1 //===-- MipsAsmPrinter.cpp - Mips LLVM Assembly Printer -------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file contains a printer that converts from our internal representation
11 // of machine-dependent LLVM code to GAS-format MIPS assembly language.
12 //
13 //===----------------------------------------------------------------------===//
14
15 #include "InstPrinter/MipsInstPrinter.h"
16 #include "MCTargetDesc/MipsBaseInfo.h"
17 #include "MCTargetDesc/MipsMCNaCl.h"
18 #include "Mips.h"
19 #include "MipsAsmPrinter.h"
20 #include "MipsInstrInfo.h"
21 #include "MipsMCInstLower.h"
22 #include "MipsTargetMachine.h"
23 #include "MipsTargetStreamer.h"
24 #include "llvm/ADT/SmallString.h"
25 #include "llvm/ADT/StringExtras.h"
26 #include "llvm/ADT/Twine.h"
27 #include "llvm/CodeGen/MachineConstantPool.h"
28 #include "llvm/CodeGen/MachineFrameInfo.h"
29 #include "llvm/CodeGen/MachineFunctionPass.h"
30 #include "llvm/CodeGen/MachineInstr.h"
31 #include "llvm/CodeGen/MachineJumpTableInfo.h"
32 #include "llvm/CodeGen/MachineMemOperand.h"
33 #include "llvm/IR/BasicBlock.h"
34 #include "llvm/IR/DataLayout.h"
35 #include "llvm/IR/InlineAsm.h"
36 #include "llvm/IR/Instructions.h"
37 #include "llvm/IR/Mangler.h"
38 #include "llvm/MC/MCAsmInfo.h"
39 #include "llvm/MC/MCContext.h"
40 #include "llvm/MC/MCELFStreamer.h"
41 #include "llvm/MC/MCExpr.h"
42 #include "llvm/MC/MCInst.h"
43 #include "llvm/MC/MCSection.h"
44 #include "llvm/MC/MCSectionELF.h"
45 #include "llvm/MC/MCSymbol.h"
46 #include "llvm/Support/ELF.h"
47 #include "llvm/Support/TargetRegistry.h"
48 #include "llvm/Support/raw_ostream.h"
49 #include "llvm/Target/TargetLoweringObjectFile.h"
50 #include "llvm/Target/TargetOptions.h"
51 #include <string>
52
53 using namespace llvm;
54
55 #define DEBUG_TYPE "mips-asm-printer"
56
getTargetStreamer() const57 MipsTargetStreamer &MipsAsmPrinter::getTargetStreamer() const {
58 return static_cast<MipsTargetStreamer &>(*OutStreamer.getTargetStreamer());
59 }
60
runOnMachineFunction(MachineFunction & MF)61 bool MipsAsmPrinter::runOnMachineFunction(MachineFunction &MF) {
62 Subtarget = &MF.getSubtarget<MipsSubtarget>();
63
64 // Initialize TargetLoweringObjectFile.
65 const_cast<TargetLoweringObjectFile &>(getObjFileLowering())
66 .Initialize(OutContext, TM);
67
68 MipsFI = MF.getInfo<MipsFunctionInfo>();
69 if (Subtarget->inMips16Mode())
70 for (std::map<
71 const char *,
72 const llvm::Mips16HardFloatInfo::FuncSignature *>::const_iterator
73 it = MipsFI->StubsNeeded.begin();
74 it != MipsFI->StubsNeeded.end(); ++it) {
75 const char *Symbol = it->first;
76 const llvm::Mips16HardFloatInfo::FuncSignature *Signature = it->second;
77 if (StubsNeeded.find(Symbol) == StubsNeeded.end())
78 StubsNeeded[Symbol] = Signature;
79 }
80 MCP = MF.getConstantPool();
81
82 // In NaCl, all indirect jump targets must be aligned to bundle size.
83 if (Subtarget->isTargetNaCl())
84 NaClAlignIndirectJumpTargets(MF);
85
86 AsmPrinter::runOnMachineFunction(MF);
87 return true;
88 }
89
lowerOperand(const MachineOperand & MO,MCOperand & MCOp)90 bool MipsAsmPrinter::lowerOperand(const MachineOperand &MO, MCOperand &MCOp) {
91 MCOp = MCInstLowering.LowerOperand(MO);
92 return MCOp.isValid();
93 }
94
95 #include "MipsGenMCPseudoLowering.inc"
96
97 // Lower PseudoReturn/PseudoIndirectBranch/PseudoIndirectBranch64 to JR, JR_MM,
98 // JALR, or JALR64 as appropriate for the target
emitPseudoIndirectBranch(MCStreamer & OutStreamer,const MachineInstr * MI)99 void MipsAsmPrinter::emitPseudoIndirectBranch(MCStreamer &OutStreamer,
100 const MachineInstr *MI) {
101 bool HasLinkReg = false;
102 MCInst TmpInst0;
103
104 if (Subtarget->hasMips64r6()) {
105 // MIPS64r6 should use (JALR64 ZERO_64, $rs)
106 TmpInst0.setOpcode(Mips::JALR64);
107 HasLinkReg = true;
108 } else if (Subtarget->hasMips32r6()) {
109 // MIPS32r6 should use (JALR ZERO, $rs)
110 TmpInst0.setOpcode(Mips::JALR);
111 HasLinkReg = true;
112 } else if (Subtarget->inMicroMipsMode())
113 // microMIPS should use (JR_MM $rs)
114 TmpInst0.setOpcode(Mips::JR_MM);
115 else {
116 // Everything else should use (JR $rs)
117 TmpInst0.setOpcode(Mips::JR);
118 }
119
120 MCOperand MCOp;
121
122 if (HasLinkReg) {
123 unsigned ZeroReg = Subtarget->isGP64bit() ? Mips::ZERO_64 : Mips::ZERO;
124 TmpInst0.addOperand(MCOperand::CreateReg(ZeroReg));
125 }
126
127 lowerOperand(MI->getOperand(0), MCOp);
128 TmpInst0.addOperand(MCOp);
129
130 EmitToStreamer(OutStreamer, TmpInst0);
131 }
132
EmitInstruction(const MachineInstr * MI)133 void MipsAsmPrinter::EmitInstruction(const MachineInstr *MI) {
134 MipsTargetStreamer &TS = getTargetStreamer();
135 TS.forbidModuleDirective();
136
137 if (MI->isDebugValue()) {
138 SmallString<128> Str;
139 raw_svector_ostream OS(Str);
140
141 PrintDebugValueComment(MI, OS);
142 return;
143 }
144
145 // If we just ended a constant pool, mark it as such.
