1//===-- SparcInstr64Bit.td - 64-bit instructions for Sparc Target ---------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file contains instruction definitions and patterns needed for 64-bit
11// code generation on SPARC v9.
12//
13// Some SPARC v9 instructions are defined in SparcInstrInfo.td because they can
14// also be used in 32-bit code running on a SPARC v9 CPU.
15//
16//===----------------------------------------------------------------------===//
17
18let Predicates = [Is64Bit] in {
19// The same integer registers are used for i32 and i64 values.
20// When registers hold i32 values, the high bits are don't care.
21// This give us free trunc and anyext.
22def : Pat<(i64 (anyext i32:$val)), (COPY_TO_REGCLASS $val, I64Regs)>;
23def : Pat<(i32 (trunc i64:$val)), (COPY_TO_REGCLASS $val, IntRegs)>;
24
25} // Predicates = [Is64Bit]
26
27
28//===----------------------------------------------------------------------===//
29// 64-bit Shift Instructions.
30//===----------------------------------------------------------------------===//
31//
32// The 32-bit shift instructions are still available. The left shift srl
33// instructions shift all 64 bits, but it only accepts a 5-bit shift amount.
34//
35// The srl instructions only shift the low 32 bits and clear the high 32 bits.
36// Finally, sra shifts the low 32 bits and sign-extends to 64 bits.
37
38let Predicates = [Is64Bit] in {
39
40def : Pat<(i64 (zext i32:$val)), (SRLri $val, 0)>;
41def : Pat<(i64 (sext i32:$val)), (SRAri $val, 0)>;
42
43def : Pat<(i64 (and i64:$val, 0xffffffff)), (SRLri $val, 0)>;
44def : Pat<(i64 (sext_inreg i64:$val, i32)), (SRAri $val, 0)>;
45
46defm SLLX : F3_S<"sllx", 0b100101, 1, shl, i64, I64Regs>;
47defm SRLX : F3_S<"srlx", 0b100110, 1, srl, i64, I64Regs>;
48defm SRAX : F3_S<"srax", 0b100111, 1, sra, i64, I64Regs>;
49
50} // Predicates = [Is64Bit]
51
52
53//===----------------------------------------------------------------------===//
54// 64-bit Immediates.
55//===----------------------------------------------------------------------===//
56//
57// All 32-bit immediates can be materialized with sethi+or, but 64-bit
58// immediates may require more code. There may be a point where it is
59// preferable to use a constant pool load instead, depending on the
60// microarchitecture.
61
62// Single-instruction patterns.
63
64// The ALU instructions want their simm13 operands as i32 immediates.
65def as_i32imm : SDNodeXForm<imm, [{
66  return CurDAG->getTargetConstant(N->getSExtValue(), MVT::i32);
67}]>;
68def : Pat<(i64 simm13:$val), (ORri (i64 G0), (as_i32imm $val))>;
69def : Pat<(i64 SETHIimm:$val), (SETHIi (HI22 $val))>;
70
71// Double-instruction patterns.
72
73// All unsigned i32 immediates can be handled by sethi+or.
74def uimm32 : PatLeaf<(imm), [{ return isUInt<32>(N->getZExtValue()); }]>;
75def : Pat<(i64 uimm32:$val), (ORri (SETHIi (HI22 $val)), (LO10 $val))>,
76      Requires<[Is64Bit]>;
77
78// All negative i33 immediates can be handled by sethi+xor.
79def nimm33 : PatLeaf<(imm), [{
80  int64_t Imm = N->getSExtValue();
81  return Imm < 0 && isInt<33>(Imm);
82}]>;
83// Bits 10-31 inverted. Same as assembler's %hix.
84def HIX22 : SDNodeXForm<imm, [{
85  uint64_t Val = (~N->getZExtValue() >> 10) & ((1u << 22) - 1);
86  return CurDAG->getTargetConstant(Val, MVT::i32);
87}]>;
88// Bits 0-9 with ones in bits 10-31. Same as assembler's %lox.
