1//==- SystemZInstrFormats.td - SystemZ Instruction Formats --*- tablegen -*-==//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9
10//===----------------------------------------------------------------------===//
11// Basic SystemZ instruction definition
12//===----------------------------------------------------------------------===//
13
14class InstSystemZ<int size, dag outs, dag ins, string asmstr,
15                  list<dag> pattern> : Instruction {
16  let Namespace = "SystemZ";
17
18  dag OutOperandList = outs;
19  dag InOperandList = ins;
20  let Size = size;
21  let Pattern = pattern;
22  let AsmString = asmstr;
23
24  // Some instructions come in pairs, one having a 12-bit displacement
25  // and the other having a 20-bit displacement.  Both instructions in
26  // the pair have the same DispKey and their DispSizes are "12" and "20"
27  // respectively.
28  string DispKey = "";
29  string DispSize = "none";
30
31  // Many register-based <INSN>R instructions have a memory-based <INSN>
32  // counterpart.  OpKey uniquely identifies <INSN>, while OpType is
33  // "reg" for <INSN>R and "mem" for <INSN>.
34  string OpKey = "";
35  string OpType = "none";
36
37  // Many distinct-operands instructions have older 2-operand equivalents.
38  // NumOpsKey uniquely identifies one of these 2-operand and 3-operand pairs,
39  // with NumOpsValue being "2" or "3" as appropriate.
40  string NumOpsKey = "";
41  string NumOpsValue = "none";
42
43  // True if this instruction is a simple D(X,B) load of a register
44  // (with no sign or zero extension).
45  bit SimpleBDXLoad = 0;
46
47  // True if this instruction is a simple D(X,B) store of a register
48  // (with no truncation).
49  bit SimpleBDXStore = 0;
50
51  // True if this instruction has a 20-bit displacement field.
52  bit Has20BitOffset = 0;
53
54  // True if addresses in this instruction have an index register.
55  bit HasIndex = 0;
56
57  // True if this is a 128-bit pseudo instruction that combines two 64-bit
58  // operations.
59  bit Is128Bit = 0;
60
61  // The access size of all memory operands in bytes, or 0 if not known.
62  bits<5> AccessBytes = 0;
63
64  // If the instruction sets CC to a useful value, this gives the mask
65  // of all possible CC results.  The mask has the same form as
66  // SystemZ::CCMASK_*.
67  bits<4> CCValues = 0;
68
69  // The subset of CCValues that have the same meaning as they would after
70  // a comparison of the first operand against zero.
71  bits<4> CompareZeroCCMask = 0;
72
73  // True if the instruction is conditional and if the CC mask operand
74  // comes first (as for BRC, etc.).
75  bit CCMaskFirst = 0;
76
77  // Similar, but true if the CC mask operand comes last (as for LOC, etc.).
78  bit CCMaskLast = 0;
79
80  // True if the instruction is the "logical" rather than "arithmetic" form,
81  // in cases where a distinction exists.
82  bit IsLogical = 0;
83
84  let TSFlags{0}     = SimpleBDXLoad;
85  let TSFlags{1}     = SimpleBDXStore;
86  let TSFlags{2}     = Has20BitOffset;
87  let TSFlags{3}     = HasIndex;
88  let TSFlags{4}     = Is128Bit;
89  let TSFlags{9-5}   = AccessBytes;
90  let TSFlags{13-10} = CCValues;
91  let TSFlags{17-14} = CompareZeroCCMask;
92  let TSFlags{18}    = CCMaskFirst;
93  let TSFlags{19}    = CCMaskLast;
94  let TSFlags{20}    = IsLogical;
95}
96
97//===----------------------------------------------------------------------===//
98// Mappings between instructions
99//===----------------------------------------------------------------------===//
100
101// Return the version of an instruction that has an unsigned 12-bit
102// displacement.
103def getDisp12Opcode : InstrMapping {
104  let FilterClass = "InstSystemZ";
105  let RowFields = ["DispKey"];
106  let ColFields = ["DispSize"];
107  let KeyCol = ["20"];
108  let ValueCols = [["12"]];
109}
110
111// Return the version of an instruction that has a signed 20-bit displacement.
112def getDisp20Opcode : InstrMapping {
113  let FilterClass = "InstSystemZ";
114  let RowFields = ["DispKey"];
115  let ColFields = ["DispSize"];
116  let KeyCol = ["12"];
117  let ValueCols = [["20"]];
118}
119
120// Return the memory form of a register instruction.
121def getMemOpcode : InstrMapping {
122  let FilterClass = "InstSystemZ";
123  let RowFields = ["OpKey"];
124  let ColFields = ["OpType"];
125  let KeyCol = ["reg"];
126  let ValueCols = [["mem"]];
127}
128
129// Return the 3-operand form of a 2-operand instruction.
130def getThreeOperandOpcode : InstrMapping {
131  let FilterClass = "InstSystemZ";
132  let RowFields = ["NumOpsKey"];
133  let ColFields = ["NumOpsValue"];
134  let KeyCol = ["2"];
135  let ValueCols = [["3"]];
136}
137
138//===----------------------------------------------------------------------===//
139// Instruction formats
140//===----------------------------------------------------------------------===//
141//
142// Formats are specified using operand field declarations of the form:
143//
144//   bits<4> Rn   : register input or output for operand n
145//   bits<m> In   : immediate value of width m for operand n
146//   bits<4> BDn  : address operand n, which has a base and a displacement
147//   bits<m> XBDn : address operand n, which has an index, a base and a
148//                  displacement
149//   bits<4> Xn   : index register for address operand n
150//   bits<4> Mn   : mode value for operand n
151//
152// The operand numbers ("n" in the list above) follow the architecture manual.
153// Assembly operands sometimes have a different order; in particular, R3 often
154// is often written between operands 1 and 2.
