1 //===-- PPCFastISel.cpp - PowerPC FastISel implementation -----------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines the PowerPC-specific support for the FastISel class. Some
11 // of the target-specific code is generated by tablegen in the file
12 // PPCGenFastISel.inc, which is #included here.
13 //
14 //===----------------------------------------------------------------------===//
15
16 #include "PPC.h"
17 #include "MCTargetDesc/PPCPredicates.h"
18 #include "PPCCallingConv.h"
19 #include "PPCISelLowering.h"
20 #include "PPCMachineFunctionInfo.h"
21 #include "PPCSubtarget.h"
22 #include "PPCTargetMachine.h"
23 #include "llvm/ADT/Optional.h"
24 #include "llvm/CodeGen/CallingConvLower.h"
25 #include "llvm/CodeGen/FastISel.h"
26 #include "llvm/CodeGen/FunctionLoweringInfo.h"
27 #include "llvm/CodeGen/MachineConstantPool.h"
28 #include "llvm/CodeGen/MachineFrameInfo.h"
29 #include "llvm/CodeGen/MachineInstrBuilder.h"
30 #include "llvm/CodeGen/MachineRegisterInfo.h"
31 #include "llvm/IR/CallingConv.h"
32 #include "llvm/IR/GetElementPtrTypeIterator.h"
33 #include "llvm/IR/GlobalAlias.h"
34 #include "llvm/IR/GlobalVariable.h"
35 #include "llvm/IR/IntrinsicInst.h"
36 #include "llvm/IR/Operator.h"
37 #include "llvm/Support/Debug.h"
38 #include "llvm/Target/TargetLowering.h"
39 #include "llvm/Target/TargetMachine.h"
40
41 //===----------------------------------------------------------------------===//
42 //
43 // TBD:
44 // fastLowerArguments: Handle simple cases.
45 // PPCMaterializeGV: Handle TLS.
46 // SelectCall: Handle function pointers.
47 // SelectCall: Handle multi-register return values.
48 // SelectCall: Optimize away nops for local calls.
49 // processCallArgs: Handle bit-converted arguments.
50 // finishCall: Handle multi-register return values.
51 // PPCComputeAddress: Handle parameter references as FrameIndex's.
52 // PPCEmitCmp: Handle immediate as operand 1.
53 // SelectCall: Handle small byval arguments.
54 // SelectIntrinsicCall: Implement.
55 // SelectSelect: Implement.
56 // Consider factoring isTypeLegal into the base class.
57 // Implement switches and jump tables.
58 //
59 //===----------------------------------------------------------------------===//
60 using namespace llvm;
61
62 #define DEBUG_TYPE "ppcfastisel"
63
64 namespace {
65
66 typedef struct Address {
67 enum {
68 RegBase,
69 FrameIndexBase
70 } BaseType;
71
72 union {
73 unsigned Reg;
74 int FI;
75 } Base;
76
77 long Offset;
78
79 // Innocuous defaults for our address.
Address__anon1e98c3950111::Address80 Address()
81 : BaseType(RegBase), Offset(0) {
82 Base.Reg = 0;
83 }
84 } Address;
85
86 class PPCFastISel final : public FastISel {
87
88 const TargetMachine &TM;
89 const PPCSubtarget *PPCSubTarget;
90 PPCFunctionInfo *PPCFuncInfo;
91 const TargetInstrInfo &TII;
92 const TargetLowering &TLI;
93 LLVMContext *Context;
94
95 public:
PPCFastISel(FunctionLoweringInfo & FuncInfo,const TargetLibraryInfo * LibInfo)96 explicit PPCFastISel(FunctionLoweringInfo &FuncInfo,
97 const TargetLibraryInfo *LibInfo)
98 : FastISel(FuncInfo, LibInfo), TM(FuncInfo.MF->getTarget()),
99 PPCSubTarget(&FuncInfo.MF->getSubtarget<PPCSubtarget>()),
100 PPCFuncInfo(FuncInfo.MF->getInfo<PPCFunctionInfo>()),
101 TII(*PPCSubTarget->getInstrInfo()),
102 TLI(*PPCSubTarget->getTargetLowering()),
103 Context(&FuncInfo.Fn->getContext()) {}
104
105 // Backend specific FastISel code.
106 private:
107 bool fastSelectInstruction(const Instruction *I) override;
108 unsigned fastMaterializeConstant(const Constant *C) override;
109 unsigned fastMaterializeAlloca(const AllocaInst *AI) override;
110 bool tryToFoldLoadIntoMI(MachineInstr *MI, unsigned OpNo,
111 const LoadInst *LI) override;
112 bool fastLowerArguments() override;
113 unsigned fastEmit_i(MVT Ty, MVT RetTy, unsigned Opc, uint64_t Imm) override;
114 unsigned fastEmitInst_ri(unsigned MachineInstOpcode,
115 const TargetRegisterClass *RC,
116 unsigned Op0, bool Op0IsKill,
117 uint64_t Imm);
118 unsigned fastEmitInst_r(unsigned MachineInstOpcode,
119 const TargetRegisterClass *RC,
120 unsigned Op0, bool Op0IsKill);
121 unsigned fastEmitInst_rr(unsigned MachineInstOpcode,
122 const TargetRegisterClass *RC,
123 unsigned Op0, bool Op0IsKill,
124 unsigned Op1, bool Op1IsKill);
125
126 bool fastLowerCall(CallLoweringInfo &CLI) override;
127
128 // Instruction selection routines.
129 private:
130 bool SelectLoad(const Instruction *I);
131 bool SelectStore(const Instruction *I);
132 bool SelectBranch(const Instruction *I);
133 bool SelectIndirectBr(const Instruction *I);
134 bool SelectFPExt(const Instruction *I);
135 bool SelectFPTrunc(const Instruction *I);
136 bool SelectIToFP(const Instruction *I, bool IsSigned);
137 bool SelectFPToI(const Instruction *I, bool IsSigned);
138 bool SelectBinaryIntOp(const Instruction *I, unsigned ISDOpcode);
139 bool SelectRet(const Instruction *I);
140 bool SelectTrunc(const Instruction *I);
141 bool SelectIntExt(const Instruction *I);
142
143 // Utility routines.
144 private:
145 bool isTypeLegal(Type *Ty, MVT &VT);
146 bool isLoadTypeLegal(Type *Ty, MVT &VT);
isVSFRCRegister(unsigned Register) const147 bool isVSFRCRegister(unsigned Register) const {
148 return MRI.getRegClass(Register)->getID() == PPC::VSFRCRegClassID;
149 }
150 bool PPCEmitCmp(const Value *Src1Value, const Value *Src2Value,
151 bool isZExt, unsigned DestReg);
152 bool PPCEmitLoad(MVT VT, unsigned &ResultReg, Address &Addr,
153 const TargetRegisterClass *RC, bool IsZExt = true,
154 unsigned FP64LoadOpc = PPC::LFD);
155 bool PPCEmitStore(MVT VT, unsigned SrcReg, Address &Addr);
156 bool PPCComputeAddress(const Value *Obj, Address &Addr);
157 void PPCSimplifyAddress(Address &Addr, MVT VT, bool &UseOffset,
158 unsigned &IndexReg);
159 bool PPCEmitIntExt(MVT SrcVT, unsigned SrcReg, MVT DestVT,
160 unsigned DestReg, bool IsZExt);
161 unsigned PPCMaterializeFP(const ConstantFP *CFP, MVT VT);
162 unsigned PPCMaterializeGV(const GlobalValue *GV, MVT VT);
163 unsigned PPCMaterializeInt(const Constant *C, MVT VT, bool UseSExt = true);
164 unsigned PPCMaterialize32BitInt(int64_t Imm,
165 const TargetRegisterClass *RC);
166 unsigned PPCMaterialize64BitInt(int64_t Imm,
167 const TargetRegisterClass *RC);
168 unsigned PPCMoveToIntReg(const Instruction *I, MVT VT,
169 unsigned SrcReg, bool IsSigned);
170 unsigned PPCMoveToFPReg(MVT VT, unsigned SrcReg, bool IsSigned);
171
172 // Call handling routines.
173 private:
174 bool processCallArgs(SmallVectorImpl<Value*> &Args,
175 SmallVectorImpl<unsigned> &ArgRegs,
176 SmallVectorImpl<MVT> &ArgVTs,
177 SmallVectorImpl<ISD::ArgFlagsTy> &ArgFlags,
178 SmallVectorImpl<unsigned> &RegArgs,
179 CallingConv::ID CC,
180 unsigned &NumBytes,
181 bool IsVarArg);
182 bool finishCall(MVT RetVT, CallLoweringInfo &CLI, unsigned &NumBytes);
183 CCAssignFn *usePPC32CCs(unsigned Flag);
184
185 private:
186 #include "PPCGenFastISel.inc"
187
188 };
189
190 } // end anonymous namespace
191
192 #include "PPCGenCallingConv.inc"
193
194 // Function whose sole purpose is to kill compiler warnings
195 // stemming from unused functions included from PPCGenCallingConv.inc.
usePPC32CCs(unsigned Flag)196 CCAssignFn *PPCFastISel::usePPC32CCs(unsigned Flag) {
197 if (Flag == 1)
198 return CC_PPC32_SVR4;
199 else if (Flag == 2)
200 return CC_PPC32_SVR4_ByVal;
201 else if (Flag == 3)
202 return CC_PPC32_SVR4_VarArg;
203 else
204 return RetCC_PPC;
205 }
206
getComparePred(CmpInst::Predicate Pred)207 static Optional<PPC::Predicate> getComparePred(CmpInst::Predicate Pred) {
208 switch (Pred) {
209 // These are not representable with any single compare.
210 case CmpInst::FCMP_FALSE:
211 case CmpInst::FCMP_UEQ:
212 case CmpInst::FCMP_UGT:
213 case CmpInst::FCMP_UGE:
214 case CmpInst::FCMP_ULT:
215 case CmpInst::FCMP_ULE:
216 case CmpInst::FCMP_UNE:
217 case CmpInst::FCMP_TRUE:
218 default:
219 return Optional<PPC::Predicate>();
220
221 case CmpInst::FCMP_OEQ:
222 case CmpInst::ICMP_EQ:
223 return PPC::PRED_EQ;
224
225 case CmpInst::FCMP_OGT:
226 case CmpInst::ICMP_UGT:
227 case CmpInst::ICMP_SGT:
228 return PPC::PRED_GT;
229
230 case CmpInst::FCMP_OGE:
231 case CmpInst::ICMP_UGE:
232 case CmpInst::ICMP_SGE:
233 return PPC::PRED_GE;
234
235 case CmpInst::FCMP_OLT:
236 case CmpInst::ICMP_ULT:
237 case CmpInst::ICMP_SLT:
238 return PPC::PRED_LT;
239
240 case CmpInst::FCMP_OLE:
241 case CmpInst::ICMP_ULE:
242 case CmpInst::ICMP_SLE:
243 return PPC::PRED_LE;
244
245 case CmpInst::FCMP_ONE:
246 case CmpInst::ICMP_NE:
247 return PPC::PRED_NE;
248
249 case CmpInst::FCMP_ORD:
250 return PPC::PRED_NU;
251
252 case CmpInst::FCMP_UNO:
253 return PPC::PRED_UN;
254 }
255 }
256
257 // Determine whether the type Ty is simple enough to be handled by
258 // fast-isel, and return its equivalent machine type in VT.
259 // FIXME: Copied directly from ARM -- factor into base class?
isTypeLegal(Type * Ty,MVT & VT)260 bool PPCFastISel::isTypeLegal(Type *Ty, MVT &VT) {
261 EVT Evt = TLI.getValueType(Ty, true);
262
263 // Only handle simple types.
264 if (Evt == MVT::Other || !Evt.isSimple()) return false;
265 VT = Evt.getSimpleVT();
266
267 // Handle all legal types, i.e. a register that will directly hold this
268 // value.
269 return TLI.isTypeLegal(VT);
270 }
271
272 // Determine whether the type Ty is simple enough to be handled by
273 // fast-isel as a load target, and return its equivalent machine type in VT.
isLoadTypeLegal(Type * Ty,MVT & VT)274 bool PPCFastISel::isLoadTypeLegal(Type *Ty, MVT &VT) {
275 if (isTypeLegal(Ty, VT)) return true;
276
277 // If this is a type than can be sign or zero-extended to a basic operation
278 // go ahead and accept it now.
279 if (VT == MVT::i8 || VT == MVT::i16 || VT == MVT::i32) {
280 return true;
281 }
282
283 return false;
284 }
285
286 // Given a value Obj, create an Address object Addr that represents its
287 // address. Return false if we can't handle it.
PPCComputeAddress(const Value * Obj,Address & Addr)288 bool PPCFastISel::PPCComputeAddress(const Value *Obj, Address &Addr) {
289 const User *U = nullptr;
290 unsigned Opcode = Instruction::UserOp1;
291 if (const Instruction *I = dyn_cast<Instruction>(Obj)) {
292 // Don't walk into other basic blocks unless the object is an alloca from
293 // another block, otherwise it may not have a virtual register assigned.