89def LOX10 : SDNodeXForm<imm, [{
90  return CurDAG->getTargetConstant(~(~N->getZExtValue() & 0x3ff), MVT::i32);
91}]>;
92def : Pat<(i64 nimm33:$val), (XORri (SETHIi (HIX22 $val)), (LOX10 $val))>,
93      Requires<[Is64Bit]>;
94
95// More possible patterns:
96//
97//   (sllx sethi, n)
98//   (sllx simm13, n)
99//
100// 3 instrs:
101//
102//   (xor (sllx sethi), simm13)
103//   (sllx (xor sethi, simm13))
104//
105// 4 instrs:
106//
107//   (or sethi, (sllx sethi))
108//   (xnor sethi, (sllx sethi))
109//
110// 5 instrs:
111//
112//   (or (sllx sethi), (or sethi, simm13))
113//   (xnor (sllx sethi), (or sethi, simm13))
114//   (or (sllx sethi), (sllx sethi))
115//   (xnor (sllx sethi), (sllx sethi))
116//
117// Worst case is 6 instrs:
118//
119//   (or (sllx (or sethi, simmm13)), (or sethi, simm13))
120
121// Bits 42-63, same as assembler's %hh.
122def HH22 : SDNodeXForm<imm, [{
123  uint64_t Val = (N->getZExtValue() >> 42) & ((1u << 22) - 1);
124  return CurDAG->getTargetConstant(Val, MVT::i32);
125}]>;
126// Bits 32-41, same as assembler's %hm.
127def HM10 : SDNodeXForm<imm, [{
128  uint64_t Val = (N->getZExtValue() >> 32) & ((1u << 10) - 1);
129  return CurDAG->getTargetConstant(Val, MVT::i32);
130}]>;
131def : Pat<(i64 imm:$val),
132          (ORrr (SLLXri (ORri (SETHIi (HH22 $val)), (HM10 $val)), (i32 32)),
133                (ORri (SETHIi (HI22 $val)), (LO10 $val)))>,
134      Requires<[Is64Bit]>;
135
136
137//===----------------------------------------------------------------------===//
138// 64-bit Integer Arithmetic and Logic.
139//===----------------------------------------------------------------------===//
140
141let Predicates = [Is64Bit] in {
142
143// Register-register instructions.
144let isCodeGenOnly = 1 in {
145defm ANDX    : F3_12<"and", 0b000001, and, I64Regs, i64, i64imm>;
146defm ORX     : F3_12<"or",  0b000010, or,  I64Regs, i64, i64imm>;
147defm XORX    : F3_12<"xor", 0b000011, xor, I64Regs, i64, i64imm>;
148
149def ANDXNrr  : F3_1<2, 0b000101,
150                 (outs I64Regs:$dst), (ins I64Regs:$b, I64Regs:$c),
151                 "andn $b, $c, $dst",
152                 [(set i64:$dst, (and i64:$b, (not i64:$c)))]>;
153def ORXNrr   : F3_1<2, 0b000110,
154                 (outs I64Regs:$dst), (ins I64Regs:$b, I64Regs:$c),
155                 "orn $b, $c, $dst",
156                 [(set i64:$dst, (or i64:$b, (not i64:$c)))]>;
157def XNORXrr  : F3_1<2, 0b000111,
158                   (outs I64Regs:$dst), (ins I64Regs:$b, I64Regs:$c),
159                   "xnor $b, $c, $dst",
160                   [(set i64:$dst, (not (xor i64:$b, i64:$c)))]>;
161
162defm ADDX    : F3_12<"add", 0b000000, add, I64Regs, i64, i64imm>;
163defm SUBX    : F3_12<"sub", 0b000100, sub, I64Regs, i64, i64imm>;
164
165def TLS_ADDXrr : F3_1<2, 0b000000, (outs I64Regs:$rd),
166                   (ins I64Regs:$rs1, I64Regs:$rs2, TLSSym:$sym),
167                   "add $rs1, $rs2, $rd, $sym",
168                   [(set i64:$rd,
169                       (tlsadd i64:$rs1, i64:$rs2, tglobaltlsaddr:$sym))]>;
170
171// "LEA" form of add
172def LEAX_ADDri : F3_2<2, 0b000000,
173                     (outs I64Regs:$dst), (ins MEMri:$addr),
174                     "add ${addr:arith}, $dst",
175                     [(set iPTR:$dst, ADDRri:$addr)]>;
176}
177
178def : Pat<(SPcmpicc i64:$a, i64:$b), (CMPrr $a, $b)>;
179def : Pat<(SPcmpicc i64:$a, (i64 simm13:$b)), (CMPri $a, (as_i32imm $b))>;
180def : Pat<(ctpop i64:$src), (POPCrr $src)>;
181
182} // Predicates = [Is64Bit]
183
184
185//===----------------------------------------------------------------------===//
186// 64-bit Integer Multiply and Divide.
