1 //===----- HexagonNewValueJump.cpp - Hexagon Backend New Value Jump -------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This implements NewValueJump pass in Hexagon.
11 // Ideally, we should merge this as a Peephole pass prior to register
12 // allocation, but because we have a spill in between the feeder and new value
13 // jump instructions, we are forced to write after register allocation.
14 // Having said that, we should re-attempt to pull this earlier at some point
15 // in future.
16
17 // The basic approach looks for sequence of predicated jump, compare instruciton
18 // that genereates the predicate and, the feeder to the predicate. Once it finds
19 // all, it collapses compare and jump instruction into a new valu jump
20 // intstructions.
21 //
22 //
23 //===----------------------------------------------------------------------===//
24 #include "llvm/PassSupport.h"
25 #include "Hexagon.h"
26 #include "HexagonInstrInfo.h"
27 #include "HexagonMachineFunctionInfo.h"
28 #include "HexagonRegisterInfo.h"
29 #include "HexagonSubtarget.h"
30 #include "HexagonTargetMachine.h"
31 #include "llvm/ADT/DenseMap.h"
32 #include "llvm/ADT/Statistic.h"
33 #include "llvm/CodeGen/LiveVariables.h"
34 #include "llvm/CodeGen/MachineFunctionAnalysis.h"
35 #include "llvm/CodeGen/MachineFunctionPass.h"
36 #include "llvm/CodeGen/MachineInstrBuilder.h"
37 #include "llvm/CodeGen/MachineRegisterInfo.h"
38 #include "llvm/CodeGen/Passes.h"
39 #include "llvm/CodeGen/ScheduleDAGInstrs.h"
40 #include "llvm/Support/CommandLine.h"
41 #include "llvm/Support/Compiler.h"
42 #include "llvm/Support/Debug.h"
43 #include "llvm/Support/raw_ostream.h"
44 #include "llvm/Target/TargetInstrInfo.h"
45 #include "llvm/Target/TargetMachine.h"
46 #include "llvm/Target/TargetRegisterInfo.h"
47 #include <map>
48 using namespace llvm;
49
50 #define DEBUG_TYPE "hexagon-nvj"
51
52 STATISTIC(NumNVJGenerated, "Number of New Value Jump Instructions created");
53
54 static cl::opt<int>
55 DbgNVJCount("nvj-count", cl::init(-1), cl::Hidden, cl::desc(
56 "Maximum number of predicated jumps to be converted to New Value Jump"));
57
58 static cl::opt<bool> DisableNewValueJumps("disable-nvjump", cl::Hidden,
59 cl::ZeroOrMore, cl::init(false),
60 cl::desc("Disable New Value Jumps"));
61
62 namespace llvm {
63 void initializeHexagonNewValueJumpPass(PassRegistry&);
64 }
65
66
67 namespace {
68 struct HexagonNewValueJump : public MachineFunctionPass {
69 const HexagonInstrInfo *QII;
70 const HexagonRegisterInfo *QRI;
71
72 public:
73 static char ID;
74
HexagonNewValueJump__anon7f5866ce0111::HexagonNewValueJump75 HexagonNewValueJump() : MachineFunctionPass(ID) {
76 initializeHexagonNewValueJumpPass(*PassRegistry::getPassRegistry());
77 }
78
getAnalysisUsage__anon7f5866ce0111::HexagonNewValueJump79 void getAnalysisUsage(AnalysisUsage &AU) const override {
80 AU.addRequired<MachineBranchProbabilityInfo>();
81 MachineFunctionPass::getAnalysisUsage(AU);
82 }
83
getPassName__anon7f5866ce0111::HexagonNewValueJump84 const char *getPassName() const override {
85 return "Hexagon NewValueJump";
86 }
87
88 bool runOnMachineFunction(MachineFunction &Fn) override;
89
90 private:
91 /// \brief A handle to the branch probability pass.