294 if (FuncInfo.StaticAllocaMap.count(static_cast<const AllocaInst *>(Obj)) ||
295 FuncInfo.MBBMap[I->getParent()] == FuncInfo.MBB) {
296 Opcode = I->getOpcode();
297 U = I;
298 }
299 } else if (const ConstantExpr *C = dyn_cast<ConstantExpr>(Obj)) {
300 Opcode = C->getOpcode();
301 U = C;
302 }
303
304 switch (Opcode) {
305 default:
306 break;
307 case Instruction::BitCast:
308 // Look through bitcasts.
309 return PPCComputeAddress(U->getOperand(0), Addr);
310 case Instruction::IntToPtr:
311 // Look past no-op inttoptrs.
312 if (TLI.getValueType(U->getOperand(0)->getType()) == TLI.getPointerTy())
313 return PPCComputeAddress(U->getOperand(0), Addr);
314 break;
315 case Instruction::PtrToInt:
316 // Look past no-op ptrtoints.
317 if (TLI.getValueType(U->getType()) == TLI.getPointerTy())
318 return PPCComputeAddress(U->getOperand(0), Addr);
319 break;
320 case Instruction::GetElementPtr: {
321 Address SavedAddr = Addr;
322 long TmpOffset = Addr.Offset;
323
324 // Iterate through the GEP folding the constants into offsets where
325 // we can.
326 gep_type_iterator GTI = gep_type_begin(U);
327 for (User::const_op_iterator II = U->op_begin() + 1, IE = U->op_end();
328 II != IE; ++II, ++GTI) {
329 const Value *Op = *II;
330 if (StructType *STy = dyn_cast<StructType>(*GTI)) {
331 const StructLayout *SL = DL.getStructLayout(STy);
332 unsigned Idx = cast<ConstantInt>(Op)->getZExtValue();
333 TmpOffset += SL->getElementOffset(Idx);
334 } else {
335 uint64_t S = DL.getTypeAllocSize(GTI.getIndexedType());
336 for (;;) {
337 if (const ConstantInt *CI = dyn_cast<ConstantInt>(Op)) {
338 // Constant-offset addressing.
339 TmpOffset += CI->getSExtValue() * S;
340 break;
341 }
342 if (canFoldAddIntoGEP(U, Op)) {
343 // A compatible add with a constant operand. Fold the constant.
344 ConstantInt *CI =
345 cast<ConstantInt>(cast<AddOperator>(Op)->getOperand(1));
346 TmpOffset += CI->getSExtValue() * S;
347 // Iterate on the other operand.
348 Op = cast<AddOperator>(Op)->getOperand(0);
349 continue;
350 }
351 // Unsupported
352 goto unsupported_gep;
353 }
354 }
355 }
356
357 // Try to grab the base operand now.
358 Addr.Offset = TmpOffset;
359 if (PPCComputeAddress(U->getOperand(0), Addr)) return true;
360
361 // We failed, restore everything and try the other options.
362 Addr = SavedAddr;
363
364 unsupported_gep:
365 break;
366 }
367 case Instruction::Alloca: {
368 const AllocaInst *AI = cast<AllocaInst>(Obj);
369 DenseMap<const AllocaInst*, int>::iterator SI =
370 FuncInfo.StaticAllocaMap.find(AI);
371 if (SI != FuncInfo.StaticAllocaMap.end()) {
372 Addr.BaseType = Address::FrameIndexBase;
373 Addr.Base.FI = SI->second;
374 return true;
375 }
376 break;
377 }
378 }
379
380 // FIXME: References to parameters fall through to the behavior
381 // below. They should be able to reference a frame index since
382 // they are stored to the stack, so we can get "ld rx, offset(r1)"
383 // instead of "addi ry, r1, offset / ld rx, 0(ry)". Obj will
384 // just contain the parameter. Try to handle this with a FI.
385
386 // Try to get this in a register if nothing else has worked.
387 if (Addr.Base.Reg == 0)
388 Addr.Base.Reg = getRegForValue(Obj);
389
390 // Prevent assignment of base register to X0, which is inappropriate
391 // for loads and stores alike.
392 if (Addr.Base.Reg != 0)
393 MRI.setRegClass(Addr.Base.Reg, &PPC::G8RC_and_G8RC_NOX0RegClass);
394
395 return Addr.Base.Reg != 0;
396 }
397
398 // Fix up some addresses that can't be used directly. For example, if
399 // an offset won't fit in an instruction field, we may need to move it
400 // into an index register.
PPCSimplifyAddress(Address & Addr,MVT VT,bool & UseOffset,unsigned & IndexReg)401 void PPCFastISel::PPCSimplifyAddress(Address &Addr, MVT VT, bool &UseOffset,
402 unsigned &IndexReg) {
403
404 // Check whether the offset fits in the instruction field.
405 if (!isInt<16>(Addr.Offset))
406 UseOffset = false;
407
408 // If this is a stack pointer and the offset needs to be simplified then
409 // put the alloca address into a register, set the base type back to
410 // register and continue. This should almost never happen.
411 if (!UseOffset && Addr.BaseType == Address::FrameIndexBase) {
412 unsigned ResultReg = createResultReg(&PPC::G8RC_and_G8RC_NOX0RegClass);
413 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::ADDI8),
414 ResultReg).addFrameIndex(Addr.Base.FI).addImm(0);
415 Addr.Base.Reg = ResultReg;
416 Addr.BaseType = Address::RegBase;
417 }
418
419 if (!UseOffset) {
420 IntegerType *OffsetTy = ((VT == MVT::i32) ? Type::getInt32Ty(*Context)
421 : Type::getInt64Ty(*Context));
422 const ConstantInt *Offset =
423 ConstantInt::getSigned(OffsetTy, (int64_t)(Addr.Offset));
424 IndexReg = PPCMaterializeInt(Offset, MVT::i64);
425 assert(IndexReg && "Unexpected error in PPCMaterializeInt!");
426 }
427 }
428
429 // Emit a load instruction if possible, returning true if we succeeded,
430 // otherwise false. See commentary below for how the register class of
431 // the load is determined.
PPCEmitLoad(MVT VT,unsigned & ResultReg,Address & Addr,const TargetRegisterClass * RC,bool IsZExt,unsigned FP64LoadOpc)432 bool PPCFastISel::PPCEmitLoad(MVT VT, unsigned &ResultReg, Address &Addr,
433 const TargetRegisterClass *RC,
434 bool IsZExt, unsigned FP64LoadOpc) {
435 unsigned Opc;
436 bool UseOffset = true;
437
438 // If ResultReg is given, it determines the register class of the load.
439 // Otherwise, RC is the register class to use. If the result of the
440 // load isn't anticipated in this block, both may be zero, in which
441 // case we must make a conservative guess. In particular, don't assign
442 // R0 or X0 to the result register, as the result may be used in a load,
443 // store, add-immediate, or isel that won't permit this. (Though
444 // perhaps the spill and reload of live-exit values would handle this?)
445 const TargetRegisterClass *UseRC =
446 (ResultReg ? MRI.getRegClass(ResultReg) :
447 (RC ? RC :
448 (VT == MVT::f64 ? &PPC::F8RCRegClass :
449 (VT == MVT::f32 ? &PPC::F4RCRegClass :
450 (VT == MVT::i64 ? &PPC::G8RC_and_G8RC_NOX0RegClass :
451 &PPC::GPRC_and_GPRC_NOR0RegClass)))));
452
453 bool Is32BitInt = UseRC->hasSuperClassEq(&PPC::GPRCRegClass);
454
455 switch (VT.SimpleTy) {
456 default: // e.g., vector types not handled
457 return false;
458 case MVT::i8:
459 Opc = Is32BitInt ? PPC::LBZ : PPC::LBZ8;
460 break;
461 case MVT::i16:
462 Opc = (IsZExt ?
463 (Is32BitInt ? PPC::LHZ : PPC::LHZ8) :
464 (Is32BitInt ? PPC::LHA : PPC::LHA8));
465 break;
466 case MVT::i32:
467 Opc = (IsZExt ?
468 (Is32BitInt ? PPC::LWZ : PPC::LWZ8) :
469 (Is32BitInt ? PPC::LWA_32 : PPC::LWA));
470 if ((Opc == PPC::LWA || Opc == PPC::LWA_32) && ((Addr.Offset & 3) != 0))
471 UseOffset = false;
472 break;
473 case MVT::i64:
474 Opc = PPC::LD;
475 assert(UseRC->hasSuperClassEq(&PPC::G8RCRegClass) &&
476 "64-bit load with 32-bit target??");
477 UseOffset = ((Addr.Offset & 3) == 0);
478 break;
479 case MVT::f32:
480 Opc = PPC::LFS;
481 break;
482 case MVT::f64:
483 Opc = FP64LoadOpc;
484 break;
485 }
486
487 // If necessary, materialize the offset into a register and use
488 // the indexed form. Also handle stack pointers with special needs.
489 unsigned IndexReg = 0;
490 PPCSimplifyAddress(Addr, VT, UseOffset, IndexReg);
491
492 // If this is a potential VSX load with an offset of 0, a VSX indexed load can
493 // be used.
494 bool IsVSFRC = (ResultReg != 0) && isVSFRCRegister(ResultReg);
495 if (IsVSFRC && (Opc == PPC::LFD) &&
496 (Addr.BaseType != Address::FrameIndexBase) && UseOffset &&
497 (Addr.Offset == 0)) {
498 UseOffset = false;
499 }
500
501 if (ResultReg == 0)
502 ResultReg = createResultReg(UseRC);
503
504 // Note: If we still have a frame index here, we know the offset is
505 // in range, as otherwise PPCSimplifyAddress would have converted it
506 // into a RegBase.
507 if (Addr.BaseType == Address::FrameIndexBase) {
508 // VSX only provides an indexed load.
509 if (IsVSFRC && Opc == PPC::LFD) return false;
510
511 MachineMemOperand *MMO =
512 FuncInfo.MF->getMachineMemOperand(
513 MachinePointerInfo::getFixedStack(Addr.Base.FI, Addr.Offset),
514 MachineMemOperand::MOLoad, MFI.getObjectSize(Addr.Base.FI),
515 MFI.getObjectAlignment(Addr.Base.FI));
516
517 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), ResultReg)
518 .addImm(Addr.Offset).addFrameIndex(Addr.Base.FI).addMemOperand(MMO);
519
520 // Base reg with offset in range.
521 } else if (UseOffset) {
522 // VSX only provides an indexed load.
523 if (IsVSFRC && Opc == PPC::LFD) return false;
524
525 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), ResultReg)
526 .addImm(Addr.Offset).addReg(Addr.Base.Reg);
527
528 // Indexed form.
529 } else {
530 // Get the RR opcode corresponding to the RI one. FIXME: It would be
531 // preferable to use the ImmToIdxMap from PPCRegisterInfo.cpp, but it
532 // is hard to get at.
533 switch (Opc) {
534 default: llvm_unreachable("Unexpected opcode!");
535 case PPC::LBZ: Opc = PPC::LBZX; break;
536 case PPC::LBZ8: Opc = PPC::LBZX8; break;
537 case PPC::LHZ: Opc = PPC::LHZX; break;
538 case PPC::LHZ8: Opc = PPC::LHZX8; break;
539 case PPC::LHA: Opc = PPC::LHAX; break;
540 case PPC::LHA8: Opc = PPC::LHAX8; break;
541 case PPC::LWZ: Opc = PPC::LWZX; break;
542 case PPC::LWZ8: Opc = PPC::LWZX8; break;
543 case PPC::LWA: Opc = PPC::LWAX; break;
544 case PPC::LWA_32: Opc = PPC::LWAX_32; break;
545 case PPC::LD: Opc = PPC::LDX; break;
546 case PPC::LFS: Opc = PPC::LFSX; break;
547 case PPC::LFD: Opc = IsVSFRC ? PPC::LXSDX : PPC::LFDX; break;
548 }
549 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), ResultReg)
550 .addReg(Addr.Base.Reg).addReg(IndexReg);
551 }
552
553 return true;
554 }
555
556 // Attempt to fast-select a load instruction.
SelectLoad(const Instruction * I)557 bool PPCFastISel::SelectLoad(const Instruction *I) {
558 // FIXME: No atomic loads are supported.
559 if (cast<LoadInst>(I)->isAtomic())
560 return false;
561
562 // Verify we have a legal type before going any further.
563 MVT VT;
564 if (!isLoadTypeLegal(I->getType(), VT))
565 return false;
566
567 // See if we can handle this address.
568 Address Addr;
569 if (!PPCComputeAddress(I->getOperand(0), Addr))
570 return false;
571
572 // Look at the currently assigned register for this instruction
573 // to determine the required register class. This is necessary
574 // to constrain RA from using R0/X0 when this is not legal.
575 unsigned AssignedReg = FuncInfo.ValueMap[I];
576 const TargetRegisterClass *RC =
577 AssignedReg ? MRI.getRegClass(AssignedReg) : nullptr;
578
579 unsigned ResultReg = 0;
580 if (!PPCEmitLoad(VT, ResultReg, Addr, RC))
581 return false;
582 updateValueMap(I, ResultReg);
583 return true;
584 }
585
586 // Emit a store instruction to store SrcReg at Addr.