187//===----------------------------------------------------------------------===//
188
189let Predicates = [Is64Bit] in {
190
191def MULXrr : F3_1<2, 0b001001,
192                  (outs I64Regs:$rd), (ins I64Regs:$rs1, I64Regs:$rs2),
193                  "mulx $rs1, $rs2, $rd",
194                  [(set i64:$rd, (mul i64:$rs1, i64:$rs2))]>;
195def MULXri : F3_2<2, 0b001001,
196                  (outs IntRegs:$rd), (ins IntRegs:$rs1, i64imm:$simm13),
197                  "mulx $rs1, $simm13, $rd",
198                  [(set i64:$rd, (mul i64:$rs1, (i64 simm13:$simm13)))]>;
199
200// Division can trap.
201let hasSideEffects = 1 in {
202def SDIVXrr : F3_1<2, 0b101101,
203                   (outs I64Regs:$rd), (ins I64Regs:$rs1, I64Regs:$rs2),
204                   "sdivx $rs1, $rs2, $rd",
205                   [(set i64:$rd, (sdiv i64:$rs1, i64:$rs2))]>;
206def SDIVXri : F3_2<2, 0b101101,
207                   (outs IntRegs:$rd), (ins IntRegs:$rs1, i64imm:$simm13),
208                   "sdivx $rs1, $simm13, $rd",
209                   [(set i64:$rd, (sdiv i64:$rs1, (i64 simm13:$simm13)))]>;
210
211def UDIVXrr : F3_1<2, 0b001101,
212                   (outs I64Regs:$rd), (ins I64Regs:$rs1, I64Regs:$rs2),
213                   "udivx $rs1, $rs2, $rd",
214                   [(set i64:$rd, (udiv i64:$rs1, i64:$rs2))]>;
215def UDIVXri : F3_2<2, 0b001101,
216                   (outs IntRegs:$rd), (ins IntRegs:$rs1, i64imm:$simm13),
217                   "udivx $rs1, $simm13, $rd",
218                   [(set i64:$rd, (udiv i64:$rs1, (i64 simm13:$simm13)))]>;
219} // hasSideEffects = 1
220
221} // Predicates = [Is64Bit]
222
223
224//===----------------------------------------------------------------------===//
225// 64-bit Loads and Stores.
226//===----------------------------------------------------------------------===//
227//
228// All the 32-bit loads and stores are available. The extending loads are sign
229// or zero-extending to 64 bits. The LDrr and LDri instructions load 32 bits
230// zero-extended to i64. Their mnemonic is lduw in SPARC v9 (Load Unsigned
231// Word).
232//
233// SPARC v9 adds 64-bit loads as well as a sign-extending ldsw i32 loads.
234
235let Predicates = [Is64Bit] in {
236
237// 64-bit loads.
238let DecoderMethod = "DecodeLoadInt" in
239  defm LDX   : Load<"ldx", 0b001011, load, I64Regs, i64>;
240
241let mayLoad = 1, isCodeGenOnly = 1, isAsmParserOnly = 1 in
242  def TLS_LDXrr : F3_1<3, 0b001011,
243                       (outs IntRegs:$dst), (ins MEMrr:$addr, TLSSym:$sym),
244                       "ldx [$addr], $dst, $sym",
245                       [(set i64:$dst,
246                           (tlsld ADDRrr:$addr, tglobaltlsaddr:$sym))]>;
247
248// Extending loads to i64.