92 const MachineBranchProbabilityInfo *MBPI;
93
94 };
95
96 } // end of anonymous namespace
97
98 char HexagonNewValueJump::ID = 0;
99
100 INITIALIZE_PASS_BEGIN(HexagonNewValueJump, "hexagon-nvj",
101 "Hexagon NewValueJump", false, false)
INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfo)102 INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfo)
103 INITIALIZE_PASS_END(HexagonNewValueJump, "hexagon-nvj",
104 "Hexagon NewValueJump", false, false)
105
106
107 // We have identified this II could be feeder to NVJ,
108 // verify that it can be.
109 static bool canBeFeederToNewValueJump(const HexagonInstrInfo *QII,
110 const TargetRegisterInfo *TRI,
111 MachineBasicBlock::iterator II,
112 MachineBasicBlock::iterator end,
113 MachineBasicBlock::iterator skip,
114 MachineFunction &MF) {
115
116 // Predicated instruction can not be feeder to NVJ.
117 if (QII->isPredicated(II))
118 return false;
119
120 // Bail out if feederReg is a paired register (double regs in
121 // our case). One would think that we can check to see if a given
122 // register cmpReg1 or cmpReg2 is a sub register of feederReg
123 // using -- if (QRI->isSubRegister(feederReg, cmpReg1) logic
124 // before the callsite of this function
125 // But we can not as it comes in the following fashion.
126 // %D0<def> = Hexagon_S2_lsr_r_p %D0<kill>, %R2<kill>
127 // %R0<def> = KILL %R0, %D0<imp-use,kill>
128 // %P0<def> = CMPEQri %R0<kill>, 0
129 // Hence, we need to check if it's a KILL instruction.
130 if (II->getOpcode() == TargetOpcode::KILL)
131 return false;
132
133
134 // Make sure there there is no 'def' or 'use' of any of the uses of
135 // feeder insn between it's definition, this MI and jump, jmpInst
136 // skipping compare, cmpInst.
137 // Here's the example.
138 // r21=memub(r22+r24<<#0)
139 // p0 = cmp.eq(r21, #0)
140 // r4=memub(r3+r21<<#0)
141 // if (p0.new) jump:t .LBB29_45
142 // Without this check, it will be converted into
143 // r4=memub(r3+r21<<#0)
144 // r21=memub(r22+r24<<#0)
145 // p0 = cmp.eq(r21, #0)
146 // if (p0.new) jump:t .LBB29_45
147 // and result WAR hazards if converted to New Value Jump.
148
149 for (unsigned i = 0; i < II->getNumOperands(); ++i) {
150 if (II->getOperand(i).isReg() &&
151 (II->getOperand(i).isUse() || II->getOperand(i).isDef())) {
152 MachineBasicBlock::iterator localII = II;
153 ++localII;
154 unsigned Reg = II->getOperand(i).getReg();
155 for (MachineBasicBlock::iterator localBegin = localII;
156 localBegin != end; ++localBegin) {
157 if (localBegin == skip ) continue;
158 // Check for Subregisters too.
159 if (localBegin->modifiesRegister(Reg, TRI) ||
160 localBegin->readsRegister(Reg, TRI))
161 return false;
162 }
163 }
164 }
165 return true;
166 }
167
168 // These are the common checks that need to performed
169 // to determine if
170 // 1. compare instruction can be moved before jump.
171 // 2. feeder to the compare instruction can be moved before jump.
commonChecksToProhibitNewValueJump(bool afterRA,MachineBasicBlock::iterator MII)172 static bool commonChecksToProhibitNewValueJump(bool afterRA,
173 MachineBasicBlock::iterator MII) {
174
175 // If store in path, bail out.
176 if (MII->getDesc().mayStore())
177 return false;
178
179 // if call in path, bail out.
180 if (MII->getOpcode() == Hexagon::J2_call)
181 return false;
182
183 // if NVJ is running prior to RA, do the following checks.
184 if (!afterRA) {
185 // The following Target Opcode instructions are spurious
186 // to new value jump. If they are in the path, bail out.