PPCEmitStore(MVT VT,unsigned SrcReg,Address & Addr)587 bool PPCFastISel::PPCEmitStore(MVT VT, unsigned SrcReg, Address &Addr) {
588 assert(SrcReg && "Nothing to store!");
589 unsigned Opc;
590 bool UseOffset = true;
591
592 const TargetRegisterClass *RC = MRI.getRegClass(SrcReg);
593 bool Is32BitInt = RC->hasSuperClassEq(&PPC::GPRCRegClass);
594
595 switch (VT.SimpleTy) {
596 default: // e.g., vector types not handled
597 return false;
598 case MVT::i8:
599 Opc = Is32BitInt ? PPC::STB : PPC::STB8;
600 break;
601 case MVT::i16:
602 Opc = Is32BitInt ? PPC::STH : PPC::STH8;
603 break;
604 case MVT::i32:
605 assert(Is32BitInt && "Not GPRC for i32??");
606 Opc = PPC::STW;
607 break;
608 case MVT::i64:
609 Opc = PPC::STD;
610 UseOffset = ((Addr.Offset & 3) == 0);
611 break;
612 case MVT::f32:
613 Opc = PPC::STFS;
614 break;
615 case MVT::f64:
616 Opc = PPC::STFD;
617 break;
618 }
619
620 // If necessary, materialize the offset into a register and use
621 // the indexed form. Also handle stack pointers with special needs.
622 unsigned IndexReg = 0;
623 PPCSimplifyAddress(Addr, VT, UseOffset, IndexReg);
624
625 // If this is a potential VSX store with an offset of 0, a VSX indexed store
626 // can be used.
627 bool IsVSFRC = isVSFRCRegister(SrcReg);
628 if (IsVSFRC && (Opc == PPC::STFD) &&
629 (Addr.BaseType != Address::FrameIndexBase) && UseOffset &&
630 (Addr.Offset == 0)) {
631 UseOffset = false;
632 }
633
634 // Note: If we still have a frame index here, we know the offset is
635 // in range, as otherwise PPCSimplifyAddress would have converted it
636 // into a RegBase.
637 if (Addr.BaseType == Address::FrameIndexBase) {
638 // VSX only provides an indexed store.
639 if (IsVSFRC && Opc == PPC::STFD) return false;
640
641 MachineMemOperand *MMO =
642 FuncInfo.MF->getMachineMemOperand(
643 MachinePointerInfo::getFixedStack(Addr.Base.FI, Addr.Offset),
644 MachineMemOperand::MOStore, MFI.getObjectSize(Addr.Base.FI),
645 MFI.getObjectAlignment(Addr.Base.FI));
646
647 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc))
648 .addReg(SrcReg)
649 .addImm(Addr.Offset)
650 .addFrameIndex(Addr.Base.FI)
651 .addMemOperand(MMO);
652
653 // Base reg with offset in range.
654 } else if (UseOffset) {
655 // VSX only provides an indexed store.
656 if (IsVSFRC && Opc == PPC::STFD) return false;
657
658 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc))
659 .addReg(SrcReg).addImm(Addr.Offset).addReg(Addr.Base.Reg);
660
661 // Indexed form.
662 } else {
663 // Get the RR opcode corresponding to the RI one. FIXME: It would be
664 // preferable to use the ImmToIdxMap from PPCRegisterInfo.cpp, but it
665 // is hard to get at.
666 switch (Opc) {
667 default: llvm_unreachable("Unexpected opcode!");
668 case PPC::STB: Opc = PPC::STBX; break;
669 case PPC::STH : Opc = PPC::STHX; break;
670 case PPC::STW : Opc = PPC::STWX; break;
671 case PPC::STB8: Opc = PPC::STBX8; break;
672 case PPC::STH8: Opc = PPC::STHX8; break;
673 case PPC::STW8: Opc = PPC::STWX8; break;
674 case PPC::STD: Opc = PPC::STDX; break;
675 case PPC::STFS: Opc = PPC::STFSX; break;
676 case PPC::STFD: Opc = IsVSFRC ? PPC::STXSDX : PPC::STFDX; break;
677 }
678
679 auto MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc))
680 .addReg(SrcReg);
681
682 // If we have an index register defined we use it in the store inst,
683 // otherwise we use X0 as base as it makes the vector instructions to
684 // use zero in the computation of the effective address regardless the
685 // content of the register.
686 if (IndexReg)
687 MIB.addReg(Addr.Base.Reg).addReg(IndexReg);
688 else
689 MIB.addReg(PPC::ZERO8).addReg(Addr.Base.Reg);
690 }
691
692 return true;
693 }
694
695 // Attempt to fast-select a store instruction.
SelectStore(const Instruction * I)696 bool PPCFastISel::SelectStore(const Instruction *I) {
697 Value *Op0 = I->getOperand(0);
698 unsigned SrcReg = 0;
699
700 // FIXME: No atomics loads are supported.
701 if (cast<StoreInst>(I)->isAtomic())
702 return false;
703
704 // Verify we have a legal type before going any further.
705 MVT VT;
706 if (!isLoadTypeLegal(Op0->getType(), VT))
707 return false;
708
709 // Get the value to be stored into a register.
710 SrcReg = getRegForValue(Op0);
711 if (SrcReg == 0)
712 return false;
713
714 // See if we can handle this address.
715 Address Addr;
716 if (!PPCComputeAddress(I->getOperand(1), Addr))
717 return false;
718
719 if (!PPCEmitStore(VT, SrcReg, Addr))
720 return false;
721
722 return true;
723 }
724
725 // Attempt to fast-select a branch instruction.
SelectBranch(const Instruction * I)726 bool PPCFastISel::SelectBranch(const Instruction *I) {
727 const BranchInst *BI = cast<BranchInst>(I);
728 MachineBasicBlock *BrBB = FuncInfo.MBB;
729 MachineBasicBlock *TBB = FuncInfo.MBBMap[BI->getSuccessor(0)];
730 MachineBasicBlock *FBB = FuncInfo.MBBMap[BI->getSuccessor(1)];
731
732 // For now, just try the simplest case where it's fed by a compare.
733 if (const CmpInst *CI = dyn_cast<CmpInst>(BI->getCondition())) {
734 Optional<PPC::Predicate> OptPPCPred = getComparePred(CI->getPredicate());
735 if (!OptPPCPred)
736 return false;
737
738 PPC::Predicate PPCPred = OptPPCPred.getValue();
739
740 // Take advantage of fall-through opportunities.
741 if (FuncInfo.MBB->isLayoutSuccessor(TBB)) {
742 std::swap(TBB, FBB);
743 PPCPred = PPC::InvertPredicate(PPCPred);
744 }
745
746 unsigned CondReg = createResultReg(&PPC::CRRCRegClass);
747
748 if (!PPCEmitCmp(CI->getOperand(0), CI->getOperand(1), CI->isUnsigned(),
749 CondReg))
750 return false;
751
752 BuildMI(*BrBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::BCC))
753 .addImm(PPCPred).addReg(CondReg).addMBB(TBB);
754 fastEmitBranch(FBB, DbgLoc);
755 FuncInfo.MBB->addSuccessor(TBB);
756 return true;
757
758 } else if (const ConstantInt *CI =
759 dyn_cast<ConstantInt>(BI->getCondition())) {
760 uint64_t Imm = CI->getZExtValue();
761 MachineBasicBlock *Target = (Imm == 0) ? FBB : TBB;
762 fastEmitBranch(Target, DbgLoc);
763 return true;
764 }
765
766 // FIXME: ARM looks for a case where the block containing the compare
767 // has been split from the block containing the branch. If this happens,
768 // there is a vreg available containing the result of the compare. I'm
769 // not sure we can do much, as we've lost the predicate information with
770 // the compare instruction -- we have a 4-bit CR but don't know which bit
771 // to test here.
772 return false;
773 }
774
775 // Attempt to emit a compare of the two source values. Signed and unsigned
776 // comparisons are supported. Return false if we can't handle it.
PPCEmitCmp(const Value * SrcValue1,const Value * SrcValue2,bool IsZExt,unsigned DestReg)777 bool PPCFastISel::PPCEmitCmp(const Value *SrcValue1, const Value *SrcValue2,
778 bool IsZExt, unsigned DestReg) {
779 Type *Ty = SrcValue1->getType();
780 EVT SrcEVT = TLI.getValueType(Ty, true);
781 if (!SrcEVT.isSimple())
782 return false;
783 MVT SrcVT = SrcEVT.getSimpleVT();
784
785 if (SrcVT == MVT::i1 && PPCSubTarget->useCRBits())
786 return false;
787
788 // See if operand 2 is an immediate encodeable in the compare.
789 // FIXME: Operands are not in canonical order at -O0, so an immediate
790 // operand in position 1 is a lost opportunity for now. We are
791 // similar to ARM in this regard.
792 long Imm = 0;
793 bool UseImm = false;
794
795 // Only 16-bit integer constants can be represented in compares for
796 // PowerPC. Others will be materialized into a register.
797 if (const ConstantInt *ConstInt = dyn_cast<ConstantInt>(SrcValue2)) {
798 if (SrcVT == MVT::i64 || SrcVT == MVT::i32 || SrcVT == MVT::i16 ||
799 SrcVT == MVT::i8 || SrcVT == MVT::i1) {
800 const APInt &CIVal = ConstInt->getValue();
801 Imm = (IsZExt) ? (long)CIVal.getZExtValue() : (long)CIVal.getSExtValue();
802 if ((IsZExt && isUInt<16>(Imm)) || (!IsZExt && isInt<16>(Imm)))
803 UseImm = true;
804 }
805 }
806
807 unsigned CmpOpc;
808 bool NeedsExt = false;
809 switch (SrcVT.SimpleTy) {
810 default: return false;
811 case MVT::f32:
812 CmpOpc = PPC::FCMPUS;
813 break;
814 case MVT::f64:
815 CmpOpc = PPC::FCMPUD;
816 break;
817 case MVT::i1:
818 case MVT::i8:
819 case MVT::i16:
820 NeedsExt = true;
821 // Intentional fall-through.
822 case MVT::i32:
823 if (!UseImm)
824 CmpOpc = IsZExt ? PPC::CMPLW : PPC::CMPW;
825 else
826 CmpOpc = IsZExt ? PPC::CMPLWI : PPC::CMPWI;
827 break;
828 case MVT::i64:
829 if (!UseImm)
830 CmpOpc = IsZExt ? PPC::CMPLD : PPC::CMPD;
831 else
832 CmpOpc = IsZExt ? PPC::CMPLDI : PPC::CMPDI;
833 break;
834 }
835
836 unsigned SrcReg1 = getRegForValue(SrcValue1);
837 if (SrcReg1 == 0)
838 return false;
839
840 unsigned SrcReg2 = 0;
841 if (!UseImm) {
842 SrcReg2 = getRegForValue(SrcValue2);
843 if (SrcReg2 == 0)
844 return false;
845 }
846
847 if (NeedsExt) {
848 unsigned ExtReg = createResultReg(&PPC::GPRCRegClass);
849 if (!PPCEmitIntExt(SrcVT, SrcReg1, MVT::i32, ExtReg, IsZExt))
850 return false;
851 SrcReg1 = ExtReg;
852
853 if (!UseImm) {
854 unsigned ExtReg = createResultReg(&PPC::GPRCRegClass);
855 if (!PPCEmitIntExt(SrcVT, SrcReg2, MVT::i32, ExtReg, IsZExt))
856 return false;
857 SrcReg2 = ExtReg;
858 }
859 }
860
861 if (!UseImm)
862 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(CmpOpc), DestReg)
863 .addReg(SrcReg1).addReg(SrcReg2);
864 else
865 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(CmpOpc), DestReg)
866 .addReg(SrcReg1).addImm(Imm);
867
868 return true;
869 }
870
871 // Attempt to fast-select a floating-point extend instruction.
SelectFPExt(const Instruction * I)872 bool PPCFastISel::SelectFPExt(const Instruction *I) {
873 Value *Src = I->getOperand(0);
874 EVT SrcVT = TLI.getValueType(Src->getType(), true);
875 EVT DestVT = TLI.getValueType(I->getType(), true);
876
877 if (SrcVT != MVT::f32 || DestVT != MVT::f64)
878 return false;
879
880 unsigned SrcReg = getRegForValue(Src);
881 if (!SrcReg)
882 return false;
883
884 // No code is generated for a FP extend.
885 updateValueMap(I, SrcReg);
886 return true;
887 }
888
889 // Attempt to fast-select a floating-point truncate instruction.
SelectFPTrunc(const Instruction * I)890 bool PPCFastISel::SelectFPTrunc(const Instruction *I) {
891 Value *Src = I->getOperand(0);
892 EVT SrcVT = TLI.getValueType(Src->getType(), true);
893 EVT DestVT = TLI.getValueType(I->getType(), true);
894
895 if (SrcVT != MVT::f64 || DestVT != MVT::f32)
896 return false;
897
898 unsigned SrcReg = getRegForValue(Src);
899 if (!SrcReg)
900 return false;
901
902 // Round the result to single precision.