146 if (InConstantPool && MI->getOpcode() != Mips::CONSTPOOL_ENTRY) {
147 OutStreamer.EmitDataRegion(MCDR_DataRegionEnd);
148 InConstantPool = false;
149 }
150 if (MI->getOpcode() == Mips::CONSTPOOL_ENTRY) {
151 // CONSTPOOL_ENTRY - This instruction represents a floating
152 //constant pool in the function. The first operand is the ID#
153 // for this instruction, the second is the index into the
154 // MachineConstantPool that this is, the third is the size in
155 // bytes of this constant pool entry.
156 // The required alignment is specified on the basic block holding this MI.
157 //
158 unsigned LabelId = (unsigned)MI->getOperand(0).getImm();
159 unsigned CPIdx = (unsigned)MI->getOperand(1).getIndex();
160
161 // If this is the first entry of the pool, mark it.
162 if (!InConstantPool) {
163 OutStreamer.EmitDataRegion(MCDR_DataRegion);
164 InConstantPool = true;
165 }
166
167 OutStreamer.EmitLabel(GetCPISymbol(LabelId));
168
169 const MachineConstantPoolEntry &MCPE = MCP->getConstants()[CPIdx];
170 if (MCPE.isMachineConstantPoolEntry())
171 EmitMachineConstantPoolValue(MCPE.Val.MachineCPVal);
172 else
173 EmitGlobalConstant(MCPE.Val.ConstVal);
174 return;
175 }
176
177
178 MachineBasicBlock::const_instr_iterator I = MI;
179 MachineBasicBlock::const_instr_iterator E = MI->getParent()->instr_end();
180
181 do {
182 // Do any auto-generated pseudo lowerings.
183 if (emitPseudoExpansionLowering(OutStreamer, &*I))
184 continue;
185
186 if (I->getOpcode() == Mips::PseudoReturn ||
187 I->getOpcode() == Mips::PseudoReturn64 ||
188 I->getOpcode() == Mips::PseudoIndirectBranch ||
189 I->getOpcode() == Mips::PseudoIndirectBranch64) {
190 emitPseudoIndirectBranch(OutStreamer, &*I);
191 continue;
192 }
193
194 // The inMips16Mode() test is not permanent.
195 // Some instructions are marked as pseudo right now which
196 // would make the test fail for the wrong reason but
197 // that will be fixed soon. We need this here because we are
198 // removing another test for this situation downstream in the
199 // callchain.
200 //
201 if (I->isPseudo() && !Subtarget->inMips16Mode()
202 && !isLongBranchPseudo(I->getOpcode()))
203 llvm_unreachable("Pseudo opcode found in EmitInstruction()");
204
205 MCInst TmpInst0;
206 MCInstLowering.Lower(I, TmpInst0);
207 EmitToStreamer(OutStreamer, TmpInst0);
208 } while ((++I != E) && I->isInsideBundle()); // Delay slot check
209 }
210
211 //===----------------------------------------------------------------------===//
212 //
213 // Mips Asm Directives
214 //
215 // -- Frame directive "frame Stackpointer, Stacksize, RARegister"
216 // Describe the stack frame.
217 //
218 // -- Mask directives "(f)mask bitmask, offset"
219 // Tells the assembler which registers are saved and where.
220 // bitmask - contain a little endian bitset indicating which registers are
221 // saved on function prologue (e.g. with a 0x80000000 mask, the
222 // assembler knows the register 31 (RA) is saved at prologue.
223 // offset - the position before stack pointer subtraction indicating where
224 // the first saved register on prologue is located. (e.g. with a
225 //
226 // Consider the following function prologue:
227 //
228 // .frame $fp,48,$ra
229 // .mask 0xc0000000,-8
230 // addiu $sp, $sp, -48
231 // sw $ra, 40($sp)
232 // sw $fp, 36($sp)
233 //
234 // With a 0xc0000000 mask, the assembler knows the register 31 (RA) and
235 // 30 (FP) are saved at prologue. As the save order on prologue is from
236 // left to right, RA is saved first. A -8 offset means that after the
237 // stack pointer subtration, the first register in the mask (RA) will be
238 // saved at address 48-8=40.
239 //
240 //===----------------------------------------------------------------------===//
241
242 //===----------------------------------------------------------------------===//
243 // Mask directives
244 //===----------------------------------------------------------------------===//
245
246 // Create a bitmask with all callee saved registers for CPU or Floating Point
247 // registers. For CPU registers consider RA, GP and FP for saving if necessary.
printSavedRegsBitmask()248 void MipsAsmPrinter::printSavedRegsBitmask() {
249 // CPU and FPU Saved Registers Bitmasks
250 unsigned CPUBitmask = 0, FPUBitmask = 0;
251 int CPUTopSavedRegOff, FPUTopSavedRegOff;
252
253 // Set the CPU and FPU Bitmasks
254 const MachineFrameInfo *MFI = MF->getFrameInfo();
255 const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo();
256 const std::vector<CalleeSavedInfo> &CSI = MFI->getCalleeSavedInfo();
257 // size of stack area to which FP callee-saved regs are saved.
258 unsigned CPURegSize = Mips::GPR32RegClass.getSize();
259 unsigned FGR32RegSize = Mips::FGR32RegClass.getSize();
260 unsigned AFGR64RegSize = Mips::AFGR64RegClass.getSize();
261 bool HasAFGR64Reg = false;
262 unsigned CSFPRegsSize = 0;
263
264 for (const auto &I : CSI) {
265 unsigned Reg = I.getReg();
266 unsigned RegNum = TRI->getEncodingValue(Reg);
267
268 // If it's a floating point register, set the FPU Bitmask.
269 // If it's a general purpose register, set the CPU Bitmask.
270 if (Mips::FGR32RegClass.contains(Reg)) {
271 FPUBitmask |= (1 << RegNum);
272 CSFPRegsSize += FGR32RegSize;
273 } else if (Mips::AFGR64RegClass.contains(Reg)) {
274 FPUBitmask |= (3 << RegNum);
275 CSFPRegsSize += AFGR64RegSize;
276 HasAFGR64Reg = true;
277 } else if (Mips::GPR32RegClass.contains(Reg))
278 CPUBitmask |= (1 << RegNum);
279 }
280
281 // FP Regs are saved right below where the virtual frame pointer points to.