155//
156//===----------------------------------------------------------------------===//
157
158class InstRI<bits<12> op, dag outs, dag ins, string asmstr, list<dag> pattern>
159  : InstSystemZ<4, outs, ins, asmstr, pattern> {
160  field bits<32> Inst;
161  field bits<32> SoftFail = 0;
162
163  bits<4> R1;
164  bits<16> I2;
165
166  let Inst{31-24} = op{11-4};
167  let Inst{23-20} = R1;
168  let Inst{19-16} = op{3-0};
169  let Inst{15-0}  = I2;
170}
171
172class InstRIEb<bits<16> op, dag outs, dag ins, string asmstr, list<dag> pattern>
173  : InstSystemZ<6, outs, ins, asmstr, pattern> {
174  field bits<48> Inst;
175  field bits<48> SoftFail = 0;
176
177  bits<4> R1;
178  bits<4> R2;
179  bits<4> M3;
180  bits<16> RI4;
181
182  let Inst{47-40} = op{15-8};
183  let Inst{39-36} = R1;
184  let Inst{35-32} = R2;
185  let Inst{31-16} = RI4;
186  let Inst{15-12} = M3;
187  let Inst{11-8}  = 0;
188  let Inst{7-0}   = op{7-0};
189}
190
191class InstRIEc<bits<16> op, dag outs, dag ins, string asmstr, list<dag> pattern>
192  : InstSystemZ<6, outs, ins, asmstr, pattern> {
193  field bits<48> Inst;
194  field bits<48> SoftFail = 0;
195
196  bits<4> R1;
197  bits<8> I2;
198  bits<4> M3;
199  bits<16> RI4;
200
201  let Inst{47-40} = op{15-8};
202  let Inst{39-36} = R1;
203  let Inst{35-32} = M3;
204  let Inst{31-16} = RI4;
205  let Inst{15-8}  = I2;
206  let Inst{7-0}   = op{7-0};
207}
208
209class InstRIEd<bits<16> op, dag outs, dag ins, string asmstr, list<dag> pattern>
210  : InstSystemZ<6, outs, ins, asmstr, pattern> {
211  field bits<48> Inst;
212  field bits<48> SoftFail = 0;
213
214  bits<4> R1;
215  bits<4> R3;
216  bits<16> I2;
217
218  let Inst{47-40} = op{15-8};
219  let Inst{39-36} = R1;
220  let Inst{35-32} = R3;
221  let Inst{31-16} = I2;
222  let Inst{15-8}  = 0;
223  let Inst{7-0}   = op{7-0};
224}
225
226class InstRIEf<bits<16> op, dag outs, dag ins, string asmstr, list<dag> pattern>
227  : InstSystemZ<6, outs, ins, asmstr, pattern> {
228  field bits<48> Inst;
229  field bits<48> SoftFail = 0;
230
231  bits<4> R1;
232  bits<4> R2;
233  bits<8> I3;
234  bits<8> I4;
235  bits<8> I5;
236
237  let Inst{47-40} = op{15-8};
238  let Inst{39-36} = R1;
239  let Inst{35-32} = R2;
240  let Inst{31-24} = I3;
241  let Inst{23-16} = I4;
242  let Inst{15-8}  = I5;
243  let Inst{7-0}   = op{7-0};
244}
245
246class InstRIL<bits<12> op, dag outs, dag ins, string asmstr, list<dag> pattern>
247  : InstSystemZ<6, outs, ins, asmstr, pattern> {
248  field bits<48> Inst;
249  field bits<48> SoftFail = 0;
250
251  bits<4> R1;
252  bits<32> I2;
253
254  let Inst{47-40} = op{11-4};
255  let Inst{39-36} = R1;
256  let Inst{35-32} = op{3-0};
257  let Inst{31-0}  = I2;
258}
259
260class InstRR<bits<8> op, dag outs, dag ins, string asmstr, list<dag> pattern>
261  : InstSystemZ<2, outs, ins, asmstr, pattern> {
262  field bits<16> Inst;
263  field bits<16> SoftFail = 0;
264
265  bits<4> R1;
266  bits<4> R2;
267
268  let Inst{15-8} = op;
269  let Inst{7-4}  = R1;
270  let Inst{3-0}  = R2;
271}
272
273class InstRRD<bits<16> op, dag outs, dag ins, string asmstr, list<dag> pattern>
274  : InstSystemZ<4, outs, ins, asmstr, pattern> {
275  field bits<32> Inst;
276  field bits<32> SoftFail = 0;
277
278  bits<4> R1;
279  bits<4> R3;
280  bits<4> R2;
281
282  let Inst{31-16} = op;
283  let Inst{15-12} = R1;
284  let Inst{11-8}  = 0;
285  let Inst{7-4}   = R3;
286  let Inst{3-0}   = R2;
287}
288
289class InstRRE<bits<16> op, dag outs, dag ins, string asmstr, list<dag> pattern>
290  : InstSystemZ<4, outs, ins, asmstr, pattern> {
291  field bits<32> Inst;
292  field bits<32> SoftFail = 0;
293
294  bits<4> R1;
295  bits<4> R2;
296
297  let Inst{31-16} = op;
298  let Inst{15-8}  = 0;
299  let Inst{7-4}   = R1;
300  let Inst{3-0}   = R2;
301}
302
303class InstRRF<bits<16> op, dag outs, dag ins, string asmstr, list<dag> pattern>
304  : InstSystemZ<4, outs, ins, asmstr, pattern> {
305  field bits<32> Inst;
306  field bits<32> SoftFail = 0;
307
308  bits<4> R1;
309  bits<4> R2;
310  bits<4> R3;
311  bits<4> R4;
312
313  let Inst{31-16} = op;
314  let Inst{15-12} = R3;
315  let Inst{11-8}  = R4;
316  let Inst{7-4}   = R1;
317  let Inst{3-0}   = R2;
318}
319
320class InstRX<bits<8> op, dag outs, dag ins, string asmstr, list<dag> pattern>
321  : InstSystemZ<4, outs, ins, asmstr, pattern> {
322  field bits<32> Inst;
323  field bits<32> SoftFail = 0;
324
325  bits<4> R1;
326  bits<20> XBD2;
327
328  let Inst{31-24} = op;
329  let Inst{23-20} = R1;
330  let Inst{19-0}  = XBD2;
331
332  let HasIndex = 1;
333}
334
335class InstRXE<bits<16> op, dag outs, dag ins, string asmstr, list<dag> pattern>
336  : InstSystemZ<6, outs, ins, asmstr, pattern> {
337  field bits<48> Inst;
338  field bits<48> SoftFail = 0;
339
340  bits<4> R1;
341  bits<20> XBD2;
342
343  let Inst{47-40} = op{15-8};
344  let Inst{39-36} = R1;
345  let Inst{35-16} = XBD2;
346  let Inst{15-8}  = 0;
347  let Inst{7-0}   = op{7-0};
348
349  let HasIndex = 1;
350}
351
352class InstRXF<bits<16> op, dag outs, dag ins, string asmstr, list<dag> pattern>
353  : InstSystemZ<6, outs, ins, asmstr, pattern> {
354  field bits<48> Inst;
355  field bits<48> SoftFail = 0;
356
357  bits<4> R1;
358  bits<4> R3;
359  bits<20> XBD2;
360
361  let Inst{47-40} = op{15-8};
362  let Inst{39-36} = R3;
363  let Inst{35-16} = XBD2;
364  let Inst{15-12} = R1;
365  let Inst{11-8}  = 0;
366  let Inst{7-0}   = op{7-0};
367
368  let HasIndex = 1;
369}
370
371class InstRXY<bits<16> op, dag outs, dag ins, string asmstr, list<dag> pattern>
372  : InstSystemZ<6, outs, ins, asmstr, pattern> {
373  field bits<48> Inst;
374  field bits<48> SoftFail = 0;
375
376  bits<4> R1;
377  bits<28> XBD2;
378
379  let Inst{47-40} = op{15-8};
380  let Inst{39-36} = R1;
381  let Inst{35-8}  = XBD2;
382  let Inst{7-0}   = op{7-0};
383
384  let Has20BitOffset = 1;
385  let HasIndex = 1;
386}
387
388class InstRS<bits<8> op, dag outs, dag ins, string asmstr, list<dag> pattern>
389  : InstSystemZ<4, outs, ins, asmstr, pattern> {
390  field bits<32> Inst;
391  field bits<32> SoftFail = 0;
392
393  bits<4> R1;
394  bits<4> R3;
395  bits<16> BD2;
396
397  let Inst{31-24} = op;
398  let Inst{23-20} = R1;
399  let Inst{19-16} = R3;
400  let Inst{15-0}  = BD2;
401}
402
403class InstRSY<bits<16> op, dag outs, dag ins, string asmstr, list<dag> pattern>
404  : InstSystemZ<6, outs, ins, asmstr, pattern> {
405  field bits<48> Inst;
406  field bits<48> SoftFail = 0;
407