903 unsigned DestReg = createResultReg(&PPC::F4RCRegClass);
904 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::FRSP), DestReg)
905 .addReg(SrcReg);
906
907 updateValueMap(I, DestReg);
908 return true;
909 }
910
911 // Move an i32 or i64 value in a GPR to an f64 value in an FPR.
912 // FIXME: When direct register moves are implemented (see PowerISA 2.07),
913 // those should be used instead of moving via a stack slot when the
914 // subtarget permits.
915 // FIXME: The code here is sloppy for the 4-byte case. Can use a 4-byte
916 // stack slot and 4-byte store/load sequence. Or just sext the 4-byte
917 // case to 8 bytes which produces tighter code but wastes stack space.
PPCMoveToFPReg(MVT SrcVT,unsigned SrcReg,bool IsSigned)918 unsigned PPCFastISel::PPCMoveToFPReg(MVT SrcVT, unsigned SrcReg,
919 bool IsSigned) {
920
921 // If necessary, extend 32-bit int to 64-bit.
922 if (SrcVT == MVT::i32) {
923 unsigned TmpReg = createResultReg(&PPC::G8RCRegClass);
924 if (!PPCEmitIntExt(MVT::i32, SrcReg, MVT::i64, TmpReg, !IsSigned))
925 return 0;
926 SrcReg = TmpReg;
927 }
928
929 // Get a stack slot 8 bytes wide, aligned on an 8-byte boundary.
930 Address Addr;
931 Addr.BaseType = Address::FrameIndexBase;
932 Addr.Base.FI = MFI.CreateStackObject(8, 8, false);
933
934 // Store the value from the GPR.
935 if (!PPCEmitStore(MVT::i64, SrcReg, Addr))
936 return 0;
937
938 // Load the integer value into an FPR. The kind of load used depends
939 // on a number of conditions.
940 unsigned LoadOpc = PPC::LFD;
941
942 if (SrcVT == MVT::i32) {
943 if (!IsSigned) {
944 LoadOpc = PPC::LFIWZX;
945 Addr.Offset = (PPCSubTarget->isLittleEndian()) ? 0 : 4;
946 } else if (PPCSubTarget->hasLFIWAX()) {
947 LoadOpc = PPC::LFIWAX;
948 Addr.Offset = (PPCSubTarget->isLittleEndian()) ? 0 : 4;
949 }
950 }
951
952 const TargetRegisterClass *RC = &PPC::F8RCRegClass;
953 unsigned ResultReg = 0;
954 if (!PPCEmitLoad(MVT::f64, ResultReg, Addr, RC, !IsSigned, LoadOpc))
955 return 0;
956
957 return ResultReg;
958 }
959
960 // Attempt to fast-select an integer-to-floating-point conversion.
961 // FIXME: Once fast-isel has better support for VSX, conversions using
962 // direct moves should be implemented.
SelectIToFP(const Instruction * I,bool IsSigned)963 bool PPCFastISel::SelectIToFP(const Instruction *I, bool IsSigned) {
964 MVT DstVT;
965 Type *DstTy = I->getType();
966 if (!isTypeLegal(DstTy, DstVT))
967 return false;
968
969 if (DstVT != MVT::f32 && DstVT != MVT::f64)
970 return false;
971
972 Value *Src = I->getOperand(0);
973 EVT SrcEVT = TLI.getValueType(Src->getType(), true);
974 if (!SrcEVT.isSimple())
975 return false;
976
977 MVT SrcVT = SrcEVT.getSimpleVT();
978
979 if (SrcVT != MVT::i8 && SrcVT != MVT::i16 &&
980 SrcVT != MVT::i32 && SrcVT != MVT::i64)
981 return false;
982
983 unsigned SrcReg = getRegForValue(Src);
984 if (SrcReg == 0)
985 return false;
986
987 // We can only lower an unsigned convert if we have the newer
988 // floating-point conversion operations.
989 if (!IsSigned && !PPCSubTarget->hasFPCVT())
990 return false;
991
992 // FIXME: For now we require the newer floating-point conversion operations
993 // (which are present only on P7 and A2 server models) when converting
994 // to single-precision float. Otherwise we have to generate a lot of
995 // fiddly code to avoid double rounding. If necessary, the fiddly code
996 // can be found in PPCTargetLowering::LowerINT_TO_FP().
997 if (DstVT == MVT::f32 && !PPCSubTarget->hasFPCVT())
998 return false;
999
1000 // Extend the input if necessary.
1001 if (SrcVT == MVT::i8 || SrcVT == MVT::i16) {
1002 unsigned TmpReg = createResultReg(&PPC::G8RCRegClass);
1003 if (!PPCEmitIntExt(SrcVT, SrcReg, MVT::i64, TmpReg, !IsSigned))
1004 return false;
1005 SrcVT = MVT::i64;
1006 SrcReg = TmpReg;
1007 }
1008
1009 // Move the integer value to an FPR.
1010 unsigned FPReg = PPCMoveToFPReg(SrcVT, SrcReg, IsSigned);
1011 if (FPReg == 0)
1012 return false;
1013
1014 // Determine the opcode for the conversion.
1015 const TargetRegisterClass *RC = &PPC::F8RCRegClass;
1016 unsigned DestReg = createResultReg(RC);
1017 unsigned Opc;
1018
1019 if (DstVT == MVT::f32)
1020 Opc = IsSigned ? PPC::FCFIDS : PPC::FCFIDUS;
1021 else
1022 Opc = IsSigned ? PPC::FCFID : PPC::FCFIDU;
1023
1024 // Generate the convert.
1025 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), DestReg)
1026 .addReg(FPReg);
1027
1028 updateValueMap(I, DestReg);
1029 return true;
1030 }
1031
1032 // Move the floating-point value in SrcReg into an integer destination
1033 // register, and return the register (or zero if we can't handle it).
1034 // FIXME: When direct register moves are implemented (see PowerISA 2.07),
1035 // those should be used instead of moving via a stack slot when the
1036 // subtarget permits.
PPCMoveToIntReg(const Instruction * I,MVT VT,unsigned SrcReg,bool IsSigned)1037 unsigned PPCFastISel::PPCMoveToIntReg(const Instruction *I, MVT VT,
1038 unsigned SrcReg, bool IsSigned) {
1039 // Get a stack slot 8 bytes wide, aligned on an 8-byte boundary.
1040 // Note that if have STFIWX available, we could use a 4-byte stack
1041 // slot for i32, but this being fast-isel we'll just go with the
1042 // easiest code gen possible.
1043 Address Addr;
1044 Addr.BaseType = Address::FrameIndexBase;
1045 Addr.Base.FI = MFI.CreateStackObject(8, 8, false);
1046
1047 // Store the value from the FPR.
1048 if (!PPCEmitStore(MVT::f64, SrcReg, Addr))
1049 return 0;
1050
1051 // Reload it into a GPR. If we want an i32, modify the address
1052 // to have a 4-byte offset so we load from the right place.
1053 if (VT == MVT::i32)
1054 Addr.Offset = 4;
1055
1056 // Look at the currently assigned register for this instruction
1057 // to determine the required register class.
1058 unsigned AssignedReg = FuncInfo.ValueMap[I];
1059 const TargetRegisterClass *RC =
1060 AssignedReg ? MRI.getRegClass(AssignedReg) : nullptr;
1061
1062 unsigned ResultReg = 0;
1063 if (!PPCEmitLoad(VT, ResultReg, Addr, RC, !IsSigned))
1064 return 0;
1065
1066 return ResultReg;
1067 }
1068
1069 // Attempt to fast-select a floating-point-to-integer conversion.
1070 // FIXME: Once fast-isel has better support for VSX, conversions using
1071 // direct moves should be implemented.
SelectFPToI(const Instruction * I,bool IsSigned)1072 bool PPCFastISel::SelectFPToI(const Instruction *I, bool IsSigned) {
1073 MVT DstVT, SrcVT;
1074 Type *DstTy = I->getType();
1075 if (!isTypeLegal(DstTy, DstVT))
1076 return false;
1077
1078 if (DstVT != MVT::i32 && DstVT != MVT::i64)
1079 return false;
1080
1081 // If we don't have FCTIDUZ and we need it, punt to SelectionDAG.
1082 if (DstVT == MVT::i64 && !IsSigned && !PPCSubTarget->hasFPCVT())
1083 return false;
1084
1085 Value *Src = I->getOperand(0);
1086 Type *SrcTy = Src->getType();
1087 if (!isTypeLegal(SrcTy, SrcVT))
1088 return false;
1089
1090 if (SrcVT != MVT::f32 && SrcVT != MVT::f64)
1091 return false;
1092
1093 unsigned SrcReg = getRegForValue(Src);
1094 if (SrcReg == 0)
1095 return false;
1096
1097 // Convert f32 to f64 if necessary. This is just a meaningless copy
1098 // to get the register class right. COPY_TO_REGCLASS is needed since
1099 // a COPY from F4RC to F8RC is converted to a F4RC-F4RC copy downstream.
1100 const TargetRegisterClass *InRC = MRI.getRegClass(SrcReg);
1101 if (InRC == &PPC::F4RCRegClass) {
1102 unsigned TmpReg = createResultReg(&PPC::F8RCRegClass);
1103 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1104 TII.get(TargetOpcode::COPY_TO_REGCLASS), TmpReg)
1105 .addReg(SrcReg).addImm(PPC::F8RCRegClassID);
1106 SrcReg = TmpReg;
1107 }
1108
1109 // Determine the opcode for the conversion, which takes place
1110 // entirely within FPRs.
1111 unsigned DestReg = createResultReg(&PPC::F8RCRegClass);
1112 unsigned Opc;
1113
1114 if (DstVT == MVT::i32)
1115 if (IsSigned)
1116 Opc = PPC::FCTIWZ;
1117 else
1118 Opc = PPCSubTarget->hasFPCVT() ? PPC::FCTIWUZ : PPC::FCTIDZ;
1119 else
1120 Opc = IsSigned ? PPC::FCTIDZ : PPC::FCTIDUZ;
1121
1122 // Generate the convert.
1123 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), DestReg)
1124 .addReg(SrcReg);
1125
1126 // Now move the integer value from a float register to an integer register.
1127 unsigned IntReg = PPCMoveToIntReg(I, DstVT, DestReg, IsSigned);
1128 if (IntReg == 0)
1129 return false;
1130
1131 updateValueMap(I, IntReg);
1132 return true;
1133 }
1134
1135 // Attempt to fast-select a binary integer operation that isn't already
1136 // handled automatically.
SelectBinaryIntOp(const Instruction * I,unsigned ISDOpcode)1137 bool PPCFastISel::SelectBinaryIntOp(const Instruction *I, unsigned ISDOpcode) {
1138 EVT DestVT = TLI.getValueType(I->getType(), true);
1139
1140 // We can get here in the case when we have a binary operation on a non-legal
1141 // type and the target independent selector doesn't know how to handle it.
1142 if (DestVT != MVT::i16 && DestVT != MVT::i8)
1143 return false;
1144
1145 // Look at the currently assigned register for this instruction
1146 // to determine the required register class. If there is no register,
1147 // make a conservative choice (don't assign R0).
1148 unsigned AssignedReg = FuncInfo.ValueMap[I];
1149 const TargetRegisterClass *RC =
1150 (AssignedReg ? MRI.getRegClass(AssignedReg) :
1151 &PPC::GPRC_and_GPRC_NOR0RegClass);
1152 bool IsGPRC = RC->hasSuperClassEq(&PPC::GPRCRegClass);
1153
1154 unsigned Opc;
1155 switch (ISDOpcode) {
1156 default: return false;
1157 case ISD::ADD:
1158 Opc = IsGPRC ? PPC::ADD4 : PPC::ADD8;
1159 break;
1160 case ISD::OR:
1161 Opc = IsGPRC ? PPC::OR : PPC::OR8;
1162 break;
1163 case ISD::SUB:
1164 Opc = IsGPRC ? PPC::SUBF : PPC::SUBF8;
1165 break;
1166 }
1167
1168 unsigned ResultReg = createResultReg(RC ? RC : &PPC::G8RCRegClass);
1169 unsigned SrcReg1 = getRegForValue(I->getOperand(0));
1170 if (SrcReg1 == 0) return false;
1171
1172 // Handle case of small immediate operand.
