo = 1 in
3750class T_store_pci_pseudo <string opc, RegisterClass RC>
3751  : STInstPI<(outs IntRegs:$_dst_),
3752             (ins IntRegs:$src1, RC:$src2, IntRegs:$src3, s4Imm:$src4),
3753  ".error \""#opc#"($src1++#$src4:circ($src3)) = $src2\"",
3754  [], "$_dst_ = $src1">;
3755
3756def S2_storerb_pci_pseudo : T_store_pci_pseudo <"memb", IntRegs>;
3757def S2_storerh_pci_pseudo : T_store_pci_pseudo <"memh", IntRegs>;
3758def S2_storerf_pci_pseudo : T_store_pci_pseudo <"memh", IntRegs>;
3759def S2_storeri_pci_pseudo : T_store_pci_pseudo <"memw", IntRegs>;
3760def S2_storerd_pci_pseudo : T_store_pci_pseudo <"memd", DoubleRegs>;
3761
3762//===----------------------------------------------------------------------===//
3763// Circular stores with auto-increment register
3764//===----------------------------------------------------------------------===//
3765let Uses = [CS], isNVStorable = 1 in
3766class T_store_pcr <string mnemonic, RegisterClass RC, bits<4>MajOp,
3767                               MemAccessSize AlignSize, string RegSrc = "Rt">
3768  : STInst <(outs IntRegs:$_dst_),
3769  (ins IntRegs:$Rz, ModRegs:$Mu, RC:$Rt),
3770  #mnemonic#"($Rz ++ I:circ($Mu)) = $"#RegSrc#"",
3771  [],
3772  "$Rz = $_dst_" > {
3773    bits<5> Rz;
3774    bits<1> Mu;
3775    bits<5> Rt;
3776
3777    let accessSize = AlignSize;
3778
3779    let IClass = 0b1010;
3780    let Inst{27-25} = 0b100;
3781    let Inst{24-21} = MajOp;
3782    let Inst{20-16} = Rz;
3783    let Inst{13} = Mu;
3784    let Inst{12-8} = Rt;
3785    let Inst{7} = 0b0;
3786    let Inst{1} = 0b1;
3787  }
3788
3789def S2_storerb_pcr : T_store_pcr<"memb", IntRegs, 0b1000, ByteAccess>;
3790def S2_storerh_pcr : T_store_pcr<"memh", IntRegs, 0b1010, HalfWordAccess>;
3791def S2_storeri_pcr : T_store_pcr<"memw", IntRegs, 0b1100, WordAccess>;
3792def S2_storerd_pcr : T_store_pcr<"memd", DoubleRegs, 0b1110, DoubleWordAccess>;
3793def S2_storerf_pcr : T_store_pcr<"memh", IntRegs, 0b1011,
3794                                 HalfWordAccess, "Rt.h">;
3795
3796//===----------------------------------------------------------------------===//
3797// Circular .new stores with auto-increment register
3798//===----------------------------------------------------------------------===//
3799let Uses = [CS], isNewValue = 1, mayStore = 1, isNVStore = 1, opNewValue = 3 in
3800class T_storenew_pcr <string mnemonic, bits<2>MajOp,
3801                                   MemAccessSize AlignSize>
3802  : NVInst <(outs IntRegs:$_dst_),
3803  (ins IntRegs:$Rz, ModRegs:$Mu, IntRegs:$Nt),
3804  #mnemonic#"($Rz ++ I:circ($Mu)) = $Nt.new" ,
3805  [] ,
3806  "$Rz = $_dst_"> {
3807    bits<5> Rz;
3808    bits<1> Mu;
3809    bits<3> Nt;
3810
3811    let accessSize = AlignSize;
3812
3813    let IClass = 0b1010;
3814    let Inst{27-21} = 0b1001101;
3815    let Inst{20-16} = Rz;
3816    let Inst{13} = Mu;
3817    let Inst{12-11} = MajOp;
3818    let Inst{10-8} = Nt;
3819    let Inst{7} = 0b0;
3820    let Inst{1} = 0b1;
3821  }
3822
3823def S2_storerbnew_pcr : T_storenew_pcr <"memb", 0b00, ByteAccess>;
3824def S2_storerhnew_pcr : T_storenew_pcr <"memh", 0b01, HalfWordAccess>;
3825def S2_storerinew_pcr : T_storenew_pcr <"memw", 0b10, WordAccess>;
3826
3827//===----------------------------------------------------------------------===//
3828// Bit-reversed stores with auto-increment register
3829//===----------------------------------------------------------------------===//
3830let hasSideEffects = 0 in
3831class T_store_pbr<string mnemonic, RegisterClass RC,
3832                            MemAccessSize addrSize, bits<3> majOp,
3833                            bit isHalf = 0>
3834  : STInst
3835    <(outs IntRegs:$_dst_),
3836     (ins IntRegs:$Rz, ModRegs:$Mu, RC:$src),
3837     #mnemonic#"($Rz ++ $Mu:brev) = $src"#!if (!eq(isHalf, 1), ".h", ""),
3838     [], "$Rz = $_dst_" > {
3839
3840      let accessSize = addrSize;
3841
3842      bits<5> Rz;
3843      bits<1> Mu;
3844      bits<5> src;
3845
3846      let IClass = 0b1010;
3847
3848      let Inst{27-24} = 0b1111;
3849      let Inst{23-21} = majOp;
3850      let Inst{7} = 0b0;
3851      let Inst{20-16} = Rz;
3852      let Inst{13} = Mu;
3853      let Inst{12-8} = src;
3854    }
3855
3856let isNVStorable = 1 in {
3857  let BaseOpcode = "S2_storerb_pbr" in
3858  def S2_storerb_pbr : T_store_pbr<"memb", IntRegs, ByteAccess,
3859                                             0b000>, NewValueRel;
3860  let BaseOpcode = "S2_storerh_pbr" in
3861  def S2_storerh_pbr : T_store_pbr<"memh", IntRegs, HalfWordAccess,
3862                                             0b010>, NewValueRel;
3863  let BaseOpcode = "S2_storeri_pbr" in
3864  def S2_storeri_pbr : T_store_pbr<"memw", IntRegs, WordAccess,
3865                                             0b100>, NewValueRel;
3866}
3867
3868def S2_storerf_pbr : T_store_pbr<"memh", IntRegs, HalfWordAccess, 0b011, 1>;
3869def S2_storerd_pbr : T_store_pbr<"memd", DoubleRegs, DoubleWordAccess, 0b110>;
3870
3871//===----------------------------------------------------------------------===//
3872// Bit-reversed .new stores with auto-increment register
3873//===----------------------------------------------------------------------===//
3874let isNewValue = 1, mayStore = 1, isNVStore = 1, opNewValue = 3,
3875    hasSideEffects = 0 in
3876class T_storenew_pbr<string mnemonic, MemAccessSize addrSize, bits<2> majOp>
3877  : NVInst <(outs IntRegs:$_dst_),
3878            (ins IntRegs:$Rz, ModRegs:$Mu, IntRegs:$Nt),
3879     #mnemonic#"($Rz ++ $Mu:brev) = $Nt.new", [],
3880     "$Rz = $_dst_">, NewValueRel {
3881    let accessSize = addrSize;
3882    bits<5> Rz;
3883    bits<1> Mu;
3884    bits<3> Nt;
3885
3886    let IClass = 0b1010;
3887
3888    let Inst{27-21} = 0b1111101;
3889    let Inst{12-11} = majOp;
3890    let Inst{7} = 0b0;
3891    let Inst{20-16} = Rz;
3892    let Inst{13} = Mu;
3893    let Inst{10-8} = Nt;
3894  }
3895
3896let BaseOpcode = "S2_storerb_pbr" in
3897def S2_storerbnew_pbr : T_storenew_pbr<"memb", ByteAccess, 0b00>;
3898
3899let BaseOpcode = "S2_storerh_pbr" in
3900def S2_storerhnew_pbr : T_storenew_pbr<"memh", HalfWordAccess, 0b01>;
3901
3902let BaseOpcode = "S2_storeri_pbr" in
3903def S2_storerinew_pbr : T_storenew_pbr<"memw", WordAccess, 0b10>;
3904
3905//===----------------------------------------------------------------------===//
3906// Bit-reversed stores - Pseudo
3907//
3908// Please note that the input operand order in the pseudo instructions
3909// doesn't match with the real instructions. Pseudo instructions operand
3910// order should mimics the ordering in the intrinsics.
3911//===----------------------------------------------------------------------===//
3912let isCodeGenOnly = 1,  mayStore = 1, hasSideEffects = 0, isPseudo = 1 in
3913class T_store_pbr_pseudo <string opc, RegisterClass RC>
3914  : STInstPI<(outs IntRegs:$_dst_),
3915             (ins IntRegs:$src1, RC:$src2, IntRegs:$src3),
3916  ".error \""#opc#"($src1++$src3:brev) = $src2\"",
3917  [], "$_dst_ = $src1">;
3918
3919def S2_storerb_pbr_pseudo : T_store_pbr_pseudo <"memb", IntRegs>;
3920def S2_storerh_pbr_pseudo : T_store_pbr_pseudo <"memh", IntRegs>;
3921def S2_storeri_pbr_pseudo : T_store_pbr_pseudo <"memw", IntRegs>;
3922def S2_storerf_pbr_pseudo : T_store_pbr_pseudo <"memh", IntRegs>;
3923def S2_storerd_pbr_pseudo : T_store_pbr_pseudo <"memd", DoubleRegs>;
3924
3925//===----------------------------------------------------------------------===//
3926// ST -
3927//===----------------------------------------------------------------------===//
3928
3929//===----------------------------------------------------------------------===//
3930// Template class for S_2op instructions.
3931//===----------------------------------------------------------------------===//
3932let hasSideEffects = 0 in
3933class T_S2op_1 <string mnemonic, bits<4> RegTyBits, RegisterClass RCOut,
3934                RegisterClass RCIn, bits<2> MajOp, bits<3> MinOp, bit isSat>
3935  : SInst <(outs RCOut:$dst), (ins RCIn:$src),
3936  "$dst = "#mnemonic#"($src)"#!if(isSat, ":sat", ""),
3937  [], "", S_2op_tc_1_SLOT23 > {
3938    bits<5> dst;
3939    bits<5> src;
3940
3941    let IClass = 0b1000;
3942
3943    let Inst{27-24} = RegTyBits;
3944    let Inst{23-22} = MajOp;
3945    let Inst{21} = 0b0;
3946    let Inst{20-16} = src;
3947    let Inst{7-5} = MinOp;
3948    let Inst{4-0} = dst;
3949  }
3950
3951class T_S2op_1_di <string mnemonic, bits<2> MajOp, bits<3> MinOp>
3952  : T_S2op_1 <mnemonic, 0b0100, DoubleRegs, IntRegs, MajOp, MinOp, 0>;
3953
3954let hasNewValue = 1 in
3955class T_S2op_1_id <string mnemonic, bits<2> MajOp, bits<3> MinOp, bit isSat = 0>
3956  : T_S2op_1 <mnemonic, 0b1000, IntRegs, DoubleRegs, MajOp, MinOp, isSat>;
3957
3958let hasNewValue = 1 in
3959class T_S2op_1_ii <string mnemonic, bits<2> MajOp, bits<3> MinOp, bit isSat = 0>
3960  : T_S2op_1 <mnemonic, 0b1100, IntRegs, IntRegs, MajOp, MinOp, isSat>;
3961
3962// Vector sign/zero extend
3963let isReMaterializable = 1, isAsCheapAsAMove = 1 in {
3964  def S2_vsxtbh : T_S2op_1_di <"vsxtbh", 0b00, 0b000>;
3965  def S2_vsxthw : T_S2op_1_di <"vsxthw", 0b00, 0b100>;
3966  def S2_vzxtbh : T_S2op_1_di <"vzxtbh", 0b00, 0b010>;
3967  def S2_vzxthw : T_S2op_1_di <"vzxthw", 0b00, 0b110>;
3968}
3969
3970// Vector splat bytes/halfwords
3971let isReMaterializable = 1, isAsCheapAsAMove = 1 in {
3972  def S2_vsplatrb : T_S2op_1_ii <"vsplatb", 0b01, 0b111>;
3973  def S2_vsplatrh : T_S2op_1_di <"vsplath", 0b01, 0b010>;
3974}
3975
3976// Sign extend word to doubleword
3977def A2_sxtw   : T_S2op_1_di <"sxtw", 0b01, 0b000>;
3978
3979def: Pat <(i64 (sext I32:$src)), (A2_sxtw I32:$src)>;
3980
3981// Vector saturate and pack
3982let Defs = [USR_OVF] in {
3983  def S2_svsathb  : T_S2op_1_ii <"vsathb", 0b10, 0b000>;
3984  def S2_svsathub : T_S2op_1_ii <"vsathub", 0b10, 0b010>;
3985  def S2_vsathb   : T_S2op_1_id <"vsathb", 0b00, 0b110>;
3986  def S2_vsathub  : T_S2op_1_id <"vsathub", 0b00, 0b000>;
3987  def S2_vsatwh   : T_S2op_1_id <"vsatwh", 0b00, 0b010>;
3988  def S2_vsatwuh  : T_S2op_1_id <"vsatwuh", 0b00, 0b100>;
3989}
3990
3991// Vector truncate
3992def S2_vtrunohb : T_S2op_1_id <"vtrunohb", 0b10, 0b000>;
3993def S2_vtrunehb : T_S2op_1_id <"vtrunehb", 0b10, 0b010>;
3994
3995// Swizzle the bytes of a word
3996def A2_swiz : T_S2op_1_ii <"swiz", 0b10, 0b111>;
3997
3998// Saturate
3999let Defs = [USR_OVF] in {
4000  def A2_sat   : T_S2op_1_id <"sat", 0b11, 0b000>;
4001  def A2_satb  : T_S2op_1_ii <"satb", 0b11, 0b111>;
4002  def A2_satub : T_S2op_1_ii <"satub", 0b11, 0b110>;
4003  def A2_sath  : T_S2op_1_ii <"sath", 0b11, 0b100>;
4004  def A2_satuh : T_S2op_1_ii <"satuh", 0b11, 0b101>;
4005  def A2_roundsat : T_S2op_1_id <"round", 0b11, 0b001, 0b1>;
4006}
4007
4008let Itinerary = S_2op_tc_2_SLOT23 in {
4009  // Vector round and pack
4010  def S2_vrndpackwh   : T_S2op_1_id <"vrndwh", 0b10, 0b100>;
4011
4012  let Defs = [USR_OVF] in