408  bits<4> R1;
409  bits<4> R3;
410  bits<24> BD2;
411
412  let Inst{47-40} = op{15-8};
413  let Inst{39-36} = R1;
414  let Inst{35-32} = R3;
415  let Inst{31-8}  = BD2;
416  let Inst{7-0}   = op{7-0};
417
418  let Has20BitOffset = 1;
419}
420
421class InstSI<bits<8> op, dag outs, dag ins, string asmstr, list<dag> pattern>
422  : InstSystemZ<4, outs, ins, asmstr, pattern> {
423  field bits<32> Inst;
424  field bits<32> SoftFail = 0;
425
426  bits<16> BD1;
427  bits<8> I2;
428
429  let Inst{31-24} = op;
430  let Inst{23-16} = I2;
431  let Inst{15-0}  = BD1;
432}
433
434class InstSIL<bits<16> op, dag outs, dag ins, string asmstr, list<dag> pattern>
435  : InstSystemZ<6, outs, ins, asmstr, pattern> {
436  field bits<48> Inst;
437  field bits<48> SoftFail = 0;
438
439  bits<16> BD1;
440  bits<16> I2;
441
442  let Inst{47-32} = op;
443  let Inst{31-16} = BD1;
444  let Inst{15-0}  = I2;
445}
446
447class InstSIY<bits<16> op, dag outs, dag ins, string asmstr, list<dag> pattern>
448  : InstSystemZ<6, outs, ins, asmstr, pattern> {
449  field bits<48> Inst;
450  field bits<48> SoftFail = 0;
451
452  bits<24> BD1;
453  bits<8> I2;
454
455  let Inst{47-40} = op{15-8};
456  let Inst{39-32} = I2;
457  let Inst{31-8}  = BD1;
458  let Inst{7-0}   = op{7-0};
459
460  let Has20BitOffset = 1;
461}
462
463class InstSS<bits<8> op, dag outs, dag ins, string asmstr, list<dag> pattern>
464  : InstSystemZ<6, outs, ins, asmstr, pattern> {
465  field bits<48> Inst;
466  field bits<48> SoftFail = 0;
467
468  bits<24> BDL1;
469  bits<16> BD2;
470
471  let Inst{47-40} = op;
472  let Inst{39-16} = BDL1;
473  let Inst{15-0}  = BD2;
474}
475
476class InstS<bits<16> op, dag outs, dag ins, string asmstr, list<dag> pattern>
477  : InstSystemZ<4, outs, ins, asmstr, pattern> {
478  field bits<32> Inst;
479  field bits<32> SoftFail = 0;
480
481  bits<16> BD2;
482
483  let Inst{31-16} = op;
484  let Inst{15-0}  = BD2;
485}
486
487//===----------------------------------------------------------------------===//
488// Instruction definitions with semantics
489//===----------------------------------------------------------------------===//
490//
491// These classes have the form [Cond]<Category><Format>, where <Format> is one
492// of the formats defined above and where <Category> describes the inputs
493// and outputs.  "Cond" is used if the instruction is conditional,
494// in which case the 4-bit condition-code mask is added as a final operand.
495// <Category> can be one of:
496//
497//   Inherent:
498//     One register output operand and no input operands.
499//
500//   BranchUnary:
501//     One register output operand, one register input operand and
502//     one branch displacement.  The instructions stores a modified
503//     form of the source register in the destination register and
504//     branches on the result.
505//
506//   Store:
507//     One register or immediate input operand and one address input operand.
508//     The instruction stores the first operand to the address.
509//
510//     This category is used for both pure and truncating stores.
511//
512//   LoadMultiple:
513//     One address input operand and two explicit output operands.
514//     The instruction loads a range of registers from the address,
515//     with the explicit operands giving the first and last register
516//     to load.  Other loaded registers are added as implicit definitions.
517//
518//   StoreMultiple:
519//     Two explicit input register operands and an address operand.
520//     The instruction stores a range of registers to the address,
521//     with the explicit operands giving the first and last register
522//     to store.  Other stored registers are added as implicit uses.
523//
524//   Unary:
525//     One register output operand and one input operand.
526//
527//   Binary:
528//     One register output operand and two input operands.
529//
530//   Compare:
531//     Two input operands and an implicit CC output operand.
532//
533//   Ternary:
534//     One register output operand and three input operands.
535//
536//   LoadAndOp:
537//     One output operand and two input operands, one of which is an address.
538//     The instruction both reads from and writes to the address.
539//
540//   CmpSwap:
541//     One output operand and three input operands, one of which is an address.
542//     The instruction both reads from and writes to the address.
543//
544//   RotateSelect:
545//     One output operand and five input operands.  The first two operands
546//     are registers and the other three are immediates.
547//
548//   Prefetch:
549//     One 4-bit immediate operand and one address operand.  The immediate
550//     operand is 1 for a load prefetch and 2 for a store prefetch.
551//
552// The format determines which input operands are tied to output operands,
553// and also determines the shape of any address operand.
554//
555// Multiclasses of the form <Category><Format>Pair define two instructions,
556// one with <Category><Format> and one with <Category><Format>Y.  The name
557// of the first instruction has no suffix, the name of the second has
558// an extra "y".
559//
560//===----------------------------------------------------------------------===//
561
562class InherentRRE<string mnemonic, bits<16> opcode, RegisterOperand cls,
563                  dag src>
564  : InstRRE<opcode, (outs cls:$R1), (ins),
565            mnemonic#"\t$R1",
566            [(set cls:$R1, src)]> {
567  let R2 = 0;
568}
569
570class BranchUnaryRI<string mnemonic, bits<12> opcode, RegisterOperand cls>
571  : InstRI<opcode, (outs cls:$R1), (ins cls:$R1src, brtarget16:$I2),
572           mnemonic##"\t$R1, $I2", []> {
573  let isBranch = 1;
574  let isTerminator = 1;
575  let Constraints = "$R1 = $R1src";
576  let DisableEncoding = "$R1src";
577}
578
579class LoadMultipleRSY<string mnemonic, bits<16> opcode, RegisterOperand cls>
580  : InstRSY<opcode, (outs cls:$R1, cls:$R3), (ins bdaddr20only:$BD2),
581            mnemonic#"\t$R1, $R3, $BD2", []> {
582  let mayLoad = 1;
583}
584
585class StoreRILPC<string mnemonic, bits<12> opcode, SDPatternOperator operator,
586                 RegisterOperand cls>
587  : InstRIL<opcode, (outs), (ins cls:$R1, pcrel32:$I2),
588            mnemonic#"\t$R1, $I2",
589            [(operator cls:$R1, pcrel32:$I2)]> {
590  let mayStore = 1;
591  // We want PC-relative addresses to be tried ahead of BD and BDX addresses.
