1 //===-- MipsAsmPrinter.cpp - Mips LLVM Assembly Printer -------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file contains a printer that converts from our internal representation
11 // of machine-dependent LLVM code to GAS-format MIPS assembly language.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "InstPrinter/MipsInstPrinter.h"
16 #include "MCTargetDesc/MipsBaseInfo.h"
17 #include "MCTargetDesc/MipsMCNaCl.h"
18 #include "Mips.h"
19 #include "MipsAsmPrinter.h"
20 #include "MipsInstrInfo.h"
21 #include "MipsMCInstLower.h"
22 #include "MipsTargetMachine.h"
23 #include "MipsTargetStreamer.h"
24 #include "llvm/ADT/SmallString.h"
25 #include "llvm/ADT/StringExtras.h"
26 #include "llvm/ADT/Twine.h"
27 #include "llvm/CodeGen/MachineConstantPool.h"
28 #include "llvm/CodeGen/MachineFrameInfo.h"
29 #include "llvm/CodeGen/MachineFunctionPass.h"
30 #include "llvm/CodeGen/MachineInstr.h"
31 #include "llvm/CodeGen/MachineJumpTableInfo.h"
32 #include "llvm/CodeGen/MachineMemOperand.h"
33 #include "llvm/IR/BasicBlock.h"
34 #include "llvm/IR/DataLayout.h"
35 #include "llvm/IR/InlineAsm.h"
36 #include "llvm/IR/Instructions.h"
37 #include "llvm/IR/Mangler.h"
38 #include "llvm/MC/MCAsmInfo.h"
39 #include "llvm/MC/MCContext.h"
40 #include "llvm/MC/MCELFStreamer.h"
41 #include "llvm/MC/MCExpr.h"
42 #include "llvm/MC/MCInst.h"
43 #include "llvm/MC/MCSection.h"
44 #include "llvm/MC/MCSectionELF.h"
45 #include "llvm/MC/MCSymbol.h"
46 #include "llvm/Support/ELF.h"
47 #include "llvm/Support/TargetRegistry.h"
48 #include "llvm/Support/raw_ostream.h"
49 #include "llvm/Target/TargetLoweringObjectFile.h"
50 #include "llvm/Target/TargetOptions.h"
51 #include <string>
52 
53 using namespace llvm;
54 
55 #define DEBUG_TYPE "mips-asm-printer"
56 
getTargetStreamer() const57 MipsTargetStreamer &MipsAsmPrinter::getTargetStreamer() const {
58   return static_cast<MipsTargetStreamer &>(*OutStreamer.getTargetStreamer());
59 }
60 
runOnMachineFunction(MachineFunction & MF)61 bool MipsAsmPrinter::runOnMachineFunction(MachineFunction &MF) {
62   Subtarget = &MF.getSubtarget<MipsSubtarget>();
63 
64   // Initialize TargetLoweringObjectFile.
65   const_cast<TargetLoweringObjectFile &>(getObjFileLowering())
66       .Initialize(OutContext, TM);
67 
68   MipsFI = MF.getInfo<MipsFunctionInfo>();
69   if (Subtarget->inMips16Mode())
70     for (std::map<
71              const char *,
72              const llvm::Mips16HardFloatInfo::FuncSignature *>::const_iterator
73              it = MipsFI->StubsNeeded.begin();
74          it != MipsFI->StubsNeeded.end(); ++it) {
75       const char *Symbol = it->first;
76       const llvm::Mips16HardFloatInfo::FuncSignature *Signature = it->second;
77       if (StubsNeeded.find(Symbol) == StubsNeeded.end())
78         StubsNeeded[Symbol] = Signature;
79     }
80   MCP = MF.getConstantPool();
81 
82   // In NaCl, all indirect jump targets must be aligned to bundle size.
83   if (Subtarget->isTargetNaCl())
84     NaClAlignIndirectJumpTargets(MF);
85 
86   AsmPrinter::runOnMachineFunction(MF);
87   return true;
88 }
89 
lowerOperand(const MachineOperand & MO,MCOperand & MCOp)90 bool MipsAsmPrinter::lowerOperand(const MachineOperand &MO, MCOperand &MCOp) {
91   MCOp = MCInstLowering.LowerOperand(MO);
92   return MCOp.isValid();
93 }
94 
95 #include "MipsGenMCPseudoLowering.inc"
96 
97 // Lower PseudoReturn/PseudoIndirectBranch/PseudoIndirectBranch64 to JR, JR_MM,
98 // JALR, or JALR64 as appropriate for the target
emitPseudoIndirectBranch(MCStreamer & OutStreamer,const MachineInstr * MI)99 void MipsAsmPrinter::emitPseudoIndirectBranch(MCStreamer &OutStreamer,
100                                               const MachineInstr *MI) {
101   bool HasLinkReg = false;
102   MCInst TmpInst0;
103 
104   if (Subtarget->hasMips64r6()) {
105     // MIPS64r6 should use (JALR64 ZERO_64, $rs)
106     TmpInst0.setOpcode(Mips::JALR64);
107     HasLinkReg = true;
108   } else if (Subtarget->hasMips32r6()) {
109     // MIPS32r6 should use (JALR ZERO, $rs)
110     TmpInst0.setOpcode(Mips::JALR);
111     HasLinkReg = true;
112   } else if (Subtarget->inMicroMipsMode())
113     // microMIPS should use (JR_MM $rs)
114     TmpInst0.setOpcode(Mips::JR_MM);
115   else {
116     // Everything else should use (JR $rs)
117     TmpInst0.setOpcode(Mips::JR);
118   }
119 
120   MCOperand MCOp;
121 
122   if (HasLinkReg) {
123     unsigned ZeroReg = Subtarget->isGP64bit() ? Mips::ZERO_64 : Mips::ZERO;
124     TmpInst0.addOperand(MCOperand::CreateReg(ZeroReg));
125   }
126 
127   lowerOperand(MI->getOperand(0), MCOp);
128   TmpInst0.addOperand(MCOp);
129 
130   EmitToStreamer(OutStreamer, TmpInst0);
131 }
132 
EmitInstruction(const MachineInstr * MI)133 void MipsAsmPrinter::EmitInstruction(const MachineInstr *MI) {
134   MipsTargetStreamer &TS = getTargetStreamer();
135   TS.forbidModuleDirective();
136 
137   if (MI->isDebugValue()) {
138     SmallString<128> Str;
139     raw_svector_ostream OS(Str);
140 
141     PrintDebugValueComment(MI, OS);
142     return;
143   }
144 
145   // If we just ended a constant pool, mark it as such.