1173 if (const ConstantInt *ConstInt = dyn_cast<ConstantInt>(I->getOperand(1))) {
1174 const APInt &CIVal = ConstInt->getValue();
1175 int Imm = (int)CIVal.getSExtValue();
1176 bool UseImm = true;
1177 if (isInt<16>(Imm)) {
1178 switch (Opc) {
1179 default:
1180 llvm_unreachable("Missing case!");
1181 case PPC::ADD4:
1182 Opc = PPC::ADDI;
1183 MRI.setRegClass(SrcReg1, &PPC::GPRC_and_GPRC_NOR0RegClass);
1184 break;
1185 case PPC::ADD8:
1186 Opc = PPC::ADDI8;
1187 MRI.setRegClass(SrcReg1, &PPC::G8RC_and_G8RC_NOX0RegClass);
1188 break;
1189 case PPC::OR:
1190 Opc = PPC::ORI;
1191 break;
1192 case PPC::OR8:
1193 Opc = PPC::ORI8;
1194 break;
1195 case PPC::SUBF:
1196 if (Imm == -32768)
1197 UseImm = false;
1198 else {
1199 Opc = PPC::ADDI;
1200 MRI.setRegClass(SrcReg1, &PPC::GPRC_and_GPRC_NOR0RegClass);
1201 Imm = -Imm;
1202 }
1203 break;
1204 case PPC::SUBF8:
1205 if (Imm == -32768)
1206 UseImm = false;
1207 else {
1208 Opc = PPC::ADDI8;
1209 MRI.setRegClass(SrcReg1, &PPC::G8RC_and_G8RC_NOX0RegClass);
1210 Imm = -Imm;
1211 }
1212 break;
1213 }
1214
1215 if (UseImm) {
1216 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc),
1217 ResultReg)
1218 .addReg(SrcReg1)
1219 .addImm(Imm);
1220 updateValueMap(I, ResultReg);
1221 return true;
1222 }
1223 }
1224 }
1225
1226 // Reg-reg case.
1227 unsigned SrcReg2 = getRegForValue(I->getOperand(1));
1228 if (SrcReg2 == 0) return false;
1229
1230 // Reverse operands for subtract-from.
1231 if (ISDOpcode == ISD::SUB)
1232 std::swap(SrcReg1, SrcReg2);
1233
1234 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), ResultReg)
1235 .addReg(SrcReg1).addReg(SrcReg2);
1236 updateValueMap(I, ResultReg);
1237 return true;
1238 }
1239
1240 // Handle arguments to a call that we're attempting to fast-select.
1241 // Return false if the arguments are too complex for us at the moment.
processCallArgs(SmallVectorImpl<Value * > & Args,SmallVectorImpl<unsigned> & ArgRegs,SmallVectorImpl<MVT> & ArgVTs,SmallVectorImpl<ISD::ArgFlagsTy> & ArgFlags,SmallVectorImpl<unsigned> & RegArgs,CallingConv::ID CC,unsigned & NumBytes,bool IsVarArg)1242 bool PPCFastISel::processCallArgs(SmallVectorImpl<Value*> &Args,
1243 SmallVectorImpl<unsigned> &ArgRegs,
1244 SmallVectorImpl<MVT> &ArgVTs,
1245 SmallVectorImpl<ISD::ArgFlagsTy> &ArgFlags,
1246 SmallVectorImpl<unsigned> &RegArgs,
1247 CallingConv::ID CC,
1248 unsigned &NumBytes,
1249 bool IsVarArg) {
1250 SmallVector<CCValAssign, 16> ArgLocs;
1251 CCState CCInfo(CC, IsVarArg, *FuncInfo.MF, ArgLocs, *Context);
1252
1253 // Reserve space for the linkage area on the stack.
1254 unsigned LinkageSize = PPCSubTarget->getFrameLowering()->getLinkageSize();
1255 CCInfo.AllocateStack(LinkageSize, 8);
1256
1257 CCInfo.AnalyzeCallOperands(ArgVTs, ArgFlags, CC_PPC64_ELF_FIS);
1258
1259 // Bail out if we can't handle any of the arguments.
1260 for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) {
1261 CCValAssign &VA = ArgLocs[I];
1262 MVT ArgVT = ArgVTs[VA.getValNo()];
1263
1264 // Skip vector arguments for now, as well as long double and
1265 // uint128_t, and anything that isn't passed in a register.
1266 if (ArgVT.isVector() || ArgVT.getSizeInBits() > 64 || ArgVT == MVT::i1 ||
1267 !VA.isRegLoc() || VA.needsCustom())
1268 return false;
1269
1270 // Skip bit-converted arguments for now.
1271 if (VA.getLocInfo() == CCValAssign::BCvt)
1272 return false;
1273 }
1274
1275 // Get a count of how many bytes are to be pushed onto the stack.
1276 NumBytes = CCInfo.getNextStackOffset();
1277
1278 // The prolog code of the callee may store up to 8 GPR argument registers to
1279 // the stack, allowing va_start to index over them in memory if its varargs.
1280 // Because we cannot tell if this is needed on the caller side, we have to
1281 // conservatively assume that it is needed. As such, make sure we have at
1282 // least enough stack space for the caller to store the 8 GPRs.
1283 // FIXME: On ELFv2, it may be unnecessary to allocate the parameter area.
1284 NumBytes = std::max(NumBytes, LinkageSize + 64);
1285
1286 // Issue CALLSEQ_START.
1287 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1288 TII.get(TII.getCallFrameSetupOpcode()))
1289 .addImm(NumBytes);
1290
1291 // Prepare to assign register arguments. Every argument uses up a
1292 // GPR protocol register even if it's passed in a floating-point
1293 // register (unless we're using the fast calling convention).
1294 unsigned NextGPR = PPC::X3;
1295 unsigned NextFPR = PPC::F1;
1296
1297 // Process arguments.
1298 for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) {
1299 CCValAssign &VA = ArgLocs[I];
1300 unsigned Arg = ArgRegs[VA.getValNo()];
1301 MVT ArgVT = ArgVTs[VA.getValNo()];
1302
1303 // Handle argument promotion and bitcasts.
1304 switch (VA.getLocInfo()) {
1305 default:
1306 llvm_unreachable("Unknown loc info!");
1307 case CCValAssign::Full:
1308 break;
1309 case CCValAssign::SExt: {
1310 MVT DestVT = VA.getLocVT();
1311 const TargetRegisterClass *RC =
1312 (DestVT == MVT::i64) ? &PPC::G8RCRegClass : &PPC::GPRCRegClass;
1313 unsigned TmpReg = createResultReg(RC);
1314 if (!PPCEmitIntExt(ArgVT, Arg, DestVT, TmpReg, /*IsZExt*/false))
1315 llvm_unreachable("Failed to emit a sext!");
1316 ArgVT = DestVT;
1317 Arg = TmpReg;
1318 break;
1319 }
1320 case CCValAssign::AExt:
1321 case CCValAssign::ZExt: {
1322 MVT DestVT = VA.getLocVT();
1323 const TargetRegisterClass *RC =
1324 (DestVT == MVT::i64) ? &PPC::G8RCRegClass : &PPC::GPRCRegClass;
1325 unsigned TmpReg = createResultReg(RC);
1326 if (!PPCEmitIntExt(ArgVT, Arg, DestVT, TmpReg, /*IsZExt*/true))
1327 llvm_unreachable("Failed to emit a zext!");
1328 ArgVT = DestVT;
1329 Arg = TmpReg;
1330 break;
1331 }
1332 case CCValAssign::BCvt: {
1333 // FIXME: Not yet handled.
1334 llvm_unreachable("Should have bailed before getting here!");
1335 break;
1336 }
1337 }
1338
1339 // Copy this argument to the appropriate register.
1340 unsigned ArgReg;
1341 if (ArgVT == MVT::f32 || ArgVT == MVT::f64) {
1342 ArgReg = NextFPR++;
1343 if (CC != CallingConv::Fast)
1344 ++NextGPR;
1345 } else
1346 ArgReg = NextGPR++;
1347
1348 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1349 TII.get(TargetOpcode::COPY), ArgReg).addReg(Arg);
1350 RegArgs.push_back(ArgReg);
1351 }
1352
1353 return true;
1354 }
1355
1356 // For a call that we've determined we can fast-select, finish the
1357 // call sequence and generate a copy to obtain the return value (if any).
finishCall(MVT RetVT,CallLoweringInfo & CLI,unsigned & NumBytes)1358 bool PPCFastISel::finishCall(MVT RetVT, CallLoweringInfo &CLI, unsigned &NumBytes) {
1359 CallingConv::ID CC = CLI.CallConv;
1360
1361 // Issue CallSEQ_END.
1362 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1363 TII.get(TII.getCallFrameDestroyOpcode()))
1364 .addImm(NumBytes).addImm(0);
1365
1366 // Next, generate a copy to obtain the return value.
1367 // FIXME: No multi-register return values yet, though I don't foresee
1368 // any real difficulties there.
1369 if (RetVT != MVT::isVoid) {
1370 SmallVector<CCValAssign, 16> RVLocs;
1371 CCState CCInfo(CC, false, *FuncInfo.MF, RVLocs, *Context);
1372 CCInfo.AnalyzeCallResult(RetVT, RetCC_PPC64_ELF_FIS);
1373 CCValAssign &VA = RVLocs[0];
1374 assert(RVLocs.size() == 1 && "No support for multi-reg return values!");
1375 assert(VA.isRegLoc() && "Can only return in registers!");
1376
1377 MVT DestVT = VA.getValVT();
1378 MVT CopyVT = DestVT;
1379
1380 // Ints smaller than a register still arrive in a full 64-bit
1381 // register, so make sure we recognize this.
1382 if (RetVT == MVT::i8 || RetVT == MVT::i16 || RetVT == MVT::i32)
1383 CopyVT = MVT::i64;
1384
1385 unsigned SourcePhysReg = VA.getLocReg();
1386 unsigned ResultReg = 0;
1387
1388 if (RetVT == CopyVT) {
1389 const TargetRegisterClass *CpyRC = TLI.getRegClassFor(CopyVT);
1390 ResultReg = createResultReg(CpyRC);
1391
1392 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1393 TII.get(TargetOpcode::COPY), ResultReg)
1394 .addReg(SourcePhysReg);
1395
1396 // If necessary, round the floating result to single precision.
1397 } else if (CopyVT == MVT::f64) {
1398 ResultReg = createResultReg(TLI.getRegClassFor(RetVT));
1399 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::FRSP),
1400 ResultReg).addReg(SourcePhysReg);
1401
1402 // If only the low half of a general register is needed, generate
1403 // a GPRC copy instead of a G8RC copy. (EXTRACT_SUBREG can't be
1404 // used along the fast-isel path (not lowered), and downstream logic
1405 // also doesn't like a direct subreg copy on a physical reg.)
1406 } else if (RetVT == MVT::i8 || RetVT == MVT::i16 || RetVT == MVT::i32) {
1407 ResultReg = createResultReg(&PPC::GPRCRegClass);
1408 // Convert physical register from G8RC to GPRC.
1409 SourcePhysReg -= PPC::X0 - PPC::R0;
1410 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1411 TII.get(TargetOpcode::COPY), ResultReg)
1412 .addReg(SourcePhysReg);
1413 }
1414
1415 assert(ResultReg && "ResultReg unset!");
1416 CLI.InRegs.push_back(SourcePhysReg);
1417 CLI.ResultReg = ResultReg;
1418 CLI.NumResultRegs = 1;
1419 }
1420
1421 return true;
1422 }
1423
fastLowerCall(CallLoweringInfo & CLI)1424 bool PPCFastISel::fastLowerCall(CallLoweringInfo &CLI) {
1425 CallingConv::ID CC = CLI.CallConv;
1426 bool IsTailCall = CLI.IsTailCall;
1427 bool IsVarArg = CLI.IsVarArg;
1428 const Value *Callee = CLI.Callee;
1429 const char *SymName = CLI.SymName;
1430
1431 if (!Callee && !SymName)
1432 return false;
1433
1434 // Allow SelectionDAG isel to handle tail calls.
1435 if (IsTailCall)
1436 return false;
1437
1438 // Let SDISel handle vararg functions.
1439 if (IsVarArg)
1440 return false;
1441
1442 // Handle simple calls for now, with legal return types and
1443 // those that can be extended.
1444 Type *RetTy = CLI.RetTy;
1445 MVT RetVT;
1446 if (RetTy->isVoidTy())
1447 RetVT = MVT::isVoid;
1448 else if (!isTypeLegal(RetTy, RetVT) && RetVT != MVT::i16 &&
1449 RetVT != MVT::i8)
1450 return false;
1451 else if (RetVT == MVT::i1 && PPCSubTarget->useCRBits())
1452 // We can't handle boolean returns when CR bits are in use.
1453 return false;
1454
1455 // FIXME: No multi-register return values yet.
1456 if (RetVT != MVT::isVoid && RetVT != MVT::i8 && RetVT != MVT::i16 &&
1457 RetVT != MVT::i32 && RetVT != MVT::i64 && RetVT != MVT::f32 &&
1458 RetVT != MVT::f64) {
1459 SmallVector<CCValAssign, 16> RVLocs;
1460 CCState CCInfo(CC, IsVarArg, *FuncInfo.MF, RVLocs, *Context);
1461 CCInfo.AnalyzeCallResult(RetVT, RetCC_PPC64_ELF_FIS);
1462 if (RVLocs.size() > 1)
1463 return false;
1464 }
1465
1466 // Bail early if more than 8 arguments, as we only currently
1467 // handle arguments passed in registers.
1468 unsigned NumArgs = CLI.OutVals.size();
1469 if (NumArgs > 8)
1470 return false;
1471
1472 // Set up the argument vectors.