249def : Pat<(i64 (zextloadi1 ADDRrr:$addr)), (LDUBrr ADDRrr:$addr)>;
250def : Pat<(i64 (zextloadi1 ADDRri:$addr)), (LDUBri ADDRri:$addr)>;
251def : Pat<(i64 (extloadi1 ADDRrr:$addr)), (LDUBrr ADDRrr:$addr)>;
252def : Pat<(i64 (extloadi1 ADDRri:$addr)), (LDUBri ADDRri:$addr)>;
253
254def : Pat<(i64 (zextloadi8 ADDRrr:$addr)), (LDUBrr ADDRrr:$addr)>;
255def : Pat<(i64 (zextloadi8 ADDRri:$addr)), (LDUBri ADDRri:$addr)>;
256def : Pat<(i64 (extloadi8 ADDRrr:$addr)),  (LDUBrr ADDRrr:$addr)>;
257def : Pat<(i64 (extloadi8 ADDRri:$addr)),  (LDUBri ADDRri:$addr)>;
258def : Pat<(i64 (sextloadi8 ADDRrr:$addr)), (LDSBrr ADDRrr:$addr)>;
259def : Pat<(i64 (sextloadi8 ADDRri:$addr)), (LDSBri ADDRri:$addr)>;
260
261def : Pat<(i64 (zextloadi16 ADDRrr:$addr)), (LDUHrr ADDRrr:$addr)>;
262def : Pat<(i64 (zextloadi16 ADDRri:$addr)), (LDUHri ADDRri:$addr)>;
263def : Pat<(i64 (extloadi16 ADDRrr:$addr)),  (LDUHrr ADDRrr:$addr)>;
264def : Pat<(i64 (extloadi16 ADDRri:$addr)),  (LDUHri ADDRri:$addr)>;
265def : Pat<(i64 (sextloadi16 ADDRrr:$addr)), (LDSHrr ADDRrr:$addr)>;
266def : Pat<(i64 (sextloadi16 ADDRri:$addr)), (LDSHri ADDRri:$addr)>;
267
268def : Pat<(i64 (zextloadi32 ADDRrr:$addr)), (LDrr ADDRrr:$addr)>;
269def : Pat<(i64 (zextloadi32 ADDRri:$addr)), (LDri ADDRri:$addr)>;
270def : Pat<(i64 (extloadi32 ADDRrr:$addr)),  (LDrr ADDRrr:$addr)>;
271def : Pat<(i64 (extloadi32 ADDRri:$addr)),  (LDri ADDRri:$addr)>;
272
273// Sign-extending load of i32 into i64 is a new SPARC v9 instruction.
274let DecoderMethod = "DecodeLoadInt" in
275  defm LDSW   : Load<"ldsw", 0b001000, sextloadi32, I64Regs, i64>;
276
277// 64-bit stores.
278let DecoderMethod = "DecodeStoreInt" in
279  defm STX    : Store<"stx", 0b001110, store,  I64Regs, i64>;
280
281// Truncating stores from i64 are identical to the i32 stores.
282def : Pat<(truncstorei8  i64:$src, ADDRrr:$addr), (STBrr ADDRrr:$addr, $src)>;
283def : Pat<(truncstorei8  i64:$src, ADDRri:$addr), (STBri ADDRri:$addr, $src)>;
284def : Pat<(truncstorei16 i64:$src, ADDRrr:$addr), (STHrr ADDRrr:$addr, $src)>;
285def : Pat<(truncstorei16 i64:$src, ADDRri:$addr), (STHri ADDRri:$addr, $src)>;
286def : Pat<(truncstorei32 i64:$src, ADDRrr:$addr), (STrr  ADDRrr:$addr, $src)>;
287def : Pat<(truncstorei32 i64:$src, ADDRri:$addr), (STri  ADDRri:$addr, $src)>;
288
289// store 0, addr -> store %g0, addr
290def : Pat<(store (i64 0), ADDRrr:$dst), (STXrr ADDRrr:$dst, (i64 G0))>;
291def : Pat<(store (i64 0), ADDRri:$dst), (STXri ADDRri:$dst, (i64 G0))>;
292
293} // Predicates = [Is64Bit]
294
295
296//===----------------------------------------------------------------------===//
297// 64-bit Conditionals.
298//===----------------------------------------------------------------------===//
299
300//
301// Flag-setting instructions like subcc and addcc set both icc and xcc flags.
302// The icc flags correspond to the 32-bit result, and the xcc are for the
303// full 64-bit result.
304//
305// We reuse CMPICC SDNodes for compares, but use new BRXCC branch nodes for
306// 64-bit compares. See LowerBR_CC.
307
308let Predicates = [Is64Bit] in {
309
310let Uses = [ICC], cc = 0b10 in
311  defm BPX : IPredBranch<"%xcc", [(SPbrxcc bb:$imm19, imm:$cond)]>;
312
313// Conditional moves on %xcc.