282 FPUTopSavedRegOff = FPUBitmask ?
283 (HasAFGR64Reg ? -AFGR64RegSize : -FGR32RegSize) : 0;
284
285 // CPU Regs are saved below FP Regs.
286 CPUTopSavedRegOff = CPUBitmask ? -CSFPRegsSize - CPURegSize : 0;
287
288 MipsTargetStreamer &TS = getTargetStreamer();
289 // Print CPUBitmask
290 TS.emitMask(CPUBitmask, CPUTopSavedRegOff);
291
292 // Print FPUBitmask
293 TS.emitFMask(FPUBitmask, FPUTopSavedRegOff);
294 }
295
296 //===----------------------------------------------------------------------===//
297 // Frame and Set directives
298 //===----------------------------------------------------------------------===//
299
300 /// Frame Directive
emitFrameDirective()301 void MipsAsmPrinter::emitFrameDirective() {
302 const TargetRegisterInfo &RI = *MF->getSubtarget().getRegisterInfo();
303
304 unsigned stackReg = RI.getFrameRegister(*MF);
305 unsigned returnReg = RI.getRARegister();
306 unsigned stackSize = MF->getFrameInfo()->getStackSize();
307
308 getTargetStreamer().emitFrame(stackReg, stackSize, returnReg);
309 }
310
311 /// Emit Set directives.
getCurrentABIString() const312 const char *MipsAsmPrinter::getCurrentABIString() const {
313 switch (static_cast<MipsTargetMachine &>(TM).getABI().GetEnumValue()) {
314 case MipsABIInfo::ABI::O32: return "abi32";
315 case MipsABIInfo::ABI::N32: return "abiN32";
316 case MipsABIInfo::ABI::N64: return "abi64";
317 case MipsABIInfo::ABI::EABI: return "eabi32"; // TODO: handle eabi64
318 default: llvm_unreachable("Unknown Mips ABI");
319 }
320 }
321
EmitFunctionEntryLabel()322 void MipsAsmPrinter::EmitFunctionEntryLabel() {
323 MipsTargetStreamer &TS = getTargetStreamer();
324
325 // NaCl sandboxing requires that indirect call instructions are masked.
326 // This means that function entry points should be bundle-aligned.
327 if (Subtarget->isTargetNaCl())
328 EmitAlignment(std::max(MF->getAlignment(), MIPS_NACL_BUNDLE_ALIGN));
329
330 if (Subtarget->inMicroMipsMode())
331 TS.emitDirectiveSetMicroMips();
332 else
333 TS.emitDirectiveSetNoMicroMips();
334
335 if (Subtarget->inMips16Mode())
336 TS.emitDirectiveSetMips16();
337 else
338 TS.emitDirectiveSetNoMips16();
339
340 TS.emitDirectiveEnt(*CurrentFnSym);
341 OutStreamer.EmitLabel(CurrentFnSym);
342 }
343
344 /// EmitFunctionBodyStart - Targets can override this to emit stuff before
345 /// the first basic block in the function.
EmitFunctionBodyStart()346 void MipsAsmPrinter::EmitFunctionBodyStart() {
347 MipsTargetStreamer &TS = getTargetStreamer();
348
349 MCInstLowering.Initialize(&MF->getContext());
350
351 bool IsNakedFunction = MF->getFunction()->hasFnAttribute(Attribute::Naked);
352 if (!IsNakedFunction)
353 emitFrameDirective();
354
355 if (!IsNakedFunction)
356 printSavedRegsBitmask();
357
358 if (!Subtarget->inMips16Mode()) {
359 TS.emitDirectiveSetNoReorder();
360 TS.emitDirectiveSetNoMacro();
361 TS.emitDirectiveSetNoAt();
362 }
363 }
364
365 /// EmitFunctionBodyEnd - Targets can override this to emit stuff after
366 /// the last basic block in the function.
EmitFunctionBodyEnd()367 void MipsAsmPrinter::EmitFunctionBodyEnd() {
368 MipsTargetStreamer &TS = getTargetStreamer();
369
370 // There are instruction for this macros, but they must
371 // always be at the function end, and we can't emit and
372 // break with BB logic.
373 if (!Subtarget->inMips16Mode()) {
374 TS.emitDirectiveSetAt();
375 TS.emitDirectiveSetMacro();
376 TS.emitDirectiveSetReorder();
377 }
378 TS.emitDirectiveEnd(CurrentFnSym->getName());
379 // Make sure to terminate any constant pools that were at the end
380 // of the function.
381 if (!InConstantPool)
382 return;
383 InConstantPool = false;
384 OutStreamer.EmitDataRegion(MCDR_DataRegionEnd);
385 }
386
387 /// isBlockOnlyReachableByFallthough - Return true if the basic block has
388 /// exactly one predecessor and the control transfer mechanism between
389 /// the predecessor and this block is a fall-through.
isBlockOnlyReachableByFallthrough(const MachineBasicBlock * MBB) const390 bool MipsAsmPrinter::isBlockOnlyReachableByFallthrough(const MachineBasicBlock*
391 MBB) const {
392 // The predecessor has to be immediately before this block.
393 const MachineBasicBlock *Pred = *MBB->pred_begin();
394
395 // If the predecessor is a switch statement, assume a jump table
396 // implementation, so it is not a fall through.
397 if (const BasicBlock *bb = Pred->getBasicBlock())
398 if (isa<SwitchInst>(bb->getTerminator()))
399 return false;
400
401 // If this is a landing pad, it isn't a fall through. If it has no preds,
402 // then nothing falls through to it.
403 if (MBB->isLandingPad() || MBB->pred_empty())
404 return false;
405
406 // If there isn't exactly one predecessor, it can't be a fall through.
407 MachineBasicBlock::const_pred_iterator PI = MBB->pred_begin(), PI2 = PI;
408 ++PI2;
409
410 if (PI2 != MBB->pred_end())
411 return false;
412
413 // The predecessor has to be immediately before this block.
414 if (!Pred->isLayoutSuccessor(MBB))
415 return false;
416
417 // If the block is completely empty, then it definitely does fall through.
418 if (Pred->empty())
419 return true;
420
421 // Otherwise, check the last instruction.