146   if (InConstantPool && MI->getOpcode() != Mips::CONSTPOOL_ENTRY) {
147     OutStreamer.EmitDataRegion(MCDR_DataRegionEnd);
148     InConstantPool = false;
149   }
150   if (MI->getOpcode() == Mips::CONSTPOOL_ENTRY) {
151     // CONSTPOOL_ENTRY - This instruction represents a floating
152     //constant pool in the function.  The first operand is the ID#
153     // for this instruction, the second is the index into the
154     // MachineConstantPool that this is, the third is the size in
155     // bytes of this constant pool entry.
156     // The required alignment is specified on the basic block holding this MI.
157     //
158     unsigned LabelId = (unsigned)MI->getOperand(0).getImm();
159     unsigned CPIdx   = (unsigned)MI->getOperand(1).getIndex();
160 
161     // If this is the first entry of the pool, mark it.
162     if (!InConstantPool) {
163       OutStreamer.EmitDataRegion(MCDR_DataRegion);
164       InConstantPool = true;
165     }
166 
167     OutStreamer.EmitLabel(GetCPISymbol(LabelId));
168 
169     const MachineConstantPoolEntry &MCPE = MCP->getConstants()[CPIdx];
170     if (MCPE.isMachineConstantPoolEntry())
171       EmitMachineConstantPoolValue(MCPE.Val.MachineCPVal);
172     else
173       EmitGlobalConstant(MCPE.Val.ConstVal);
174     return;
175   }
176 
177 
178   MachineBasicBlock::const_instr_iterator I = MI;
179   MachineBasicBlock::const_instr_iterator E = MI->getParent()->instr_end();
180 
181   do {
182     // Do any auto-generated pseudo lowerings.
183     if (emitPseudoExpansionLowering(OutStreamer, &*I))
184       continue;
185 
186     if (I->getOpcode() == Mips::PseudoReturn ||
187         I->getOpcode() == Mips::PseudoReturn64 ||
188         I->getOpcode() == Mips::PseudoIndirectBranch ||
189         I->getOpcode() == Mips::PseudoIndirectBranch64) {
190       emitPseudoIndirectBranch(OutStreamer, &*I);
191       continue;
192     }
193 
194     // The inMips16Mode() test is not permanent.
195     // Some instructions are marked as pseudo right now which
196     // would make the test fail for the wrong reason but
197     // that will be fixed soon. We need this here because we are
198     // removing another test for this situation downstream in the
199     // callchain.
200     //
201     if (I->isPseudo() && !Subtarget->inMips16Mode()
202         && !isLongBranchPseudo(I->getOpcode()))
203       llvm_unreachable("Pseudo opcode found in EmitInstruction()");
204 
205     MCInst TmpInst0;
206     MCInstLowering.Lower(I, TmpInst0);
207     EmitToStreamer(OutStreamer, TmpInst0);
208   } while ((++I != E) && I->isInsideBundle()); // Delay slot check
209 }
210 
211 //===----------------------------------------------------------------------===//
212 //
213 //  Mips Asm Directives
214 //
215 //  -- Frame directive "frame Stackpointer, Stacksize, RARegister"
216 //  Describe the stack frame.
217 //
218 //  -- Mask directives "(f)mask  bitmask, offset"
219 //  Tells the assembler which registers are saved and where.
220 //  bitmask - contain a little endian bitset indicating which registers are
221 //            saved on function prologue (e.g. with a 0x80000000 mask, the
222 //            assembler knows the register 31 (RA) is saved at prologue.
223 //  offset  - the position before stack pointer subtraction indicating where
224 //            the first saved register on prologue is located. (e.g. with a
225 //
226 //  Consider the following function prologue:
227 //
228 //    .frame  $fp,48,$ra
229 //    .mask   0xc0000000,-8
230 //       addiu $sp, $sp, -48
231 //       sw $ra, 40($sp)
232 //       sw $fp, 36($sp)
233 //
234 //    With a 0xc0000000 mask, the assembler knows the register 31 (RA) and
235 //    30 (FP) are saved at prologue. As the save order on prologue is from
236 //    left to right, RA is saved first. A -8 offset means that after the
237 //    stack pointer subtration, the first register in the mask (RA) will be
238 //    saved at address 48-8=40.
239 //
240 //===----------------------------------------------------------------------===//
241 
242 //===----------------------------------------------------------------------===//
243 // Mask directives
244 //===----------------------------------------------------------------------===//
245 
246 // Create a bitmask with all callee saved registers for CPU or Floating Point
247 // registers. For CPU registers consider RA, GP and FP for saving if necessary.
printSavedRegsBitmask()248 void MipsAsmPrinter::printSavedRegsBitmask() {
249   // CPU and FPU Saved Registers Bitmasks
250   unsigned CPUBitmask = 0, FPUBitmask = 0;
251   int CPUTopSavedRegOff, FPUTopSavedRegOff;
252 
253   // Set the CPU and FPU Bitmasks
254   const MachineFrameInfo *MFI = MF->getFrameInfo();
255   const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo();
256   const std::vector<CalleeSavedInfo> &CSI = MFI->getCalleeSavedInfo();
257   // size of stack area to which FP callee-saved regs are saved.
258   unsigned CPURegSize = Mips::GPR32RegClass.getSize();
259   unsigned FGR32RegSize = Mips::FGR32RegClass.getSize();
260   unsigned AFGR64RegSize = Mips::AFGR64RegClass.getSize();
261   bool HasAFGR64Reg = false;
262   unsigned CSFPRegsSize = 0;
263 
264   for (const auto &I : CSI) {
265     unsigned Reg = I.getReg();
266     unsigned RegNum = TRI->getEncodingValue(Reg);
267 
268     // If it's a floating point register, set the FPU Bitmask.
269     // If it's a general purpose register, set the CPU Bitmask.
270     if (Mips::FGR32RegClass.contains(Reg)) {
271       FPUBitmask |= (1 << RegNum);
272       CSFPRegsSize += FGR32RegSize;
273     } else if (Mips::AFGR64RegClass.contains(Reg)) {
274       FPUBitmask |= (3 << RegNum);
275       CSFPRegsSize += AFGR64RegSize;
276       HasAFGR64Reg = true;
277     } else if (Mips::GPR32RegClass.contains(Reg))
278       CPUBitmask |= (1 << RegNum);
279   }
280 
281   // FP Regs are saved right below where the virtual frame pointer points to.