592  // However, BDXs have two extra operands and are therefore 6 units more
593  // complex.
594  let AddedComplexity = 7;
595}
596
597class StoreRX<string mnemonic, bits<8> opcode, SDPatternOperator operator,
598              RegisterOperand cls, bits<5> bytes,
599              AddressingMode mode = bdxaddr12only>
600  : InstRX<opcode, (outs), (ins cls:$R1, mode:$XBD2),
601           mnemonic#"\t$R1, $XBD2",
602           [(operator cls:$R1, mode:$XBD2)]> {
603  let OpKey = mnemonic ## cls;
604  let OpType = "mem";
605  let mayStore = 1;
606  let AccessBytes = bytes;
607}
608
609class StoreRXY<string mnemonic, bits<16> opcode, SDPatternOperator operator,
610               RegisterOperand cls, bits<5> bytes,
611               AddressingMode mode = bdxaddr20only>
612  : InstRXY<opcode, (outs), (ins cls:$R1, mode:$XBD2),
613            mnemonic#"\t$R1, $XBD2",
614            [(operator cls:$R1, mode:$XBD2)]> {
615  let OpKey = mnemonic ## cls;
616  let OpType = "mem";
617  let mayStore = 1;
618  let AccessBytes = bytes;
619}
620
621multiclass StoreRXPair<string mnemonic, bits<8> rxOpcode, bits<16> rxyOpcode,
622                       SDPatternOperator operator, RegisterOperand cls,
623                       bits<5> bytes> {
624  let DispKey = mnemonic ## #cls in {
625    let DispSize = "12" in
626      def "" : StoreRX<mnemonic, rxOpcode, operator, cls, bytes, bdxaddr12pair>;
627    let DispSize = "20" in
628      def Y  : StoreRXY<mnemonic#"y", rxyOpcode, operator, cls, bytes,
629                        bdxaddr20pair>;
630  }
631}
632
633class StoreMultipleRSY<string mnemonic, bits<16> opcode, RegisterOperand cls>
634  : InstRSY<opcode, (outs), (ins cls:$R1, cls:$R3, bdaddr20only:$BD2),
635            mnemonic#"\t$R1, $R3, $BD2", []> {
636  let mayStore = 1;
637}
638
639// StoreSI* instructions are used to store an integer to memory, but the
640// addresses are more restricted than for normal stores.  If we are in the
641// situation of having to force either the address into a register or the
642// constant into a register, it's usually better to do the latter.
643// We therefore match the address in the same way as a normal store and
644// only use the StoreSI* instruction if the matched address is suitable.
645class StoreSI<string mnemonic, bits<8> opcode, SDPatternOperator operator,
646              Immediate imm>
647  : InstSI<opcode, (outs), (ins mviaddr12pair:$BD1, imm:$I2),
648           mnemonic#"\t$BD1, $I2",
649           [(operator imm:$I2, mviaddr12pair:$BD1)]> {
650  let mayStore = 1;
651}
652
653class StoreSIY<string mnemonic, bits<16> opcode, SDPatternOperator operator,
654               Immediate imm>
655  : InstSIY<opcode, (outs), (ins mviaddr20pair:$BD1, imm:$I2),
656            mnemonic#"\t$BD1, $I2",
657            [(operator imm:$I2, mviaddr20pair:$BD1)]> {
658  let mayStore = 1;
659}
660
661class StoreSIL<string mnemonic, bits<16> opcode, SDPatternOperator operator,
662               Immediate imm>
663  : InstSIL<opcode, (outs), (ins mviaddr12pair:$BD1, imm:$I2),
664            mnemonic#"\t$BD1, $I2",
665            [(operator imm:$I2, mviaddr12pair:$BD1)]> {
666  let mayStore = 1;
667}
668
669multiclass StoreSIPair<string mnemonic, bits<8> siOpcode, bits<16> siyOpcode,
670                       SDPatternOperator operator, Immediate imm> {
671  let DispKey = mnemonic in {
672    let DispSize = "12" in
673      def "" : StoreSI<mnemonic, siOpcode, operator, imm>;
674    let DispSize = "20" in
675      def Y  : StoreSIY<mnemonic#"y", siyOpcode, operator, imm>;
676  }
677}
678
679class CondStoreRSY<string mnemonic, bits<16> opcode,
680                   RegisterOperand cls, bits<5> bytes,
681                   AddressingMode mode = bdaddr20only>
682  : InstRSY<opcode, (outs), (ins cls:$R1, mode:$BD2, cond4:$valid, cond4:$R3),
683            mnemonic#"$R3\t$R1, $BD2", []>,
684    Requires<[FeatureLoadStoreOnCond]> {
685  let mayStore = 1;
686  let AccessBytes = bytes;
687  let CCMaskLast = 1;
688}
689
690// Like CondStoreRSY, but used for the raw assembly form.  The condition-code
691// mask is the third operand rather than being part of the mnemonic.
692class AsmCondStoreRSY<string mnemonic, bits<16> opcode,
693                      RegisterOperand cls, bits<5> bytes,
694                      AddressingMode mode = bdaddr20only>
695  : InstRSY<opcode, (outs), (ins cls:$R1, mode:$BD2, imm32zx4:$R3),
696            mnemonic#"\t$R1, $BD2, $R3", []>,
697    Requires<[FeatureLoadStoreOnCond]> {
698  let mayStore = 1;
699  let AccessBytes = bytes;
700}
701
702// Like CondStoreRSY, but with a fixed CC mask.
703class FixedCondStoreRSY<string mnemonic, bits<16> opcode,
704                        RegisterOperand cls, bits<4> ccmask, bits<5> bytes,
705                        AddressingMode mode = bdaddr20only>
706  : InstRSY<opcode, (outs), (ins cls:$R1, mode:$BD2),
707            mnemonic#"\t$R1, $BD2", []>,
708    Requires<[FeatureLoadStoreOnCond]> {
709  let mayStore = 1;
710  let AccessBytes = bytes;
711  let R3 = ccmask;
712}
713
714class UnaryRR<string mnemonic, bits<8> opcode, SDPatternOperator operator,
715              RegisterOperand cls1, RegisterOperand cls2>
716  : InstRR<opcode, (outs cls1:$R1), (ins cls2:$R2),
717           mnemonic#"r\t$R1, $R2",
718           [(set cls1:$R1, (operator cls2:$R2))]> {
719  let OpKey = mnemonic ## cls1;
720  let OpType = "reg";
721}
722
723class UnaryRRE<string mnemonic, bits<16> opcode, SDPatternOperator operator,
724               RegisterOperand cls1, RegisterOperand cls2>
725  : InstRRE<opcode, (outs cls1:$R1), (ins cls2:$R2),
726            mnemonic#"r\t$R1, $R2",
727            [(set cls1:$R1, (operator cls2:$R2))]> {
728  let OpKey = mnemonic ## cls1;
729  let OpType = "reg";
730}
731
732class UnaryRRF<string mnemonic, bits<16> opcode, RegisterOperand cls1,
733               RegisterOperand cls2>
734  : InstRRF<opcode, (outs cls1:$R1), (ins imm32zx4:$R3, cls2:$R2),
735            mnemonic#"r\t$R1, $R3, $R2", []> {
736  let OpKey = mnemonic ## cls1;
737  let OpType = "reg";
738  let R4 = 0;
739}
740
741class UnaryRRF4<string mnemonic, bits<16> opcode, RegisterOperand cls1,
742                RegisterOperand cls2>
743  : InstRRF<opcode, (outs cls1:$R1), (ins imm32zx4:$R3, cls2:$R2, imm32zx4:$R4),
744            mnemonic#"\t$R1, $R3, $R2, $R4", []>;
745
746// These instructions are generated by if conversion.  The old value of R1
747// is added as an implicit use.