422 // Check if the last terminator is an unconditional branch.
423 MachineBasicBlock::const_iterator I = Pred->end();
424 while (I != Pred->begin() && !(--I)->isTerminator()) ;
425
426 return !I->isBarrier();
427 }
428
429 // Print out an operand for an inline asm expression.
PrintAsmOperand(const MachineInstr * MI,unsigned OpNum,unsigned AsmVariant,const char * ExtraCode,raw_ostream & O)430 bool MipsAsmPrinter::PrintAsmOperand(const MachineInstr *MI, unsigned OpNum,
431 unsigned AsmVariant, const char *ExtraCode,
432 raw_ostream &O) {
433 // Does this asm operand have a single letter operand modifier?
434 if (ExtraCode && ExtraCode[0]) {
435 if (ExtraCode[1] != 0) return true; // Unknown modifier.
436
437 const MachineOperand &MO = MI->getOperand(OpNum);
438 switch (ExtraCode[0]) {
439 default:
440 // See if this is a generic print operand
441 return AsmPrinter::PrintAsmOperand(MI,OpNum,AsmVariant,ExtraCode,O);
442 case 'X': // hex const int
443 if ((MO.getType()) != MachineOperand::MO_Immediate)
444 return true;
445 O << "0x" << StringRef(utohexstr(MO.getImm())).lower();
446 return false;
447 case 'x': // hex const int (low 16 bits)
448 if ((MO.getType()) != MachineOperand::MO_Immediate)
449 return true;
450 O << "0x" << StringRef(utohexstr(MO.getImm() & 0xffff)).lower();
451 return false;
452 case 'd': // decimal const int
453 if ((MO.getType()) != MachineOperand::MO_Immediate)
454 return true;
455 O << MO.getImm();
456 return false;
457 case 'm': // decimal const int minus 1
458 if ((MO.getType()) != MachineOperand::MO_Immediate)
459 return true;
460 O << MO.getImm() - 1;
461 return false;
462 case 'z': {
463 // $0 if zero, regular printing otherwise
464 if (MO.getType() == MachineOperand::MO_Immediate && MO.getImm() == 0) {
465 O << "$0";
466 return false;
467 }
468 // If not, call printOperand as normal.
469 break;
470 }
471 case 'D': // Second part of a double word register operand
472 case 'L': // Low order register of a double word register operand
473 case 'M': // High order register of a double word register operand
474 {
475 if (OpNum == 0)
476 return true;
477 const MachineOperand &FlagsOP = MI->getOperand(OpNum - 1);
478 if (!FlagsOP.isImm())
479 return true;
480 unsigned Flags = FlagsOP.getImm();
481 unsigned NumVals = InlineAsm::getNumOperandRegisters(Flags);
482 // Number of registers represented by this operand. We are looking
483 // for 2 for 32 bit mode and 1 for 64 bit mode.
484 if (NumVals != 2) {
485 if (Subtarget->isGP64bit() && NumVals == 1 && MO.isReg()) {
486 unsigned Reg = MO.getReg();
487 O << '$' << MipsInstPrinter::getRegisterName(Reg);
488 return false;
489 }
490 return true;
491 }
492
493 unsigned RegOp = OpNum;
494 if (!Subtarget->isGP64bit()){
495 // Endianess reverses which register holds the high or low value
496 // between M and L.
497 switch(ExtraCode[0]) {
498 case 'M':
499 RegOp = (Subtarget->isLittle()) ? OpNum + 1 : OpNum;
500 break;
501 case 'L':
502 RegOp = (Subtarget->isLittle()) ? OpNum : OpNum + 1;
503 break;
504 case 'D': // Always the second part
505 RegOp = OpNum + 1;
506 }
507 if (RegOp >= MI->getNumOperands())
508 return true;
509 const MachineOperand &MO = MI->getOperand(RegOp);
510 if (!MO.isReg())
511 return true;
512 unsigned Reg = MO.getReg();
513 O << '$' << MipsInstPrinter::getRegisterName(Reg);
514 return false;
515 }
516 }
517 case 'w':
518 // Print MSA registers for the 'f' constraint
519 // In LLVM, the 'w' modifier doesn't need to do anything.
520 // We can just call printOperand as normal.
521 break;
522 }
523 }
524
525 printOperand(MI, OpNum, O);
526 return false;
527 }
528
PrintAsmMemoryOperand(const MachineInstr * MI,unsigned OpNum,unsigned AsmVariant,const char * ExtraCode,raw_ostream & O)529 bool MipsAsmPrinter::PrintAsmMemoryOperand(const MachineInstr *MI,
530 unsigned OpNum, unsigned AsmVariant,
531 const char *ExtraCode,
532 raw_ostream &O) {
533 assert(OpNum + 1 < MI->getNumOperands() && "Insufficient operands");
534 const MachineOperand &BaseMO = MI->getOperand(OpNum);
535 const MachineOperand &OffsetMO = MI->getOperand(OpNum + 1);
536 assert(BaseMO.isReg() && "Unexpected base pointer for inline asm memory operand.");
537 assert(OffsetMO.isImm() && "Unexpected offset for inline asm memory operand.");
538 int Offset = OffsetMO.getImm();
539
540 // Currently we are expecting either no ExtraCode or 'D'
541 if (ExtraCode) {
542 if (ExtraCode[0] == 'D')
543 Offset += 4;
544 else
545 return true; // Unknown modifier.