282   FPUTopSavedRegOff = FPUBitmask ?
283     (HasAFGR64Reg ? -AFGR64RegSize : -FGR32RegSize) : 0;
284 
285   // CPU Regs are saved below FP Regs.
286   CPUTopSavedRegOff = CPUBitmask ? -CSFPRegsSize - CPURegSize : 0;
287 
288   MipsTargetStreamer &TS = getTargetStreamer();
289   // Print CPUBitmask
290   TS.emitMask(CPUBitmask, CPUTopSavedRegOff);
291 
292   // Print FPUBitmask
293   TS.emitFMask(FPUBitmask, FPUTopSavedRegOff);
294 }
295 
296 //===----------------------------------------------------------------------===//
297 // Frame and Set directives
298 //===----------------------------------------------------------------------===//
299 
300 /// Frame Directive
emitFrameDirective()301 void MipsAsmPrinter::emitFrameDirective() {
302   const TargetRegisterInfo &RI = *MF->getSubtarget().getRegisterInfo();
303 
304   unsigned stackReg  = RI.getFrameRegister(*MF);
305   unsigned returnReg = RI.getRARegister();
306   unsigned stackSize = MF->getFrameInfo()->getStackSize();
307 
308   getTargetStreamer().emitFrame(stackReg, stackSize, returnReg);
309 }
310 
311 /// Emit Set directives.
getCurrentABIString() const312 const char *MipsAsmPrinter::getCurrentABIString() const {
313   switch (static_cast<MipsTargetMachine &>(TM).getABI().GetEnumValue()) {
314   case MipsABIInfo::ABI::O32:  return "abi32";
315   case MipsABIInfo::ABI::N32:  return "abiN32";
316   case MipsABIInfo::ABI::N64:  return "abi64";
317   case MipsABIInfo::ABI::EABI: return "eabi32"; // TODO: handle eabi64
318   default: llvm_unreachable("Unknown Mips ABI");
319   }
320 }
321 
EmitFunctionEntryLabel()322 void MipsAsmPrinter::EmitFunctionEntryLabel() {
323   MipsTargetStreamer &TS = getTargetStreamer();
324 
325   // NaCl sandboxing requires that indirect call instructions are masked.
326   // This means that function entry points should be bundle-aligned.
327   if (Subtarget->isTargetNaCl())
328     EmitAlignment(std::max(MF->getAlignment(), MIPS_NACL_BUNDLE_ALIGN));
329 
330   if (Subtarget->inMicroMipsMode())
331     TS.emitDirectiveSetMicroMips();
332   else
333     TS.emitDirectiveSetNoMicroMips();
334 
335   if (Subtarget->inMips16Mode())
336     TS.emitDirectiveSetMips16();
337   else
338     TS.emitDirectiveSetNoMips16();
339 
340   TS.emitDirectiveEnt(*CurrentFnSym);
341   OutStreamer.EmitLabel(CurrentFnSym);
342 }
343 
344 /// EmitFunctionBodyStart - Targets can override this to emit stuff before
345 /// the first basic block in the function.
EmitFunctionBodyStart()346 void MipsAsmPrinter::EmitFunctionBodyStart() {
347   MipsTargetStreamer &TS = getTargetStreamer();
348 
349   MCInstLowering.Initialize(&MF->getContext());
350 
351   bool IsNakedFunction = MF->getFunction()->hasFnAttribute(Attribute::Naked);
352   if (!IsNakedFunction)
353     emitFrameDirective();
354 
355   if (!IsNakedFunction)
356     printSavedRegsBitmask();
357 
358   if (!Subtarget->inMips16Mode()) {
359     TS.emitDirectiveSetNoReorder();
360     TS.emitDirectiveSetNoMacro();
361     TS.emitDirectiveSetNoAt();
362   }
363 }
364 
365 /// EmitFunctionBodyEnd - Targets can override this to emit stuff after
366 /// the last basic block in the function.
EmitFunctionBodyEnd()367 void MipsAsmPrinter::EmitFunctionBodyEnd() {
368   MipsTargetStreamer &TS = getTargetStreamer();
369 
370   // There are instruction for this macros, but they must
371   // always be at the function end, and we can't emit and
372   // break with BB logic.
373   if (!Subtarget->inMips16Mode()) {
374     TS.emitDirectiveSetAt();
375     TS.emitDirectiveSetMacro();
376     TS.emitDirectiveSetReorder();
377   }
378   TS.emitDirectiveEnd(CurrentFnSym->getName());
379   // Make sure to terminate any constant pools that were at the end
380   // of the function.
381   if (!InConstantPool)
382     return;
383   InConstantPool = false;
384   OutStreamer.EmitDataRegion(MCDR_DataRegionEnd);
385 }
386 
387 /// isBlockOnlyReachableByFallthough - Return true if the basic block has
388 /// exactly one predecessor and the control transfer mechanism between
389 /// the predecessor and this block is a fall-through.
isBlockOnlyReachableByFallthrough(const MachineBasicBlock * MBB) const390 bool MipsAsmPrinter::isBlockOnlyReachableByFallthrough(const MachineBasicBlock*
391                                                        MBB) const {
392   // The predecessor has to be immediately before this block.
393   const MachineBasicBlock *Pred = *MBB->pred_begin();
394 
395   // If the predecessor is a switch statement, assume a jump table
396   // implementation, so it is not a fall through.
397   if (const BasicBlock *bb = Pred->getBasicBlock())
398     if (isa<SwitchInst>(bb->getTerminator()))
399       return false;
400 
401   // If this is a landing pad, it isn't a fall through.  If it has no preds,
402   // then nothing falls through to it.
403   if (MBB->isLandingPad() || MBB->pred_empty())
404     return false;
405 
406   // If there isn't exactly one predecessor, it can't be a fall through.
407   MachineBasicBlock::const_pred_iterator PI = MBB->pred_begin(), PI2 = PI;
408   ++PI2;
409 
410   if (PI2 != MBB->pred_end())
411     return false;
412 
413   // The predecessor has to be immediately before this block.
414   if (!Pred->isLayoutSuccessor(MBB))
415     return false;
416 
417   // If the block is completely empty, then it definitely does fall through.
418   if (Pred->empty())
419     return true;
420 
421   // Otherwise, check the last instruction.