4013  def S2_vrndpackwhs  : T_S2op_1_id <"vrndwh", 0b10, 0b110, 1>;
4014
4015  // Bit reverse
4016  def S2_brev : T_S2op_1_ii <"brev", 0b01, 0b110>;
4017
4018  // Absolute value word
4019  def A2_abs    : T_S2op_1_ii <"abs", 0b10, 0b100>;
4020
4021  let Defs = [USR_OVF] in
4022  def A2_abssat : T_S2op_1_ii <"abs", 0b10, 0b101, 1>;
4023
4024  // Negate with saturation
4025  let Defs = [USR_OVF] in
4026  def A2_negsat : T_S2op_1_ii <"neg", 0b10, 0b110, 1>;
4027}
4028
4029def: Pat<(i32 (select (i1 (setlt (i32 IntRegs:$src), 0)),
4030                      (i32 (sub 0, (i32 IntRegs:$src))),
4031                      (i32 IntRegs:$src))),
4032         (A2_abs IntRegs:$src)>;
4033
4034let AddedComplexity = 50 in
4035def: Pat<(i32 (xor (add (sra (i32 IntRegs:$src), (i32 31)),
4036                        (i32 IntRegs:$src)),
4037                   (sra (i32 IntRegs:$src), (i32 31)))),
4038         (A2_abs IntRegs:$src)>;
4039
4040class T_S2op_2 <string mnemonic, bits<4> RegTyBits, RegisterClass RCOut,
4041                RegisterClass RCIn, bits<3> MajOp, bits<3> MinOp,
4042                bit isSat, bit isRnd, list<dag> pattern = []>
4043  : SInst <(outs RCOut:$dst),
4044  (ins RCIn:$src, u5Imm:$u5),
4045  "$dst = "#mnemonic#"($src, #$u5)"#!if(isSat, ":sat", "")
4046                                   #!if(isRnd, ":rnd", ""),
4047  pattern, "", S_2op_tc_2_SLOT23> {
4048    bits<5> dst;
4049    bits<5> src;
4050    bits<5> u5;
4051
4052    let IClass = 0b1000;
4053
4054    let Inst{27-24} = RegTyBits;
4055    let Inst{23-21} = MajOp;
4056    let Inst{20-16} = src;
4057    let Inst{13} = 0b0;
4058    let Inst{12-8} = u5;
4059    let Inst{7-5} = MinOp;
4060    let Inst{4-0} = dst;
4061  }
4062
4063class T_S2op_2_di <string mnemonic, bits<3> MajOp, bits<3> MinOp>
4064  : T_S2op_2 <mnemonic, 0b1000, DoubleRegs, IntRegs, MajOp, MinOp, 0, 0>;
4065
4066let hasNewValue = 1 in
4067class T_S2op_2_id <string mnemonic, bits<3> MajOp, bits<3> MinOp>
4068  : T_S2op_2 <mnemonic, 0b1000, IntRegs, DoubleRegs, MajOp, MinOp, 0, 0>;
4069
4070let hasNewValue = 1 in
4071class T_S2op_2_ii <string mnemonic, bits<3> MajOp, bits<3> MinOp,
4072                   bit isSat = 0, bit isRnd = 0, list<dag> pattern = []>
4073  : T_S2op_2 <mnemonic, 0b1100, IntRegs, IntRegs, MajOp, MinOp,
4074              isSat, isRnd, pattern>;
4075
4076class T_S2op_shift <string mnemonic, bits<3> MajOp, bits<3> MinOp, SDNode OpNd>
4077  : T_S2op_2_ii <mnemonic, MajOp, MinOp, 0, 0,
4078    [(set (i32 IntRegs:$dst), (OpNd (i32 IntRegs:$src),
4079                                    (u5ImmPred:$u5)))]>;
4080
4081// Vector arithmetic shift right by immediate with truncate and pack
4082def S2_asr_i_svw_trun : T_S2op_2_id <"vasrw", 0b110, 0b010>;
4083
4084// Arithmetic/logical shift right/left by immediate
4085let Itinerary = S_2op_tc_1_SLOT23 in {
4086  def S2_asr_i_r : T_S2op_shift <"asr", 0b000, 0b000, sra>;
4087  def S2_lsr_i_r : T_S2op_shift <"lsr", 0b000, 0b001, srl>;
4088  def S2_asl_i_r : T_S2op_shift <"asl", 0b000, 0b010, shl>;
4089}
4090
4091// Shift left by immediate with saturation
4092let Defs = [USR_OVF] in
4093def S2_asl_i_r_sat : T_S2op_2_ii <"asl", 0b010, 0b010, 1>;
4094
4095// Shift right with round
4096def S2_asr_i_r_rnd : T_S2op_2_ii <"asr", 0b010, 0b000, 0, 1>;
4097
4098let isAsmParserOnly = 1 in
4099def S2_asr_i_r_rnd_goodsyntax
4100  : SInst <(outs IntRegs:$dst), (ins  IntRegs:$src, u5Imm:$u5),
4101  "$dst = asrrnd($src, #$u5)",
4102  [], "", S_2op_tc_1_SLOT23>;
4103
4104let isAsmParserOnly = 1 in
4105def A2_not: ALU32_rr<(outs IntRegs:$dst),(ins IntRegs:$src),
4106  "$dst = not($src)">;
4107
4108def: Pat<(i32 (sra (i32 (add (i32 (sra I32:$src1, u5ImmPred:$src2)),
4109                             (i32 1))),
4110                   (i32 1))),
4111         (S2_asr_i_r_rnd IntRegs:$src1, u5ImmPred:$src2)>;
4112
4113class T_S2op_3<string opc, bits<2>MajOp, bits<3>minOp, bits<1> sat = 0>
4114  : SInst<(outs DoubleRegs:$Rdd), (ins DoubleRegs:$Rss),
4115           "$Rdd = "#opc#"($Rss)"#!if(!eq(sat, 1),":sat","")> {
4116  bits<5> Rss;
4117  bits<5> Rdd;
4118  let IClass = 0b1000;
4119  let Inst{27-24} = 0;
4120  let Inst{23-22} = MajOp;
4121  let Inst{20-16} = Rss;
4122  let Inst{7-5} = minOp;
4123  let Inst{4-0} = Rdd;
4124}
4125
4126def A2_absp : T_S2op_3 <"abs", 0b10, 0b110>;
4127def A2_negp : T_S2op_3 <"neg", 0b10, 0b101>;
4128def A2_notp : T_S2op_3 <"not", 0b10, 0b100>;
4129
4130// Innterleave/deinterleave
4131def S2_interleave   : T_S2op_3 <"interleave",   0b11, 0b101>;
4132def S2_deinterleave : T_S2op_3 <"deinterleave", 0b11, 0b100>;
4133
4134// Vector Complex conjugate
4135def A2_vconj : T_S2op_3 <"vconj", 0b10, 0b111, 1>;
4136
4137// Vector saturate without pack
4138def S2_vsathb_nopack  : T_S2op_3 <"vsathb",  0b00, 0b111>;
4139def S2_vsathub_nopack : T_S2op_3 <"vsathub", 0b00, 0b100>;
4140def S2_vsatwh_nopack  : T_S2op_3 <"vsatwh",  0b00, 0b110>;
4141def S2_vsatwuh_nopack : T_S2op_3 <"vsatwuh", 0b00, 0b101>;
4142
4143// Vector absolute value halfwords with and without saturation
4144// Rdd64=vabsh(Rss64)[:sat]
4145def A2_vabsh    : T_S2op_3 <"vabsh", 0b01, 0b100>;
4146def A2_vabshsat : T_S2op_3 <"vabsh", 0b01, 0b101, 1>;
4147
4148// Vector absolute value words with and without saturation
4149def A2_vabsw    : T_S2op_3 <"vabsw", 0b01, 0b110>;
4150def A2_vabswsat : T_S2op_3 <"vabsw", 0b01, 0b111, 1>;
4151
4152def : Pat<(not (i64 DoubleRegs:$src1)),
4153          (A2_notp DoubleRegs:$src1)>;
4154
4155//===----------------------------------------------------------------------===//
4156// STYPE/BIT +
4157//===----------------------------------------------------------------------===//
4158// Bit count
4159
4160let hasSideEffects = 0, hasNewValue = 1 in
4161class T_COUNT_LEADING<string MnOp, bits<3> MajOp, bits<3> MinOp, bit Is32,
4162                dag Out, dag Inp>
4163    : SInst<Out, Inp, "$Rd = "#MnOp#"($Rs)", [], "", S_2op_tc_1_SLOT23> {
4164  bits<5> Rs;
4165  bits<5> Rd;
4166  let IClass = 0b1000;
4167  let Inst{27} = 0b1;
4168  let Inst{26} = Is32;
4169  let Inst{25-24} = 0b00;
4170  let Inst{23-21} = MajOp;
4171  let Inst{20-16} = Rs;
4172  let Inst{7-5} = MinOp;
4173  let Inst{4-0} = Rd;
4174}
4175
4176class T_COUNT_LEADING_32<string MnOp, bits<3> MajOp, bits<3> MinOp>
4177    : T_COUNT_LEADING<MnOp, MajOp, MinOp, 0b1,
4178                      (outs IntRegs:$Rd), (ins IntRegs:$Rs)>;
4179
4180class T_COUNT_LEADING_64<string MnOp, bits<3> MajOp, bits<3> MinOp>
4181    : T_COUNT_LEADING<MnOp, MajOp, MinOp, 0b0,
4182                      (outs IntRegs:$Rd), (ins DoubleRegs:$Rs)>;
4183
4184def S2_cl0     : T_COUNT_LEADING_32<"cl0",     0b000, 0b101>;
4185def S2_cl1     : T_COUNT_LEADING_32<"cl1",     0b000, 0b110>;
4186def S2_ct0     : T_COUNT_LEADING_32<"ct0",     0b010, 0b100>;
4187def S2_ct1     : T_COUNT_LEADING_32<"ct1",     0b010, 0b101>;
4188def S2_cl0p    : T_COUNT_LEADING_64<"cl0",     0b010, 0b010>;
4189def S2_cl1p    : T_COUNT_LEADING_64<"cl1",     0b010, 0b100>;
4190def S2_clb     : T_COUNT_LEADING_32<"clb",     0b000, 0b100>;
4191def S2_clbp    : T_COUNT_LEADING_64<"clb",     0b010, 0b000>;
4192def S2_clbnorm : T_COUNT_LEADING_32<"normamt", 0b000, 0b111>;
4193
4194def: Pat<(i32 (ctlz I32:$Rs)),                (S2_cl0 I32:$Rs)>;
4195def: Pat<(i32 (ctlz (not I32:$Rs))),          (S2_cl1 I32:$Rs)>;
4196def: Pat<(i32 (cttz I32:$Rs)),                (S2_ct0 I32:$Rs)>;
4197def: Pat<(i32 (cttz (not I32:$Rs))),          (S2_ct1 I32:$Rs)>;
4198def: Pat<(i32 (trunc (ctlz I64:$Rss))),       (S2_cl0p I64:$Rss)>;
4199def: Pat<(i32 (trunc (ctlz (not I64:$Rss)))), (S2_cl1p I64:$Rss)>;
4200
4201// Bit set/clear/toggle
4202
4203let hasSideEffects = 0, hasNewValue = 1 in
4204class T_SCT_BIT_IMM<string MnOp, bits<3> MinOp>
4205    : SInst<(outs IntRegs:$Rd), (ins IntRegs:$Rs, u5Imm:$u5),
4206            "$Rd = "#MnOp#"($Rs, #$u5)", [], "", S_2op_tc_1_SLOT23> {
4207  bits<5> Rd;
4208  bits<5> Rs;
4209  bits<5> u5;
4210  let IClass = 0b1000;
4211  let Inst{27-21} = 0b1100110;
4212  let Inst{20-16} = Rs;
4213  let Inst{13} = 0b0;
4214  let Inst{12-8} = u5;
4215  let Inst{7-5} = MinOp;
4216  let Inst{4-0} = Rd;
4217}
4218
4219let hasSideEffects = 0, hasNewValue = 1 in
4220class T_SCT_BIT_REG<string MnOp, bits<2> MinOp>
4221    : SInst<(outs IntRegs:$Rd), (ins IntRegs:$Rs, IntRegs:$Rt),
4222            "$Rd = "#MnOp#"($Rs, $Rt)", [], "", S_3op_tc_1_SLOT23> {
4223  bits<5> Rd;
4224  bits<5> Rs;
4225  bits<5> Rt;
4226  let IClass = 0b1100;
4227  let Inst{27-22} = 0b011010;
4228  let Inst{20-16} = Rs;
4229  let Inst{12-8} = Rt;
4230  let Inst{7-6} = MinOp;
4231  let Inst{4-0} = Rd;
4232}
4233
4234def S2_clrbit_i    : T_SCT_BIT_IMM<"clrbit",    0b001>;
4235def S2_setbit_i    : T_SCT_BIT_IMM<"setbit",    0b000>;
4236def S2_togglebit_i : T_SCT_BIT_IMM<"togglebit", 0b010>;
4237def S2_clrbit_r    : T_SCT_BIT_REG<"clrbit",    0b01>;
4238def S2_setbit_r    : T_SCT_BIT_REG<"setbit",    0b00>;
4239def S2_togglebit_r : T_SCT_BIT_REG<"togglebit", 0b10>;
4240
4241def: Pat<(i32 (and (i32 IntRegs:$Rs), (not (shl 1, u5ImmPred:$u5)))),
4242         (S2_clrbit_i IntRegs:$Rs, u5ImmPred:$u5)>;
4243def: Pat<(i32 (or (i32 IntRegs:$Rs), (shl 1, u5ImmPred:$u5))),
4244         (S2_setbit_i IntRegs:$Rs, u5ImmPred:$u5)>;
4245def: Pat<(i32 (xor (i32 IntRegs:$Rs), (shl 1, u5ImmPred:$u5))),
4246         (S2_togglebit_i IntRegs:$Rs, u5ImmPred:$u5)>;
4247def: Pat<(i32 (and (i32 IntRegs:$Rs), (not (shl 1, (i32 IntRegs:$Rt))))),
4248         (S2_clrbit_r IntRegs:$Rs, IntRegs:$Rt)>;
4249def: Pat<(i32 (or (i32 IntRegs:$Rs), (shl 1, (i32 IntRegs:$Rt)))),
4250         (S2_setbit_r IntRegs:$Rs, IntRegs:$Rt)>;
4251def: Pat<(i32 (xor (i32 IntRegs:$Rs), (shl 1, (i32 IntRegs:$Rt)))),
4252         (S2_togglebit_r IntRegs:$Rs, IntRegs:$Rt)>;
4253
4254// Bit test
4255
4256let hasSideEffects = 0 in
4257class T_TEST_BIT_IMM<string MnOp, bits<3> MajOp>
4258    : SInst<(outs PredRegs:$Pd), (ins IntRegs:$Rs, u5Imm:$u5),
4259            "$Pd = "#MnOp#"($Rs, #$u5)",
4260            [], "", S_2op_tc_2early_SLOT23> {
4261  bits<2> Pd;
4262  bits<5> Rs;
4263  bits<5> u5;
4264  let IClass = 0b1000;
4265  let Inst{27-24} = 0b0101;
4266  let Inst{23-21} = MajOp;
4267  let Inst{20-16} = Rs;
4268  let Inst{13} = 0;
4269  let Inst{12-8} = u5;
4270  let Inst{1-0} = Pd;
4271}
4272
4273let hasSideEffects = 0 in
4274class T_TEST_BIT_REG<string MnOp, bit IsNeg>
4275    : SInst<(outs PredRegs:$Pd), (ins IntRegs:$Rs, IntRegs:$Rt),
4276            "$Pd = "#MnOp#"($Rs, $Rt)",
4277            [], "", S_3op_tc_2early_SLOT23> {
4278  bits<2> Pd;
4279  bits<5> Rs;
4280  bits<5> Rt;
4281  let IClass = 0b1100;
4282  let Inst{27-22} = 0b011100;
4283  let Inst{21} = IsNeg;
4284  let Inst{20-16} = Rs;
4285  let Inst{12-8} = Rt;
4286  let Inst{1-0} = Pd;
4287}
4288
4289def S2_tstbit_i : T_TEST_BIT_IMM<"tstbit", 0b000>;
4290def S2_tstbit_r : T_TEST_BIT_REG<"tstbit", 0>;
4291
4292let AddedComplexity = 20 in { // Complexity greater than cmp reg-imm.