187 // KILL sets kill flag on the opcode. It also sets up a
188 // single register, out of pair.
189 // %D0<def> = Hexagon_S2_lsr_r_p %D0<kill>, %R2<kill>
190 // %R0<def> = KILL %R0, %D0<imp-use,kill>
191 // %P0<def> = CMPEQri %R0<kill>, 0
192 // PHI can be anything after RA.
193 // COPY can remateriaze things in between feeder, compare and nvj.
194 if (MII->getOpcode() == TargetOpcode::KILL ||
195 MII->getOpcode() == TargetOpcode::PHI ||
196 MII->getOpcode() == TargetOpcode::COPY)
197 return false;
198
199 // The following pseudo Hexagon instructions sets "use" and "def"
200 // of registers by individual passes in the backend. At this time,
201 // we don't know the scope of usage and definitions of these
202 // instructions.
203 if (MII->getOpcode() == Hexagon::LDriw_pred ||
204 MII->getOpcode() == Hexagon::STriw_pred)
205 return false;
206 }
207
208 return true;
209 }
210
canCompareBeNewValueJump(const HexagonInstrInfo * QII,const TargetRegisterInfo * TRI,MachineBasicBlock::iterator II,unsigned pReg,bool secondReg,bool optLocation,MachineBasicBlock::iterator end,MachineFunction & MF)211 static bool canCompareBeNewValueJump(const HexagonInstrInfo *QII,
212 const TargetRegisterInfo *TRI,
213 MachineBasicBlock::iterator II,
214 unsigned pReg,
215 bool secondReg,
216 bool optLocation,
217 MachineBasicBlock::iterator end,
218 MachineFunction &MF) {
219
220 MachineInstr *MI = II;
221
222 // If the second operand of the compare is an imm, make sure it's in the
223 // range specified by the arch.
224 if (!secondReg) {
225 int64_t v = MI->getOperand(2).getImm();
226
227 if (!(isUInt<5>(v) ||
228 ((MI->getOpcode() == Hexagon::C2_cmpeqi ||
229 MI->getOpcode() == Hexagon::C2_cmpgti) &&
230 (v == -1))))
231 return false;
232 }
233
234 unsigned cmpReg1, cmpOp2 = 0; // cmpOp2 assignment silences compiler warning.
235 cmpReg1 = MI->getOperand(1).getReg();
236
237 if (secondReg) {
238 cmpOp2 = MI->getOperand(2).getReg();
239
240 // Make sure that that second register is not from COPY
241 // At machine code level, we don't need this, but if we decide
242 // to move new value jump prior to RA, we would be needing this.
243 MachineRegisterInfo &MRI = MF.getRegInfo();
244 if (secondReg && !TargetRegisterInfo::isPhysicalRegister(cmpOp2)) {
245 MachineInstr *def = MRI.getVRegDef(cmpOp2);
246 if (def->getOpcode() == TargetOpcode::COPY)
247 return false;
248 }
249 }
250
251 // Walk the instructions after the compare (predicate def) to the jump,
252 // and satisfy the following conditions.
253 ++II ;
254 for (MachineBasicBlock::iterator localII = II; localII != end;
255 ++localII) {
256
257 // Check 1.
258 // If "common" checks fail, bail out.
259 if (!commonChecksToProhibitNewValueJump(optLocation, localII))
260 return false;
261
262 // Check 2.
263 // If there is a def or use of predicate (result of compare), bail out.
264 if (localII->modifiesRegister(pReg, TRI) ||
265 localII->readsRegister(pReg, TRI))
266 return false;
267
268 // Check 3.
269 // If there is a def of any of the use of the compare (operands of compare),
270 // bail out.
271 // Eg.