422   // Check if the last terminator is an unconditional branch.
423   MachineBasicBlock::const_iterator I = Pred->end();
424   while (I != Pred->begin() && !(--I)->isTerminator()) ;
425 
426   return !I->isBarrier();
427 }
428 
429 // Print out an operand for an inline asm expression.
PrintAsmOperand(const MachineInstr * MI,unsigned OpNum,unsigned AsmVariant,const char * ExtraCode,raw_ostream & O)430 bool MipsAsmPrinter::PrintAsmOperand(const MachineInstr *MI, unsigned OpNum,
431                                      unsigned AsmVariant, const char *ExtraCode,
432                                      raw_ostream &O) {
433   // Does this asm operand have a single letter operand modifier?
434   if (ExtraCode && ExtraCode[0]) {
435     if (ExtraCode[1] != 0) return true; // Unknown modifier.
436 
437     const MachineOperand &MO = MI->getOperand(OpNum);
438     switch (ExtraCode[0]) {
439     default:
440       // See if this is a generic print operand
441       return AsmPrinter::PrintAsmOperand(MI,OpNum,AsmVariant,ExtraCode,O);
442     case 'X': // hex const int
443       if ((MO.getType()) != MachineOperand::MO_Immediate)
444         return true;
445       O << "0x" << StringRef(utohexstr(MO.getImm())).lower();
446       return false;
447     case 'x': // hex const int (low 16 bits)
448       if ((MO.getType()) != MachineOperand::MO_Immediate)
449         return true;
450       O << "0x" << StringRef(utohexstr(MO.getImm() & 0xffff)).lower();
451       return false;
452     case 'd': // decimal const int
453       if ((MO.getType()) != MachineOperand::MO_Immediate)
454         return true;
455       O << MO.getImm();
456       return false;
457     case 'm': // decimal const int minus 1
458       if ((MO.getType()) != MachineOperand::MO_Immediate)
459         return true;
460       O << MO.getImm() - 1;
461       return false;
462     case 'z': {
463       // $0 if zero, regular printing otherwise
464       if (MO.getType() == MachineOperand::MO_Immediate && MO.getImm() == 0) {
465         O << "$0";
466         return false;
467       }
468       // If not, call printOperand as normal.
469       break;
470     }
471     case 'D': // Second part of a double word register operand
472     case 'L': // Low order register of a double word register operand
473     case 'M': // High order register of a double word register operand
474     {
475       if (OpNum == 0)
476         return true;
477       const MachineOperand &FlagsOP = MI->getOperand(OpNum - 1);
478       if (!FlagsOP.isImm())
479         return true;
480       unsigned Flags = FlagsOP.getImm();
481       unsigned NumVals = InlineAsm::getNumOperandRegisters(Flags);
482       // Number of registers represented by this operand. We are looking
483       // for 2 for 32 bit mode and 1 for 64 bit mode.
484       if (NumVals != 2) {
485         if (Subtarget->isGP64bit() && NumVals == 1 && MO.isReg()) {
486           unsigned Reg = MO.getReg();
487           O << '$' << MipsInstPrinter::getRegisterName(Reg);
488           return false;
489         }
490         return true;
491       }
492 
493       unsigned RegOp = OpNum;
494       if (!Subtarget->isGP64bit()){
495         // Endianess reverses which register holds the high or low value
496         // between M and L.
497         switch(ExtraCode[0]) {
498         case 'M':
499           RegOp = (Subtarget->isLittle()) ? OpNum + 1 : OpNum;
500           break;
501         case 'L':
502           RegOp = (Subtarget->isLittle()) ? OpNum : OpNum + 1;
503           break;
504         case 'D': // Always the second part
505           RegOp = OpNum + 1;
506         }
507         if (RegOp >= MI->getNumOperands())
508           return true;
509         const MachineOperand &MO = MI->getOperand(RegOp);
510         if (!MO.isReg())
511           return true;
512         unsigned Reg = MO.getReg();
513         O << '$' << MipsInstPrinter::getRegisterName(Reg);
514         return false;
515       }
516     }
517     case 'w':
518       // Print MSA registers for the 'f' constraint
519       // In LLVM, the 'w' modifier doesn't need to do anything.
520       // We can just call printOperand as normal.
521       break;
522     }
523   }
524 
525   printOperand(MI, OpNum, O);
526   return false;
527 }
528 
PrintAsmMemoryOperand(const MachineInstr * MI,unsigned OpNum,unsigned AsmVariant,const char * ExtraCode,raw_ostream & O)529 bool MipsAsmPrinter::PrintAsmMemoryOperand(const MachineInstr *MI,
530                                            unsigned OpNum, unsigned AsmVariant,
531                                            const char *ExtraCode,
532                                            raw_ostream &O) {
533   assert(OpNum + 1 < MI->getNumOperands() && "Insufficient operands");
534   const MachineOperand &BaseMO = MI->getOperand(OpNum);
535   const MachineOperand &OffsetMO = MI->getOperand(OpNum + 1);
536   assert(BaseMO.isReg() && "Unexpected base pointer for inline asm memory operand.");
537   assert(OffsetMO.isImm() && "Unexpected offset for inline asm memory operand.");
538   int Offset = OffsetMO.getImm();
539 
540   // Currently we are expecting either no ExtraCode or 'D'
541   if (ExtraCode) {
542     if (ExtraCode[0] == 'D')
543       Offset += 4;
544     else
545       return true; // Unknown modifier.