546 // FIXME: M = high order bits
547 // FIXME: L = low order bits
548 }
549
550 O << Offset << "($" << MipsInstPrinter::getRegisterName(BaseMO.getReg()) << ")";
551
552 return false;
553 }
554
printOperand(const MachineInstr * MI,int opNum,raw_ostream & O)555 void MipsAsmPrinter::printOperand(const MachineInstr *MI, int opNum,
556 raw_ostream &O) {
557 const DataLayout *DL = TM.getDataLayout();
558 const MachineOperand &MO = MI->getOperand(opNum);
559 bool closeP = false;
560
561 if (MO.getTargetFlags())
562 closeP = true;
563
564 switch(MO.getTargetFlags()) {
565 case MipsII::MO_GPREL: O << "%gp_rel("; break;
566 case MipsII::MO_GOT_CALL: O << "%call16("; break;
567 case MipsII::MO_GOT: O << "%got("; break;
568 case MipsII::MO_ABS_HI: O << "%hi("; break;
569 case MipsII::MO_ABS_LO: O << "%lo("; break;
570 case MipsII::MO_TLSGD: O << "%tlsgd("; break;
571 case MipsII::MO_GOTTPREL: O << "%gottprel("; break;
572 case MipsII::MO_TPREL_HI: O << "%tprel_hi("; break;
573 case MipsII::MO_TPREL_LO: O << "%tprel_lo("; break;
574 case MipsII::MO_GPOFF_HI: O << "%hi(%neg(%gp_rel("; break;
575 case MipsII::MO_GPOFF_LO: O << "%lo(%neg(%gp_rel("; break;
576 case MipsII::MO_GOT_DISP: O << "%got_disp("; break;
577 case MipsII::MO_GOT_PAGE: O << "%got_page("; break;
578 case MipsII::MO_GOT_OFST: O << "%got_ofst("; break;
579 }
580
581 switch (MO.getType()) {
582 case MachineOperand::MO_Register:
583 O << '$'
584 << StringRef(MipsInstPrinter::getRegisterName(MO.getReg())).lower();
585 break;
586
587 case MachineOperand::MO_Immediate:
588 O << MO.getImm();
589 break;
590
591 case MachineOperand::MO_MachineBasicBlock:
592 O << *MO.getMBB()->getSymbol();
593 return;
594
595 case MachineOperand::MO_GlobalAddress:
596 O << *getSymbol(MO.getGlobal());
597 break;
598
599 case MachineOperand::MO_BlockAddress: {
600 MCSymbol *BA = GetBlockAddressSymbol(MO.getBlockAddress());
601 O << BA->getName();
602 break;
603 }
604
605 case MachineOperand::MO_ConstantPoolIndex:
606 O << DL->getPrivateGlobalPrefix() << "CPI"
607 << getFunctionNumber() << "_" << MO.getIndex();
608 if (MO.getOffset())
609 O << "+" << MO.getOffset();
610 break;
611
612 default:
613 llvm_unreachable("<unknown operand type>");
614 }
615
616 if (closeP) O << ")";
617 }
618
printUnsignedImm(const MachineInstr * MI,int opNum,raw_ostream & O)619 void MipsAsmPrinter::printUnsignedImm(const MachineInstr *MI, int opNum,
620 raw_ostream &O) {
621 const MachineOperand &MO = MI->getOperand(opNum);
622 if (MO.isImm())
623 O << (unsigned short int)MO.getImm();
624 else
625 printOperand(MI, opNum, O);
626 }
627
printUnsignedImm8(const MachineInstr * MI,int opNum,raw_ostream & O)628 void MipsAsmPrinter::printUnsignedImm8(const MachineInstr *MI, int opNum,
629 raw_ostream &O) {
630 const MachineOperand &MO = MI->getOperand(opNum);
631 if (MO.isImm())
632 O << (unsigned short int)(unsigned char)MO.getImm();
633 else
634 printOperand(MI, opNum, O);
635 }
636
637 void MipsAsmPrinter::
printMemOperand(const MachineInstr * MI,int opNum,raw_ostream & O)638 printMemOperand(const MachineInstr *MI, int opNum, raw_ostream &O) {
639 // Load/Store memory operands -- imm($reg)
640 // If PIC target the target is loaded as the
641 // pattern lw $25,%call16($28)
642
643 // opNum can be invalid if instruction has reglist as operand.
644 // MemOperand is always last operand of instruction (base + offset).
645 switch (MI->getOpcode()) {
646 default:
647 break;
648 case Mips::SWM32_MM:
649 case Mips::LWM32_MM:
650 opNum = MI->getNumOperands() - 2;
651 break;
652 }
653
654 printOperand(MI, opNum+1, O);
655 O << "(";
656 printOperand(MI, opNum, O);
657 O << ")";
658 }
659
660 void MipsAsmPrinter::
printMemOperandEA(const MachineInstr * MI,int opNum,raw_ostream & O)661 printMemOperandEA(const MachineInstr *MI, int opNum, raw_ostream &O) {
662 // when using stack locations for not load/store instructions
663 // print the same way as all normal 3 operand instructions.
664 printOperand(MI, opNum, O);
665 O << ", ";
666 printOperand(MI, opNum+1, O);
667 return;
668 }
669
670 void MipsAsmPrinter::
printFCCOperand(const MachineInstr * MI,int opNum,raw_ostream & O,const char * Modifier)671 printFCCOperand(const MachineInstr *MI, int opNum, raw_ostream &O,
672 const char *Modifier) {
673 const MachineOperand &MO = MI->getOperand(opNum);
674 O << Mips::MipsFCCToString((Mips::CondCode)MO.getImm());
675 }
676
677 void MipsAsmPrinter::
printRegisterList(const MachineInstr * MI,int opNum,raw_ostream & O)678 printRegisterList(const MachineInstr *MI, int opNum, raw_ostream &O) {
679 for (int i = opNum, e = MI->getNumOperands(); i != e; ++i) {
680 if (i != opNum) O << ", ";
681 printOperand(MI, i, O);
682 }
683 }
684
EmitStartOfAsmFile(Module & M)685 void MipsAsmPrinter::EmitStartOfAsmFile(Module &M) {
686
687 // Compute MIPS architecture attributes based on the default subtarget
688 // that we'd have constructed. Module level directives aren't LTO
689 // clean anyhow.
690 // FIXME: For ifunc related functions we could iterate over and look
691 // for a feature string that doesn't match the default one.
692 StringRef TT = TM.getTargetTriple();
693 StringRef CPU =
694 MIPS_MC::selectMipsCPU(TM.getTargetTriple(), TM.getTargetCPU());
695 StringRef FS = TM.getTargetFeatureString();
696 const MipsTargetMachine &MTM = static_cast<const MipsTargetMachine &>(TM);
697 const MipsSubtarget STI(TT, CPU, FS, MTM.isLittleEndian(), MTM);
698
699 bool IsABICalls = STI.isABICalls();
700 const MipsABIInfo &ABI = MTM.getABI();
701 if (IsABICalls) {
702 getTargetStreamer().emitDirectiveAbiCalls();
703 Reloc::Model RM = TM.getRelocationModel();
704 // FIXME: This condition should be a lot more complicated that it is here.
705 // Ideally it should test for properties of the ABI and not the ABI
706 // itself.