748class CondUnaryRRF<string mnemonic, bits<16> opcode, RegisterOperand cls1,
749                   RegisterOperand cls2>
750  : InstRRF<opcode, (outs cls1:$R1), (ins cls2:$R2, cond4:$valid, cond4:$R3),
751            mnemonic#"r$R3\t$R1, $R2", []>,
752    Requires<[FeatureLoadStoreOnCond]> {
753  let CCMaskLast = 1;
754  let R4 = 0;
755}
756
757// Like CondUnaryRRF, but used for the raw assembly form.  The condition-code
758// mask is the third operand rather than being part of the mnemonic.
759class AsmCondUnaryRRF<string mnemonic, bits<16> opcode, RegisterOperand cls1,
760                      RegisterOperand cls2>
761  : InstRRF<opcode, (outs cls1:$R1), (ins cls1:$R1src, cls2:$R2, imm32zx4:$R3),
762            mnemonic#"r\t$R1, $R2, $R3", []>,
763    Requires<[FeatureLoadStoreOnCond]> {
764  let Constraints = "$R1 = $R1src";
765  let DisableEncoding = "$R1src";
766  let R4 = 0;
767}
768
769// Like CondUnaryRRF, but with a fixed CC mask.
770class FixedCondUnaryRRF<string mnemonic, bits<16> opcode, RegisterOperand cls1,
771                        RegisterOperand cls2, bits<4> ccmask>
772  : InstRRF<opcode, (outs cls1:$R1), (ins cls1:$R1src, cls2:$R2),
773            mnemonic#"\t$R1, $R2", []>,
774    Requires<[FeatureLoadStoreOnCond]> {
775  let Constraints = "$R1 = $R1src";
776  let DisableEncoding = "$R1src";
777  let R3 = ccmask;
778  let R4 = 0;
779}
780
781class UnaryRI<string mnemonic, bits<12> opcode, SDPatternOperator operator,
782              RegisterOperand cls, Immediate imm>
783  : InstRI<opcode, (outs cls:$R1), (ins imm:$I2),
784           mnemonic#"\t$R1, $I2",
785           [(set cls:$R1, (operator imm:$I2))]>;
786
787class UnaryRIL<string mnemonic, bits<12> opcode, SDPatternOperator operator,
788               RegisterOperand cls, Immediate imm>
789  : InstRIL<opcode, (outs cls:$R1), (ins imm:$I2),
790            mnemonic#"\t$R1, $I2",
791            [(set cls:$R1, (operator imm:$I2))]>;
792
793class UnaryRILPC<string mnemonic, bits<12> opcode, SDPatternOperator operator,
794                 RegisterOperand cls>
795  : InstRIL<opcode, (outs cls:$R1), (ins pcrel32:$I2),
796            mnemonic#"\t$R1, $I2",
797            [(set cls:$R1, (operator pcrel32:$I2))]> {
798  let mayLoad = 1;
799  // We want PC-relative addresses to be tried ahead of BD and BDX addresses.
800  // However, BDXs have two extra operands and are therefore 6 units more
801  // complex.
802  let AddedComplexity = 7;
803}
804
805class CondUnaryRSY<string mnemonic, bits<16> opcode,
806                   SDPatternOperator operator, RegisterOperand cls,
807                   bits<5> bytes, AddressingMode mode = bdaddr20only>
808  : InstRSY<opcode, (outs cls:$R1),
809            (ins cls:$R1src, mode:$BD2, cond4:$valid, cond4:$R3),
810            mnemonic#"$R3\t$R1, $BD2",
811            [(set cls:$R1,
812                  (z_select_ccmask (load bdaddr20only:$BD2), cls:$R1src,
813                                   cond4:$valid, cond4:$R3))]>,
814    Requires<[FeatureLoadStoreOnCond]> {
815  let Constraints = "$R1 = $R1src";
816  let DisableEncoding = "$R1src";
817  let mayLoad = 1;
818  let AccessBytes = bytes;
819  let CCMaskLast = 1;
820}
821
822// Like CondUnaryRSY, but used for the raw assembly form.  The condition-code
823// mask is the third operand rather than being part of the mnemonic.
824class AsmCondUnaryRSY<string mnemonic, bits<16> opcode,
825                      RegisterOperand cls, bits<5> bytes,
826                      AddressingMode mode = bdaddr20only>
827  : InstRSY<opcode, (outs cls:$R1), (ins cls:$R1src, mode:$BD2, imm32zx4:$R3),
828            mnemonic#"\t$R1, $BD2, $R3", []>,
829    Requires<[FeatureLoadStoreOnCond]> {
830  let mayLoad = 1;
831  let AccessBytes = bytes;
832  let Constraints = "$R1 = $R1src";
833  let DisableEncoding = "$R1src";
834}
835
836// Like CondUnaryRSY, but with a fixed CC mask.