4293  def: Pat<(i1 (setne (and (shl 1, u5ImmPred:$u5), (i32 IntRegs:$Rs)), 0)),
4294           (S2_tstbit_i IntRegs:$Rs, u5ImmPred:$u5)>;
4295  def: Pat<(i1 (setne (and (shl 1, (i32 IntRegs:$Rt)), (i32 IntRegs:$Rs)), 0)),
4296           (S2_tstbit_r IntRegs:$Rs, IntRegs:$Rt)>;
4297  def: Pat<(i1 (trunc (i32 IntRegs:$Rs))),
4298           (S2_tstbit_i IntRegs:$Rs, 0)>;
4299  def: Pat<(i1 (trunc (i64 DoubleRegs:$Rs))),
4300           (S2_tstbit_i (LoReg DoubleRegs:$Rs), 0)>;
4301}
4302
4303let hasSideEffects = 0 in
4304class T_TEST_BITS_IMM<string MnOp, bits<2> MajOp, bit IsNeg>
4305    : SInst<(outs PredRegs:$Pd), (ins IntRegs:$Rs, u6Imm:$u6),
4306            "$Pd = "#MnOp#"($Rs, #$u6)",
4307            [], "", S_2op_tc_2early_SLOT23> {
4308  bits<2> Pd;
4309  bits<5> Rs;
4310  bits<6> u6;
4311  let IClass = 0b1000;
4312  let Inst{27-24} = 0b0101;
4313  let Inst{23-22} = MajOp;
4314  let Inst{21} = IsNeg;
4315  let Inst{20-16} = Rs;
4316  let Inst{13-8} = u6;
4317  let Inst{1-0} = Pd;
4318}
4319
4320let hasSideEffects = 0 in
4321class T_TEST_BITS_REG<string MnOp, bits<2> MajOp, bit IsNeg>
4322    : SInst<(outs PredRegs:$Pd), (ins IntRegs:$Rs, IntRegs:$Rt),
4323            "$Pd = "#MnOp#"($Rs, $Rt)",
4324            [], "", S_3op_tc_2early_SLOT23> {
4325  bits<2> Pd;
4326  bits<5> Rs;
4327  bits<5> Rt;
4328  let IClass = 0b1100;
4329  let Inst{27-24} = 0b0111;
4330  let Inst{23-22} = MajOp;
4331  let Inst{21} = IsNeg;
4332  let Inst{20-16} = Rs;
4333  let Inst{12-8} = Rt;
4334  let Inst{1-0} = Pd;
4335}
4336
4337def C2_bitsclri : T_TEST_BITS_IMM<"bitsclr", 0b10, 0>;
4338def C2_bitsclr  : T_TEST_BITS_REG<"bitsclr", 0b10, 0>;
4339def C2_bitsset  : T_TEST_BITS_REG<"bitsset", 0b01, 0>;
4340
4341let AddedComplexity = 20 in { // Complexity greater than compare reg-imm.
4342  def: Pat<(i1 (seteq (and (i32 IntRegs:$Rs), u6ImmPred:$u6), 0)),
4343           (C2_bitsclri IntRegs:$Rs, u6ImmPred:$u6)>;
4344  def: Pat<(i1 (seteq (and (i32 IntRegs:$Rs), (i32 IntRegs:$Rt)), 0)),
4345           (C2_bitsclr IntRegs:$Rs, IntRegs:$Rt)>;
4346}
4347
4348let AddedComplexity = 10 in   // Complexity greater than compare reg-reg.
4349def: Pat<(i1 (seteq (and (i32 IntRegs:$Rs), (i32 IntRegs:$Rt)), IntRegs:$Rt)),
4350         (C2_bitsset IntRegs:$Rs, IntRegs:$Rt)>;
4351
4352//===----------------------------------------------------------------------===//
4353// STYPE/BIT -
4354//===----------------------------------------------------------------------===//
4355
4356//===----------------------------------------------------------------------===//
4357// STYPE/COMPLEX +
4358//===----------------------------------------------------------------------===//
4359//===----------------------------------------------------------------------===//
4360// STYPE/COMPLEX -
4361//===----------------------------------------------------------------------===//
4362
4363//===----------------------------------------------------------------------===//
4364// XTYPE/PERM +
4365//===----------------------------------------------------------------------===//
4366
4367def: Pat<(or (or (shl (or (shl (i32 (extloadi8 (add (i32 IntRegs:$b), 3))),
4368                               (i32 8)),
4369                          (i32 (zextloadi8 (add (i32 IntRegs:$b), 2)))),
4370                      (i32 16)),
4371                 (shl (i32 (zextloadi8 (add (i32 IntRegs:$b), 1))), (i32 8))),
4372             (zextloadi8 (i32 IntRegs:$b))),
4373         (A2_swiz (L2_loadri_io IntRegs:$b, 0))>;
4374
4375//===----------------------------------------------------------------------===//
4376// XTYPE/PERM -
4377//===----------------------------------------------------------------------===//
4378
4379//===----------------------------------------------------------------------===//
4380// STYPE/PRED +
4381//===----------------------------------------------------------------------===//
4382
4383// Predicate transfer.
4384let hasSideEffects = 0, hasNewValue = 1 in
4385def C2_tfrpr : SInst<(outs IntRegs:$Rd), (ins PredRegs:$Ps),
4386      "$Rd = $Ps", [], "", S_2op_tc_1_SLOT23> {
4387  bits<5> Rd;
4388  bits<2> Ps;
4389
4390  let IClass = 0b1000;
4391  let Inst{27-24} = 0b1001;
4392  let Inst{22} = 0b1;
4393  let Inst{17-16} = Ps;
4394  let Inst{4-0} = Rd;
4395}
4396
4397// Transfer general register to predicate.
4398let hasSideEffects = 0 in
4399def C2_tfrrp: SInst<(outs PredRegs:$Pd), (ins IntRegs:$Rs),
4400      "$Pd = $Rs", [], "", S_2op_tc_2early_SLOT23> {
4401  bits<2> Pd;
4402  bits<5> Rs;
4403
4404  let IClass = 0b1000;
4405  let Inst{27-21} = 0b0101010;
4406  let Inst{20-16} = Rs;
4407  let Inst{1-0} = Pd;
4408}
4409
4410let hasSideEffects = 0, isCodeGenOnly = 1 in
4411def C2_pxfer_map: SInst<(outs PredRegs:$dst), (ins PredRegs:$src),
4412     "$dst = $src">;
4413
4414
4415// Patterns for loads of i1:
4416def: Pat<(i1 (load AddrFI:$fi)),
4417         (C2_tfrrp (L2_loadrub_io AddrFI:$fi, 0))>;
4418def: Pat<(i1 (load (add (i32 IntRegs:$Rs), s32ImmPred:$Off))),
4419         (C2_tfrrp (L2_loadrub_io IntRegs:$Rs, imm:$Off))>;
4420def: Pat<(i1 (load (i32 IntRegs:$Rs))),
4421         (C2_tfrrp (L2_loadrub_io IntRegs:$Rs, 0))>;
4422
4423def I1toI32: OutPatFrag<(ops node:$Rs),
4424                        (C2_muxii (i1 $Rs), 1, 0)>;
4425
4426def I32toI1: OutPatFrag<(ops node:$Rs),
4427                        (i1 (C2_tfrrp (i32 $Rs)))>;
4428
4429defm: Storexm_pat<store, I1, s32ImmPred, I1toI32, S2_storerb_io>;
4430def: Storexm_simple_pat<store, I1, I1toI32, S2_storerb_io>;
4431
4432//===----------------------------------------------------------------------===//
4433// STYPE/PRED -
4434//===----------------------------------------------------------------------===//
4435
4436//===----------------------------------------------------------------------===//
4437// STYPE/SHIFT +
4438//===----------------------------------------------------------------------===//
4439class S_2OpInstImm<string Mnemonic, bits<3>MajOp, bits<3>MinOp,
4440                   Operand Imm, list<dag> pattern = [], bit isRnd = 0>
4441  : SInst<(outs DoubleRegs:$dst), (ins DoubleRegs:$src1, Imm:$src2),
4442           "$dst = "#Mnemonic#"($src1, #$src2)"#!if(isRnd, ":rnd", ""),
4443           pattern> {
4444  bits<5> src1;
4445  bits<5> dst;
4446  let IClass = 0b1000;
4447  let Inst{27-24} = 0;
4448  let Inst{23-21} = MajOp;
4449  let Inst{20-16} = src1;
4450  let Inst{7-5} = MinOp;
4451  let Inst{4-0} = dst;
4452}
4453
4454class S_2OpInstImmI6<string Mnemonic, SDNode OpNode, bits<3>MinOp>
4455  : S_2OpInstImm<Mnemonic, 0b000, MinOp, u6Imm,
4456  [(set (i64 DoubleRegs:$dst), (OpNode (i64 DoubleRegs:$src1),
4457                                        u6ImmPred:$src2))]> {
4458  bits<6> src2;
4459  let Inst{13-8} = src2;
4460}
4461
4462// Shift by immediate.
4463def S2_asr_i_p : S_2OpInstImmI6<"asr", sra, 0b000>;
4464def S2_asl_i_p : S_2OpInstImmI6<"asl", shl, 0b010>;
4465def S2_lsr_i_p : S_2OpInstImmI6<"lsr", srl, 0b001>;
4466
4467// Shift left by small amount and add.
4468let AddedComplexity = 100, hasNewValue = 1, hasSideEffects = 0 in
4469def S2_addasl_rrri: SInst <(outs IntRegs:$Rd),
4470                           (ins IntRegs:$Rt, IntRegs:$Rs, u3Imm:$u3),
4471  "$Rd = addasl($Rt, $Rs, #$u3)" ,
4472  [(set (i32 IntRegs:$Rd), (add (i32 IntRegs:$Rt),
4473                                (shl (i32 IntRegs:$Rs), u3ImmPred:$u3)))],
4474  "", S_3op_tc_2_SLOT23> {
4475    bits<5> Rd;
4476    bits<5> Rt;
4477    bits<5> Rs;
4478    bits<3> u3;
4479
4480    let IClass = 0b1100;
4481
4482    let Inst{27-21} = 0b0100000;
4483    let Inst{20-16} = Rs;
4484    let Inst{13}    = 0b0;
4485    let Inst{12-8}  = Rt;
4486    let Inst{7-5}   = u3;
4487    let Inst{4-0}   = Rd;
4488  }
4489
4490//===----------------------------------------------------------------------===//
4491// STYPE/SHIFT -
4492//===----------------------------------------------------------------------===//
4493
4494//===----------------------------------------------------------------------===//
4495// STYPE/VH +
4496//===----------------------------------------------------------------------===//
4497//===----------------------------------------------------------------------===//
4498// STYPE/VH -
4499//===----------------------------------------------------------------------===//
4500
4501//===----------------------------------------------------------------------===//
4502// STYPE/VW +
4503//===----------------------------------------------------------------------===//
4504//===----------------------------------------------------------------------===//
4505// STYPE/VW -
4506//===----------------------------------------------------------------------===//
4507
4508//===----------------------------------------------------------------------===//
4509// SYSTEM/SUPER +
4510//===----------------------------------------------------------------------===//
4511
4512//===----------------------------------------------------------------------===//
4513// SYSTEM/USER +
4514//===----------------------------------------------------------------------===//
4515def HexagonBARRIER: SDNode<"HexagonISD::BARRIER", SDTNone, [SDNPHasChain]>;
4516
4517let hasSideEffects = 1, isSoloAX = 1 in
4518def Y2_barrier : SYSInst<(outs), (ins),
4519                     "barrier",
4520                     [(HexagonBARRIER)],"",ST_tc_st_SLOT0> {
4521  let Inst{31-28} = 0b1010;
4522  let Inst{27-21} = 0b1000000;
4523}
4524
4525//===----------------------------------------------------------------------===//
4526// SYSTEM/SUPER -
4527//===----------------------------------------------------------------------===//
4528
4529// Generate frameindex addresses.