314let Uses = [ICC], Constraints = "$f = $rd" in {
315let intcc = 1, cc = 0b10 in {
316def MOVXCCrr : F4_1<0b101100, (outs IntRegs:$rd),
317                      (ins IntRegs:$rs2, IntRegs:$f, CCOp:$cond),
318                      "mov$cond %xcc, $rs2, $rd",
319                      [(set i32:$rd,
320                       (SPselectxcc i32:$rs2, i32:$f, imm:$cond))]>;
321def MOVXCCri : F4_2<0b101100, (outs IntRegs:$rd),
322                      (ins i32imm:$simm11, IntRegs:$f, CCOp:$cond),
323                      "mov$cond %xcc, $simm11, $rd",
324                      [(set i32:$rd,
325                       (SPselectxcc simm11:$simm11, i32:$f, imm:$cond))]>;
326} // cc
327
328let intcc = 1, opf_cc = 0b10 in {
329def FMOVS_XCC : F4_3<0b110101, 0b000001, (outs FPRegs:$rd),
330                      (ins FPRegs:$rs2, FPRegs:$f, CCOp:$cond),
331                      "fmovs$cond %xcc, $rs2, $rd",
332                      [(set f32:$rd,
333                       (SPselectxcc f32:$rs2, f32:$f, imm:$cond))]>;
334def FMOVD_XCC : F4_3<0b110101, 0b000010, (outs DFPRegs:$rd),
335                      (ins DFPRegs:$rs2, DFPRegs:$f, CCOp:$cond),
336                      "fmovd$cond %xcc, $rs2, $rd",
337                      [(set f64:$rd,
338                       (SPselectxcc f64:$rs2, f64:$f, imm:$cond))]>;
339def FMOVQ_XCC : F4_3<0b110101, 0b000011, (outs QFPRegs:$rd),
340                      (ins QFPRegs:$rs2, QFPRegs:$f, CCOp:$cond),
341                      "fmovq$cond %xcc, $rs2, $rd",
342                      [(set f128:$rd,
343                       (SPselectxcc f128:$rs2, f128:$f, imm:$cond))]>;
344} // opf_cc
345} // Uses, Constraints
346
347// Branch On integer register with Prediction (BPr).
348let isBranch = 1, isTerminator = 1, hasDelaySlot = 1 in
349multiclass BranchOnReg<bits<3> cond, string OpcStr> {
350  def napt : F2_4<cond, 0, 1, (outs), (ins I64Regs:$rs1, bprtarget16:$imm16),
351             !strconcat(OpcStr, " $rs1, $imm16"), []>;
352  def apt  : F2_4<cond, 1, 1, (outs), (ins I64Regs:$rs1, bprtarget16:$imm16),
353             !strconcat(OpcStr, ",a $rs1, $imm16"), []>;
354  def napn  : F2_4<cond, 0, 0, (outs), (ins I64Regs:$rs1, bprtarget16:$imm16),
355             !strconcat(OpcStr, ",pn $rs1, $imm16"), []>;
356  def apn : F2_4<cond, 1, 0, (outs), (ins I64Regs:$rs1, bprtarget16:$imm16),
357             !strconcat(OpcStr, ",a,pn $rs1, $imm16"), []>;
358}
359
360multiclass bpr_alias<string OpcStr, Instruction NAPT, Instruction APT> {
361  def : InstAlias<!strconcat(OpcStr, ",pt $rs1, $imm16"),
362                  (NAPT I64Regs:$rs1, bprtarget16:$imm16), 0>;
363  def : InstAlias<!strconcat(OpcStr, ",a,pt $rs1, $imm16"),
364                  (APT I64Regs:$rs1, bprtarget16:$imm16), 0>;
365}
366
367defm BPZ   : BranchOnReg<0b001, "brz">;
368defm BPLEZ : BranchOnReg<0b010, "brlez">;
369defm BPLZ  : BranchOnReg<0b011, "brlz">;
370defm BPNZ  : BranchOnReg<0b101, "brnz">;
371defm BPGZ  : BranchOnReg<0b110, "brgz">;
372defm BPGEZ : BranchOnReg<0b111, "brgez">;
373
374defm : bpr_alias<"brz",   BPZnapt,   BPZapt  >;
375defm : bpr_alias<"brlez", BPLEZnapt, BPLEZapt>;
376defm : bpr_alias<"brlz",  BPLZnapt,  BPLZapt >;
377defm : bpr_alias<"brnz",  BPNZnapt,  BPNZapt >;
378defm : bpr_alias<"brgz",  BPGZnapt,  BPGZapt >;
379defm : bpr_alias<"brgez", BPGEZnapt, BPGEZapt>;
380
381// Move integer register on register condition (MOVr).