837class FixedCondUnaryRSY<string mnemonic, bits<16> opcode,
838                        RegisterOperand cls, bits<4> ccmask, bits<5> bytes,
839                        AddressingMode mode = bdaddr20only>
840  : InstRSY<opcode, (outs cls:$R1), (ins cls:$R1src, mode:$BD2),
841            mnemonic#"\t$R1, $BD2", []>,
842    Requires<[FeatureLoadStoreOnCond]> {
843  let Constraints = "$R1 = $R1src";
844  let DisableEncoding = "$R1src";
845  let R3 = ccmask;
846  let mayLoad = 1;
847  let AccessBytes = bytes;
848}
849
850class UnaryRX<string mnemonic, bits<8> opcode, SDPatternOperator operator,
851              RegisterOperand cls, bits<5> bytes,
852              AddressingMode mode = bdxaddr12only>
853  : InstRX<opcode, (outs cls:$R1), (ins mode:$XBD2),
854           mnemonic#"\t$R1, $XBD2",
855           [(set cls:$R1, (operator mode:$XBD2))]> {
856  let OpKey = mnemonic ## cls;
857  let OpType = "mem";
858  let mayLoad = 1;
859  let AccessBytes = bytes;
860}
861
862class UnaryRXE<string mnemonic, bits<16> opcode, SDPatternOperator operator,
863               RegisterOperand cls, bits<5> bytes>
864  : InstRXE<opcode, (outs cls:$R1), (ins bdxaddr12only:$XBD2),
865            mnemonic#"\t$R1, $XBD2",
866            [(set cls:$R1, (operator bdxaddr12only:$XBD2))]> {
867  let OpKey = mnemonic ## cls;
868  let OpType = "mem";
869  let mayLoad = 1;
870  let AccessBytes = bytes;
871}
872
873class UnaryRXY<string mnemonic, bits<16> opcode, SDPatternOperator operator,
874               RegisterOperand cls, bits<5> bytes,
875               AddressingMode mode = bdxaddr20only>
876  : InstRXY<opcode, (outs cls:$R1), (ins mode:$XBD2),
877            mnemonic#"\t$R1, $XBD2",
878            [(set cls:$R1, (operator mode:$XBD2))]> {
879  let OpKey = mnemonic ## cls;
880  let OpType = "mem";
881  let mayLoad = 1;
882  let AccessBytes = bytes;
883}
884
885multiclass UnaryRXPair<string mnemonic, bits<8> rxOpcode, bits<16> rxyOpcode,
886                       SDPatternOperator operator, RegisterOperand cls,
887                       bits<5> bytes> {
888  let DispKey = mnemonic ## #cls in {
889    let DispSize = "12" in
890      def "" : UnaryRX<mnemonic, rxOpcode, operator, cls, bytes, bdxaddr12pair>;
891    let DispSize = "20" in
892      def Y  : UnaryRXY<mnemonic#"y", rxyOpcode, operator, cls, bytes,
893                        bdxaddr20pair>;
894  }
895}
896
897class BinaryRR<string mnemonic, bits<8> opcode, SDPatternOperator operator,
898               RegisterOperand cls1, RegisterOperand cls2>
899  : InstRR<opcode, (outs cls1:$R1), (ins cls1:$R1src, cls2:$R2),
900           mnemonic#"r\t$R1, $R2",
901           [(set cls1:$R1, (operator cls1:$R1src, cls2:$R2))]> {
902  let OpKey = mnemonic ## cls1;
903  let OpType = "reg";
904  let Constraints = "$R1 = $R1src";
905  let DisableEncoding = "$R1src";
906}
907
908class BinaryRRE<string mnemonic, bits<16> opcode, SDPatternOperator operator,
909                RegisterOperand cls1, RegisterOperand cls2>
910  : InstRRE<opcode, (outs cls1:$R1), (ins cls1:$R1src, cls2:$R2),
911            mnemonic#"r\t$R1, $R2",
912            [(set cls1:$R1, (operator cls1:$R1src, cls2:$R2))]> {
913  let OpKey = mnemonic ## cls1;
914  let OpType = "reg";
915  let Constraints = "$R1 = $R1src";
916  let DisableEncoding = "$R1src";
917}
918
919class BinaryRRF<string mnemonic, bits<16> opcode, SDPatternOperator operator,
920                RegisterOperand cls1, RegisterOperand cls2>
921  : InstRRF<opcode, (outs cls1:$R1), (ins cls1:$R3, cls2:$R2),
922            mnemonic#"r\t$R1, $R3, $R2",
923            [(set cls1:$R1, (operator cls1:$R3, cls2:$R2))]> {
924  let OpKey = mnemonic ## cls1;
925  let OpType = "reg";
926  let R4 = 0;
927}
928
929class BinaryRRFK<string mnemonic, bits<16> opcode, SDPatternOperator operator,
930                 RegisterOperand cls1, RegisterOperand cls2>
931  : InstRRF<opcode, (outs cls1:$R1), (ins cls1:$R2, cls2:$R3),
932            mnemonic#"rk\t$R1, $R2, $R3",
933            [(set cls1:$R1, (operator cls1:$R2, cls2:$R3))]> {
934  let R4 = 0;
935}
936
937multiclass BinaryRRAndK<string mnemonic, bits<8> opcode1, bits<16> opcode2,
938                        SDPatternOperator operator, RegisterOperand cls1,
939                        RegisterOperand cls2> {
940  let NumOpsKey = mnemonic in {
941    let NumOpsValue = "3" in
942      def K : BinaryRRFK<mnemonic, opcode2, null_frag, cls1, cls2>,
943              Requires<[FeatureDistinctOps]>;
944    let NumOpsValue = "2", isConvertibleToThreeAddress = 1 in
945      def "" : BinaryRR<mnemonic, opcode1, operator, cls1, cls2>;
946  }
947}
948
949multiclass BinaryRREAndK<string mnemonic, bits<16> opcode1, bits<16> opcode2,
950                         SDPatternOperator operator, RegisterOperand cls1,
951                         RegisterOperand cls2> {
952  let NumOpsKey = mnemonic in {
953    let NumOpsValue = "3" in
954      def K : BinaryRRFK<mnemonic, opcode2, null_frag, cls1, cls2>,
955              Requires<[FeatureDistinctOps]>;
956    let NumOpsValue = "2", isConvertibleToThreeAddress = 1 in
957      def "" : BinaryRRE<mnemonic, opcode1, operator, cls1, cls2>;
958  }
959}
960
961class BinaryRI<string mnemonic, bits<12> opcode, SDPatternOperator operator,
962               RegisterOperand cls, Immediate imm>
963  : InstRI<opcode, (outs cls:$R1), (ins cls:$R1src, imm:$I2),
964           mnemonic#"\t$R1, $I2",
965           [(set cls:$R1, (operator cls:$R1src, imm:$I2))]> {
966  let Constraints = "$R1 = $R1src";
967  let DisableEncoding = "$R1src";
968}
969
970class BinaryRIE<string mnemonic, bits<16> opcode, SDPatternOperator operator,
971                RegisterOperand cls, Immediate imm>
972  : InstRIEd<opcode, (outs cls:$R1), (ins cls:$R3, imm:$I2),
973             mnemonic#"\t$R1, $R3, $I2",
974             [(set cls:$R1, (operator cls:$R3, imm:$I2))]>;
975
976multiclass BinaryRIAndK<string mnemonic, bits<12> opcode1, bits<16> opcode2,
977                        SDPatternOperator operator, RegisterOperand cls,
978                        Immediate imm> {
979  let NumOpsKey = mnemonic in {
980    let NumOpsValue = "3" in
981      def K : BinaryRIE<mnemonic##"k", opcode2, null_frag, cls, imm>,
982              Requires<[FeatureDistinctOps]>;
983    let NumOpsValue = "2", isConvertibleToThreeAddress = 1 in
984      def "" : BinaryRI<mnemonic, opcode1, operator, cls, imm>;
985  }
986}
987
988class BinaryRIL<string mnemonic, bits<12> opcode, SDPatternOperator operator,
989                RegisterOperand cls, Immediate imm>
990  : InstRIL<opcode, (outs cls:$R1), (ins cls:$R1src, imm:$I2),
991            mnemonic#"\t$R1, $I2",
992            [(set cls:$R1, (operator cls:$R1src, imm:$I2))]> {
993  let Constraints = "$R1 = $R1src";
994  let DisableEncoding = "$R1src";