272 // p0 = cmp.eq(r2, r0)
273 // r2 = r4
274 // if (p0.new) jump:t .LBB28_3
275 if (localII->modifiesRegister(cmpReg1, TRI) ||
276 (secondReg && localII->modifiesRegister(cmpOp2, TRI)))
277 return false;
278 }
279 return true;
280 }
281
282 // Given a compare operator, return a matching New Value Jump
283 // compare operator. Make sure that MI here is included in
284 // HexagonInstrInfo.cpp::isNewValueJumpCandidate
getNewValueJumpOpcode(MachineInstr * MI,int reg,bool secondRegNewified,MachineBasicBlock * jmpTarget,const MachineBranchProbabilityInfo * MBPI)285 static unsigned getNewValueJumpOpcode(MachineInstr *MI, int reg,
286 bool secondRegNewified,
287 MachineBasicBlock *jmpTarget,
288 const MachineBranchProbabilityInfo
289 *MBPI) {
290 bool taken = false;
291 MachineBasicBlock *Src = MI->getParent();
292 const BranchProbability Prediction =
293 MBPI->getEdgeProbability(Src, jmpTarget);
294
295 if (Prediction >= BranchProbability(1,2))
296 taken = true;
297
298 switch (MI->getOpcode()) {
299 case Hexagon::C2_cmpeq:
300 return taken ? Hexagon::J4_cmpeq_t_jumpnv_t
301 : Hexagon::J4_cmpeq_t_jumpnv_nt;
302
303 case Hexagon::C2_cmpeqi: {
304 if (reg >= 0)
305 return taken ? Hexagon::J4_cmpeqi_t_jumpnv_t
306 : Hexagon::J4_cmpeqi_t_jumpnv_nt;
307 else
308 return taken ? Hexagon::J4_cmpeqn1_t_jumpnv_t
309 : Hexagon::J4_cmpeqn1_t_jumpnv_nt;
310 }
311
312 case Hexagon::C2_cmpgt: {
313 if (secondRegNewified)
314 return taken ? Hexagon::J4_cmplt_t_jumpnv_t
315 : Hexagon::J4_cmplt_t_jumpnv_nt;
316 else
317 return taken ? Hexagon::J4_cmpgt_t_jumpnv_t
318 : Hexagon::J4_cmpgt_t_jumpnv_nt;
319 }
320
321 case Hexagon::C2_cmpgti: {
322 if (reg >= 0)
323 return taken ? Hexagon::J4_cmpgti_t_jumpnv_t
324 : Hexagon::J4_cmpgti_t_jumpnv_nt;
325 else
326 return taken ? Hexagon::J4_cmpgtn1_t_jumpnv_t
327 : Hexagon::J4_cmpgtn1_t_jumpnv_nt;
328 }
329
330 case Hexagon::C2_cmpgtu: {
331 if (secondRegNewified)
332 return taken ? Hexagon::J4_cmpltu_t_jumpnv_t
333 : Hexagon::J4_cmpltu_t_jumpnv_nt;
334 else
335 return taken ? Hexagon::J4_cmpgtu_t_jumpnv_t
336 : Hexagon::J4_cmpgtu_t_jumpnv_nt;
337 }
338
339 case Hexagon::C2_cmpgtui:
340 return taken ? Hexagon::J4_cmpgtui_t_jumpnv_t
341 : Hexagon::J4_cmpgtui_t_jumpnv_nt;
342
343 default:
344 llvm_unreachable("Could not find matching New Value Jump instruction.");
345 }
346 // return *some value* to avoid compiler warning
347 return 0;
348 }
349
runOnMachineFunction(MachineFunction & MF)350 bool HexagonNewValueJump::runOnMachineFunction(MachineFunction &MF) {
351
352 DEBUG(dbgs() << "********** Hexagon New Value Jump **********\n"
353 << "********** Function: "
354 << MF.getName() << "\n");
355
356 // If we move NewValueJump before register allocation we'll need live variable
357 // analysis here too.