382multiclass MOVR< bits<3> rcond,  string OpcStr> {
383  def rr : F4_4r<0b101111, 0b00000, rcond, (outs I64Regs:$rd),
384                   (ins I64Regs:$rs1, IntRegs:$rs2),
385                   !strconcat(OpcStr, " $rs1, $rs2, $rd"), []>;
386
387  def ri : F4_4i<0b101111, rcond, (outs I64Regs:$rd),
388                   (ins I64Regs:$rs1, i64imm:$simm10),
389                   !strconcat(OpcStr, " $rs1, $simm10, $rd"), []>;
390}
391
392defm MOVRRZ  : MOVR<0b001, "movrz">;
393defm MOVRLEZ : MOVR<0b010, "movrlez">;
394defm MOVRLZ  : MOVR<0b011, "movrlz">;
395defm MOVRNZ  : MOVR<0b101, "movrnz">;
396defm MOVRGZ  : MOVR<0b110, "movrgz">;
397defm MOVRGEZ : MOVR<0b111, "movrgez">;
398
399// Move FP register on integer register condition (FMOVr).
400multiclass FMOVR<bits<3> rcond, string OpcStr> {
401
402  def S : F4_4r<0b110101, 0b00101, rcond,
403                (outs FPRegs:$rd), (ins I64Regs:$rs1, FPRegs:$rs2),
404                !strconcat(!strconcat("fmovrs", OpcStr)," $rs1, $rs2, $rd"),
405                []>;
406  def D : F4_4r<0b110101, 0b00110, rcond,
407                (outs FPRegs:$rd), (ins I64Regs:$rs1, FPRegs:$rs2),
408                !strconcat(!strconcat("fmovrd", OpcStr)," $rs1, $rs2, $rd"),
409                []>;
410  def Q : F4_4r<0b110101, 0b00111, rcond,
411                (outs FPRegs:$rd), (ins I64Regs:$rs1, FPRegs:$rs2),
412                !strconcat(!strconcat("fmovrq", OpcStr)," $rs1, $rs2, $rd"),
413                []>, Requires<[HasHardQuad]>;
414}
415
416let Predicates = [HasV9] in {
417  defm FMOVRZ   : FMOVR<0b001, "z">;
418  defm FMOVRLEZ : FMOVR<0b010, "lez">;
419  defm FMOVRLZ  : FMOVR<0b011, "lz">;
420  defm FMOVRNZ  : FMOVR<0b101, "nz">;
421  defm FMOVRGZ  : FMOVR<0b110, "gz">;
422  defm FMOVRGEZ : FMOVR<0b111, "gez">;
423}
424
425//===----------------------------------------------------------------------===//
426// 64-bit Floating Point Conversions.