546     // FIXME: M = high order bits
547     // FIXME: L = low order bits
548   }
549 
550   O << Offset << "($" << MipsInstPrinter::getRegisterName(BaseMO.getReg()) << ")";
551 
552   return false;
553 }
554 
printOperand(const MachineInstr * MI,int opNum,raw_ostream & O)555 void MipsAsmPrinter::printOperand(const MachineInstr *MI, int opNum,
556                                   raw_ostream &O) {
557   const DataLayout *DL = TM.getDataLayout();
558   const MachineOperand &MO = MI->getOperand(opNum);
559   bool closeP = false;
560 
561   if (MO.getTargetFlags())
562     closeP = true;
563 
564   switch(MO.getTargetFlags()) {
565   case MipsII::MO_GPREL:    O << "%gp_rel("; break;
566   case MipsII::MO_GOT_CALL: O << "%call16("; break;
567   case MipsII::MO_GOT:      O << "%got(";    break;
568   case MipsII::MO_ABS_HI:   O << "%hi(";     break;
569   case MipsII::MO_ABS_LO:   O << "%lo(";     break;
570   case MipsII::MO_TLSGD:    O << "%tlsgd(";  break;
571   case MipsII::MO_GOTTPREL: O << "%gottprel("; break;
572   case MipsII::MO_TPREL_HI: O << "%tprel_hi("; break;
573   case MipsII::MO_TPREL_LO: O << "%tprel_lo("; break;
574   case MipsII::MO_GPOFF_HI: O << "%hi(%neg(%gp_rel("; break;
575   case MipsII::MO_GPOFF_LO: O << "%lo(%neg(%gp_rel("; break;
576   case MipsII::MO_GOT_DISP: O << "%got_disp("; break;
577   case MipsII::MO_GOT_PAGE: O << "%got_page("; break;
578   case MipsII::MO_GOT_OFST: O << "%got_ofst("; break;
579   }
580 
581   switch (MO.getType()) {
582     case MachineOperand::MO_Register:
583       O << '$'
584         << StringRef(MipsInstPrinter::getRegisterName(MO.getReg())).lower();
585       break;
586 
587     case MachineOperand::MO_Immediate:
588       O << MO.getImm();
589       break;
590 
591     case MachineOperand::MO_MachineBasicBlock:
592       O << *MO.getMBB()->getSymbol();
593       return;
594 
595     case MachineOperand::MO_GlobalAddress:
596       O << *getSymbol(MO.getGlobal());
597       break;
598 
599     case MachineOperand::MO_BlockAddress: {
600       MCSymbol *BA = GetBlockAddressSymbol(MO.getBlockAddress());
601       O << BA->getName();
602       break;
603     }
604 
605     case MachineOperand::MO_ConstantPoolIndex:
606       O << DL->getPrivateGlobalPrefix() << "CPI"
607         << getFunctionNumber() << "_" << MO.getIndex();
608       if (MO.getOffset())
609         O << "+" << MO.getOffset();
610       break;
611 
612     default:
613       llvm_unreachable("<unknown operand type>");
614   }
615 
616   if (closeP) O << ")";
617 }
618 
printUnsignedImm(const MachineInstr * MI,int opNum,raw_ostream & O)619 void MipsAsmPrinter::printUnsignedImm(const MachineInstr *MI, int opNum,
620                                       raw_ostream &O) {
621   const MachineOperand &MO = MI->getOperand(opNum);
622   if (MO.isImm())
623     O << (unsigned short int)MO.getImm();
624   else
625     printOperand(MI, opNum, O);
626 }
627 
printUnsignedImm8(const MachineInstr * MI,int opNum,raw_ostream & O)628 void MipsAsmPrinter::printUnsignedImm8(const MachineInstr *MI, int opNum,
629                                        raw_ostream &O) {
630   const MachineOperand &MO = MI->getOperand(opNum);
631   if (MO.isImm())
632     O << (unsigned short int)(unsigned char)MO.getImm();
633   else
634     printOperand(MI, opNum, O);
635 }
636 
637 void MipsAsmPrinter::
printMemOperand(const MachineInstr * MI,int opNum,raw_ostream & O)638 printMemOperand(const MachineInstr *MI, int opNum, raw_ostream &O) {
639   // Load/Store memory operands -- imm($reg)
640   // If PIC target the target is loaded as the
641   // pattern lw $25,%call16($28)
642 
643   // opNum can be invalid if instruction has reglist as operand.
644   // MemOperand is always last operand of instruction (base + offset).
645   switch (MI->getOpcode()) {
646   default:
647     break;
648   case Mips::SWM32_MM:
649   case Mips::LWM32_MM:
650     opNum = MI->getNumOperands() - 2;
651     break;
652   }
653 
654   printOperand(MI, opNum+1, O);
655   O << "(";
656   printOperand(MI, opNum, O);
657   O << ")";
658 }
659 
660 void MipsAsmPrinter::
printMemOperandEA(const MachineInstr * MI,int opNum,raw_ostream & O)661 printMemOperandEA(const MachineInstr *MI, int opNum, raw_ostream &O) {
662   // when using stack locations for not load/store instructions
663   // print the same way as all normal 3 operand instructions.
664   printOperand(MI, opNum, O);
665   O << ", ";
666   printOperand(MI, opNum+1, O);
667   return;
668 }
669 
670 void MipsAsmPrinter::
printFCCOperand(const MachineInstr * MI,int opNum,raw_ostream & O,const char * Modifier)671 printFCCOperand(const MachineInstr *MI, int opNum, raw_ostream &O,
672                 const char *Modifier) {
673   const MachineOperand &MO = MI->getOperand(opNum);
674   O << Mips::MipsFCCToString((Mips::CondCode)MO.getImm());
675 }
676 
677 void MipsAsmPrinter::
printRegisterList(const MachineInstr * MI,int opNum,raw_ostream & O)678 printRegisterList(const MachineInstr *MI, int opNum, raw_ostream &O) {
679   for (int i = opNum, e = MI->getNumOperands(); i != e; ++i) {
680     if (i != opNum) O << ", ";
681     printOperand(MI, i, O);
682   }
683 }
684 
EmitStartOfAsmFile(Module & M)685 void MipsAsmPrinter::EmitStartOfAsmFile(Module &M) {
686 
687   // Compute MIPS architecture attributes based on the default subtarget
688   // that we'd have constructed. Module level directives aren't LTO
689   // clean anyhow.
690   // FIXME: For ifunc related functions we could iterate over and look
691   // for a feature string that doesn't match the default one.
692   StringRef TT = TM.getTargetTriple();
693   StringRef CPU =
694       MIPS_MC::selectMipsCPU(TM.getTargetTriple(), TM.getTargetCPU());
695   StringRef FS = TM.getTargetFeatureString();
696   const MipsTargetMachine &MTM = static_cast<const MipsTargetMachine &>(TM);
697   const MipsSubtarget STI(TT, CPU, FS, MTM.isLittleEndian(), MTM);
698 
699   bool IsABICalls = STI.isABICalls();
700   const MipsABIInfo &ABI = MTM.getABI();
701   if (IsABICalls) {
702     getTargetStreamer().emitDirectiveAbiCalls();
703     Reloc::Model RM = TM.getRelocationModel();
704     // FIXME: This condition should be a lot more complicated that it is here.
705     //        Ideally it should test for properties of the ABI and not the ABI
706     //        itself.