4530let isMoveImm = 1, isAsCheapAsAMove = 1, isReMaterializable = 1,
4531    isPseudo = 1, isCodeGenOnly = 1, hasSideEffects = 0 in
4532def TFR_FI: ALU32_ri<(outs IntRegs:$Rd), (ins IntRegs:$fi, s32Imm:$Off), "">;
4533
4534//===----------------------------------------------------------------------===//
4535// CRUSER - Type.
4536//===----------------------------------------------------------------------===//
4537// HW loop
4538let isExtendable = 1, isExtentSigned = 1, opExtentBits = 9, opExtentAlign = 2,
4539    opExtendable = 0, hasSideEffects = 0 in
4540class LOOP_iBase<string mnemonic, Operand brOp, bit mustExtend = 0>
4541         : CRInst<(outs), (ins brOp:$offset, u10Imm:$src2),
4542           #mnemonic#"($offset, #$src2)",
4543           [], "" , CR_tc_3x_SLOT3> {
4544    bits<9> offset;
4545    bits<10> src2;
4546
4547    let IClass = 0b0110;
4548
4549    let Inst{27-22} = 0b100100;
4550    let Inst{21} = !if (!eq(mnemonic, "loop0"), 0b0, 0b1);
4551    let Inst{20-16} = src2{9-5};
4552    let Inst{12-8} = offset{8-4};
4553    let Inst{7-5} = src2{4-2};
4554    let Inst{4-3} = offset{3-2};
4555    let Inst{1-0} = src2{1-0};
4556}
4557
4558let isExtendable = 1, isExtentSigned = 1, opExtentBits = 9, opExtentAlign = 2,
4559    opExtendable = 0, hasSideEffects = 0 in
4560class LOOP_rBase<string mnemonic, Operand brOp, bit mustExtend = 0>
4561         : CRInst<(outs), (ins brOp:$offset, IntRegs:$src2),
4562           #mnemonic#"($offset, $src2)",
4563           [], "" ,CR_tc_3x_SLOT3> {
4564    bits<9> offset;
4565    bits<5> src2;
4566
4567    let IClass = 0b0110;
4568
4569    let Inst{27-22} = 0b000000;
4570    let Inst{21} = !if (!eq(mnemonic, "loop0"), 0b0, 0b1);
4571    let Inst{20-16} = src2;
4572    let Inst{12-8} = offset{8-4};
4573    let Inst{4-3} = offset{3-2};
4574  }
4575
4576multiclass LOOP_ri<string mnemonic> {
4577  def i : LOOP_iBase<mnemonic, brtarget>;
4578  def r : LOOP_rBase<mnemonic, brtarget>;
4579
4580  let isCodeGenOnly = 1, isExtended = 1, opExtendable = 0 in {
4581    def iext: LOOP_iBase<mnemonic, brtargetExt, 1>;
4582    def rext: LOOP_rBase<mnemonic, brtargetExt, 1>;
4583  }
4584}
4585
4586
4587let Defs = [SA0, LC0, USR] in
4588defm J2_loop0 : LOOP_ri<"loop0">;
4589
4590// Interestingly only loop0's appear to set usr.lpcfg
4591let Defs = [SA1, LC1] in
4592defm J2_loop1 : LOOP_ri<"loop1">;
4593
4594let isBranch = 1, isTerminator = 1, hasSideEffects = 0,
4595    Defs = [PC, LC0], Uses = [SA0, LC0] in {
4596def ENDLOOP0 : Endloop<(outs), (ins brtarget:$offset),
4597                       ":endloop0",
4598                       []>;
4599}
4600
4601let isBranch = 1, isTerminator = 1, hasSideEffects = 0,
4602    Defs = [PC, LC1], Uses = [SA1, LC1] in {
4603def ENDLOOP1 : Endloop<(outs), (ins brtarget:$offset),
4604                       ":endloop1",
4605                       []>;
4606}
4607
4608// Pipelined loop instructions, sp[123]loop0
4609let Defs = [LC0, SA0, P3, USR], hasSideEffects = 0,
4610    isExtentSigned = 1, isExtendable = 1, opExtentBits = 9, opExtentAlign = 2,
4611    opExtendable = 0, isPredicateLate = 1 in
4612class SPLOOP_iBase<string SP, bits<2> op>
4613  : CRInst <(outs), (ins brtarget:$r7_2, u10Imm:$U10),
4614  "p3 = sp"#SP#"loop0($r7_2, #$U10)" > {
4615    bits<9> r7_2;
4616    bits<10> U10;
4617
4618    let IClass = 0b0110;
4619
4620    let Inst{22-21} = op;
4621    let Inst{27-23} = 0b10011;
4622    let Inst{20-16} = U10{9-5};
4623    let Inst{12-8} = r7_2{8-4};
4624    let Inst{7-5} = U10{4-2};
4625    let Inst{4-3} = r7_2{3-2};
4626    let Inst{1-0} = U10{1-0};
4627  }
4628
4629let Defs = [LC0, SA0, P3, USR], hasSideEffects = 0,
4630    isExtentSigned = 1, isExtendable = 1, opExtentBits = 9, opExtentAlign = 2,
4631    opExtendable = 0, isPredicateLate = 1 in
4632class SPLOOP_rBase<string SP, bits<2> op>
4633  : CRInst <(outs), (ins brtarget:$r7_2, IntRegs:$Rs),
4634  "p3 = sp"#SP#"loop0($r7_2, $Rs)" > {
4635    bits<9> r7_2;
4636    bits<5> Rs;
4637
4638    let IClass = 0b0110;
4639
4640    let Inst{22-21} = op;
4641    let Inst{27-23} = 0b00001;
4642    let Inst{20-16} = Rs;
4643    let Inst{12-8} = r7_2{8-4};
4644    let Inst{4-3} = r7_2{3-2};
4645  }
4646
4647multiclass SPLOOP_ri<string mnemonic, bits<2> op> {
4648  def i : SPLOOP_iBase<mnemonic, op>;
4649  def r : SPLOOP_rBase<mnemonic, op>;
4650}
4651
4652defm J2_ploop1s : SPLOOP_ri<"1", 0b01>;
4653defm J2_ploop2s : SPLOOP_ri<"2", 0b10>;
4654defm J2_ploop3s : SPLOOP_ri<"3", 0b11>;
4655
4656// if (Rs[!>=<]=#0) jump:[t/nt]
4657let Defs = [PC], isPredicated = 1, isBranch = 1, hasSideEffects = 0,
4658    hasSideEffects = 0 in
4659class J2_jump_0_Base<string compare, bit isTak, bits<2> op>
4660  : CRInst <(outs), (ins IntRegs:$Rs, brtarget:$r13_2),
4661  "if ($Rs"#compare#"#0) jump"#!if(isTak, ":t", ":nt")#" $r13_2" > {
4662    bits<5> Rs;
4663    bits<15> r13_2;
4664
4665    let IClass = 0b0110;
4666
4667    let Inst{27-24} = 0b0001;
4668    let Inst{23-22} = op;
4669    let Inst{12} = isTak;
4670    let Inst{21} = r13_2{14};
4671    let Inst{20-16} = Rs;
4672    let Inst{11-1} = r13_2{12-2};
4673    let Inst{13} = r13_2{13};
4674  }
4675
4676multiclass J2_jump_compare_0<string compare, bits<2> op> {
4677  def NAME    : J2_jump_0_Base<compare, 0, op>;
4678  def NAME#pt : J2_jump_0_Base<compare, 1, op>;
4679}
4680
4681defm J2_jumprz    : J2_jump_compare_0<"!=", 0b00>;
4682defm J2_jumprgtez : J2_jump_compare_0<">=", 0b01>;
4683defm J2_jumprnz   : J2_jump_compare_0<"==", 0b10>;
4684defm J2_jumprltez : J2_jump_compare_0<"<=", 0b11>;
4685
4686// Transfer to/from Control/GPR Guest/GPR
4687let hasSideEffects = 0 in
4688class TFR_CR_RS_base<RegisterClass CTRC, RegisterClass RC, bit isDouble>
4689  : CRInst <(outs CTRC:$dst), (ins RC:$src),
4690  "$dst = $src", [], "", CR_tc_3x_SLOT3> {
4691    bits<5> dst;
4692    bits<5> src;
4693
4694    let IClass = 0b0110;
4695
4696    let Inst{27-25} = 0b001;
4697    let Inst{24} = isDouble;
4698    let Inst{23-21} = 0b001;
4699    let Inst{20-16} = src;
4700    let Inst{4-0} = dst;
4701  }
4702
4703def A2_tfrrcr : TFR_CR_RS_base<CtrRegs, IntRegs, 0b0>;
4704def A4_tfrpcp : TFR_CR_RS_base<CtrRegs64, DoubleRegs, 0b1>;
4705def : InstAlias<"m0 = $Rs", (A2_tfrrcr C6, IntRegs:$Rs)>;
4706def : InstAlias<"m1 = $Rs", (A2_tfrrcr C7, IntRegs:$Rs)>;
4707
4708let hasSideEffects = 0 in
4709class TFR_RD_CR_base<RegisterClass RC, RegisterClass CTRC, bit isSingle>
4710  : CRInst <(outs RC:$dst), (ins CTRC:$src),
4711  "$dst = $src", [], "", CR_tc_3x_SLOT3> {
4712    bits<5> dst;
4713    bits<5> src;
4714
4715    let IClass = 0b0110;
4716
4717    let Inst{27-26} = 0b10;
4718    let Inst{25} = isSingle;
4719    let Inst{24-21} = 0b0000;
4720    let Inst{20-16} = src;
4721    let Inst{4-0} = dst;
4722  }
4723
4724let hasNewValue = 1, opNewValue = 0 in
4725def A2_tfrcrr : TFR_RD_CR_base<IntRegs, CtrRegs, 1>;
4726def A4_tfrcpp : TFR_RD_CR_base<DoubleRegs, CtrRegs64, 0>;
4727def : InstAlias<"$Rd = m0", (A2_tfrcrr IntRegs:$Rd, C6)>;
4728def : InstAlias<"$Rd = m1", (A2_tfrcrr IntRegs:$Rd, C7)>;
4729
4730// Y4_trace: Send value to etm trace.
4731let isSoloAX = 1, hasSideEffects = 0 in
4732def Y4_trace: CRInst <(outs), (ins IntRegs:$Rs),
4733  "trace($Rs)"> {
4734    bits<5> Rs;
4735
4736    let IClass = 0b0110;
4737    let Inst{27-21} = 0b0010010;
4738    let Inst{20-16} = Rs;
4739  }
4740
4741// Support for generating global address.
4742// Taken from X86InstrInfo.td.
4743def SDTHexagonCONST32 : SDTypeProfile<1, 1, [SDTCisVT<0, i32>,
4744                                             SDTCisVT<1, i32>,
4745                                             SDTCisPtrTy<0>]>;
4746def HexagonCONST32    : SDNode<"HexagonISD::CONST32",    SDTHexagonCONST32>;
4747def HexagonCONST32_GP : SDNode<"HexagonISD::CONST32_GP", SDTHexagonCONST32>;
4748
4749// HI/LO Instructions
4750let isReMaterializable = 1, isMoveImm = 1, hasSideEffects = 0,
4751    hasNewValue = 1, opNewValue = 0 in
4752class REG_IMMED<string RegHalf, string Op, bit Rs, bits<3> MajOp, bit MinOp>
4753  : ALU32_ri<(outs IntRegs:$dst),
4754              (ins i32imm:$imm_value),
4755              "$dst"#RegHalf#" = #"#Op#"($imm_value)", []> {
4756    bits<5> dst;
4757    bits<32> imm_value;
4758    let IClass = 0b0111;
4759
4760    let Inst{27} = Rs;
4761    let Inst{26-24} = MajOp;
4762    let Inst{21} = MinOp;
4763    let Inst{20-16} = dst;
4764    let Inst{23-22} = !if (!eq(Op, "LO"), imm_value{15-14}, imm_value{31-30});
4765    let Inst{13-0} = !if (!eq(Op, "LO"), imm_value{13-0}, imm_value{29-16});
4766}
4767
4768let isAsmParserOnly = 1 in {
4769  def LO : REG_IMMED<".l", "LO", 0b0, 0b001, 0b1>;
4770  def LO_H : REG_IMMED<".l", "HI", 0b0, 0b001, 0b1>;
4771  def HI : REG_IMMED<".h", "HI", 0b0, 0b010, 0b1>;
4772  def HI_L : REG_IMMED<".h", "LO", 0b0, 0b010, 0b1>;
4773}
4774
4775let  isMoveImm = 1, isCodeGenOnly = 1 in
4776def LO_PIC : ALU32_ri<(outs IntRegs:$dst), (ins bblabel:$label),
4777             "$dst.l = #LO($label@GOTREL)",
4778             []>;
4779
4780let  isMoveImm = 1, isCodeGenOnly = 1 in
4781def HI_PIC : ALU32_ri<(outs IntRegs:$dst), (ins bblabel:$label),
4782             "$dst.h = #HI($label@GOTREL)",
4783             []>;
4784
4785let isReMaterializable = 1, isMoveImm = 1,
4786    isCodeGenOnly = 1, hasSideEffects = 0 in
4787def HI_GOT : ALU32_ri<(outs IntRegs:$dst), (ins globaladdress:$global),
4788             "$dst.h = #HI($global@GOT)",
4789             []>;
4790
4791let isReMaterializable = 1, isMoveImm = 1,
4792    isCodeGenOnly = 1, hasSideEffects = 0 in
4793def LO_GOT : ALU32_ri<(outs IntRegs:$dst), (ins globaladdress:$global),
4794             "$dst.l = #LO($global@GOT)",
4795             []>;
4796
4797let isReMaterializable = 1, isMoveImm = 1,
4798    isCodeGenOnly = 1, hasSideEffects = 0 in
4799def HI_GOTREL : ALU32_ri<(outs IntRegs:$dst), (ins globaladdress:$global),
4800                "$dst.h = #HI($global@GOTREL)",
4801                []>;
4802
4803let isReMaterializable = 1, isMoveImm = 1,
4804    isCodeGenOnly = 1, hasSideEffects = 0 in
4805def LO_GOTREL : ALU32_ri<(outs IntRegs:$dst), (ins globaladdress:$global),
4806               "$dst.l = #LO($global@GOTREL)",
4807               []>;
4808
4809// This pattern is incorrect. When we add small data, we should change
4810// this pattern to use memw(#foo).