427//===----------------------------------------------------------------------===//
428
429let Predicates = [Is64Bit] in {
430
431def FXTOS : F3_3u<2, 0b110100, 0b010000100,
432                 (outs FPRegs:$rd), (ins DFPRegs:$rs2),
433                 "fxtos $rs2, $rd",
434                 [(set FPRegs:$rd, (SPxtof DFPRegs:$rs2))]>;
435def FXTOD : F3_3u<2, 0b110100, 0b010001000,
436                 (outs DFPRegs:$rd), (ins DFPRegs:$rs2),
437                 "fxtod $rs2, $rd",
438                 [(set DFPRegs:$rd, (SPxtof DFPRegs:$rs2))]>;
439def FXTOQ : F3_3u<2, 0b110100, 0b010001100,
440                 (outs QFPRegs:$rd), (ins DFPRegs:$rs2),
441                 "fxtoq $rs2, $rd",
442                 [(set QFPRegs:$rd, (SPxtof DFPRegs:$rs2))]>,
443                 Requires<[HasHardQuad]>;
444
445def FSTOX : F3_3u<2, 0b110100, 0b010000001,
446                 (outs DFPRegs:$rd), (ins FPRegs:$rs2),
447                 "fstox $rs2, $rd",
448                 [(set DFPRegs:$rd, (SPftox FPRegs:$rs2))]>;
449def FDTOX : F3_3u<2, 0b110100, 0b010000010,
450                 (outs DFPRegs:$rd), (ins DFPRegs:$rs2),
451                 "fdtox $rs2, $rd",
452                 [(set DFPRegs:$rd, (SPftox DFPRegs:$rs2))]>;
453def FQTOX : F3_3u<2, 0b110100, 0b010000011,
454                 (outs DFPRegs:$rd), (ins QFPRegs:$rs2),
455                 "fqtox $rs2, $rd",
456                 [(set DFPRegs:$rd, (SPftox QFPRegs:$rs2))]>,
457                 Requires<[HasHardQuad]>;
458
459} // Predicates = [Is64Bit]
460
461def : Pat<(SPselectxcc i64:$t, i64:$f, imm:$cond),
462          (MOVXCCrr $t, $f, imm:$cond)>;
463def : Pat<(SPselectxcc (i64 simm11:$t), i64:$f, imm:$cond),
464          (MOVXCCri (as_i32imm $t), $f, imm:$cond)>;
465
466def : Pat<(SPselecticc i64:$t, i64:$f, imm:$cond),
467          (MOVICCrr $t, $f, imm:$cond)>;
468def : Pat<(SPselecticc (i64 simm11:$t), i64:$f, imm:$cond),
469          (MOVICCri (as_i32imm $t), $f, imm:$cond)>;
470
471def : Pat<(SPselectfcc i64:$t, i64:$f, imm:$cond),
472          (MOVFCCrr $t, $f, imm:$cond)>;
473def : Pat<(SPselectfcc (i64 simm11:$t), i64:$f, imm:$cond),
474          (MOVFCCri (as_i32imm $t), $f, imm:$cond)>;
475
476} // Predicates = [Is64Bit]
477
478
479// 64 bit SETHI
480let Predicates = [Is64Bit], isCodeGenOnly = 1 in {
481def SETHIXi : F2_1<0b100,
482                   (outs IntRegs:$rd), (ins i64imm:$imm22),
483                   "sethi $imm22, $rd",
484                   [(set i64:$rd, SETHIimm:$imm22)]>;
485}
486
487// ATOMICS.
488let Predicates = [Is64Bit], Constraints = "$swap = $rd" in {
489  def CASXrr: F3_1_asi<3, 0b111110, 0b10000000,
490                (outs I64Regs:$rd), (ins I64Regs:$rs1, I64Regs:$rs2,
491                                     I64Regs:$swap),
492                 "casx [$rs1], $rs2, $rd",
493                 [(set i64:$rd,
494                     (atomic_cmp_swap i64:$rs1, i64:$rs2, i64:$swap))]>;
495
496} // Predicates = [Is64Bit], Constraints = ...
497
498let Predicates = [Is64Bit] in {
499
500def : Pat<(atomic_fence imm, imm), (MEMBARi 0xf)>;
501
502// atomic_load_64 addr -> load addr
503def : Pat<(i64 (atomic_load ADDRrr:$src)), (LDXrr ADDRrr:$src)>;
504def : Pat<(i64 (atomic_load ADDRri:$src)), (LDXri ADDRri:$src)>;
505
506// atomic_store_64 val, addr -> store val, addr
507def : Pat<(atomic_store ADDRrr:$dst, i64:$val), (STXrr ADDRrr:$dst, $val)>;