707     //        For the moment, I'm only correcting enough to make MIPS-IV work.
708     if (RM == Reloc::Static && !ABI.IsN64())
709       getTargetStreamer().emitDirectiveOptionPic0();
710   }
711 
712   // Tell the assembler which ABI we are using
713   std::string SectionName = std::string(".mdebug.") + getCurrentABIString();
714   OutStreamer.SwitchSection(
715       OutContext.getELFSection(SectionName, ELF::SHT_PROGBITS, 0));
716 
717   // NaN: At the moment we only support:
718   // 1. .nan legacy (default)
719   // 2. .nan 2008
720   STI.isNaN2008() ? getTargetStreamer().emitDirectiveNaN2008()
721                   : getTargetStreamer().emitDirectiveNaNLegacy();
722 
723   // TODO: handle O64 ABI
724 
725   if (ABI.IsEABI()) {
726     if (STI.isGP32bit())
727       OutStreamer.SwitchSection(OutContext.getELFSection(".gcc_compiled_long32",
728                                                          ELF::SHT_PROGBITS, 0));
729     else
730       OutStreamer.SwitchSection(OutContext.getELFSection(".gcc_compiled_long64",
731                                                          ELF::SHT_PROGBITS, 0));
732   }
733 
734   getTargetStreamer().updateABIInfo(STI);
735 
736   // We should always emit a '.module fp=...' but binutils 2.24 does not accept
737   // it. We therefore emit it when it contradicts the ABI defaults (-mfpxx or
738   // -mfp64) and omit it otherwise.
739   if (ABI.IsO32() && (STI.isABI_FPXX() || STI.isFP64bit()))
740     getTargetStreamer().emitDirectiveModuleFP();
741 
742   // We should always emit a '.module [no]oddspreg' but binutils 2.24 does not
743   // accept it. We therefore emit it when it contradicts the default or an
744   // option has changed the default (i.e. FPXX) and omit it otherwise.
745   if (ABI.IsO32() && (!STI.useOddSPReg() || STI.isABI_FPXX()))
746     getTargetStreamer().emitDirectiveModuleOddSPReg(STI.useOddSPReg(),
747                                                     ABI.IsO32());
748 }
749 
emitInlineAsmStart() const750 void MipsAsmPrinter::emitInlineAsmStart() const {
751   MipsTargetStreamer &TS = getTargetStreamer();
752 
753   // GCC's choice of assembler options for inline assembly code ('at', 'macro'
754   // and 'reorder') is different from LLVM's choice for generated code ('noat',
755   // 'nomacro' and 'noreorder').
756   // In order to maintain compatibility with inline assembly code which depends
757   // on GCC's assembler options being used, we have to switch to those options
758   // for the duration of the inline assembly block and then switch back.
759   TS.emitDirectiveSetPush();
760   TS.emitDirectiveSetAt();
761   TS.emitDirectiveSetMacro();
762   TS.emitDirectiveSetReorder();
763   OutStreamer.AddBlankLine();
764 }
765 
emitInlineAsmEnd(const MCSubtargetInfo & StartInfo,const MCSubtargetInfo * EndInfo) const766 void MipsAsmPrinter::emitInlineAsmEnd(const MCSubtargetInfo &StartInfo,
767                                       const MCSubtargetInfo *EndInfo) const {
768   OutStreamer.AddBlankLine();
769   getTargetStreamer().emitDirectiveSetPop();
770 }
771 
EmitJal(const MCSubtargetInfo & STI,MCSymbol * Symbol)772 void MipsAsmPrinter::EmitJal(const MCSubtargetInfo &STI, MCSymbol *Symbol) {
773   MCInst I;
774   I.setOpcode(Mips::JAL);
775   I.addOperand(
776       MCOperand::CreateExpr(MCSymbolRefExpr::Create(Symbol, OutContext)));
777   OutStreamer.EmitInstruction(I, STI);
778 }
779 
EmitInstrReg(const MCSubtargetInfo & STI,unsigned Opcode,unsigned Reg)780 void MipsAsmPrinter::EmitInstrReg(const MCSubtargetInfo &STI, unsigned Opcode,
781                                   unsigned Reg) {
782   MCInst I;
783   I.setOpcode(Opcode);
784   I.addOperand(MCOperand::CreateReg(Reg));
785   OutStreamer.EmitInstruction(I, STI);
786 }
787 
EmitInstrRegReg(const MCSubtargetInfo & STI,unsigned Opcode,unsigned Reg1,unsigned Reg2)788 void MipsAsmPrinter::EmitInstrRegReg(const MCSubtargetInfo &STI,
789                                      unsigned Opcode, unsigned Reg1,
790                                      unsigned Reg2) {
791   MCInst I;
792   //
793   // Because of the current td files for Mips32, the operands for MTC1
794   // appear backwards from their normal assembly order. It's not a trivial
795   // change to fix this in the td file so we adjust for it here.