1473 SmallVector<Value*, 8> Args;
1474 SmallVector<unsigned, 8> ArgRegs;
1475 SmallVector<MVT, 8> ArgVTs;
1476 SmallVector<ISD::ArgFlagsTy, 8> ArgFlags;
1477
1478 Args.reserve(NumArgs);
1479 ArgRegs.reserve(NumArgs);
1480 ArgVTs.reserve(NumArgs);
1481 ArgFlags.reserve(NumArgs);
1482
1483 for (unsigned i = 0, ie = NumArgs; i != ie; ++i) {
1484 // Only handle easy calls for now. It would be reasonably easy
1485 // to handle <= 8-byte structures passed ByVal in registers, but we
1486 // have to ensure they are right-justified in the register.
1487 ISD::ArgFlagsTy Flags = CLI.OutFlags[i];
1488 if (Flags.isInReg() || Flags.isSRet() || Flags.isNest() || Flags.isByVal())
1489 return false;
1490
1491 Value *ArgValue = CLI.OutVals[i];
1492 Type *ArgTy = ArgValue->getType();
1493 MVT ArgVT;
1494 if (!isTypeLegal(ArgTy, ArgVT) && ArgVT != MVT::i16 && ArgVT != MVT::i8)
1495 return false;
1496
1497 if (ArgVT.isVector())
1498 return false;
1499
1500 unsigned Arg = getRegForValue(ArgValue);
1501 if (Arg == 0)
1502 return false;
1503
1504 Args.push_back(ArgValue);
1505 ArgRegs.push_back(Arg);
1506 ArgVTs.push_back(ArgVT);
1507 ArgFlags.push_back(Flags);
1508 }
1509
1510 // Process the arguments.
1511 SmallVector<unsigned, 8> RegArgs;
1512 unsigned NumBytes;
1513
1514 if (!processCallArgs(Args, ArgRegs, ArgVTs, ArgFlags,
1515 RegArgs, CC, NumBytes, IsVarArg))
1516 return false;
1517
1518 MachineInstrBuilder MIB;
1519 // FIXME: No handling for function pointers yet. This requires
1520 // implementing the function descriptor (OPD) setup.
1521 const GlobalValue *GV = dyn_cast<GlobalValue>(Callee);
1522 if (!GV) {
1523 // patchpoints are a special case; they always dispatch to a pointer value.
1524 // However, we don't actually want to generate the indirect call sequence
1525 // here (that will be generated, as necessary, during asm printing), and
1526 // the call we generate here will be erased by FastISel::selectPatchpoint,
1527 // so don't try very hard...
1528 if (CLI.IsPatchPoint)
1529 MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::NOP));
1530 else
1531 return false;
1532 } else {
1533 // Build direct call with NOP for TOC restore.
1534 // FIXME: We can and should optimize away the NOP for local calls.
1535 MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1536 TII.get(PPC::BL8_NOP));
1537 // Add callee.
1538 MIB.addGlobalAddress(GV);
1539 }
1540
1541 // Add implicit physical register uses to the call.
1542 for (unsigned II = 0, IE = RegArgs.size(); II != IE; ++II)
1543 MIB.addReg(RegArgs[II], RegState::Implicit);
1544
1545 // Direct calls, in both the ELF V1 and V2 ABIs, need the TOC register live
1546 // into the call.
1547 PPCFuncInfo->setUsesTOCBasePtr();
1548 MIB.addReg(PPC::X2, RegState::Implicit);
1549
1550 // Add a register mask with the call-preserved registers. Proper
1551 // defs for return values will be added by setPhysRegsDeadExcept().
1552 MIB.addRegMask(TRI.getCallPreservedMask(*FuncInfo.MF, CC));
1553
1554 CLI.Call = MIB;
1555
1556 // Finish off the call including any return values.
1557 return finishCall(RetVT, CLI, NumBytes);
1558 }
1559
1560 // Attempt to fast-select a return instruction.
SelectRet(const Instruction * I)1561 bool PPCFastISel::SelectRet(const Instruction *I) {
1562
1563 if (!FuncInfo.CanLowerReturn)
1564 return false;
1565
1566 const ReturnInst *Ret = cast<ReturnInst>(I);
1567 const Function &F = *I->getParent()->getParent();
1568
1569 // Build a list of return value registers.
1570 SmallVector<unsigned, 4> RetRegs;
1571 CallingConv::ID CC = F.getCallingConv();
1572
1573 if (Ret->getNumOperands() > 0) {
1574 SmallVector<ISD::OutputArg, 4> Outs;
1575 GetReturnInfo(F.getReturnType(), F.getAttributes(), Outs, TLI);
1576
1577 // Analyze operands of the call, assigning locations to each operand.
1578 SmallVector<CCValAssign, 16> ValLocs;
1579 CCState CCInfo(CC, F.isVarArg(), *FuncInfo.MF, ValLocs, *Context);
1580 CCInfo.AnalyzeReturn(Outs, RetCC_PPC64_ELF_FIS);
1581 const Value *RV = Ret->getOperand(0);
1582
1583 // FIXME: Only one output register for now.
1584 if (ValLocs.size() > 1)
1585 return false;
1586
1587 // Special case for returning a constant integer of any size.
1588 // Materialize the constant as an i64 and copy it to the return
1589 // register. We still need to worry about properly extending the sign. E.g:
1590 // If the constant has only one bit, it means it is a boolean. Therefore
1591 // we can't use PPCMaterializeInt because it extends the sign which will
1592 // cause negations of the returned value to be incorrect as they are
1593 // implemented as the flip of the least significant bit.
1594 if (isa<ConstantInt>(*RV)) {
1595 const Constant *C = cast<Constant>(RV);
1596
1597 CCValAssign &VA = ValLocs[0];
1598
1599 unsigned RetReg = VA.getLocReg();
1600 unsigned SrcReg = PPCMaterializeInt(C, MVT::i64,
1601 VA.getLocInfo() == CCValAssign::SExt);
1602
1603 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1604 TII.get(TargetOpcode::COPY), RetReg).addReg(SrcReg);
1605
1606 RetRegs.push_back(RetReg);
1607
1608 } else {
1609 unsigned Reg = getRegForValue(RV);
1610
1611 if (Reg == 0)
1612 return false;
1613
1614 // Copy the result values into the output registers.
1615 for (unsigned i = 0; i < ValLocs.size(); ++i) {
1616
1617 CCValAssign &VA = ValLocs[i];
1618 assert(VA.isRegLoc() && "Can only return in registers!");
1619 RetRegs.push_back(VA.getLocReg());
1620 unsigned SrcReg = Reg + VA.getValNo();
1621
1622 EVT RVEVT = TLI.getValueType(RV->getType());
1623 if (!RVEVT.isSimple())
1624 return false;
1625 MVT RVVT = RVEVT.getSimpleVT();
1626 MVT DestVT = VA.getLocVT();
1627
1628 if (RVVT != DestVT && RVVT != MVT::i8 &&
1629 RVVT != MVT::i16 && RVVT != MVT::i32)
1630 return false;
1631
1632 if (RVVT != DestVT) {
1633 switch (VA.getLocInfo()) {
1634 default:
1635 llvm_unreachable("Unknown loc info!");
1636 case CCValAssign::Full:
1637 llvm_unreachable("Full value assign but types don't match?");
1638 case CCValAssign::AExt:
1639 case CCValAssign::ZExt: {
1640 const TargetRegisterClass *RC =
1641 (DestVT == MVT::i64) ? &PPC::G8RCRegClass : &PPC::GPRCRegClass;
1642 unsigned TmpReg = createResultReg(RC);
1643 if (!PPCEmitIntExt(RVVT, SrcReg, DestVT, TmpReg, true))
1644 return false;
1645 SrcReg = TmpReg;
1646 break;
1647 }
1648 case CCValAssign::SExt: {
1649 const TargetRegisterClass *RC =
1650 (DestVT == MVT::i64) ? &PPC::G8RCRegClass : &PPC::GPRCRegClass;
1651 unsigned TmpReg = createResultReg(RC);
1652 if (!PPCEmitIntExt(RVVT, SrcReg, DestVT, TmpReg, false))
1653 return false;
1654 SrcReg = TmpReg;
1655 break;
1656 }
1657 }
1658 }
1659
1660 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1661 TII.get(TargetOpcode::COPY), RetRegs[i])
1662 .addReg(SrcReg);
1663 }
1664 }
1665 }
1666
1667 MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1668 TII.get(PPC::BLR8));
1669
1670 for (unsigned i = 0, e = RetRegs.size(); i != e; ++i)
1671 MIB.addReg(RetRegs[i], RegState::Implicit);
1672
1673 return true;
1674 }
1675
1676 // Attempt to emit an integer extend of SrcReg into DestReg. Both
1677 // signed and zero extensions are supported. Return false if we
1678 // can't handle it.
PPCEmitIntExt(MVT SrcVT,unsigned SrcReg,MVT DestVT,unsigned DestReg,bool IsZExt)1679 bool PPCFastISel::PPCEmitIntExt(MVT SrcVT, unsigned SrcReg, MVT DestVT,
1680 unsigned DestReg, bool IsZExt) {
1681 if (DestVT != MVT::i32 && DestVT != MVT::i64)
1682 return false;
1683 if (SrcVT != MVT::i8 && SrcVT != MVT::i16 && SrcVT != MVT::i32)
1684 return false;
1685
1686 // Signed extensions use EXTSB, EXTSH, EXTSW.
1687 if (!IsZExt) {
1688 unsigned Opc;
1689 if (SrcVT == MVT::i8)
1690 Opc = (DestVT == MVT::i32) ? PPC::EXTSB : PPC::EXTSB8_32_64;
1691 else if (SrcVT == MVT::i16)
1692 Opc = (DestVT == MVT::i32) ? PPC::EXTSH : PPC::EXTSH8_32_64;
1693 else {
1694 assert(DestVT == MVT::i64 && "Signed extend from i32 to i32??");
1695 Opc = PPC::EXTSW_32_64;
1696 }
1697 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), DestReg)
1698 .addReg(SrcReg);
1699
1700 // Unsigned 32-bit extensions use RLWINM.
1701 } else if (DestVT == MVT::i32) {
1702 unsigned MB;
1703 if (SrcVT == MVT::i8)
1704 MB = 24;
1705 else {
1706 assert(SrcVT == MVT::i16 && "Unsigned extend from i32 to i32??");
1707 MB = 16;
1708 }
1709 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::RLWINM),
1710 DestReg)
1711 .addReg(SrcReg).addImm(/*SH=*/0).addImm(MB).addImm(/*ME=*/31);
1712
1713 // Unsigned 64-bit extensions use RLDICL (with a 32-bit source).
1714 } else {
1715 unsigned MB;
1716 if (SrcVT == MVT::i8)
1717 MB = 56;
1718 else if (SrcVT == MVT::i16)
1719 MB = 48;
1720 else
1721 MB = 32;
1722 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1723 TII.get(PPC::RLDICL_32_64), DestReg)
1724 .addReg(SrcReg).addImm(/*SH=*/0).addImm(MB);
1725 }
1726
1727 return true;
1728 }
1729
1730 // Attempt to fast-select an indirect branch instruction.
SelectIndirectBr(const Instruction * I)1731 bool PPCFastISel::SelectIndirectBr(const Instruction *I) {
1732 unsigned AddrReg = getRegForValue(I->getOperand(0));
1733 if (AddrReg == 0)
1734 return false;
1735
1736 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::MTCTR8))
1737 .addReg(AddrReg);
1738 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::BCTR8));
1739
1740 const IndirectBrInst *IB = cast<IndirectBrInst>(I);
1741 for (unsigned i = 0, e = IB->getNumSuccessors(); i != e; ++i)
1742 FuncInfo.MBB->addSuccessor(FuncInfo.MBBMap[IB->getSuccessor(i)]);
1743
1744 return true;
1745 }
1746
1747 // Attempt to fast-select an integer truncate instruction.
SelectTrunc(const Instruction * I)1748 bool PPCFastISel::SelectTrunc(const Instruction *I) {
1749 Value *Src = I->getOperand(0);
1750 EVT SrcVT = TLI.getValueType(Src->getType(), true);
1751 EVT DestVT = TLI.getValueType(I->getType(), true);
1752
1753 if (SrcVT != MVT::i64 && SrcVT != MVT::i32 && SrcVT != MVT::i16)
1754 return false;
1755
1756 if (DestVT != MVT::i32 && DestVT != MVT::i16 && DestVT != MVT::i8)
1757 return false;
1758
1759 unsigned SrcReg = getRegForValue(Src);
1760 if (!SrcReg)
1761 return false;
1762
1763 // The only interesting case is when we need to switch register classes.
1764 if (SrcVT == MVT::i64) {
1765 unsigned ResultReg = createResultReg(&PPC::GPRCRegClass);
1766 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1767 TII.get(TargetOpcode::COPY),
1768 ResultReg).addReg(SrcReg, 0, PPC::sub_32);
1769 SrcReg = ResultReg;
1770 }
1771
1772 updateValueMap(I, SrcReg);
1773 return true;
1774 }
1775
1776 // Attempt to fast-select an integer extend instruction.