508def : Pat<(atomic_store ADDRri:$dst, i64:$val), (STXri ADDRri:$dst, $val)>;
509
510} // Predicates = [Is64Bit]
511
512let usesCustomInserter = 1, hasCtrlDep = 1, mayLoad = 1, mayStore = 1,
513    Defs = [ICC] in
514multiclass AtomicRMW<SDPatternOperator op32, SDPatternOperator op64> {
515
516  def _32 : Pseudo<(outs IntRegs:$rd),
517                   (ins ptr_rc:$addr, IntRegs:$rs2), "",
518                   [(set i32:$rd, (op32 iPTR:$addr, i32:$rs2))]>;
519
520  let Predicates = [Is64Bit] in
521  def _64 : Pseudo<(outs I64Regs:$rd),
522                   (ins ptr_rc:$addr, I64Regs:$rs2), "",
523                   [(set i64:$rd, (op64 iPTR:$addr, i64:$rs2))]>;
524}
525
526defm ATOMIC_LOAD_ADD  : AtomicRMW<atomic_load_add_32,  atomic_load_add_64>;
527defm ATOMIC_LOAD_SUB  : AtomicRMW<atomic_load_sub_32,  atomic_load_sub_64>;
528defm ATOMIC_LOAD_AND  : AtomicRMW<atomic_load_and_32,  atomic_load_and_64>;
529defm ATOMIC_LOAD_OR   : AtomicRMW<atomic_load_or_32,   atomic_load_or_64>;
530defm ATOMIC_LOAD_XOR  : AtomicRMW<atomic_load_xor_32,  atomic_load_xor_64>;
531defm ATOMIC_LOAD_NAND : AtomicRMW<atomic_load_nand_32, atomic_load_nand_64>;
532defm ATOMIC_LOAD_MIN  : AtomicRMW<atomic_load_min_32,  atomic_load_min_64>;
533defm ATOMIC_LOAD_MAX  : AtomicRMW<atomic_load_max_32,  atomic_load_max_64>;
534defm ATOMIC_LOAD_UMIN : AtomicRMW<atomic_load_umin_32, atomic_load_umin_64>;
535defm ATOMIC_LOAD_UMAX : AtomicRMW<atomic_load_umax_32, atomic_load_umax_64>;
536
537// There is no 64-bit variant of SWAP, so use a pseudo.
538let usesCustomInserter = 1, hasCtrlDep = 1, mayLoad = 1, mayStore = 1,
539    Defs = [ICC], Predicates = [Is64Bit] in
540def ATOMIC_SWAP_64 : Pseudo<(outs I64Regs:$rd),
541                            (ins ptr_rc:$addr, I64Regs:$rs2), "",
542                            [(set i64:$rd,
543                                  (atomic_swap_64 iPTR:$addr, i64:$rs2))]>;
544
545let Predicates = [Is64Bit], hasSideEffects = 1, Uses = [ICC], cc = 0b10 in
546 defm TXCC : TRAP<"%xcc">;
547
548// Global addresses, constant pool entries
549let Predicates = [Is64Bit] in {
550
551def : Pat<(SPhi tglobaladdr:$in), (SETHIi tglobaladdr:$in)>;
552def : Pat<(SPlo tglobaladdr:$in), (ORXri (i64 G0), tglobaladdr:$in)>;
553def : Pat<(SPhi tconstpool:$in), (SETHIi tconstpool:$in)>;
554def : Pat<(SPlo tconstpool:$in), (ORXri (i64 G0), tconstpool:$in)>;
555
556// GlobalTLS addresses
557def : Pat<(SPhi tglobaltlsaddr:$in), (SETHIi tglobaltlsaddr:$in)>;
558def : Pat<(SPlo tglobaltlsaddr:$in), (ORXri (i64 G0), tglobaltlsaddr:$in)>;
559def : Pat<(add (SPhi tglobaltlsaddr:$in1), (SPlo tglobaltlsaddr:$in2)),
560          (ADDXri (SETHIXi tglobaltlsaddr:$in1), (tglobaltlsaddr:$in2))>;
561def : Pat<(xor (SPhi tglobaltlsaddr:$in1), (SPlo tglobaltlsaddr:$in2)),
562          (XORXri  (SETHIXi tglobaltlsaddr:$in1), (tglobaltlsaddr:$in2))>;
563
564// Blockaddress
565def : Pat<(SPhi tblockaddress:$in), (SETHIi tblockaddress:$in)>;
566def : Pat<(SPlo tblockaddress:$in), (ORXri (i64 G0), tblockaddress:$in)>;
567
568// Add reg, lo.  This is used when taking the addr of a global/constpool entry.
569def : Pat<(add iPTR:$r, (SPlo tglobaladdr:$in)), (ADDXri $r, tglobaladdr:$in)>;
570def : Pat<(add iPTR:$r, (SPlo tconstpool:$in)),  (ADDXri $r, tconstpool:$in)>;
571def : Pat<(add iPTR:$r, (SPlo tblockaddress:$in)),
572                        (ADDXri $r, tblockaddress:$in)>;
573}
574