995}
996
997class BinaryRS<string mnemonic, bits<8> opcode, SDPatternOperator operator,
998               RegisterOperand cls>
999  : InstRS<opcode, (outs cls:$R1), (ins cls:$R1src, shift12only:$BD2),
1000           mnemonic#"\t$R1, $BD2",
1001           [(set cls:$R1, (operator cls:$R1src, shift12only:$BD2))]> {
1002  let R3 = 0;
1003  let Constraints = "$R1 = $R1src";
1004  let DisableEncoding = "$R1src";
1005}
1006
1007class BinaryRSY<string mnemonic, bits<16> opcode, SDPatternOperator operator,
1008                RegisterOperand cls>
1009  : InstRSY<opcode, (outs cls:$R1), (ins cls:$R3, shift20only:$BD2),
1010            mnemonic#"\t$R1, $R3, $BD2",
1011            [(set cls:$R1, (operator cls:$R3, shift20only:$BD2))]>;
1012
1013multiclass BinaryRSAndK<string mnemonic, bits<8> opcode1, bits<16> opcode2,
1014                        SDPatternOperator operator, RegisterOperand cls> {
1015  let NumOpsKey = mnemonic in {
1016    let NumOpsValue = "3" in
1017      def K  : BinaryRSY<mnemonic##"k", opcode2, null_frag, cls>,
1018               Requires<[FeatureDistinctOps]>;
1019    let NumOpsValue = "2", isConvertibleToThreeAddress = 1 in
1020      def "" : BinaryRS<mnemonic, opcode1, operator, cls>;
1021  }
1022}
1023
1024class BinaryRX<string mnemonic, bits<8> opcode, SDPatternOperator operator,
1025               RegisterOperand cls, SDPatternOperator load, bits<5> bytes,
1026               AddressingMode mode = bdxaddr12only>
1027  : InstRX<opcode, (outs cls:$R1), (ins cls:$R1src, mode:$XBD2),
1028           mnemonic#"\t$R1, $XBD2",
1029           [(set cls:$R1, (operator cls:$R1src, (load mode:$XBD2)))]> {
1030  let OpKey = mnemonic ## cls;
1031  let OpType = "mem";
1032  let Constraints = "$R1 = $R1src";
1033  let DisableEncoding = "$R1src";
1034  let mayLoad = 1;
1035  let AccessBytes = bytes;
1036}
1037
1038class BinaryRXE<string mnemonic, bits<16> opcode, SDPatternOperator operator,
1039                  RegisterOperand cls, SDPatternOperator load, bits<5> bytes>
1040  : InstRXE<opcode, (outs cls:$R1), (ins cls:$R1src, bdxaddr12only:$XBD2),
1041            mnemonic#"\t$R1, $XBD2",
1042            [(set cls:$R1, (operator cls:$R1src,
1043                                     (load bdxaddr12only:$XBD2)))]> {
1044  let OpKey = mnemonic ## cls;
1045  let OpType = "mem";
1046  let Constraints = "$R1 = $R1src";
1047  let DisableEncoding = "$R1src";
1048  let mayLoad = 1;
1049  let AccessBytes = bytes;
1050}
1051
1052class BinaryRXY<string mnemonic, bits<16> opcode, SDPatternOperator operator,
1053                RegisterOperand cls, SDPatternOperator load, bits<5> bytes,
1054                AddressingMode mode = bdxaddr20only>
1055  : InstRXY<opcode, (outs cls:$R1), (ins cls:$R1src, mode:$XBD2),
1056            mnemonic#"\t$R1, $XBD2",
1057            [(set cls:$R1, (operator cls:$R1src, (load mode:$XBD2)))]> {
1058  let OpKey = mnemonic ## cls;
1059  let OpType = "mem";
1060  let Constraints = "$R1 = $R1src";
1061  let DisableEncoding = "$R1src";
1062  let mayLoad = 1;
1063  let AccessBytes = bytes;
1064}
1065
1066multiclass BinaryRXPair<string mnemonic, bits<8> rxOpcode, bits<16> rxyOpcode,
1067                        SDPatternOperator operator, RegisterOperand cls,
1068                        SDPatternOperator load, bits<5> bytes> {
1069  let DispKey = mnemonic ## #cls in {
1070    let DispSize = "12" in
1071      def "" : BinaryRX<mnemonic, rxOpcode, operator, cls, load, bytes,
1072                        bdxaddr12pair>;
1073    let DispSize = "20" in
1074      def Y  : BinaryRXY<mnemonic#"y", rxyOpcode, operator, cls, load, bytes,
1075                         bdxaddr20pair>;
1076  }
1077}
1078
1079class BinarySI<string mnemonic, bits<8> opcode, SDPatternOperator operator,
1080               Operand imm, AddressingMode mode = bdaddr12only>
1081  : InstSI<opcode, (outs), (ins mode:$BD1, imm:$I2),
1082           mnemonic#"\t$BD1, $I2",
1083           [(store (operator (load mode:$BD1), imm:$I2), mode:$BD1)]> {
1084  let mayLoad = 1;
1085  let mayStore = 1;
1086}
1087
1088class BinarySIY<string mnemonic, bits<16> opcode, SDPatternOperator operator,
1089                Operand imm, AddressingMode mode = bdaddr20only>
1090  : InstSIY<opcode, (outs), (ins mode:$BD1, imm:$I2),
1091            mnemonic#"\t$BD1, $I2",
1092            [(store (operator (load mode:$BD1), imm:$I2), mode:$BD1)]> {
1093  let mayLoad = 1;
1094  let mayStore = 1;
1095}
1096
1097multiclass BinarySIPair<string mnemonic, bits<8> siOpcode,
1098                        bits<16> siyOpcode, SDPatternOperator operator,
1099                        Operand imm> {
1100  let DispKey = mnemonic ## #cls in {
1101    let DispSize = "12" in
1102      def "" : BinarySI<mnemonic, siOpcode, operator, imm, bdaddr12pair>;
1103    let DispSize = "20" in
1104      def Y  : BinarySIY<mnemonic#"y", siyOpcode, operator, imm, bdaddr20pair>;
1105  }
1106}
1107
1108class CompareRR<string mnemonic, bits<8> opcode, SDPatternOperator operator,
1109                RegisterOperand cls1, RegisterOperand cls2>
1110  : InstRR<opcode, (outs), (ins cls1:$R1, cls2:$R2),
1111           mnemonic#"r\t$R1, $R2",
1112           [(operator cls1:$R1, cls2:$R2)]> {
1113  let OpKey = mnemonic ## cls1;
1114  let OpType = "reg";
1115  let isCompare = 1;
1116}
1117
1118class CompareRRE<string mnemonic, bits<16> opcode, SDPatternOperator operator,
1119                 RegisterOperand cls1, RegisterOperand cls2>
1120  : InstRRE<opcode, (outs), (ins cls1:$R1, cls2:$R2),
1121            mnemonic#"r\t$R1, $R2",
1122            [(operator cls1:$R1, cls2:$R2)]> {
1123  let OpKey = mnemonic ## cls1;
1124  let OpType = "reg";
1125  let isCompare = 1;
1126}
1127
1128class CompareRI<string mnemonic, bits<12> opcode, SDPatternOperator operator,
1129                RegisterOperand cls, Immediate imm>
1130  : InstRI<opcode, (outs), (ins cls:$R1, imm:$I2),
1131           mnemonic#"\t$R1, $I2",
1132           [(operator cls:$R1, imm:$I2)]> {
1133  let isCompare = 1;
1134}
1135
1136class CompareRIL<string mnemonic, bits<12> opcode, SDPatternOperator operator,
1137                 RegisterOperand cls, Immediate imm>
1138  : InstRIL<opcode, (outs), (ins cls:$R1, imm:$I2),
1139            mnemonic#"\t$R1, $I2",
1140            [(operator cls:$R1, imm:$I2)]> {
1141  let isCompare = 1;
1142}
1143
1144class CompareRILPC<string mnemonic, bits<12> opcode, SDPatternOperator operator,
1145                   RegisterOperand cls, SDPatternOperator load>
1146  : InstRIL<opcode, (outs), (ins cls:$R1, pcrel32:$I2),
1147            mnemonic#"\t$R1, $I2",
1148            [(operator cls:$R1, (load pcrel32:$I2))]> {
1149  let isCompare = 1;
1150  let mayLoad = 1;
1151  // We want PC-relative addresses to be tried ahead of BD and BDX addresses.