796   //
797   if (Opcode == Mips::MTC1) {
798     unsigned Temp = Reg1;
799     Reg1 = Reg2;
800     Reg2 = Temp;
801   }
802   I.setOpcode(Opcode);
803   I.addOperand(MCOperand::CreateReg(Reg1));
804   I.addOperand(MCOperand::CreateReg(Reg2));
805   OutStreamer.EmitInstruction(I, STI);
806 }
807 
EmitInstrRegRegReg(const MCSubtargetInfo & STI,unsigned Opcode,unsigned Reg1,unsigned Reg2,unsigned Reg3)808 void MipsAsmPrinter::EmitInstrRegRegReg(const MCSubtargetInfo &STI,
809                                         unsigned Opcode, unsigned Reg1,
810                                         unsigned Reg2, unsigned Reg3) {
811   MCInst I;
812   I.setOpcode(Opcode);
813   I.addOperand(MCOperand::CreateReg(Reg1));
814   I.addOperand(MCOperand::CreateReg(Reg2));
815   I.addOperand(MCOperand::CreateReg(Reg3));
816   OutStreamer.EmitInstruction(I, STI);
817 }
818 
EmitMovFPIntPair(const MCSubtargetInfo & STI,unsigned MovOpc,unsigned Reg1,unsigned Reg2,unsigned FPReg1,unsigned FPReg2,bool LE)819 void MipsAsmPrinter::EmitMovFPIntPair(const MCSubtargetInfo &STI,
820                                       unsigned MovOpc, unsigned Reg1,
821                                       unsigned Reg2, unsigned FPReg1,
822                                       unsigned FPReg2, bool LE) {
823   if (!LE) {
824     unsigned temp = Reg1;
825     Reg1 = Reg2;
826     Reg2 = temp;
827   }
828   EmitInstrRegReg(STI, MovOpc, Reg1, FPReg1);
829   EmitInstrRegReg(STI, MovOpc, Reg2, FPReg2);
830 }
831 
EmitSwapFPIntParams(const MCSubtargetInfo & STI,Mips16HardFloatInfo::FPParamVariant PV,bool LE,bool ToFP)832 void MipsAsmPrinter::EmitSwapFPIntParams(const MCSubtargetInfo &STI,
833                                          Mips16HardFloatInfo::FPParamVariant PV,
834                                          bool LE, bool ToFP) {
835   using namespace Mips16HardFloatInfo;
836   unsigned MovOpc = ToFP ? Mips::MTC1 : Mips::MFC1;
837   switch (PV) {
838   case FSig:
839     EmitInstrRegReg(STI, MovOpc, Mips::A0, Mips::F12);
840     break;
841   case FFSig:
842     EmitMovFPIntPair(STI, MovOpc, Mips::A0, Mips::A1, Mips::F12, Mips::F14, LE);
843     break;
844   case FDSig:
845     EmitInstrRegReg(STI, MovOpc, Mips::A0, Mips::F12);
846     EmitMovFPIntPair(STI, MovOpc, Mips::A2, Mips::A3, Mips::F14, Mips::F15, LE);
847     break;
848   case DSig:
849     EmitMovFPIntPair(STI, MovOpc, Mips::A0, Mips::A1, Mips::F12, Mips::F13, LE);
850     break;
851   case DDSig:
852     EmitMovFPIntPair(STI, MovOpc, Mips::A0, Mips::A1, Mips::F12, Mips::F13, LE);
853     EmitMovFPIntPair(STI, MovOpc, Mips::A2, Mips::A3, Mips::F14, Mips::F15, LE);
854     break;
855   case DFSig:
856     EmitMovFPIntPair(STI, MovOpc, Mips::A0, Mips::A1, Mips::F12, Mips::F13, LE);
857     EmitInstrRegReg(STI, MovOpc, Mips::A2, Mips::F14);
858     break;
859   case NoSig:
860     return;
861   }
862 }
863 
EmitSwapFPIntRetval(const MCSubtargetInfo & STI,Mips16HardFloatInfo::FPReturnVariant RV,bool LE)864 void MipsAsmPrinter::EmitSwapFPIntRetval(
865     const MCSubtargetInfo &STI, Mips16HardFloatInfo::FPReturnVariant RV,
866     bool LE) {
867   using namespace Mips16HardFloatInfo;
868   unsigned MovOpc = Mips::MFC1;
869   switch (RV) {
870   case FRet:
871     EmitInstrRegReg(STI, MovOpc, Mips::V0, Mips::F0);
872     break;
873   case DRet:
874     EmitMovFPIntPair(STI, MovOpc, Mips::V0, Mips::V1, Mips::F0, Mips::F1, LE);
875     break;
876   case CFRet:
877     EmitMovFPIntPair(STI, MovOpc, Mips::V0, Mips::V1, Mips::F0, Mips::F1, LE);
878     break;
879   case CDRet:
880     EmitMovFPIntPair(STI, MovOpc, Mips::V0, Mips::V1, Mips::F0, Mips::F1, LE);
881     EmitMovFPIntPair(STI, MovOpc, Mips::A0, Mips::A1, Mips::F2, Mips::F3, LE);
882     break;
883   case NoFPRet:
884     break;
885   }
886 }
887 
EmitFPCallStub(const char * Symbol,const Mips16HardFloatInfo::FuncSignature * Signature)888 void MipsAsmPrinter::EmitFPCallStub(
889     const char *Symbol, const Mips16HardFloatInfo::FuncSignature *Signature) {
890   MCSymbol *MSymbol = OutContext.GetOrCreateSymbol(StringRef(Symbol));
891   using namespace Mips16HardFloatInfo;
892   bool LE = getDataLayout().isLittleEndian();
893   // Construct a local MCSubtargetInfo here.
894   // This is because the MachineFunction won't exist (but have not yet been
895   // freed) and since we're at the global level we can use the default
896   // constructed subtarget.
897   std::unique_ptr<MCSubtargetInfo> STI(TM.getTarget().createMCSubtargetInfo(
898       TM.getTargetTriple(), TM.getTargetCPU(), TM.getTargetFeatureString()));
899 
900   //
901   // .global xxxx
902   //
903   OutStreamer.EmitSymbolAttribute(MSymbol, MCSA_Global);
904   const char *RetType;
905   //
906   // make the comment field identifying the return and parameter
907   // types of the floating point stub
908   // # Stub function to call rettype xxxx (params)
909   //
910   switch (Signature->RetSig) {
911   case FRet:
912     RetType = "float";
913     break;
914   case DRet:
915     RetType = "double";
916     break;
917   case CFRet:
918     RetType = "complex";
919     break;
920   case CDRet:
921     RetType = "double complex";
922     break;
923   case NoFPRet:
924     RetType = "";
925     break;
926   }
927   const char *Parms;
928   switch (Signature->ParamSig) {
929   case FSig:
930     Parms = "float";
931     break;
932   case FFSig:
933     Parms = "float, float";
934     break;
935   case FDSig:
936     Parms = "float, double";
937     break;
938   case DSig:
939     Parms = "double";
940     break;
941   case DDSig:
942     Parms = "double, double";
943     break;
944   case DFSig:
945     Parms = "double, float";
946     break;
947   case NoSig:
948     Parms = "";
949     break;
950   }
951   OutStreamer.AddComment("\t# Stub function to call " + Twine(RetType) + " " +
952                          Twine(Symbol) + " (" + Twine(Parms) + ")");
953   //
954   // probably not necessary but we save and restore the current section state
955   //
956   OutStreamer.PushSection();
957   //
958   // .section mips16.call.fpxxxx,"ax",@progbits
959   //
960   const MCSectionELF *M = OutContext.getELFSection(
961       ".mips16.call.fp." + std::string(Symbol), ELF::SHT_PROGBITS,
962       ELF::SHF_ALLOC | ELF::SHF_EXECINSTR);
963   OutStreamer.SwitchSection(M, nullptr);
964   //
965   // .align 2
966   //
967   OutStreamer.EmitValueToAlignment(4);
968   MipsTargetStreamer &TS = getTargetStreamer();
969   //
970   // .set nomips16
971   // .set nomicromips
972   //
973   TS.emitDirectiveSetNoMips16();
974   TS.emitDirectiveSetNoMicroMips();
975   //
976   // .ent __call_stub_fp_xxxx
977   // .type  __call_stub_fp_xxxx,@function
978   //  __call_stub_fp_xxxx:
979   //
980   std::string x = "__call_stub_fp_" + std::string(Symbol);
981   MCSymbol *Stub = OutContext.GetOrCreateSymbol(StringRef(x));
982   TS.emitDirectiveEnt(*Stub);
983   MCSymbol *MType =
984       OutContext.GetOrCreateSymbol("__call_stub_fp_" + Twine(Symbol));
985   OutStreamer.EmitSymbolAttribute(MType, MCSA_ELF_TypeFunction);
986   OutStreamer.EmitLabel(Stub);
987 
988   // Only handle non-pic for now.