707 // For the moment, I'm only correcting enough to make MIPS-IV work.
708 if (RM == Reloc::Static && !ABI.IsN64())
709 getTargetStreamer().emitDirectiveOptionPic0();
710 }
711
712 // Tell the assembler which ABI we are using
713 std::string SectionName = std::string(".mdebug.") + getCurrentABIString();
714 OutStreamer.SwitchSection(
715 OutContext.getELFSection(SectionName, ELF::SHT_PROGBITS, 0));
716
717 // NaN: At the moment we only support:
718 // 1. .nan legacy (default)
719 // 2. .nan 2008
720 STI.isNaN2008() ? getTargetStreamer().emitDirectiveNaN2008()
721 : getTargetStreamer().emitDirectiveNaNLegacy();
722
723 // TODO: handle O64 ABI
724
725 if (ABI.IsEABI()) {
726 if (STI.isGP32bit())
727 OutStreamer.SwitchSection(OutContext.getELFSection(".gcc_compiled_long32",
728 ELF::SHT_PROGBITS, 0));
729 else
730 OutStreamer.SwitchSection(OutContext.getELFSection(".gcc_compiled_long64",
731 ELF::SHT_PROGBITS, 0));
732 }
733
734 getTargetStreamer().updateABIInfo(STI);
735
736 // We should always emit a '.module fp=...' but binutils 2.24 does not accept
737 // it. We therefore emit it when it contradicts the ABI defaults (-mfpxx or
738 // -mfp64) and omit it otherwise.
739 if (ABI.IsO32() && (STI.isABI_FPXX() || STI.isFP64bit()))
740 getTargetStreamer().emitDirectiveModuleFP();
741
742 // We should always emit a '.module [no]oddspreg' but binutils 2.24 does not
743 // accept it. We therefore emit it when it contradicts the default or an
744 // option has changed the default (i.e. FPXX) and omit it otherwise.
745 if (ABI.IsO32() && (!STI.useOddSPReg() || STI.isABI_FPXX()))
746 getTargetStreamer().emitDirectiveModuleOddSPReg(STI.useOddSPReg(),
747 ABI.IsO32());
748 }
749
emitInlineAsmStart() const750 void MipsAsmPrinter::emitInlineAsmStart() const {
751 MipsTargetStreamer &TS = getTargetStreamer();
752
753 // GCC's choice of assembler options for inline assembly code ('at', 'macro'
754 // and 'reorder') is different from LLVM's choice for generated code ('noat',
755 // 'nomacro' and 'noreorder').
756 // In order to maintain compatibility with inline assembly code which depends
757 // on GCC's assembler options being used, we have to switch to those options
758 // for the duration of the inline assembly block and then switch back.
759 TS.emitDirectiveSetPush();
760 TS.emitDirectiveSetAt();
761 TS.emitDirectiveSetMacro();
762 TS.emitDirectiveSetReorder();
763 OutStreamer.AddBlankLine();
764 }
765
emitInlineAsmEnd(const MCSubtargetInfo & StartInfo,const MCSubtargetInfo * EndInfo) const766 void MipsAsmPrinter::emitInlineAsmEnd(const MCSubtargetInfo &StartInfo,
767 const MCSubtargetInfo *EndInfo) const {
768 OutStreamer.AddBlankLine();
769 getTargetStreamer().emitDirectiveSetPop();
770 }
771
EmitJal(const MCSubtargetInfo & STI,MCSymbol * Symbol)772 void MipsAsmPrinter::EmitJal(const MCSubtargetInfo &STI, MCSymbol *Symbol) {
773 MCInst I;
774 I.setOpcode(Mips::JAL);
775 I.addOperand(
776 MCOperand::CreateExpr(MCSymbolRefExpr::Create(Symbol, OutContext)));
777 OutStreamer.EmitInstruction(I, STI);
778 }
779
EmitInstrReg(const MCSubtargetInfo & STI,unsigned Opcode,unsigned Reg)780 void MipsAsmPrinter::EmitInstrReg(const MCSubtargetInfo &STI, unsigned Opcode,
781 unsigned Reg) {
782 MCInst I;
783 I.setOpcode(Opcode);
784 I.addOperand(MCOperand::CreateReg(Reg));
785 OutStreamer.EmitInstruction(I, STI);
786 }
787
EmitInstrRegReg(const MCSubtargetInfo & STI,unsigned Opcode,unsigned Reg1,unsigned Reg2)788 void MipsAsmPrinter::EmitInstrRegReg(const MCSubtargetInfo &STI,
789 unsigned Opcode, unsigned Reg1,
790 unsigned Reg2) {
791 MCInst I;
792 //
793 // Because of the current td files for Mips32, the operands for MTC1
794 // appear backwards from their normal assembly order. It's not a trivial
795 // change to fix this in the td file so we adjust for it here.