4811// This is for sdata.
4812let isMoveImm = 1, isAsmParserOnly = 1 in
4813def CONST32 : CONSTLDInst<(outs IntRegs:$dst), (ins globaladdress:$global),
4814              "$dst = CONST32(#$global)",
4815              [(set (i32 IntRegs:$dst),
4816                    (load (HexagonCONST32 tglobaltlsaddr:$global)))]>;
4817
4818let isReMaterializable = 1, isMoveImm = 1 in
4819def CONST32_set_jt : CONSTLDInst<(outs IntRegs:$dst), (ins jumptablebase:$jt),
4820                     "$dst = CONST32(#$jt)",
4821                     [(set (i32 IntRegs:$dst),
4822                           (HexagonCONST32 tjumptable:$jt))]>;
4823
4824let isReMaterializable = 1, isMoveImm = 1, isAsmParserOnly = 1 in
4825def CONST32_Int_Real : CONSTLDInst<(outs IntRegs:$dst), (ins i32imm:$global),
4826                       "$dst = CONST32(#$global)",
4827                       [(set (i32 IntRegs:$dst), imm:$global) ]>;
4828
4829// Map TLS addressses to a CONST32 instruction
4830def: Pat<(HexagonCONST32 tglobaltlsaddr:$addr), (A2_tfrsi s16Ext:$addr)>;
4831def: Pat<(HexagonCONST32 bbl:$label), (A2_tfrsi s16Ext:$label)>;
4832
4833let isReMaterializable = 1, isMoveImm = 1, isAsmParserOnly = 1 in
4834def CONST32_Label : LDInst2<(outs IntRegs:$dst), (ins bblabel:$label),
4835                    "$dst = CONST32($label)",
4836                    [(set (i32 IntRegs:$dst), (HexagonCONST32 bbl:$label))]>;
4837
4838let isReMaterializable = 1, isMoveImm = 1, isAsmParserOnly = 1 in
4839def CONST64_Int_Real : CONSTLDInst<(outs DoubleRegs:$dst), (ins i64imm:$global),
4840                       "$dst = CONST64(#$global)",
4841                       [(set (i64 DoubleRegs:$dst), imm:$global)]>;
4842
4843let hasSideEffects = 0, isReMaterializable = 1, isPseudo = 1,
4844    isCodeGenOnly = 1 in
4845def TFR_PdTrue : SInst<(outs PredRegs:$dst), (ins), "",
4846                 [(set (i1 PredRegs:$dst), 1)]>;
4847
4848let hasSideEffects = 0, isReMaterializable = 1, isPseudo = 1,
4849    isCodeGenOnly = 1 in
4850def TFR_PdFalse : SInst<(outs PredRegs:$dst), (ins), "$dst = xor($dst, $dst)",
4851                  [(set (i1 PredRegs:$dst), 0)]>;
4852
4853// Pseudo instructions.
4854def SDT_SPCallSeqStart : SDCallSeqStart<[ SDTCisVT<0, i32> ]>;
4855def SDT_SPCallSeqEnd   : SDCallSeqEnd<[ SDTCisVT<0, i32>,
4856                                        SDTCisVT<1, i32> ]>;
4857
4858def callseq_start : SDNode<"ISD::CALLSEQ_START", SDT_SPCallSeqStart,
4859                    [SDNPHasChain, SDNPOutGlue]>;
4860def callseq_end   : SDNode<"ISD::CALLSEQ_END",   SDT_SPCallSeqEnd,
4861                    [SDNPHasChain, SDNPOptInGlue, SDNPOutGlue]>;
4862
4863def SDT_SPCall  : SDTypeProfile<0, 1, [SDTCisVT<0, i32>]>;
4864
4865// For tailcalls a HexagonTCRet SDNode has 3 SDNode Properties - a chain,
4866// Optional Flag and Variable Arguments.
4867// Its 1 Operand has pointer type.
4868def HexagonTCRet : SDNode<"HexagonISD::TC_RETURN", SDT_SPCall,
4869                          [SDNPHasChain,  SDNPOptInGlue, SDNPVariadic]>;
4870
4871let Defs = [R29, R30], Uses = [R31, R30, R29], isPseudo = 1 in
4872def ADJCALLSTACKDOWN : Pseudo<(outs), (ins i32imm:$amt),
4873                              ".error \"should not emit\" ",
4874                              [(callseq_start timm:$amt)]>;
4875
4876let Defs = [R29, R30, R31], Uses = [R29], isPseudo = 1 in
4877def ADJCALLSTACKUP : Pseudo<(outs), (ins i32imm:$amt1, i32imm:$amt2),
4878                             ".error \"should not emit\" ",
4879                             [(callseq_end timm:$amt1, timm:$amt2)]>;
4880
4881// Call subroutine indirectly.
4882let Defs = VolatileV3.Regs in
4883def J2_callr : JUMPR_MISC_CALLR<0, 1>;
4884
4885// Indirect tail-call.
4886let isPseudo = 1, isCall = 1, isReturn = 1, isBarrier = 1, isPredicable = 0,
4887    isTerminator = 1, isCodeGenOnly = 1 in
4888def TCRETURNr : T_JMPr;
4889
4890// Direct tail-calls.
4891let isPseudo = 1, isCall = 1, isReturn = 1, isBarrier = 1, isPredicable = 0,
4892    isTerminator = 1, isCodeGenOnly = 1 in
4893def TCRETURNi : JInst<(outs), (ins calltarget:$dst), "", []>;
4894
4895//Tail calls.
4896def: Pat<(HexagonTCRet tglobaladdr:$dst),
4897         (TCRETURNi tglobaladdr:$dst)>;
4898def: Pat<(HexagonTCRet texternalsym:$dst),
4899         (TCRETURNi texternalsym:$dst)>;
4900def: Pat<(HexagonTCRet (i32 IntRegs:$dst)),
4901         (TCRETURNr IntRegs:$dst)>;
4902
4903// Map from r0 = and(r1, 65535) to r0 = zxth(r1)
4904def: Pat<(and (i32 IntRegs:$src1), 65535),
4905         (A2_zxth IntRegs:$src1)>;
4906
4907// Map from r0 = and(r1, 255) to r0 = zxtb(r1).
4908def: Pat<(and (i32 IntRegs:$src1), 255),
4909         (A2_zxtb IntRegs:$src1)>;
4910
4911// Map Add(p1, true) to p1 = not(p1).
4912//     Add(p1, false) should never be produced,
4913//     if it does, it got to be mapped to NOOP.
4914def: Pat<(add (i1 PredRegs:$src1), -1),
4915         (C2_not PredRegs:$src1)>;
4916
4917// Map from p0 = pnot(p0); r0 = mux(p0, #i, #j) => r0 = mux(p0, #j, #i).
4918def: Pat<(select (not (i1 PredRegs:$src1)), s8ImmPred:$src2, s32ImmPred:$src3),
4919         (C2_muxii PredRegs:$src1, s32ImmPred:$src3, s8ImmPred:$src2)>;
4920
4921// Map from p0 = pnot(p0); r0 = select(p0, #i, r1)
4922// => r0 = C2_muxir(p0, r1, #i)
4923def: Pat<(select (not (i1 PredRegs:$src1)), s32ImmPred:$src2,
4924                 (i32 IntRegs:$src3)),
4925         (C2_muxir PredRegs:$src1, IntRegs:$src3, s32ImmPred:$src2)>;
4926
4927// Map from p0 = pnot(p0); r0 = mux(p0, r1, #i)
4928// => r0 = C2_muxri (p0, #i, r1)
4929def: Pat<(select (not (i1 PredRegs:$src1)), IntRegs:$src2, s32ImmPred:$src3),
4930         (C2_muxri PredRegs:$src1, s32ImmPred:$src3, IntRegs:$src2)>;
4931
4932// Map from p0 = pnot(p0); if (p0) jump => if (!p0) jump.
4933def: Pat<(brcond (not (i1 PredRegs:$src1)), bb:$offset),
4934         (J2_jumpf PredRegs:$src1, bb:$offset)>;
4935
4936// Map from Rdd = sign_extend_inreg(Rss, i32) -> Rdd = A2_sxtw(Rss.lo).
4937def: Pat<(i64 (sext_inreg (i64 DoubleRegs:$src1), i32)),
4938         (A2_sxtw (LoReg DoubleRegs:$src1))>;
4939
4940// Map from Rdd = sign_extend_inreg(Rss, i16) -> Rdd = A2_sxtw(A2_sxth(Rss.lo)).
4941def: Pat<(i64 (sext_inreg (i64 DoubleRegs:$src1), i16)),
4942         (A2_sxtw (A2_sxth (LoReg DoubleRegs:$src1)))>;
4943
4944// Map from Rdd = sign_extend_inreg(Rss, i8) -> Rdd = A2_sxtw(A2_sxtb(Rss.lo)).
4945def: Pat<(i64 (sext_inreg (i64 DoubleRegs:$src1), i8)),
4946         (A2_sxtw (A2_sxtb (LoReg DoubleRegs:$src1)))>;
4947
4948// We want to prevent emitting pnot's as much as possible.
4949// Map brcond with an unsupported setcc to a J2_jumpf.
4950def : Pat <(brcond (i1 (setne (i32 IntRegs:$src1), (i32 IntRegs:$src2))),
4951                        bb:$offset),
4952      (J2_jumpf (C2_cmpeq (i32 IntRegs:$src1), (i32 IntRegs:$src2)),
4953                bb:$offset)>;
4954
4955def : Pat <(brcond (i1 (setne (i32 IntRegs:$src1), s10ImmPred:$src2)),
4956                        bb:$offset),
4957      (J2_jumpf (C2_cmpeqi (i32 IntRegs:$src1), s10ImmPred:$src2), bb:$offset)>;
4958
4959def: Pat<(brcond (i1 (setne (i1 PredRegs:$src1), (i1 -1))), bb:$offset),
4960         (J2_jumpf PredRegs:$src1, bb:$offset)>;
4961
4962def: Pat<(brcond (i1 (setne (i1 PredRegs:$src1), (i1 0))), bb:$offset),
4963         (J2_jumpt PredRegs:$src1, bb:$offset)>;
4964
4965// cmp.lt(Rs, Imm) -> !cmp.ge(Rs, Imm) -> !cmp.gt(Rs, Imm-1)
4966def: Pat<(brcond (i1 (setlt (i32 IntRegs:$src1), s8ImmPred:$src2)), bb:$offset),
4967        (J2_jumpf (C2_cmpgti IntRegs:$src1, (DEC_CONST_SIGNED s8ImmPred:$src2)),
4968                  bb:$offset)>;
4969
4970// Map from a 64-bit select to an emulated 64-bit mux.
4971// Hexagon does not support 64-bit MUXes; so emulate with combines.
4972def: Pat<(select (i1 PredRegs:$src1), (i64 DoubleRegs:$src2),
4973                 (i64 DoubleRegs:$src3)),
4974         (A2_combinew (C2_mux PredRegs:$src1, (HiReg DoubleRegs:$src2),
4975                                              (HiReg DoubleRegs:$src3)),
4976                      (C2_mux PredRegs:$src1, (LoReg DoubleRegs:$src2),
4977                                              (LoReg DoubleRegs:$src3)))>;
4978
4979// Map from a 1-bit select to logical ops.
4980// From LegalizeDAG.cpp: (B1 ? B2 : B3) <=> (B1 & B2)|(!B1&B3).
4981def: Pat<(select (i1 PredRegs:$src1), (i1 PredRegs:$src2), (i1 PredRegs:$src3)),
4982         (C2_or (C2_and PredRegs:$src1, PredRegs:$src2),
4983                (C2_and (C2_not PredRegs:$src1), PredRegs:$src3))>;
4984
4985// Map for truncating from 64 immediates to 32 bit immediates.
4986def: Pat<(i32 (trunc (i64 DoubleRegs:$src))),
4987         (LoReg DoubleRegs:$src)>;
4988
4989// Map for truncating from i64 immediates to i1 bit immediates.
4990def: Pat<(i1 (trunc (i64 DoubleRegs:$src))),
4991         (C2_tfrrp (LoReg DoubleRegs:$src))>;
4992
4993// rs <= rt -> !(rs > rt).
4994let AddedComplexity = 30 in
4995def: Pat<(i1 (setle (i32 IntRegs:$src1), s32ImmPred:$src2)),
4996         (C2_not (C2_cmpgti IntRegs:$src1, s32ImmPred:$src2))>;
4997
4998// rs <= rt -> !(rs > rt).
4999def : Pat<(i1 (setle (i32 IntRegs:$src1), (i32 IntRegs:$src2))),
5000      (i1 (C2_not (C2_cmpgt (i32 IntRegs:$src1), (i32 IntRegs:$src2))))>;
5001
5002// Rss <= Rtt -> !(Rss > Rtt).
5003def: Pat<(i1 (setle (i64 DoubleRegs:$src1), (i64 DoubleRegs:$src2))),
5004         (C2_not (C2_cmpgtp DoubleRegs:$src1, DoubleRegs:$src2))>;
5005
5006// Map cmpne -> cmpeq.
5007// Hexagon_TODO: We should improve on this.
5008// rs != rt -> !(rs == rt).
5009let AddedComplexity = 30 in
5010def: Pat<(i1 (setne (i32 IntRegs:$src1), s32ImmPred:$src2)),
5011         (C2_not (C2_cmpeqi IntRegs:$src1, s32ImmPred:$src2))>;
5012
5013// Convert setne back to xor for hexagon since we compute w/ pred registers.
5014def: Pat<(i1 (setne (i1 PredRegs:$src1), (i1 PredRegs:$src2))),
5015         (C2_xor PredRegs:$src1, PredRegs:$src2)>;
5016
5017// Map cmpne(Rss) -> !cmpew(Rss).
5018// rs != rt -> !(rs == rt).
5019def: Pat<(i1 (setne (i64 DoubleRegs:$src1), (i64 DoubleRegs:$src2))),
5020         (C2_not (C2_cmpeqp DoubleRegs:$src1, DoubleRegs:$src2))>;
5021
5022// Map cmpge(Rs, Rt) -> !(cmpgt(Rs, Rt).