358
359 QII = static_cast<const HexagonInstrInfo *>(MF.getSubtarget().getInstrInfo());
360 QRI = static_cast<const HexagonRegisterInfo *>(
361 MF.getSubtarget().getRegisterInfo());
362 MBPI = &getAnalysis<MachineBranchProbabilityInfo>();
363
364 if (DisableNewValueJumps) {
365 return false;
366 }
367
368 int nvjCount = DbgNVJCount;
369 int nvjGenerated = 0;
370
371 // Loop through all the bb's of the function
372 for (MachineFunction::iterator MBBb = MF.begin(), MBBe = MF.end();
373 MBBb != MBBe; ++MBBb) {
374 MachineBasicBlock* MBB = MBBb;
375
376 DEBUG(dbgs() << "** dumping bb ** "
377 << MBB->getNumber() << "\n");
378 DEBUG(MBB->dump());
379 DEBUG(dbgs() << "\n" << "********** dumping instr bottom up **********\n");
380 bool foundJump = false;
381 bool foundCompare = false;
382 bool invertPredicate = false;
383 unsigned predReg = 0; // predicate reg of the jump.
384 unsigned cmpReg1 = 0;
385 int cmpOp2 = 0;
386 bool MO1IsKill = false;
387 bool MO2IsKill = false;
388 MachineBasicBlock::iterator jmpPos;
389 MachineBasicBlock::iterator cmpPos;
390 MachineInstr *cmpInstr = nullptr, *jmpInstr = nullptr;
391 MachineBasicBlock *jmpTarget = nullptr;
392 bool afterRA = false;
393 bool isSecondOpReg = false;
394 bool isSecondOpNewified = false;
395 // Traverse the basic block - bottom up
396 for (MachineBasicBlock::iterator MII = MBB->end(), E = MBB->begin();
397 MII != E;) {
398 MachineInstr *MI = --MII;
399 if (MI->isDebugValue()) {
400 continue;
401 }
402
403 if ((nvjCount == 0) || (nvjCount > -1 && nvjCount <= nvjGenerated))
404 break;
405
406 DEBUG(dbgs() << "Instr: "; MI->dump(); dbgs() << "\n");
407
408 if (!foundJump &&
409 (MI->getOpcode() == Hexagon::J2_jumpt ||
410 MI->getOpcode() == Hexagon::J2_jumpf ||
411 MI->getOpcode() == Hexagon::J2_jumptnewpt ||
412 MI->getOpcode() == Hexagon::J2_jumptnew ||
413 MI->getOpcode() == Hexagon::J2_jumpfnewpt ||
414 MI->getOpcode() == Hexagon::J2_jumpfnew)) {
415 // This is where you would insert your compare and
416 // instr that feeds compare
417 jmpPos = MII;
418 jmpInstr = MI;
419 predReg = MI->getOperand(0).getReg();
420 afterRA = TargetRegisterInfo::isPhysicalRegister(predReg);
421
422 // If ifconverter had not messed up with the kill flags of the
423 // operands, the following check on the kill flag would suffice.
424 // if(!jmpInstr->getOperand(0).isKill()) break;
425
426 // This predicate register is live out out of BB
427 // this would only work if we can actually use Live
428 // variable analysis on phy regs - but LLVM does not
429 // provide LV analysis on phys regs.
430 //if(LVs.isLiveOut(predReg, *MBB)) break;
431
432 // Get all the successors of this block - which will always
433 // be 2. Check if the predicate register is live in in those
434 // successor. If yes, we can not delete the predicate -
435 // I am doing this only because LLVM does not provide LiveOut
436 // at the BB level.
437 bool predLive = false;
438 for (MachineBasicBlock::const_succ_iterator SI = MBB->succ_begin(),
439 SIE = MBB->succ_end(); SI != SIE; ++SI) {
440 MachineBasicBlock* succMBB = *SI;
441 if (succMBB->isLiveIn(predReg)) {
442 predLive = true;
443 }
444 }
445 if (predLive)
446 break;
447
448 jmpTarget = MI->getOperand(1).getMBB();
449 foundJump = true;
450 if (MI->getOpcode() == Hexagon::J2_jumpf ||
451 MI->getOpcode() == Hexagon::J2_jumpfnewpt ||
452 MI->getOpcode() == Hexagon::J2_jumpfnew) {
453 invertPredicate = true;
454 }
455 continue;
456 }
457
458 // No new value jump if there is a barrier. A barrier has to be in its
459 // own packet. A barrier has zero operands. We conservatively bail out
460 // here if we see any instruction with zero operands.