796 //
797 if (Opcode == Mips::MTC1) {
798 unsigned Temp = Reg1;
799 Reg1 = Reg2;
800 Reg2 = Temp;
801 }
802 I.setOpcode(Opcode);
803 I.addOperand(MCOperand::CreateReg(Reg1));
804 I.addOperand(MCOperand::CreateReg(Reg2));
805 OutStreamer.EmitInstruction(I, STI);
806 }
807
EmitInstrRegRegReg(const MCSubtargetInfo & STI,unsigned Opcode,unsigned Reg1,unsigned Reg2,unsigned Reg3)808 void MipsAsmPrinter::EmitInstrRegRegReg(const MCSubtargetInfo &STI,
809 unsigned Opcode, unsigned Reg1,
810 unsigned Reg2, unsigned Reg3) {
811 MCInst I;
812 I.setOpcode(Opcode);
813 I.addOperand(MCOperand::CreateReg(Reg1));
814 I.addOperand(MCOperand::CreateReg(Reg2));
815 I.addOperand(MCOperand::CreateReg(Reg3));
816 OutStreamer.EmitInstruction(I, STI);
817 }
818
EmitMovFPIntPair(const MCSubtargetInfo & STI,unsigned MovOpc,unsigned Reg1,unsigned Reg2,unsigned FPReg1,unsigned FPReg2,bool LE)819 void MipsAsmPrinter::EmitMovFPIntPair(const MCSubtargetInfo &STI,
820 unsigned MovOpc, unsigned Reg1,
821 unsigned Reg2, unsigned FPReg1,
822 unsigned FPReg2, bool LE) {
823 if (!LE) {
824 unsigned temp = Reg1;
825 Reg1 = Reg2;
826 Reg2 = temp;
827 }
828 EmitInstrRegReg(STI, MovOpc, Reg1, FPReg1);
829 EmitInstrRegReg(STI, MovOpc, Reg2, FPReg2);
830 }
831
EmitSwapFPIntParams(const MCSubtargetInfo & STI,Mips16HardFloatInfo::FPParamVariant PV,bool LE,bool ToFP)832 void MipsAsmPrinter::EmitSwapFPIntParams(const MCSubtargetInfo &STI,
833 Mips16HardFloatInfo::FPParamVariant PV,
834 bool LE, bool ToFP) {
835 using namespace Mips16HardFloatInfo;
836 unsigned MovOpc = ToFP ? Mips::MTC1 : Mips::MFC1;
837 switch (PV) {
838 case FSig:
839 EmitInstrRegReg(STI, MovOpc, Mips::A0, Mips::F12);
840 break;
841 case FFSig:
842 EmitMovFPIntPair(STI, MovOpc, Mips::A0, Mips::A1, Mips::F12, Mips::F14, LE);
843 break;
844 case FDSig:
845 EmitInstrRegReg(STI, MovOpc, Mips::A0, Mips::F12);
846 EmitMovFPIntPair(STI, MovOpc, Mips::A2, Mips::A3, Mips::F14, Mips::F15, LE);
847 break;
848 case DSig:
849 EmitMovFPIntPair(STI, MovOpc, Mips::A0, Mips::A1, Mips::F12, Mips::F13, LE);
850 break;
851 case DDSig:
852 EmitMovFPIntPair(STI, MovOpc, Mips::A0, Mips::A1, Mips::F12, Mips::F13, LE);
853 EmitMovFPIntPair(STI, MovOpc, Mips::A2, Mips::A3, Mips::F14, Mips::F15, LE);
854 break;
855 case DFSig:
856 EmitMovFPIntPair(STI, MovOpc, Mips::A0, Mips::A1, Mips::F12, Mips::F13, LE);
857 EmitInstrRegReg(STI, MovOpc, Mips::A2, Mips::F14);
858 break;
859 case NoSig:
860 return;
861 }
862 }
863
EmitSwapFPIntRetval(const MCSubtargetInfo & STI,Mips16HardFloatInfo::FPReturnVariant RV,bool LE)864 void MipsAsmPrinter::EmitSwapFPIntRetval(
865 const MCSubtargetInfo &STI, Mips16HardFloatInfo::FPReturnVariant RV,
866 bool LE) {
867 using namespace Mips16HardFloatInfo;
868 unsigned MovOpc = Mips::MFC1;
869 switch (RV) {
870 case FRet:
871 EmitInstrRegReg(STI, MovOpc, Mips::V0, Mips::F0);
872 break;
873 case DRet:
874 EmitMovFPIntPair(STI, MovOpc, Mips::V0, Mips::V1, Mips::F0, Mips::F1, LE);
875 break;
876 case CFRet:
877 EmitMovFPIntPair(STI, MovOpc, Mips::V0, Mips::V1, Mips::F0, Mips::F1, LE);
878 break;
879 case CDRet:
880 EmitMovFPIntPair(STI, MovOpc, Mips::V0, Mips::V1, Mips::F0, Mips::F1, LE);
881 EmitMovFPIntPair(STI, MovOpc, Mips::A0, Mips::A1, Mips::F2, Mips::F3, LE);
882 break;
883 case NoFPRet:
884 break;
885 }
886 }
887
EmitFPCallStub(const char * Symbol,const Mips16HardFloatInfo::FuncSignature * Signature)888 void MipsAsmPrinter::EmitFPCallStub(
889 const char *Symbol, const Mips16HardFloatInfo::FuncSignature *Signature) {
890 MCSymbol *MSymbol = OutContext.GetOrCreateSymbol(StringRef(Symbol));
891 using namespace Mips16HardFloatInfo;
892 bool LE = getDataLayout().isLittleEndian();
893 // Construct a local MCSubtargetInfo here.
894 // This is because the MachineFunction won't exist (but have not yet been
895 // freed) and since we're at the global level we can use the default
896 // constructed subtarget.
897 std::unique_ptr<MCSubtargetInfo> STI(TM.getTarget().createMCSubtargetInfo(
898 TM.getTargetTriple(), TM.getTargetCPU(), TM.getTargetFeatureString()));
899
900 //
901 // .global xxxx
902 //
903 OutStreamer.EmitSymbolAttribute(MSymbol, MCSA_Global);
904 const char *RetType;
905 //
906 // make the comment field identifying the return and parameter
907 // types of the floating point stub
908 // # Stub function to call rettype xxxx (params)
909 //
910 switch (Signature->RetSig) {
911 case FRet:
912 RetType = "float";
913 break;
914 case DRet:
915 RetType = "double";
916 break;
917 case CFRet:
918 RetType = "complex";
919 break;
920 case CDRet:
921 RetType = "double complex";
922 break;
923 case NoFPRet:
924 RetType = "";
925 break;
926 }
927 const char *Parms;
928 switch (Signature->ParamSig) {
929 case FSig:
930 Parms = "float";
931 break;
932 case FFSig:
933 Parms = "float, float";
934 break;
935 case FDSig:
936 Parms = "float, double";
937 break;
938 case DSig:
939 Parms = "double";
940 break;
941 case DDSig:
942 Parms = "double, double";
943 break;
944 case DFSig:
945 Parms = "double, float";
946 break;
947 case NoSig:
948 Parms = "";
949 break;
950 }
951 OutStreamer.AddComment("\t# Stub function to call " + Twine(RetType) + " " +
952 Twine(Symbol) + " (" + Twine(Parms) + ")");
953 //
954 // probably not necessary but we save and restore the current section state
955 //
956 OutStreamer.PushSection();
957 //
958 // .section mips16.call.fpxxxx,"ax",@progbits
959 //
960 const MCSectionELF *M = OutContext.getELFSection(
961 ".mips16.call.fp." + std::string(Symbol), ELF::SHT_PROGBITS,
962 ELF::SHF_ALLOC | ELF::SHF_EXECINSTR);
963 OutStreamer.SwitchSection(M, nullptr);
964 //
965 // .align 2
966 //
967 OutStreamer.EmitValueToAlignment(4);
968 MipsTargetStreamer &TS = getTargetStreamer();
969 //
970 // .set nomips16
971 // .set nomicromips
972 //
973 TS.emitDirectiveSetNoMips16();
974 TS.emitDirectiveSetNoMicroMips();
975 //
976 // .ent __call_stub_fp_xxxx
977 // .type __call_stub_fp_xxxx,@function
978 // __call_stub_fp_xxxx:
979 //
980 std::string x = "__call_stub_fp_" + std::string(Symbol);
981 MCSymbol *Stub = OutContext.GetOrCreateSymbol(StringRef(x));
982 TS.emitDirectiveEnt(*Stub);
983 MCSymbol *MType =
984 OutContext.GetOrCreateSymbol("__call_stub_fp_" + Twine(Symbol));
985 OutStreamer.EmitSymbolAttribute(MType, MCSA_ELF_TypeFunction);
986 OutStreamer.EmitLabel(Stub);
987
988 // Only handle non-pic for now.