5023// rs >= rt -> !(rt > rs).
5024def : Pat <(i1 (setge (i32 IntRegs:$src1), (i32 IntRegs:$src2))),
5025      (i1 (C2_not (i1 (C2_cmpgt (i32 IntRegs:$src2), (i32 IntRegs:$src1)))))>;
5026
5027// cmpge(Rs, Imm) -> cmpgt(Rs, Imm-1)
5028let AddedComplexity = 30 in
5029def: Pat<(i1 (setge (i32 IntRegs:$src1), s32ImmPred:$src2)),
5030         (C2_cmpgti IntRegs:$src1, (DEC_CONST_SIGNED s32ImmPred:$src2))>;
5031
5032// Map cmpge(Rss, Rtt) -> !cmpgt(Rtt, Rss).
5033// rss >= rtt -> !(rtt > rss).
5034def: Pat<(i1 (setge (i64 DoubleRegs:$src1), (i64 DoubleRegs:$src2))),
5035         (C2_not (C2_cmpgtp DoubleRegs:$src2, DoubleRegs:$src1))>;
5036
5037// Map cmplt(Rs, Imm) -> !cmpge(Rs, Imm).
5038// !cmpge(Rs, Imm) -> !cmpgt(Rs, Imm-1).
5039// rs < rt -> !(rs >= rt).
5040let AddedComplexity = 30 in
5041def: Pat<(i1 (setlt (i32 IntRegs:$src1), s32ImmPred:$src2)),
5042         (C2_not (C2_cmpgti IntRegs:$src1,
5043                            (DEC_CONST_SIGNED s32ImmPred:$src2)))>;
5044
5045// Generate cmpgeu(Rs, #0) -> cmpeq(Rs, Rs)
5046def: Pat<(i1 (setuge (i32 IntRegs:$src1), 0)),
5047         (C2_cmpeq IntRegs:$src1, IntRegs:$src1)>;
5048
5049// Generate cmpgeu(Rs, #u8) -> cmpgtu(Rs, #u8 -1)
5050def: Pat<(i1 (setuge (i32 IntRegs:$src1), u32ImmPred:$src2)),
5051         (C2_cmpgtui IntRegs:$src1, (DEC_CONST_UNSIGNED u32ImmPred:$src2))>;
5052
5053// Generate cmpgtu(Rs, #u9)
5054def: Pat<(i1 (setugt (i32 IntRegs:$src1), u32ImmPred:$src2)),
5055         (C2_cmpgtui IntRegs:$src1, u32ImmPred:$src2)>;
5056
5057// Map from Rs >= Rt -> !(Rt > Rs).
5058// rs >= rt -> !(rt > rs).
5059def: Pat<(i1 (setuge (i64 DoubleRegs:$src1), (i64 DoubleRegs:$src2))),
5060         (C2_not (C2_cmpgtup DoubleRegs:$src2, DoubleRegs:$src1))>;
5061
5062// Map from cmpleu(Rss, Rtt) -> !cmpgtu(Rss, Rtt-1).
5063// Map from (Rs <= Rt) -> !(Rs > Rt).
5064def: Pat<(i1 (setule (i64 DoubleRegs:$src1), (i64 DoubleRegs:$src2))),
5065         (C2_not (C2_cmpgtup DoubleRegs:$src1, DoubleRegs:$src2))>;
5066
5067// Sign extends.
5068// i1 -> i32
5069def: Pat<(i32 (sext (i1 PredRegs:$src1))),
5070         (C2_muxii PredRegs:$src1, -1, 0)>;
5071
5072// i1 -> i64
5073def: Pat<(i64 (sext (i1 PredRegs:$src1))),
5074         (A2_combinew (A2_tfrsi -1), (C2_muxii PredRegs:$src1, -1, 0))>;
5075
5076// Zero extends.
5077// i1 -> i32
5078def: Pat<(i32 (zext (i1 PredRegs:$src1))),
5079         (C2_muxii PredRegs:$src1, 1, 0)>;
5080
5081// Map from Rs = Pd to Pd = mux(Pd, #1, #0)
5082def: Pat<(i32 (anyext (i1 PredRegs:$src1))),
5083         (C2_muxii PredRegs:$src1, 1, 0)>;
5084
5085// Map from Rss = Pd to Rdd = sxtw (mux(Pd, #1, #0))
5086def: Pat<(i64 (anyext (i1 PredRegs:$src1))),
5087         (A2_sxtw (C2_muxii PredRegs:$src1, 1, 0))>;
5088
5089// Multiply 64-bit unsigned and use upper result.
5090def : Pat <(mulhu (i64 DoubleRegs:$src1), (i64 DoubleRegs:$src2)),
5091  (A2_addp
5092    (M2_dpmpyuu_acc_s0
5093      (S2_lsr_i_p
5094        (A2_addp
5095          (M2_dpmpyuu_acc_s0
5096            (S2_lsr_i_p (M2_dpmpyuu_s0 (LoReg $src1), (LoReg $src2)), 32),
5097            (HiReg $src1),
5098            (LoReg $src2)),
5099          (A2_combinew (A2_tfrsi 0),
5100                       (LoReg (M2_dpmpyuu_s0 (LoReg $src1), (HiReg $src2))))),
5101        32),
5102      (HiReg $src1),
5103      (HiReg $src2)),
5104    (S2_lsr_i_p (M2_dpmpyuu_s0 (LoReg $src1), (HiReg $src2)), 32)
5105)>;
5106
5107// Hexagon specific ISD nodes.
5108def SDTHexagonADJDYNALLOC : SDTypeProfile<1, 2, [SDTCisVT<0, i32>,
5109                                                 SDTCisVT<1, i32>]>;
5110def SDTHexagonARGEXTEND   : SDTypeProfile<1, 1, [SDTCisVT<0, i32>]>;
5111
5112def Hexagon_ADJDYNALLOC : SDNode<"HexagonISD::ADJDYNALLOC",
5113                                  SDTHexagonADJDYNALLOC>;
5114def Hexagon_ARGEXTEND   : SDNode<"HexagonISD::ARGEXTEND", SDTHexagonARGEXTEND>;
5115
5116// Needed to tag these instructions for stack layout.
5117let isCodeGenOnly = 1, usesCustomInserter = 1 in
5118def ADJDYNALLOC : T_Addri<s6Imm>;
5119
5120def: Pat<(Hexagon_ADJDYNALLOC I32:$Rs, s16ImmPred:$s16),
5121         (ADJDYNALLOC I32:$Rs, imm:$s16)>;
5122
5123let isCodeGenOnly = 1 in
5124def ARGEXTEND : ALU32_rr <(outs IntRegs:$dst), (ins IntRegs:$src1),
5125                "$dst = $src1",
5126                [(set (i32 IntRegs:$dst),
5127                      (Hexagon_ARGEXTEND (i32 IntRegs:$src1)))]>;
5128
5129let AddedComplexity = 100 in
5130def: Pat<(i32 (sext_inreg (Hexagon_ARGEXTEND (i32 IntRegs:$src1)), i16)),
5131         (i32 IntRegs:$src1)>;
5132
5133def HexagonJT:     SDNode<"HexagonISD::JT", SDTIntUnaryOp>;
5134def HexagonCP:     SDNode<"HexagonISD::CP", SDTIntUnaryOp>;
5135
5136def: Pat<(HexagonJT tjumptable:$dst),
5137         (CONST32_set_jt tjumptable:$dst)>;
5138def: Pat<(HexagonCP tconstpool :$dst),
5139         (CONST32_set_jt tconstpool:$dst)>;
5140
5141// XTYPE/SHIFT
5142//
5143//===----------------------------------------------------------------------===//
5144// Template Class
5145// Shift by immediate/register and accumulate/logical
5146//===----------------------------------------------------------------------===//
5147
5148// Rx[+-&|]=asr(Rs,#u5)
5149// Rx[+-&|^]=lsr(Rs,#u5)
5150// Rx[+-&|^]=asl(Rs,#u5)
5151
5152let hasNewValue = 1, opNewValue = 0 in
5153class T_shift_imm_acc_r <string opc1, string opc2, SDNode OpNode1,
5154                         SDNode OpNode2, bits<3> majOp, bits<2> minOp>
5155  : SInst_acc<(outs IntRegs:$Rx),
5156              (ins IntRegs:$src1, IntRegs:$Rs, u5Imm:$u5),
5157  "$Rx "#opc2#opc1#"($Rs, #$u5)",
5158  [(set (i32 IntRegs:$Rx),
5159         (OpNode2 (i32 IntRegs:$src1),
5160                  (OpNode1 (i32 IntRegs:$Rs), u5ImmPred:$u5)))],
5161  "$src1 = $Rx", S_2op_tc_2_SLOT23> {
5162    bits<5> Rx;
5163    bits<5> Rs;
5164    bits<5> u5;
5165
5166    let IClass = 0b1000;
5167
5168    let Inst{27-24} = 0b1110;
5169    let Inst{23-22} = majOp{2-1};
5170    let Inst{13} = 0b0;
5171    let Inst{7} = majOp{0};
5172    let Inst{6-5} = minOp;
5173    let Inst{4-0} = Rx;
5174    let Inst{20-16} = Rs;
5175    let Inst{12-8} = u5;
5176  }
5177
5178// Rx[+-&|]=asr(Rs,Rt)
5179// Rx[+-&|^]=lsr(Rs,Rt)
5180// Rx[+-&|^]=asl(Rs,Rt)
5181
5182let hasNewValue = 1, opNewValue = 0 in
5183class T_shift_reg_acc_r <string opc1, string opc2, SDNode OpNode1,
5184                         SDNode OpNode2, bits<2> majOp, bits<2> minOp>
5185  : SInst_acc<(outs IntRegs:$Rx),
5186              (ins IntRegs:$src1, IntRegs:$Rs, IntRegs:$Rt),
5187  "$Rx "#opc2#opc1#"($Rs, $Rt)",
5188  [(set (i32 IntRegs:$Rx),
5189         (OpNode2 (i32 IntRegs:$src1),
5190                  (OpNode1 (i32 IntRegs:$Rs), (i32 IntRegs:$Rt))))],
5191  "$src1 = $Rx", S_3op_tc_2_SLOT23 > {
5192    bits<5> Rx;
5193    bits<5> Rs;
5194    bits<5> Rt;
5195
5196    let IClass = 0b1100;
5197
5198    let Inst{27-24} = 0b1100;
5199    let Inst{23-22} = majOp;
5200    let Inst{7-6} = minOp;
5201    let Inst{4-0} = Rx;
5202    let Inst{20-16} = Rs;
5203    let Inst{12-8} = Rt;
5204  }
5205
5206// Rxx[+-&|]=asr(Rss,#u6)
5207// Rxx[+-&|^]=lsr(Rss,#u6)
5208// Rxx[+-&|^]=asl(Rss,#u6)
5209
5210class T_shift_imm_acc_p <string opc1, string opc2, SDNode OpNode1,
5211                         SDNode OpNode2, bits<3> majOp, bits<2> minOp>
5212  : SInst_acc<(outs DoubleRegs:$Rxx),
5213              (ins DoubleRegs:$src1, DoubleRegs:$Rss, u6Imm:$u6),
5214  "$Rxx "#opc2#opc1#"($Rss, #$u6)",
5215  [(set (i64 DoubleRegs:$Rxx),
5216        (OpNode2 (i64 DoubleRegs:$src1),
5217                 (OpNode1 (i64 DoubleRegs:$Rss), u6ImmPred:$u6)))],
5218  "$src1 = $Rxx", S_2op_tc_2_SLOT23> {
5219    bits<5> Rxx;
5220    bits<5> Rss;
5221    bits<6> u6;
5222
5223    let IClass = 0b1000;
5224
5225    let Inst{27-24} = 0b0010;
5226    let Inst{23-22} = majOp{2-1};
5227    let Inst{7} = majOp{0};
5228    let Inst{6-5} = minOp;
5229    let Inst{4-0} = Rxx;
5230    let Inst{20-16} = Rss;
5231    let Inst{13-8} = u6;
5232  }
5233
5234
5235// Rxx[+-&|]=asr(Rss,Rt)
5236// Rxx[+-&|^]=lsr(Rss,Rt)
5237// Rxx[+-&|^]=asl(Rss,Rt)
5238// Rxx[+-&|^]=lsl(Rss,Rt)
5239
5240class T_shift_reg_acc_p <string opc1, string opc2, SDNode OpNode1,
5241                         SDNode OpNode2, bits<3> majOp, bits<2> minOp>
5242  : SInst_acc<(outs DoubleRegs:$Rxx),
5243              (ins DoubleRegs:$src1, DoubleRegs:$Rss, IntRegs:$Rt),
5244  "$Rxx "#opc2#opc1#"($Rss, $Rt)",
5245  [(set (i64 DoubleRegs:$Rxx),
5246        (OpNode2 (i64 DoubleRegs:$src1),
5247                 (OpNode1 (i64 DoubleRegs:$Rss), (i32 IntRegs:$Rt))))],
5248  "$src1 = $Rxx", S_3op_tc_2_SLOT23> {
5249    bits<5> Rxx;
5250    bits<5> Rss;
5251    bits<5> Rt;
5252
5253    let IClass = 0b1100;
5254
5255    let Inst{27-24} = 0b1011;
5256    let Inst{23-21} = majOp;
5257    let Inst{20-16} = Rss;
5258    let Inst{12-8} = Rt;
5259    let Inst{7-6} = minOp;
5260    let Inst{4-0} = Rxx;
5261  }
5262
5263//===----------------------------------------------------------------------===//
5264// Multi-class for the shift instructions with logical/arithmetic operators.