SelectIntExt(const Instruction * I)1777 bool PPCFastISel::SelectIntExt(const Instruction *I) {
1778 Type *DestTy = I->getType();
1779 Value *Src = I->getOperand(0);
1780 Type *SrcTy = Src->getType();
1781
1782 bool IsZExt = isa<ZExtInst>(I);
1783 unsigned SrcReg = getRegForValue(Src);
1784 if (!SrcReg) return false;
1785
1786 EVT SrcEVT, DestEVT;
1787 SrcEVT = TLI.getValueType(SrcTy, true);
1788 DestEVT = TLI.getValueType(DestTy, true);
1789 if (!SrcEVT.isSimple())
1790 return false;
1791 if (!DestEVT.isSimple())
1792 return false;
1793
1794 MVT SrcVT = SrcEVT.getSimpleVT();
1795 MVT DestVT = DestEVT.getSimpleVT();
1796
1797 // If we know the register class needed for the result of this
1798 // instruction, use it. Otherwise pick the register class of the
1799 // correct size that does not contain X0/R0, since we don't know
1800 // whether downstream uses permit that assignment.
1801 unsigned AssignedReg = FuncInfo.ValueMap[I];
1802 const TargetRegisterClass *RC =
1803 (AssignedReg ? MRI.getRegClass(AssignedReg) :
1804 (DestVT == MVT::i64 ? &PPC::G8RC_and_G8RC_NOX0RegClass :
1805 &PPC::GPRC_and_GPRC_NOR0RegClass));
1806 unsigned ResultReg = createResultReg(RC);
1807
1808 if (!PPCEmitIntExt(SrcVT, SrcReg, DestVT, ResultReg, IsZExt))
1809 return false;
1810
1811 updateValueMap(I, ResultReg);
1812 return true;
1813 }
1814
1815 // Attempt to fast-select an instruction that wasn't handled by
1816 // the table-generated machinery.
fastSelectInstruction(const Instruction * I)1817 bool PPCFastISel::fastSelectInstruction(const Instruction *I) {
1818
1819 switch (I->getOpcode()) {
1820 case Instruction::Load:
1821 return SelectLoad(I);
1822 case Instruction::Store:
1823 return SelectStore(I);
1824 case Instruction::Br:
1825 return SelectBranch(I);
1826 case Instruction::IndirectBr:
1827 return SelectIndirectBr(I);
1828 case Instruction::FPExt:
1829 return SelectFPExt(I);
1830 case Instruction::FPTrunc:
1831 return SelectFPTrunc(I);
1832 case Instruction::SIToFP:
1833 return SelectIToFP(I, /*IsSigned*/ true);
1834 case Instruction::UIToFP:
1835 return SelectIToFP(I, /*IsSigned*/ false);
1836 case Instruction::FPToSI:
1837 return SelectFPToI(I, /*IsSigned*/ true);
1838 case Instruction::FPToUI:
1839 return SelectFPToI(I, /*IsSigned*/ false);
1840 case Instruction::Add:
1841 return SelectBinaryIntOp(I, ISD::ADD);
1842 case Instruction::Or:
1843 return SelectBinaryIntOp(I, ISD::OR);
1844 case Instruction::Sub:
1845 return SelectBinaryIntOp(I, ISD::SUB);
1846 case Instruction::Call:
1847 return selectCall(I);
1848 case Instruction::Ret:
1849 return SelectRet(I);
1850 case Instruction::Trunc:
1851 return SelectTrunc(I);
1852 case Instruction::ZExt:
1853 case Instruction::SExt:
1854 return SelectIntExt(I);
1855 // Here add other flavors of Instruction::XXX that automated
1856 // cases don't catch. For example, switches are terminators
1857 // that aren't yet handled.
1858 default:
1859 break;
1860 }
1861 return false;
1862 }
1863
1864 // Materialize a floating-point constant into a register, and return
1865 // the register number (or zero if we failed to handle it).
PPCMaterializeFP(const ConstantFP * CFP,MVT VT)1866 unsigned PPCFastISel::PPCMaterializeFP(const ConstantFP *CFP, MVT VT) {
1867 // No plans to handle long double here.
1868 if (VT != MVT::f32 && VT != MVT::f64)
1869 return 0;
1870
1871 // All FP constants are loaded from the constant pool.
1872 unsigned Align = DL.getPrefTypeAlignment(CFP->getType());
1873 assert(Align > 0 && "Unexpectedly missing alignment information!");
1874 unsigned Idx = MCP.getConstantPoolIndex(cast<Constant>(CFP), Align);
1875 unsigned DestReg = createResultReg(TLI.getRegClassFor(VT));
1876 CodeModel::Model CModel = TM.getCodeModel();
1877
1878 MachineMemOperand *MMO =
1879 FuncInfo.MF->getMachineMemOperand(
1880 MachinePointerInfo::getConstantPool(), MachineMemOperand::MOLoad,
1881 (VT == MVT::f32) ? 4 : 8, Align);
1882
1883 unsigned Opc = (VT == MVT::f32) ? PPC::LFS : PPC::LFD;
1884 unsigned TmpReg = createResultReg(&PPC::G8RC_and_G8RC_NOX0RegClass);
1885
1886 PPCFuncInfo->setUsesTOCBasePtr();
1887 // For small code model, generate a LF[SD](0, LDtocCPT(Idx, X2)).
1888 if (CModel == CodeModel::Small || CModel == CodeModel::JITDefault) {
1889 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::LDtocCPT),
1890 TmpReg)
1891 .addConstantPoolIndex(Idx).addReg(PPC::X2);
1892 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), DestReg)
1893 .addImm(0).addReg(TmpReg).addMemOperand(MMO);
1894 } else {
1895 // Otherwise we generate LF[SD](Idx[lo], ADDIStocHA(X2, Idx)).
1896 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::ADDIStocHA),
1897 TmpReg).addReg(PPC::X2).addConstantPoolIndex(Idx);
1898 // But for large code model, we must generate a LDtocL followed
1899 // by the LF[SD].
1900 if (CModel == CodeModel::Large) {
1901 unsigned TmpReg2 = createResultReg(&PPC::G8RC_and_G8RC_NOX0RegClass);
1902 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::LDtocL),
1903 TmpReg2).addConstantPoolIndex(Idx).addReg(TmpReg);
1904 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), DestReg)
1905 .addImm(0).addReg(TmpReg2);
1906 } else
1907 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), DestReg)
1908 .addConstantPoolIndex(Idx, 0, PPCII::MO_TOC_LO)
1909 .addReg(TmpReg)
1910 .addMemOperand(MMO);
1911 }
1912
1913 return DestReg;
1914 }
1915
1916 // Materialize the address of a global value into a register, and return
1917 // the register number (or zero if we failed to handle it).
PPCMaterializeGV(const GlobalValue * GV,MVT VT)1918 unsigned PPCFastISel::PPCMaterializeGV(const GlobalValue *GV, MVT VT) {
1919 assert(VT == MVT::i64 && "Non-address!");
1920 const TargetRegisterClass *RC = &PPC::G8RC_and_G8RC_NOX0RegClass;
1921 unsigned DestReg = createResultReg(RC);
1922
1923 // Global values may be plain old object addresses, TLS object
1924 // addresses, constant pool entries, or jump tables. How we generate
1925 // code for these may depend on small, medium, or large code model.
1926 CodeModel::Model CModel = TM.getCodeModel();
1927
1928 // FIXME: Jump tables are not yet required because fast-isel doesn't
1929 // handle switches; if that changes, we need them as well. For now,
1930 // what follows assumes everything's a generic (or TLS) global address.
1931
1932 // FIXME: We don't yet handle the complexity of TLS.
1933 if (GV->isThreadLocal())
1934 return 0;
1935
1936 PPCFuncInfo->setUsesTOCBasePtr();
1937 // For small code model, generate a simple TOC load.
1938 if (CModel == CodeModel::Small || CModel == CodeModel::JITDefault)
1939 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::LDtoc),
1940 DestReg)
1941 .addGlobalAddress(GV)
1942 .addReg(PPC::X2);
1943 else {
1944 // If the address is an externally defined symbol, a symbol with common
1945 // or externally available linkage, a non-local function address, or a
1946 // jump table address (not yet needed), or if we are generating code
1947 // for large code model, we generate:
1948 // LDtocL(GV, ADDIStocHA(%X2, GV))
1949 // Otherwise we generate:
1950 // ADDItocL(ADDIStocHA(%X2, GV), GV)
1951 // Either way, start with the ADDIStocHA:
1952 unsigned HighPartReg = createResultReg(RC);
1953 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::ADDIStocHA),
1954 HighPartReg).addReg(PPC::X2).addGlobalAddress(GV);
1955
1956 // If/when switches are implemented, jump tables should be handled
1957 // on the "if" path here.
1958 if (CModel == CodeModel::Large ||
1959 (GV->getType()->getElementType()->isFunctionTy() &&
1960 (GV->isDeclaration() || GV->isWeakForLinker())) ||
1961 GV->isDeclaration() || GV->hasCommonLinkage() ||
1962 GV->hasAvailableExternallyLinkage())
1963 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::LDtocL),
1964 DestReg).addGlobalAddress(GV).addReg(HighPartReg);
1965 else
1966 // Otherwise generate the ADDItocL.
1967 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::ADDItocL),
1968 DestReg).addReg(HighPartReg).addGlobalAddress(GV);
1969 }
1970
1971 return DestReg;
1972 }
1973
1974 // Materialize a 32-bit integer constant into a register, and return
1975 // the register number (or zero if we failed to handle it).
PPCMaterialize32BitInt(int64_t Imm,const TargetRegisterClass * RC)1976 unsigned PPCFastISel::PPCMaterialize32BitInt(int64_t Imm,
1977 const TargetRegisterClass *RC) {
1978 unsigned Lo = Imm & 0xFFFF;
1979 unsigned Hi = (Imm >> 16) & 0xFFFF;
1980
1981 unsigned ResultReg = createResultReg(RC);
1982 bool IsGPRC = RC->hasSuperClassEq(&PPC::GPRCRegClass);
1983
1984 if (isInt<16>(Imm))
1985 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1986 TII.get(IsGPRC ? PPC::LI : PPC::LI8), ResultReg)
1987 .addImm(Imm);
1988 else if (Lo) {
1989 // Both Lo and Hi have nonzero bits.
1990 unsigned TmpReg = createResultReg(RC);
1991 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1992 TII.get(IsGPRC ? PPC::LIS : PPC::LIS8), TmpReg)
1993 .addImm(Hi);
1994 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1995 TII.get(IsGPRC ? PPC::ORI : PPC::ORI8), ResultReg)
1996 .addReg(TmpReg).addImm(Lo);
1997 } else
1998 // Just Hi bits.
1999 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2000 TII.get(IsGPRC ? PPC::LIS : PPC::LIS8), ResultReg)
2001 .addImm(Hi);
2002
2003 return ResultReg;
2004 }
2005
2006 // Materialize a 64-bit integer constant into a register, and return
2007 // the register number (or zero if we failed to handle it).
PPCMaterialize64BitInt(int64_t Imm,const TargetRegisterClass * RC)2008 unsigned PPCFastISel::PPCMaterialize64BitInt(int64_t Imm,
2009 const TargetRegisterClass *RC) {
2010 unsigned Remainder = 0;
2011 unsigned Shift = 0;
2012
2013 // If the value doesn't fit in 32 bits, see if we can shift it
2014 // so that it fits in 32 bits.
2015 if (!isInt<32>(Imm)) {
2016 Shift = countTrailingZeros<uint64_t>(Imm);
2017 int64_t ImmSh = static_cast<uint64_t>(Imm) >> Shift;
2018
2019 if (isInt<32>(ImmSh))
2020 Imm = ImmSh;
2021 else {
2022 Remainder = Imm;
2023 Shift = 32;
2024 Imm >>= 32;
2025 }
2026 }
2027
2028 // Handle the high-order 32 bits (if shifted) or the whole 32 bits
2029 // (if not shifted).
2030 unsigned TmpReg1 = PPCMaterialize32BitInt(Imm, RC);
2031 if (!Shift)
2032 return TmpReg1;
2033
2034 // If upper 32 bits were not zero, we've built them and need to shift
2035 // them into place.
2036 unsigned TmpReg2;
2037 if (Imm) {
2038 TmpReg2 = createResultReg(RC);
2039 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::RLDICR),
2040 TmpReg2).addReg(TmpReg1).addImm(Shift).addImm(63 - Shift);
2041 } else
2042 TmpReg2 = TmpReg1;
2043
2044 unsigned TmpReg3, Hi, Lo;
2045 if ((Hi = (Remainder >> 16) & 0xFFFF)) {
2046 TmpReg3 = createResultReg(RC);
2047 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::ORIS8),
2048 TmpReg3).addReg(TmpReg2).addImm(Hi);
2049 } else
2050 TmpReg3 = TmpReg2;
2051
2052 if ((Lo = Remainder & 0xFFFF)) {
2053 unsigned ResultReg = createResultReg(RC);
2054 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::ORI8),
2055 ResultReg).addReg(TmpReg3).addImm(Lo);
2056 return ResultReg;
2057 }
2058
2059 return TmpReg3;
2060 }
2061
2062
2063 // Materialize an integer constant into a register, and return
2064 // the register number (or zero if we failed to handle it).