989   assert(TM.getRelocationModel() != Reloc::PIC_ &&
990          "should not be here if we are compiling pic");
991   TS.emitDirectiveSetReorder();
992   //
993   // We need to add a MipsMCExpr class to MCTargetDesc to fully implement
994   // stubs without raw text but this current patch is for compiler generated
995   // functions and they all return some value.
996   // The calling sequence for non pic is different in that case and we need
997   // to implement %lo and %hi in order to handle the case of no return value
998   // See the corresponding method in Mips16HardFloat for details.
999   //
1000   // mov the return address to S2.
1001   // we have no stack space to store it and we are about to make another call.
1002   // We need to make sure that the enclosing function knows to save S2
1003   // This should have already been handled.
1004   //
1005   // Mov $18, $31
1006 
1007   EmitInstrRegRegReg(*STI, Mips::ADDu, Mips::S2, Mips::RA, Mips::ZERO);
1008 
1009   EmitSwapFPIntParams(*STI, Signature->ParamSig, LE, true);
1010 
1011   // Jal xxxx
1012   //
1013   EmitJal(*STI, MSymbol);
1014 
1015   // fix return values
1016   EmitSwapFPIntRetval(*STI, Signature->RetSig, LE);
1017   //
1018   // do the return
1019   // if (Signature->RetSig == NoFPRet)
1020   //  llvm_unreachable("should not be any stubs here with no return value");
1021   // else
1022   EmitInstrReg(*STI, Mips::JR, Mips::S2);
1023 
1024   MCSymbol *Tmp = OutContext.CreateTempSymbol();
1025   OutStreamer.EmitLabel(Tmp);
1026   const MCSymbolRefExpr *E = MCSymbolRefExpr::Create(Stub, OutContext);
1027   const MCSymbolRefExpr *T = MCSymbolRefExpr::Create(Tmp, OutContext);
1028   const MCExpr *T_min_E = MCBinaryExpr::CreateSub(T, E, OutContext);
1029   OutStreamer.EmitELFSize(Stub, T_min_E);
1030   TS.emitDirectiveEnd(x);
1031   OutStreamer.PopSection();
1032 }
1033 
EmitEndOfAsmFile(Module & M)1034 void MipsAsmPrinter::EmitEndOfAsmFile(Module &M) {
1035   // Emit needed stubs
1036   //
1037   for (std::map<
1038            const char *,
1039            const llvm::Mips16HardFloatInfo::FuncSignature *>::const_iterator
1040            it = StubsNeeded.begin();
1041        it != StubsNeeded.end(); ++it) {
1042     const char *Symbol = it->first;
1043     const llvm::Mips16HardFloatInfo::FuncSignature *Signature = it->second;
1044     EmitFPCallStub(Symbol, Signature);
1045   }
1046   // return to the text section
1047   OutStreamer.SwitchSection(OutContext.getObjectFileInfo()->getTextSection());
1048 }
1049 
PrintDebugValueComment(const MachineInstr * MI,raw_ostream & OS)1050 void MipsAsmPrinter::PrintDebugValueComment(const MachineInstr *MI,
1051                                            raw_ostream &OS) {
1052   // TODO: implement
1053 }
1054 
1055 // Align all targets of indirect branches on bundle size.  Used only if target
1056 // is NaCl.
NaClAlignIndirectJumpTargets(MachineFunction & MF)1057 void MipsAsmPrinter::NaClAlignIndirectJumpTargets(MachineFunction &MF) {
1058   // Align all blocks that are jumped to through jump table.
1059   if (MachineJumpTableInfo *JtInfo = MF.getJumpTableInfo()) {
1060     const std::vector<MachineJumpTableEntry> &JT = JtInfo->getJumpTables();
1061     for (unsigned I = 0; I < JT.size(); ++I) {
1062       const std::vector<MachineBasicBlock*> &MBBs = JT[I].MBBs;
1063 
1064       for (unsigned J = 0; J < MBBs.size(); ++J)
1065         MBBs[J]->setAlignment(MIPS_NACL_BUNDLE_ALIGN);
1066     }
1067   }
1068 
1069   // If basic block address is taken, block can be target of indirect branch.
1070   for (MachineFunction::iterator MBB = MF.begin(), E = MF.end();
1071                                  MBB != E; ++MBB) {
1072     if (MBB->hasAddressTaken())
1073       MBB->setAlignment(MIPS_NACL_BUNDLE_ALIGN);
1074   }
1075 }
1076 
isLongBranchPseudo(int Opcode) const1077 bool MipsAsmPrinter::isLongBranchPseudo(int Opcode) const {
1078   return (Opcode == Mips::LONG_BRANCH_LUi
1079           || Opcode == Mips::LONG_BRANCH_ADDiu
1080           || Opcode == Mips::LONG_BRANCH_DADDiu);
1081 }
1082 
1083 // Force static initialization.
LLVMInitializeMipsAsmPrinter()1084 extern "C" void LLVMInitializeMipsAsmPrinter() {
1085   RegisterAsmPrinter<MipsAsmPrinter> X(TheMipsTarget);
1086   RegisterAsmPrinter<MipsAsmPrinter> Y(TheMipselTarget);
1087   RegisterAsmPrinter<MipsAsmPrinter> A(TheMips64Target);
1088   RegisterAsmPrinter<MipsAsmPrinter> B(TheMips64elTarget);
1089 }
1090