5265//===----------------------------------------------------------------------===//
5266
5267multiclass xtype_imm_base<string OpcStr1, string OpcStr2, SDNode OpNode1,
5268                         SDNode OpNode2, bits<3> majOp, bits<2> minOp > {
5269  def _i_r#NAME : T_shift_imm_acc_r< OpcStr1, OpcStr2, OpNode1,
5270                                     OpNode2, majOp, minOp >;
5271  def _i_p#NAME : T_shift_imm_acc_p< OpcStr1, OpcStr2, OpNode1,
5272                                     OpNode2, majOp, minOp >;
5273}
5274
5275multiclass xtype_imm_acc<string opc1, SDNode OpNode, bits<2>minOp> {
5276  let AddedComplexity = 100 in
5277  defm _acc  : xtype_imm_base< opc1, "+= ", OpNode, add, 0b001, minOp>;
5278
5279  defm _nac  : xtype_imm_base< opc1, "-= ", OpNode, sub, 0b000, minOp>;
5280  defm _and  : xtype_imm_base< opc1, "&= ", OpNode, and, 0b010, minOp>;
5281  defm _or   : xtype_imm_base< opc1, "|= ", OpNode,  or, 0b011, minOp>;
5282}
5283
5284multiclass xtype_xor_imm_acc<string opc1, SDNode OpNode, bits<2>minOp> {
5285let AddedComplexity = 100 in
5286  defm _xacc  : xtype_imm_base< opc1, "^= ", OpNode, xor, 0b100, minOp>;
5287}
5288
5289defm S2_asr : xtype_imm_acc<"asr", sra, 0b00>;
5290
5291defm S2_lsr : xtype_imm_acc<"lsr", srl, 0b01>,
5292              xtype_xor_imm_acc<"lsr", srl, 0b01>;
5293
5294defm S2_asl : xtype_imm_acc<"asl", shl, 0b10>,
5295              xtype_xor_imm_acc<"asl", shl, 0b10>;
5296
5297multiclass xtype_reg_acc_r<string opc1, SDNode OpNode, bits<2>minOp> {
5298  let AddedComplexity = 100 in
5299  def _acc : T_shift_reg_acc_r <opc1, "+= ", OpNode, add, 0b11, minOp>;
5300
5301  def _nac : T_shift_reg_acc_r <opc1, "-= ", OpNode, sub, 0b10, minOp>;
5302  def _and : T_shift_reg_acc_r <opc1, "&= ", OpNode, and, 0b01, minOp>;
5303  def _or  : T_shift_reg_acc_r <opc1, "|= ", OpNode,  or, 0b00, minOp>;
5304}
5305
5306multiclass xtype_reg_acc_p<string opc1, SDNode OpNode, bits<2>minOp> {
5307  let AddedComplexity = 100 in
5308  def _acc : T_shift_reg_acc_p <opc1, "+= ", OpNode, add, 0b110, minOp>;
5309
5310  def _nac : T_shift_reg_acc_p <opc1, "-= ", OpNode, sub, 0b100, minOp>;
5311  def _and : T_shift_reg_acc_p <opc1, "&= ", OpNode, and, 0b010, minOp>;
5312  def _or  : T_shift_reg_acc_p <opc1, "|= ", OpNode,  or, 0b000, minOp>;
5313  def _xor : T_shift_reg_acc_p <opc1, "^= ", OpNode, xor, 0b011, minOp>;
5314}
5315
5316multiclass xtype_reg_acc<string OpcStr, SDNode OpNode, bits<2> minOp > {
5317  defm _r_r : xtype_reg_acc_r <OpcStr, OpNode, minOp>;
5318  defm _r_p : xtype_reg_acc_p <OpcStr, OpNode, minOp>;
5319}
5320
5321defm S2_asl : xtype_reg_acc<"asl", shl, 0b10>;
5322defm S2_asr : xtype_reg_acc<"asr", sra, 0b00>;
5323defm S2_lsr : xtype_reg_acc<"lsr", srl, 0b01>;
5324defm S2_lsl : xtype_reg_acc<"lsl", shl, 0b11>;
5325
5326//===----------------------------------------------------------------------===//
5327let hasSideEffects = 0 in
5328class T_S3op_1 <string mnemonic, RegisterClass RC, bits<2> MajOp, bits<3> MinOp,
5329                bit SwapOps, bit isSat = 0, bit isRnd = 0, bit hasShift = 0>
5330  : SInst <(outs RC:$dst),
5331           (ins DoubleRegs:$src1, DoubleRegs:$src2),
5332  "$dst = "#mnemonic#"($src1, $src2)"#!if(isRnd, ":rnd", "")
5333                                     #!if(hasShift,":>>1","")
5334                                     #!if(isSat, ":sat", ""),
5335  [], "", S_3op_tc_2_SLOT23 > {
5336    bits<5> dst;
5337    bits<5> src1;
5338    bits<5> src2;
5339
5340    let IClass = 0b1100;
5341
5342    let Inst{27-24} = 0b0001;
5343    let Inst{23-22} = MajOp;
5344    let Inst{20-16} = !if (SwapOps, src2, src1);
5345    let Inst{12-8}  = !if (SwapOps, src1, src2);
5346    let Inst{7-5}   = MinOp;
5347    let Inst{4-0}   = dst;
5348  }
5349
5350class T_S3op_64 <string mnemonic, bits<2> MajOp, bits<3> MinOp, bit SwapOps,
5351                 bit isSat = 0, bit isRnd = 0, bit hasShift = 0 >
5352  : T_S3op_1 <mnemonic, DoubleRegs, MajOp, MinOp, SwapOps,
5353              isSat, isRnd, hasShift>;
5354
5355let Itinerary = S_3op_tc_1_SLOT23 in {
5356  def S2_shuffeb : T_S3op_64 < "shuffeb", 0b00, 0b010, 0>;
5357  def S2_shuffeh : T_S3op_64 < "shuffeh", 0b00, 0b110, 0>;
5358  def S2_shuffob : T_S3op_64 < "shuffob", 0b00, 0b100, 1>;
5359  def S2_shuffoh : T_S3op_64 < "shuffoh", 0b10, 0b000, 1>;
5360
5361  def S2_vtrunewh : T_S3op_64 < "vtrunewh", 0b10, 0b010, 0>;
5362  def S2_vtrunowh : T_S3op_64 < "vtrunowh", 0b10, 0b100, 0>;
5363}
5364
5365def S2_lfsp : T_S3op_64 < "lfs", 0b10, 0b110, 0>;
5366
5367let hasSideEffects = 0 in
5368class T_S3op_2 <string mnemonic, bits<3> MajOp, bit SwapOps>
5369  : SInst < (outs DoubleRegs:$Rdd),
5370            (ins DoubleRegs:$Rss, DoubleRegs:$Rtt, PredRegs:$Pu),
5371  "$Rdd = "#mnemonic#"($Rss, $Rtt, $Pu)",
5372  [], "", S_3op_tc_1_SLOT23 > {
5373    bits<5> Rdd;
5374    bits<5> Rss;
5375    bits<5> Rtt;
5376    bits<2> Pu;
5377
5378    let IClass = 0b1100;
5379
5380    let Inst{27-24} = 0b0010;
5381    let Inst{23-21} = MajOp;
5382    let Inst{20-16} = !if (SwapOps, Rtt, Rss);
5383    let Inst{12-8} = !if (SwapOps, Rss, Rtt);
5384    let Inst{6-5} = Pu;
5385    let Inst{4-0} = Rdd;
5386  }
5387
5388def S2_valignrb  : T_S3op_2 < "valignb",  0b000, 1>;
5389def S2_vsplicerb : T_S3op_2 < "vspliceb", 0b100, 0>;
5390
5391//===----------------------------------------------------------------------===//
5392// Template class used by vector shift, vector rotate, vector neg,
5393// 32-bit shift, 64-bit shifts, etc.
5394//===----------------------------------------------------------------------===//
5395
5396let hasSideEffects = 0 in
5397class T_S3op_3 <string mnemonic, RegisterClass RC, bits<2> MajOp,
5398                 bits<2> MinOp, bit isSat = 0, list<dag> pattern = [] >
5399  : SInst <(outs RC:$dst),
5400           (ins RC:$src1, IntRegs:$src2),
5401  "$dst = "#mnemonic#"($src1, $src2)"#!if(isSat, ":sat", ""),
5402  pattern, "", S_3op_tc_1_SLOT23> {
5403    bits<5> dst;
5404    bits<5> src1;
5405    bits<5> src2;
5406
5407    let IClass = 0b1100;
5408
5409    let Inst{27-24} = !if(!eq(!cast<string>(RC), "IntRegs"), 0b0110, 0b0011);
5410    let Inst{23-22} = MajOp;
5411    let Inst{20-16} = src1;
5412    let Inst{12-8} = src2;
5413    let Inst{7-6} = MinOp;
5414    let Inst{4-0} = dst;
5415  }
5416
5417let hasNewValue = 1 in
5418class T_S3op_shift32 <string mnemonic, SDNode OpNode, bits<2> MinOp>
5419  : T_S3op_3 <mnemonic, IntRegs, 0b01, MinOp, 0,
5420    [(set (i32 IntRegs:$dst), (OpNode (i32 IntRegs:$src1),
5421                                      (i32 IntRegs:$src2)))]>;
5422
5423let hasNewValue = 1, Itinerary = S_3op_tc_2_SLOT23 in
5424class T_S3op_shift32_Sat <string mnemonic, bits<2> MinOp>
5425  : T_S3op_3 <mnemonic, IntRegs, 0b00, MinOp, 1, []>;
5426
5427
5428class T_S3op_shift64 <string mnemonic, SDNode OpNode, bits<2> MinOp>
5429  : T_S3op_3 <mnemonic, DoubleRegs, 0b10, MinOp, 0,
5430    [(set (i64 DoubleRegs:$dst), (OpNode (i64 DoubleRegs:$src1),
5431                                         (i32 IntRegs:$src2)))]>;
5432
5433
5434class T_S3op_shiftVect <string mnemonic, bits<2> MajOp, bits<2> MinOp>
5435  : T_S3op_3 <mnemonic, DoubleRegs, MajOp, MinOp, 0, []>;
5436
5437
5438// Shift by register
5439// Rdd=[asr|lsr|asl|lsl](Rss,Rt)
5440
5441def S2_asr_r_p : T_S3op_shift64 < "asr", sra, 0b00>;
5442def S2_lsr_r_p : T_S3op_shift64 < "lsr", srl, 0b01>;
5443def S2_asl_r_p : T_S3op_shift64 < "asl", shl, 0b10>;
5444def S2_lsl_r_p : T_S3op_shift64 < "lsl", shl, 0b11>;
5445
5446// Rd=[asr|lsr|asl|lsl](Rs,Rt)
5447
5448def S2_asr_r_r : T_S3op_shift32<"asr", sra, 0b00>;
5449def S2_lsr_r_r : T_S3op_shift32<"lsr", srl, 0b01>;
5450def S2_asl_r_r : T_S3op_shift32<"asl", shl, 0b10>;
5451def S2_lsl_r_r : T_S3op_shift32<"lsl", shl, 0b11>;
5452
5453// Shift by register with saturation
5454// Rd=asr(Rs,Rt):sat
5455// Rd=asl(Rs,Rt):sat
5456
5457let Defs = [USR_OVF] in {
5458  def S2_asr_r_r_sat : T_S3op_shift32_Sat<"asr", 0b00>;
5459  def S2_asl_r_r_sat : T_S3op_shift32_Sat<"asl", 0b10>;
5460}
5461
5462let hasNewValue = 1, hasSideEffects = 0 in
5463class T_S3op_8 <string opc, bits<3> MinOp, bit isSat, bit isRnd, bit hasShift, bit hasSplat = 0>
5464  : SInst < (outs IntRegs:$Rd),
5465            (ins DoubleRegs:$Rss, IntRegs:$Rt),
5466  "$Rd = "#opc#"($Rss, $Rt"#!if(hasSplat, "*", "")#")"
5467                           #!if(hasShift, ":<<1", "")
5468                           #!if(isRnd, ":rnd", "")
5469                           #!if(isSat, ":sat", ""),
5470  [], "", S_3op_tc_1_SLOT23 > {
5471    bits<5> Rd;
5472    bits<5> Rss;
5473    bits<5> Rt;
5474
5475    let IClass = 0b1100;
5476
5477    let Inst{27-24} = 0b0101;
5478    let Inst{20-16} = Rss;
5479    let Inst{12-8}  = Rt;
5480    let Inst{7-5}   = MinOp;
5481    let Inst{4-0}   = Rd;
5482  }
5483
5484def S2_asr_r_svw_trun : T_S3op_8<"vasrw", 0b010, 0, 0, 0>;
5485
5486let Defs = [USR_OVF], Itinerary = S_3op_tc_2_SLOT23 in
5487def S2_vcrotate : T_S3op_shiftVect < "vcrotate", 0b11, 0b00>;
5488
5489let hasSideEffects = 0 in
5490class T_S3op_7 <string mnemonic, bit MajOp >
5491  : SInst <(outs DoubleRegs:$Rdd),
5492           (ins DoubleRegs:$Rss, DoubleRegs:$Rtt, u3Imm:$u3),
5493  "$Rdd = "#mnemonic#"($Rss, $Rtt, #$u3)" ,
5494  [], "", S_3op_tc_1_SLOT23 > {
5495    bits<5> Rdd;
5496    bits<5> Rss;
5497    bits<5> Rtt;
5498    bits<3> u3;
5499
5500    let IClass = 0b1100;
5501
5502    let Inst{27-24} = 0b0000;
5503    let Inst{23}    = MajOp;
5504    let Inst{20-16} = !if(MajOp, Rss, Rtt);
5505    let Inst{12-8}  =  !if(MajOp, Rtt, Rss);
5506    let Inst{7-5}   = u3;
5507    let Inst{4-0}   = Rdd;
5508  }
5509
5510def S2_valignib  : T_S3op_7 < "valignb", 0>;
5511def S2_vspliceib : T_S3op_7 < "vspliceb", 1>;
5512
5513//===----------------------------------------------------------------------===//
5514// Template class for 'insert bitfield' instructions
5515//===----------------------------------------------------------------------===//
5516let hasSideEffects = 0 in
5517class T_S3op_insert <string mnemonic, RegisterClass RC>
5518  : SInst <(outs RC:$dst),
5519           (ins RC:$src1, RC:$src2, DoubleRegs:$src3),
5520  "$dst = "#mnemonic#"($src2, $src3)" ,
5521  [], "$src1 = $dst", S_3op_tc_1_SLOT23 > {
5522    bits<5> dst;
5523    bits<5> src2;
5524    bits<5> src3;
5525
5526    let IClass = 0b1100;
5527
5528    let Inst{27-26} = 0b10;
5529    let Inst{25-24} = !if(!eq(!cast<string>(RC), "IntRegs"), 0b00, 0b10);
5530    let Inst{23}    = 0b0;
5531    let Inst{20-16} = src2;
5532    let Inst{12-8}  = src3;
5533    let Inst{4-0}   = dst;
5534  }
5535
5536let hasSideEffects = 0 in
5537class T_S2op_insert <bits<4> RegTyBits, RegisterClass RC, Operand ImmOp>
5538  : SInst <(outs RC:$dst), (ins RC:$dst2, RC:$src1, ImmOp:$src2, ImmOp:$src3),
5539  "$dst = insert($src1, #$src2, #$src3)",
5540  [], "$dst2 = $dst", S_2op_tc_2_SLOT23> {
5541    bits<5> dst;
5542    bits<5> src1;
5543    bits<6> src2;
5544    bits<6> src3;
5545    bit bit23;