PPCMaterializeInt(const Constant * C,MVT VT,bool UseSExt)2065 unsigned PPCFastISel::PPCMaterializeInt(const Constant *C, MVT VT,
2066 bool UseSExt) {
2067 // If we're using CR bit registers for i1 values, handle that as a special
2068 // case first.
2069 if (VT == MVT::i1 && PPCSubTarget->useCRBits()) {
2070 const ConstantInt *CI = cast<ConstantInt>(C);
2071 unsigned ImmReg = createResultReg(&PPC::CRBITRCRegClass);
2072 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2073 TII.get(CI->isZero() ? PPC::CRUNSET : PPC::CRSET), ImmReg);
2074 return ImmReg;
2075 }
2076
2077 if (VT != MVT::i64 && VT != MVT::i32 && VT != MVT::i16 &&
2078 VT != MVT::i8 && VT != MVT::i1)
2079 return 0;
2080
2081 const TargetRegisterClass *RC = ((VT == MVT::i64) ? &PPC::G8RCRegClass :
2082 &PPC::GPRCRegClass);
2083
2084 // If the constant is in range, use a load-immediate.
2085 const ConstantInt *CI = cast<ConstantInt>(C);
2086 if (isInt<16>(CI->getSExtValue())) {
2087 unsigned Opc = (VT == MVT::i64) ? PPC::LI8 : PPC::LI;
2088 unsigned ImmReg = createResultReg(RC);
2089 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), ImmReg)
2090 .addImm( (UseSExt) ? CI->getSExtValue() : CI->getZExtValue() );
2091 return ImmReg;
2092 }
2093
2094 // Construct the constant piecewise.
2095 int64_t Imm = CI->getZExtValue();
2096
2097 if (VT == MVT::i64)
2098 return PPCMaterialize64BitInt(Imm, RC);
2099 else if (VT == MVT::i32)
2100 return PPCMaterialize32BitInt(Imm, RC);
2101
2102 return 0;
2103 }
2104
2105 // Materialize a constant into a register, and return the register
2106 // number (or zero if we failed to handle it).
fastMaterializeConstant(const Constant * C)2107 unsigned PPCFastISel::fastMaterializeConstant(const Constant *C) {
2108 EVT CEVT = TLI.getValueType(C->getType(), true);
2109
2110 // Only handle simple types.
2111 if (!CEVT.isSimple()) return 0;
2112 MVT VT = CEVT.getSimpleVT();
2113
2114 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C))
2115 return PPCMaterializeFP(CFP, VT);
2116 else if (const GlobalValue *GV = dyn_cast<GlobalValue>(C))
2117 return PPCMaterializeGV(GV, VT);
2118 else if (isa<ConstantInt>(C))
2119 return PPCMaterializeInt(C, VT, VT != MVT::i1);
2120
2121 return 0;
2122 }
2123
2124 // Materialize the address created by an alloca into a register, and
2125 // return the register number (or zero if we failed to handle it).
fastMaterializeAlloca(const AllocaInst * AI)2126 unsigned PPCFastISel::fastMaterializeAlloca(const AllocaInst *AI) {
2127 // Don't handle dynamic allocas.
2128 if (!FuncInfo.StaticAllocaMap.count(AI)) return 0;
2129
2130 MVT VT;
2131 if (!isLoadTypeLegal(AI->getType(), VT)) return 0;
2132
2133 DenseMap<const AllocaInst*, int>::iterator SI =
2134 FuncInfo.StaticAllocaMap.find(AI);
2135
2136 if (SI != FuncInfo.StaticAllocaMap.end()) {
2137 unsigned ResultReg = createResultReg(&PPC::G8RC_and_G8RC_NOX0RegClass);
2138 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(PPC::ADDI8),
2139 ResultReg).addFrameIndex(SI->second).addImm(0);
2140 return ResultReg;
2141 }
2142
2143 return 0;
2144 }
2145
2146 // Fold loads into extends when possible.
2147 // FIXME: We can have multiple redundant extend/trunc instructions
2148 // following a load. The folding only picks up one. Extend this
2149 // to check subsequent instructions for the same pattern and remove
2150 // them. Thus ResultReg should be the def reg for the last redundant
2151 // instruction in a chain, and all intervening instructions can be
2152 // removed from parent. Change test/CodeGen/PowerPC/fast-isel-fold.ll
2153 // to add ELF64-NOT: rldicl to the appropriate tests when this works.
tryToFoldLoadIntoMI(MachineInstr * MI,unsigned OpNo,const LoadInst * LI)2154 bool PPCFastISel::tryToFoldLoadIntoMI(MachineInstr *MI, unsigned OpNo,
2155 const LoadInst *LI) {
2156 // Verify we have a legal type before going any further.
2157 MVT VT;
2158 if (!isLoadTypeLegal(LI->getType(), VT))
2159 return false;
2160
2161 // Combine load followed by zero- or sign-extend.
2162 bool IsZExt = false;
2163 switch(MI->getOpcode()) {
2164 default:
2165 return false;
2166
2167 case PPC::RLDICL:
2168 case PPC::RLDICL_32_64: {
2169 IsZExt = true;
2170 unsigned MB = MI->getOperand(3).getImm();
2171 if ((VT == MVT::i8 && MB <= 56) ||
2172 (VT == MVT::i16 && MB <= 48) ||
2173 (VT == MVT::i32 && MB <= 32))
2174 break;
2175 return false;
2176 }
2177
2178 case PPC::RLWINM:
2179 case PPC::RLWINM8: {
2180 IsZExt = true;
2181 unsigned MB = MI->getOperand(3).getImm();
2182 if ((VT == MVT::i8 && MB <= 24) ||
2183 (VT == MVT::i16 && MB <= 16))
2184 break;
2185 return false;
2186 }
2187
2188 case PPC::EXTSB:
2189 case PPC::EXTSB8:
2190 case PPC::EXTSB8_32_64:
2191 /* There is no sign-extending load-byte instruction. */
2192 return false;
2193
2194 case PPC::EXTSH:
2195 case PPC::EXTSH8:
2196 case PPC::EXTSH8_32_64: {
2197 if (VT != MVT::i16 && VT != MVT::i8)
2198 return false;
2199 break;
2200 }
2201
2202 case PPC::EXTSW:
2203 case PPC::EXTSW_32_64: {
2204 if (VT != MVT::i32 && VT != MVT::i16 && VT != MVT::i8)
2205 return false;
2206 break;
2207 }
2208 }
2209
2210 // See if we can handle this address.
2211 Address Addr;
2212 if (!PPCComputeAddress(LI->getOperand(0), Addr))
2213 return false;
2214
2215 unsigned ResultReg = MI->getOperand(0).getReg();
2216
2217 if (!PPCEmitLoad(VT, ResultReg, Addr, nullptr, IsZExt))
2218 return false;
2219
2220 MI->eraseFromParent();
2221 return true;
2222 }
2223
2224 // Attempt to lower call arguments in a faster way than done by
2225 // the selection DAG code.
fastLowerArguments()2226 bool PPCFastISel::fastLowerArguments() {
2227 // Defer to normal argument lowering for now. It's reasonably
2228 // efficient. Consider doing something like ARM to handle the
2229 // case where all args fit in registers, no varargs, no float
2230 // or vector args.
2231 return false;
2232 }
2233
2234 // Handle materializing integer constants into a register. This is not
2235 // automatically generated for PowerPC, so must be explicitly created here.
fastEmit_i(MVT Ty,MVT VT,unsigned Opc,uint64_t Imm)2236 unsigned PPCFastISel::fastEmit_i(MVT Ty, MVT VT, unsigned Opc, uint64_t Imm) {
2237
2238 if (Opc != ISD::Constant)
2239 return 0;
2240
2241 // If we're using CR bit registers for i1 values, handle that as a special
2242 // case first.
2243 if (VT == MVT::i1 && PPCSubTarget->useCRBits()) {
2244 unsigned ImmReg = createResultReg(&PPC::CRBITRCRegClass);
2245 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2246 TII.get(Imm == 0 ? PPC::CRUNSET : PPC::CRSET), ImmReg);
2247 return ImmReg;
2248 }
2249
2250 if (VT != MVT::i64 && VT != MVT::i32 && VT != MVT::i16 &&
2251 VT != MVT::i8 && VT != MVT::i1)
2252 return 0;
2253
2254 const TargetRegisterClass *RC = ((VT == MVT::i64) ? &PPC::G8RCRegClass :
2255 &PPC::GPRCRegClass);
2256 if (VT == MVT::i64)
2257 return PPCMaterialize64BitInt(Imm, RC);
2258 else
2259 return PPCMaterialize32BitInt(Imm, RC);
2260 }
2261
2262 // Override for ADDI and ADDI8 to set the correct register class
2263 // on RHS operand 0. The automatic infrastructure naively assumes
2264 // GPRC for i32 and G8RC for i64; the concept of "no R0" is lost
2265 // for these cases. At the moment, none of the other automatically
2266 // generated RI instructions require special treatment. However, once
2267 // SelectSelect is implemented, "isel" requires similar handling.
2268 //
2269 // Also be conservative about the output register class. Avoid
2270 // assigning R0 or X0 to the output register for GPRC and G8RC
2271 // register classes, as any such result could be used in ADDI, etc.,
2272 // where those regs have another meaning.
fastEmitInst_ri(unsigned MachineInstOpcode,const TargetRegisterClass * RC,unsigned Op0,bool Op0IsKill,uint64_t Imm)2273 unsigned PPCFastISel::fastEmitInst_ri(unsigned MachineInstOpcode,
2274 const TargetRegisterClass *RC,
2275 unsigned Op0, bool Op0IsKill,
2276 uint64_t Imm) {
2277 if (MachineInstOpcode == PPC::ADDI)
2278 MRI.setRegClass(Op0, &PPC::GPRC_and_GPRC_NOR0RegClass);
2279 else if (MachineInstOpcode == PPC::ADDI8)
2280 MRI.setRegClass(Op0, &PPC::G8RC_and_G8RC_NOX0RegClass);
2281
2282 const TargetRegisterClass *UseRC =
2283 (RC == &PPC::GPRCRegClass ? &PPC::GPRC_and_GPRC_NOR0RegClass :
2284 (RC == &PPC::G8RCRegClass ? &PPC::G8RC_and_G8RC_NOX0RegClass : RC));
2285
2286 return FastISel::fastEmitInst_ri(MachineInstOpcode, UseRC,
2287 Op0, Op0IsKill, Imm);
2288 }
2289
2290 // Override for instructions with one register operand to avoid use of
2291 // R0/X0. The automatic infrastructure isn't aware of the context so
2292 // we must be conservative.
fastEmitInst_r(unsigned MachineInstOpcode,const TargetRegisterClass * RC,unsigned Op0,bool Op0IsKill)2293 unsigned PPCFastISel::fastEmitInst_r(unsigned MachineInstOpcode,
2294 const TargetRegisterClass* RC,
2295 unsigned Op0, bool Op0IsKill) {
2296 const TargetRegisterClass *UseRC =
2297 (RC == &PPC::GPRCRegClass ? &PPC::GPRC_and_GPRC_NOR0RegClass :
2298 (RC == &PPC::G8RCRegClass ? &PPC::G8RC_and_G8RC_NOX0RegClass : RC));
2299
2300 return FastISel::fastEmitInst_r(MachineInstOpcode, UseRC, Op0, Op0IsKill);
2301 }
2302
2303 // Override for instructions with two register operands to avoid use
2304 // of R0/X0. The automatic infrastructure isn't aware of the context
2305 // so we must be conservative.
fastEmitInst_rr(unsigned MachineInstOpcode,const TargetRegisterClass * RC,unsigned Op0,bool Op0IsKill,unsigned Op1,bool Op1IsKill)2306 unsigned PPCFastISel::fastEmitInst_rr(unsigned MachineInstOpcode,
2307 const TargetRegisterClass* RC,
2308 unsigned Op0, bool Op0IsKill,
2309 unsigned Op1, bool Op1IsKill) {
2310 const TargetRegisterClass *UseRC =
2311 (RC == &PPC::GPRCRegClass ? &PPC::GPRC_and_GPRC_NOR0RegClass :
2312 (RC == &PPC::G8RCRegClass ? &PPC::G8RC_and_G8RC_NOX0RegClass : RC));
2313
2314 return FastISel::fastEmitInst_rr(MachineInstOpcode, UseRC, Op0, Op0IsKill,
2315 Op1, Op1IsKill);
2316 }
2317
2318 namespace llvm {
2319 // Create the fast instruction selector for PowerPC64 ELF.
createFastISel(FunctionLoweringInfo & FuncInfo,const TargetLibraryInfo * LibInfo)2320 FastISel *PPC::createFastISel(FunctionLoweringInfo &FuncInfo,
2321 const TargetLibraryInfo *LibInfo) {
2322 // Only available on 64-bit ELF for now.
2323 const PPCSubtarget &Subtarget = FuncInfo.MF->getSubtarget<PPCSubtarget>();
2324 if (Subtarget.isPPC64() && Subtarget.isSVR4ABI())
2325 return new PPCFastISel(FuncInfo, LibInfo);
2326 return nullptr;
2327 }
2328 }
2329