461 if (foundJump && MI->getNumOperands() == 0)
462 break;
463
464 if (foundJump &&
465 !foundCompare &&
466 MI->getOperand(0).isReg() &&
467 MI->getOperand(0).getReg() == predReg) {
468
469 // Not all compares can be new value compare. Arch Spec: 7.6.1.1
470 if (QII->isNewValueJumpCandidate(MI)) {
471
472 assert((MI->getDesc().isCompare()) &&
473 "Only compare instruction can be collapsed into New Value Jump");
474 isSecondOpReg = MI->getOperand(2).isReg();
475
476 if (!canCompareBeNewValueJump(QII, QRI, MII, predReg, isSecondOpReg,
477 afterRA, jmpPos, MF))
478 break;
479
480 cmpInstr = MI;
481 cmpPos = MII;
482 foundCompare = true;
483
484 // We need cmpReg1 and cmpOp2(imm or reg) while building
485 // new value jump instruction.
486 cmpReg1 = MI->getOperand(1).getReg();
487 if (MI->getOperand(1).isKill())
488 MO1IsKill = true;
489
490 if (isSecondOpReg) {
491 cmpOp2 = MI->getOperand(2).getReg();
492 if (MI->getOperand(2).isKill())
493 MO2IsKill = true;
494 } else
495 cmpOp2 = MI->getOperand(2).getImm();
496 continue;
497 }
498 }
499
500 if (foundCompare && foundJump) {
501
502 // If "common" checks fail, bail out on this BB.
503 if (!commonChecksToProhibitNewValueJump(afterRA, MII))
504 break;
505
506 bool foundFeeder = false;
507 MachineBasicBlock::iterator feederPos = MII;
508 if (MI->getOperand(0).isReg() &&
509 MI->getOperand(0).isDef() &&
510 (MI->getOperand(0).getReg() == cmpReg1 ||
511 (isSecondOpReg &&
512 MI->getOperand(0).getReg() == (unsigned) cmpOp2))) {
513
514 unsigned feederReg = MI->getOperand(0).getReg();
515
516 // First try to see if we can get the feeder from the first operand
517 // of the compare. If we can not, and if secondOpReg is true
518 // (second operand of the compare is also register), try that one.
519 // TODO: Try to come up with some heuristic to figure out which
520 // feeder would benefit.
521
522 if (feederReg == cmpReg1) {
523 if (!canBeFeederToNewValueJump(QII, QRI, MII, jmpPos, cmpPos, MF)) {
524 if (!isSecondOpReg)
525 break;
526 else
527 continue;
528 } else
529 foundFeeder = true;
530 }
531
532 if (!foundFeeder &&
533 isSecondOpReg &&
534 feederReg == (unsigned) cmpOp2)
535 if (!canBeFeederToNewValueJump(QII, QRI, MII, jmpPos, cmpPos, MF))
536 break;
537
538 if (isSecondOpReg) {
539 // In case of CMPLT, or CMPLTU, or EQ with the second register
540 // to newify, swap the operands.
541 if (cmpInstr->getOpcode() == Hexagon::C2_cmpeq &&
542 feederReg == (unsigned) cmpOp2) {
543 unsigned tmp = cmpReg1;
544 bool tmpIsKill = MO1IsKill;
545 cmpReg1 = cmpOp2;
546 MO1IsKill = MO2IsKill;
547 cmpOp2 = tmp;
548 MO2IsKill = tmpIsKill;
549 }
550
551 // Now we have swapped the operands, all we need to check is,
552 // if the second operand (after swap) is the feeder.