989 assert(TM.getRelocationModel() != Reloc::PIC_ &&
990 "should not be here if we are compiling pic");
991 TS.emitDirectiveSetReorder();
992 //
993 // We need to add a MipsMCExpr class to MCTargetDesc to fully implement
994 // stubs without raw text but this current patch is for compiler generated
995 // functions and they all return some value.
996 // The calling sequence for non pic is different in that case and we need
997 // to implement %lo and %hi in order to handle the case of no return value
998 // See the corresponding method in Mips16HardFloat for details.
999 //
1000 // mov the return address to S2.
1001 // we have no stack space to store it and we are about to make another call.
1002 // We need to make sure that the enclosing function knows to save S2
1003 // This should have already been handled.
1004 //
1005 // Mov $18, $31
1006
1007 EmitInstrRegRegReg(*STI, Mips::ADDu, Mips::S2, Mips::RA, Mips::ZERO);
1008
1009 EmitSwapFPIntParams(*STI, Signature->ParamSig, LE, true);
1010
1011 // Jal xxxx
1012 //
1013 EmitJal(*STI, MSymbol);
1014
1015 // fix return values
1016 EmitSwapFPIntRetval(*STI, Signature->RetSig, LE);
1017 //
1018 // do the return
1019 // if (Signature->RetSig == NoFPRet)
1020 // llvm_unreachable("should not be any stubs here with no return value");
1021 // else
1022 EmitInstrReg(*STI, Mips::JR, Mips::S2);
1023
1024 MCSymbol *Tmp = OutContext.CreateTempSymbol();
1025 OutStreamer.EmitLabel(Tmp);
1026 const MCSymbolRefExpr *E = MCSymbolRefExpr::Create(Stub, OutContext);
1027 const MCSymbolRefExpr *T = MCSymbolRefExpr::Create(Tmp, OutContext);
1028 const MCExpr *T_min_E = MCBinaryExpr::CreateSub(T, E, OutContext);
1029 OutStreamer.EmitELFSize(Stub, T_min_E);
1030 TS.emitDirectiveEnd(x);
1031 OutStreamer.PopSection();
1032 }
1033
EmitEndOfAsmFile(Module & M)1034 void MipsAsmPrinter::EmitEndOfAsmFile(Module &M) {
1035 // Emit needed stubs
1036 //
1037 for (std::map<
1038 const char *,
1039 const llvm::Mips16HardFloatInfo::FuncSignature *>::const_iterator
1040 it = StubsNeeded.begin();
1041 it != StubsNeeded.end(); ++it) {
1042 const char *Symbol = it->first;
1043 const llvm::Mips16HardFloatInfo::FuncSignature *Signature = it->second;
1044 EmitFPCallStub(Symbol, Signature);
1045 }
1046 // return to the text section
1047 OutStreamer.SwitchSection(OutContext.getObjectFileInfo()->getTextSection());
1048 }
1049
PrintDebugValueComment(const MachineInstr * MI,raw_ostream & OS)1050 void MipsAsmPrinter::PrintDebugValueComment(const MachineInstr *MI,
1051 raw_ostream &OS) {
1052 // TODO: implement
1053 }
1054
1055 // Align all targets of indirect branches on bundle size. Used only if target
1056 // is NaCl.
NaClAlignIndirectJumpTargets(MachineFunction & MF)1057 void MipsAsmPrinter::NaClAlignIndirectJumpTargets(MachineFunction &MF) {
1058 // Align all blocks that are jumped to through jump table.
1059 if (MachineJumpTableInfo *JtInfo = MF.getJumpTableInfo()) {
1060 const std::vector<MachineJumpTableEntry> &JT = JtInfo->getJumpTables();
1061 for (unsigned I = 0; I < JT.size(); ++I) {
1062 const std::vector<MachineBasicBlock*> &MBBs = JT[I].MBBs;
1063
1064 for (unsigned J = 0; J < MBBs.size(); ++J)
1065 MBBs[J]->setAlignment(MIPS_NACL_BUNDLE_ALIGN);
1066 }
1067 }
1068
1069 // If basic block address is taken, block can be target of indirect branch.
1070 for (MachineFunction::iterator MBB = MF.begin(), E = MF.end();
1071 MBB != E; ++MBB) {
1072 if (MBB->hasAddressTaken())
1073 MBB->setAlignment(MIPS_NACL_BUNDLE_ALIGN);
1074 }
1075 }
1076
isLongBranchPseudo(int Opcode) const1077 bool MipsAsmPrinter::isLongBranchPseudo(int Opcode) const {
1078 return (Opcode == Mips::LONG_BRANCH_LUi
1079 || Opcode == Mips::LONG_BRANCH_ADDiu
1080 || Opcode == Mips::LONG_BRANCH_DADDiu);
1081 }
1082
1083 // Force static initialization.
LLVMInitializeMipsAsmPrinter()1084 extern "C" void LLVMInitializeMipsAsmPrinter() {
1085 RegisterAsmPrinter<MipsAsmPrinter> X(TheMipsTarget);
1086 RegisterAsmPrinter<MipsAsmPrinter> Y(TheMipselTarget);
1087 RegisterAsmPrinter<MipsAsmPrinter> A(TheMips64Target);
1088 RegisterAsmPrinter<MipsAsmPrinter> B(TheMips64elTarget);
1089 }
1090