5546    bit bit13;
5547    string ImmOpStr = !cast<string>(ImmOp);
5548
5549    let bit23 = !if (!eq(ImmOpStr, "u6Imm"), src3{5}, 0);
5550    let bit13 = !if (!eq(ImmOpStr, "u6Imm"), src2{5}, 0);
5551
5552    let IClass = 0b1000;
5553
5554    let Inst{27-24} = RegTyBits;
5555    let Inst{23}    = bit23;
5556    let Inst{22-21} = src3{4-3};
5557    let Inst{20-16} = src1;
5558    let Inst{13}    = bit13;
5559    let Inst{12-8}  = src2{4-0};
5560    let Inst{7-5}   = src3{2-0};
5561    let Inst{4-0}   = dst;
5562  }
5563
5564// Rx=insert(Rs,Rtt)
5565// Rx=insert(Rs,#u5,#U5)
5566let hasNewValue = 1 in {
5567  def S2_insert_rp : T_S3op_insert <"insert", IntRegs>;
5568  def S2_insert    : T_S2op_insert <0b1111, IntRegs, u5Imm>;
5569}
5570
5571// Rxx=insert(Rss,Rtt)
5572// Rxx=insert(Rss,#u6,#U6)
5573def S2_insertp_rp : T_S3op_insert<"insert", DoubleRegs>;
5574def S2_insertp    : T_S2op_insert <0b0011, DoubleRegs, u6Imm>;
5575
5576
5577def SDTHexagonINSERT_ri : SDTypeProfile<1, 4, [SDTCisVT<0, i32>,
5578                                               SDTCisVT<1, i32>,
5579                                               SDTCisVT<2, i32>,
5580                                               SDTCisVT<3, i32>,
5581                                               SDTCisVT<4, i32>]>;
5582def SDTHexagonINSERT_rd : SDTypeProfile<1, 4, [SDTCisVT<0, i64>,
5583                                               SDTCisVT<1, i64>,
5584                                               SDTCisVT<2, i64>,
5585                                               SDTCisVT<3, i32>,
5586                                               SDTCisVT<4, i32>]>;
5587def SDTHexagonINSERT_riv : SDTypeProfile<1, 3, [SDTCisVT<0, i32>,
5588                                                SDTCisVT<1, i32>,
5589                                                SDTCisVT<2, i32>,
5590                                                SDTCisVT<3, i64>]>;
5591def SDTHexagonINSERT_rdv : SDTypeProfile<1, 3, [SDTCisVT<0, i64>,
5592                                                SDTCisVT<1, i64>,
5593                                                SDTCisVT<2, i64>,
5594                                                SDTCisVT<3, i64>]>;
5595def HexagonINSERT_ri : SDNode<"HexagonISD::INSERT_ri",  SDTHexagonINSERT_ri>;
5596def HexagonINSERT_rd : SDNode<"HexagonISD::INSERT_rd",  SDTHexagonINSERT_rd>;
5597def HexagonINSERT_riv: SDNode<"HexagonISD::INSERT_riv", SDTHexagonINSERT_riv>;
5598def HexagonINSERT_rdv: SDNode<"HexagonISD::INSERT_rdv", SDTHexagonINSERT_rdv>;
5599
5600def: Pat<(HexagonINSERT_ri I32:$Rs, I32:$Rt, u5ImmPred:$u1, u5ImmPred:$u2),
5601         (S2_insert I32:$Rs, I32:$Rt, u5ImmPred:$u1, u5ImmPred:$u2)>;
5602
5603def: Pat<(HexagonINSERT_rd I64:$Rs, I64:$Rt, u6ImmPred:$u1, u6ImmPred:$u2),
5604         (S2_insertp I64:$Rs, I64:$Rt, u6ImmPred:$u1, u6ImmPred:$u2)>;
5605
5606def: Pat<(HexagonINSERT_riv I32:$Rs, I32:$Rt, I64:$Ru),
5607         (S2_insert_rp I32:$Rs, I32:$Rt, I64:$Ru)>;
5608
5609def: Pat<(HexagonINSERT_rdv I64:$Rs, I64:$Rt, I64:$Ru),
5610         (S2_insertp_rp I64:$Rs, I64:$Rt, I64:$Ru)>;
5611
5612
5613//===----------------------------------------------------------------------===//
5614// Template class for 'extract bitfield' instructions
5615//===----------------------------------------------------------------------===//
5616let hasNewValue = 1, hasSideEffects = 0 in
5617class T_S3op_extract <string mnemonic, bits<2> MinOp>
5618  : SInst <(outs IntRegs:$Rd), (ins IntRegs:$Rs, DoubleRegs:$Rtt),
5619  "$Rd = "#mnemonic#"($Rs, $Rtt)",
5620  [], "", S_3op_tc_2_SLOT23 > {
5621    bits<5> Rd;
5622    bits<5> Rs;
5623    bits<5> Rtt;
5624
5625    let IClass = 0b1100;
5626
5627    let Inst{27-22} = 0b100100;
5628    let Inst{20-16} = Rs;
5629    let Inst{12-8}  = Rtt;
5630    let Inst{7-6}   = MinOp;
5631    let Inst{4-0}   = Rd;
5632  }
5633
5634let hasSideEffects = 0 in
5635class T_S2op_extract <string mnemonic, bits<4> RegTyBits,
5636                      RegisterClass RC, Operand ImmOp>
5637  : SInst <(outs RC:$dst), (ins RC:$src1, ImmOp:$src2, ImmOp:$src3),
5638  "$dst = "#mnemonic#"($src1, #$src2, #$src3)",
5639  [], "", S_2op_tc_2_SLOT23> {
5640    bits<5> dst;
5641    bits<5> src1;
5642    bits<6> src2;
5643    bits<6> src3;
5644    bit bit23;
5645    bit bit13;
5646    string ImmOpStr = !cast<string>(ImmOp);
5647
5648    let bit23 = !if (!eq(ImmOpStr, "u6Imm"), src3{5},
5649                !if (!eq(mnemonic, "extractu"), 0, 1));
5650
5651    let bit13 = !if (!eq(ImmOpStr, "u6Imm"), src2{5}, 0);
5652
5653    let IClass = 0b1000;
5654
5655    let Inst{27-24} = RegTyBits;
5656    let Inst{23}    = bit23;
5657    let Inst{22-21} = src3{4-3};
5658    let Inst{20-16} = src1;
5659    let Inst{13}    = bit13;
5660    let Inst{12-8}  = src2{4-0};
5661    let Inst{7-5}   = src3{2-0};
5662    let Inst{4-0}   = dst;
5663  }
5664
5665// Extract bitfield
5666
5667// Rdd=extractu(Rss,Rtt)
5668// Rdd=extractu(Rss,#u6,#U6)
5669def S2_extractup_rp : T_S3op_64 < "extractu", 0b00, 0b000, 0>;
5670def S2_extractup    : T_S2op_extract <"extractu", 0b0001, DoubleRegs, u6Imm>;
5671
5672// Rd=extractu(Rs,Rtt)
5673// Rd=extractu(Rs,#u5,#U5)
5674let hasNewValue = 1 in {
5675  def S2_extractu_rp : T_S3op_extract<"extractu", 0b00>;
5676  def S2_extractu    : T_S2op_extract <"extractu", 0b1101, IntRegs, u5Imm>;
5677}
5678
5679def SDTHexagonEXTRACTU_ri : SDTypeProfile<1, 3, [SDTCisVT<0, i32>,
5680                                                 SDTCisVT<1, i32>,
5681                                                 SDTCisVT<2, i32>,
5682                                                 SDTCisVT<3, i32>]>;
5683def SDTHexagonEXTRACTU_rd : SDTypeProfile<1, 3, [SDTCisVT<0, i64>,
5684                                                 SDTCisVT<1, i64>,
5685                                                 SDTCisVT<2, i32>,
5686                                                 SDTCisVT<3, i32>]>;
5687def SDTHexagonEXTRACTU_riv : SDTypeProfile<1, 2, [SDTCisVT<0, i32>,
5688                                                  SDTCisVT<1, i32>,
5689                                                  SDTCisVT<2, i64>]>;
5690def SDTHexagonEXTRACTU_rdv : SDTypeProfile<1, 2, [SDTCisVT<0, i64>,
5691                                                  SDTCisVT<1, i64>,
5692                                                  SDTCisVT<2, i64>]>;
5693def HexagonEXTRACTU_ri : SDNode<"HexagonISD::EXTRACTU_ri",  SDTHexagonEXTRACTU_ri>;
5694def HexagonEXTRACTU_rd : SDNode<"HexagonISD::EXTRACTU_rd",  SDTHexagonEXTRACTU_rd>;
5695def HexagonEXTRACTU_riv: SDNode<"HexagonISD::EXTRACTU_riv", SDTHexagonEXTRACTU_riv>;
5696def HexagonEXTRACTU_rdv: SDNode<"HexagonISD::EXTRACTU_rdv", SDTHexagonEXTRACTU_rdv>;
5697
5698def: Pat<(HexagonEXTRACTU_ri I32:$src1, u5ImmPred:$src2, u5ImmPred:$src3),
5699         (S2_extractu I32:$src1, u5ImmPred:$src2, u5ImmPred:$src3)>;
5700
5701def: Pat<(HexagonEXTRACTU_rd I64:$src1, u6ImmPred:$src2, u6ImmPred:$src3),
5702         (S2_extractup I64:$src1, u6ImmPred:$src2, u6ImmPred:$src3)>;
5703
5704def: Pat<(HexagonEXTRACTU_riv I32:$src1, I64:$src2),
5705         (S2_extractu_rp I32:$src1, I64:$src2)>;
5706
5707def: Pat<(HexagonEXTRACTU_rdv I64:$src1, I64:$src2),
5708         (S2_extractup_rp I64:$src1, I64:$src2)>;
5709
5710// Change the sign of the immediate for Rd=-mpyi(Rs,#u8)
5711def: Pat<(mul (i32 IntRegs:$src1), (ineg n8ImmPred:$src2)),
5712         (M2_mpysin IntRegs:$src1, u8ImmPred:$src2)>;
5713
5714//===----------------------------------------------------------------------===//
5715// :raw for of tableindx[bdhw] insns
5716//===----------------------------------------------------------------------===//
5717
5718let hasSideEffects = 0, hasNewValue = 1, opNewValue = 0 in
5719class tableidxRaw<string OpStr, bits<2>MinOp>
5720  : SInst <(outs IntRegs:$Rx),
5721           (ins IntRegs:$_dst_, IntRegs:$Rs, u4Imm:$u4, s6Imm:$S6),
5722           "$Rx = "#OpStr#"($Rs, #$u4, #$S6):raw",
5723    [], "$Rx = $_dst_" > {
5724    bits<5> Rx;
5725    bits<5> Rs;
5726    bits<4> u4;
5727    bits<6> S6;
5728
5729    let IClass = 0b1000;
5730
5731    let Inst{27-24} = 0b0111;
5732    let Inst{23-22} = MinOp;
5733    let Inst{21}    = u4{3};
5734    let Inst{20-16} = Rs;
5735    let Inst{13-8}  = S6;
5736    let Inst{7-5}   = u4{2-0};
5737    let Inst{4-0}   = Rx;
5738  }
5739
5740def S2_tableidxb : tableidxRaw<"tableidxb", 0b00>;
5741def S2_tableidxh : tableidxRaw<"tableidxh", 0b01>;
5742def S2_tableidxw : tableidxRaw<"tableidxw", 0b10>;
5743def S2_tableidxd : tableidxRaw<"tableidxd", 0b11>;
5744
5745//===----------------------------------------------------------------------===//
5746// Template class for 'table index' instructions which are assembler mapped
5747// to their :raw format.
5748//===----------------------------------------------------------------------===//
5749let isPseudo = 1 in
5750class tableidx_goodsyntax <string mnemonic>
5751  : SInst <(outs IntRegs:$Rx),
5752           (ins IntRegs:$_dst_, IntRegs:$Rs, u4Imm:$u4, u5Imm:$u5),
5753           "$Rx = "#mnemonic#"($Rs, #$u4, #$u5)",
5754           [], "$Rx = $_dst_" >;
5755
5756def S2_tableidxb_goodsyntax : tableidx_goodsyntax<"tableidxb">;
5757def S2_tableidxh_goodsyntax : tableidx_goodsyntax<"tableidxh">;
5758def S2_tableidxw_goodsyntax : tableidx_goodsyntax<"tableidxw">;
5759def S2_tableidxd_goodsyntax : tableidx_goodsyntax<"tableidxd">;
5760
5761//===----------------------------------------------------------------------===//
5762// V3 Instructions +
5763//===----------------------------------------------------------------------===//
5764
5765include "HexagonInstrInfoV3.td"
5766
5767//===----------------------------------------------------------------------===//
5768// V3 Instructions -
5769//===----------------------------------------------------------------------===//
5770
5771//===----------------------------------------------------------------------===//
5772// V4 Instructions +
5773//===----------------------------------------------------------------------===//
5774
5775include "HexagonInstrInfoV4.td"
5776
5777//===----------------------------------------------------------------------===//
5778// V4 Instructions -
5779//===----------------------------------------------------------------------===//
5780
5781//===----------------------------------------------------------------------===//
5782// V5 Instructions +
5783//===----------------------------------------------------------------------===//
5784
5785include "HexagonInstrInfoV5.td"
5786
5787//===----------------------------------------------------------------------===//
5788// V5 Instructions -
5789//===----------------------------------------------------------------------===//
5790
5791//===----------------------------------------------------------------------===//
5792// ALU32/64/Vector +
5793//===----------------------------------------------------------------------===///
5794
5795include "HexagonInstrInfoVector.td"
5796