553 // And if it is, make a note.
554 if (feederReg == (unsigned)cmpOp2)
555 isSecondOpNewified = true;
556 }
557
558 // Now that we are moving feeder close the jump,
559 // make sure we are respecting the kill values of
560 // the operands of the feeder.
561
562 bool updatedIsKill = false;
563 for (unsigned i = 0; i < MI->getNumOperands(); i++) {
564 MachineOperand &MO = MI->getOperand(i);
565 if (MO.isReg() && MO.isUse()) {
566 unsigned feederReg = MO.getReg();
567 for (MachineBasicBlock::iterator localII = feederPos,
568 end = jmpPos; localII != end; localII++) {
569 MachineInstr *localMI = localII;
570 for (unsigned j = 0; j < localMI->getNumOperands(); j++) {
571 MachineOperand &localMO = localMI->getOperand(j);
572 if (localMO.isReg() && localMO.isUse() &&
573 localMO.isKill() && feederReg == localMO.getReg()) {
574 // We found that there is kill of a use register
575 // Set up a kill flag on the register
576 localMO.setIsKill(false);
577 MO.setIsKill();
578 updatedIsKill = true;
579 break;
580 }
581 }
582 if (updatedIsKill) break;
583 }
584 }
585 if (updatedIsKill) break;
586 }
587
588 MBB->splice(jmpPos, MI->getParent(), MI);
589 MBB->splice(jmpPos, MI->getParent(), cmpInstr);
590 DebugLoc dl = MI->getDebugLoc();
591 MachineInstr *NewMI;
592
593 assert((QII->isNewValueJumpCandidate(cmpInstr)) &&
594 "This compare is not a New Value Jump candidate.");
595 unsigned opc = getNewValueJumpOpcode(cmpInstr, cmpOp2,
596 isSecondOpNewified,
597 jmpTarget, MBPI);
598 if (invertPredicate)
599 opc = QII->getInvertedPredicatedOpcode(opc);
600
601 if (isSecondOpReg)
602 NewMI = BuildMI(*MBB, jmpPos, dl,
603 QII->get(opc))
604 .addReg(cmpReg1, getKillRegState(MO1IsKill))
605 .addReg(cmpOp2, getKillRegState(MO2IsKill))
606 .addMBB(jmpTarget);
607
608 else if ((cmpInstr->getOpcode() == Hexagon::C2_cmpeqi ||
609 cmpInstr->getOpcode() == Hexagon::C2_cmpgti) &&
610 cmpOp2 == -1 )
611 // Corresponding new-value compare jump instructions don't have the
612 // operand for -1 immediate value.
613 NewMI = BuildMI(*MBB, jmpPos, dl,
614 QII->get(opc))
615 .addReg(cmpReg1, getKillRegState(MO1IsKill))
616 .addMBB(jmpTarget);
617
618 else
619 NewMI = BuildMI(*MBB, jmpPos, dl,
620 QII->get(opc))
621 .addReg(cmpReg1, getKillRegState(MO1IsKill))
622 .addImm(cmpOp2)
623 .addMBB(jmpTarget);
624
625 assert(NewMI && "New Value Jump Instruction Not created!");
626 (void)NewMI;
627 if (cmpInstr->getOperand(0).isReg() &&
628 cmpInstr->getOperand(0).isKill())
629 cmpInstr->getOperand(0).setIsKill(false);
630 if (cmpInstr->getOperand(1).isReg() &&
631 cmpInstr->getOperand(1).isKill())
632 cmpInstr->getOperand(1).setIsKill(false);
633 cmpInstr->eraseFromParent();
634 jmpInstr->eraseFromParent();
635 ++nvjGenerated;
636 ++NumNVJGenerated;
637 break;
638 }
639 }
640 }
641 }
642
643 return true;
644
645 }
646
createHexagonNewValueJump()647 FunctionPass *llvm::createHexagonNewValueJump() {
648 return new HexagonNewValueJump();
649 }
650