1152  // However, BDXs have two extra operands and are therefore 6 units more
1153  // complex.
1154  let AddedComplexity = 7;
1155}
1156
1157class CompareRX<string mnemonic, bits<8> opcode, SDPatternOperator operator,
1158                RegisterOperand cls, SDPatternOperator load, bits<5> bytes,
1159                AddressingMode mode = bdxaddr12only>
1160  : InstRX<opcode, (outs), (ins cls:$R1, mode:$XBD2),
1161           mnemonic#"\t$R1, $XBD2",
1162           [(operator cls:$R1, (load mode:$XBD2))]> {
1163  let OpKey = mnemonic ## cls;
1164  let OpType = "mem";
1165  let isCompare = 1;
1166  let mayLoad = 1;
1167  let AccessBytes = bytes;
1168}
1169
1170class CompareRXE<string mnemonic, bits<16> opcode, SDPatternOperator operator,
1171                 RegisterOperand cls, SDPatternOperator load, bits<5> bytes>
1172  : InstRXE<opcode, (outs), (ins cls:$R1, bdxaddr12only:$XBD2),
1173            mnemonic#"\t$R1, $XBD2",
1174            [(operator cls:$R1, (load bdxaddr12only:$XBD2))]> {
1175  let OpKey = mnemonic ## cls;
1176  let OpType = "mem";
1177  let isCompare = 1;
1178  let mayLoad = 1;
1179  let AccessBytes = bytes;
1180}
1181
1182class CompareRXY<string mnemonic, bits<16> opcode, SDPatternOperator operator,
1183                 RegisterOperand cls, SDPatternOperator load, bits<5> bytes,
1184                 AddressingMode mode = bdxaddr20only>
1185  : InstRXY<opcode, (outs), (ins cls:$R1, mode:$XBD2),
1186            mnemonic#"\t$R1, $XBD2",
1187            [(operator cls:$R1, (load mode:$XBD2))]> {
1188  let OpKey = mnemonic ## cls;
1189  let OpType = "mem";
1190  let isCompare = 1;
1191  let mayLoad = 1;
1192  let AccessBytes = bytes;
1193}
1194
1195multiclass CompareRXPair<string mnemonic, bits<8> rxOpcode, bits<16> rxyOpcode,
1196                         SDPatternOperator operator, RegisterOperand cls,
1197                         SDPatternOperator load, bits<5> bytes> {
1198  let DispKey = mnemonic ## #cls in {
1199    let DispSize = "12" in
1200      def "" : CompareRX<mnemonic, rxOpcode, operator, cls,
1201                         load, bytes, bdxaddr12pair>;
1202    let DispSize = "20" in
1203      def Y  : CompareRXY<mnemonic#"y", rxyOpcode, operator, cls,
1204                          load, bytes, bdxaddr20pair>;
1205  }
1206}
1207
1208class CompareSI<string mnemonic, bits<8> opcode, SDPatternOperator operator,
1209                SDPatternOperator load, Immediate imm,
1210                AddressingMode mode = bdaddr12only>
1211  : InstSI<opcode, (outs), (ins mode:$BD1, imm:$I2),
1212           mnemonic#"\t$BD1, $I2",
1213           [(operator (load mode:$BD1), imm:$I2)]> {
1214  let isCompare = 1;
1215  let mayLoad = 1;
1216}
1217
1218class CompareSIL<string mnemonic, bits<16> opcode, SDPatternOperator operator,
1219                 SDPatternOperator load, Immediate imm>
1220  : InstSIL<opcode, (outs), (ins bdaddr12only:$BD1, imm:$I2),
1221            mnemonic#"\t$BD1, $I2",
1222            [(operator (load bdaddr12only:$BD1), imm:$I2)]> {
1223  let isCompare = 1;
1224  let mayLoad = 1;
1225}
1226
1227class CompareSIY<string mnemonic, bits<16> opcode, SDPatternOperator operator,
1228                 SDPatternOperator load, Immediate imm,
1229                 AddressingMode mode = bdaddr20only>
1230  : InstSIY<opcode, (outs), (ins mode:$BD1, imm:$I2),
1231            mnemonic#"\t$BD1, $I2",
1232            [(operator (load mode:$BD1), imm:$I2)]> {
1233  let isCompare = 1;
1234  let mayLoad = 1;
1235}
1236
1237multiclass CompareSIPair<string mnemonic, bits<8> siOpcode, bits<16> siyOpcode,
1238                         SDPatternOperator operator, SDPatternOperator load,
1239                         Immediate imm> {
1240  let DispKey = mnemonic in {
1241    let DispSize = "12" in
1242      def "" : CompareSI<mnemonic, siOpcode, operator, load, imm, bdaddr12pair>;
1243    let DispSize = "20" in
1244      def Y  : CompareSIY<mnemonic#"y", siyOpcode, operator, load, imm,
1245                          bdaddr20pair>;
1246  }
1247}
1248
1249class TernaryRRD<string mnemonic, bits<16> opcode,
1250                 SDPatternOperator operator, RegisterOperand cls>
1251  : InstRRD<opcode, (outs cls:$R1), (ins cls:$R1src, cls:$R3, cls:$R2),
1252            mnemonic#"r\t$R1, $R3, $R2",
1253            [(set cls:$R1, (operator cls:$R1src, cls:$R3, cls:$R2))]> {
1254  let OpKey = mnemonic ## cls;
1255  let OpType = "reg";
1256  let Constraints = "$R1 = $R1src";
1257  let DisableEncoding = "$R1src";
1258}
1259
1260class TernaryRXF<string mnemonic, bits<16> opcode, SDPatternOperator operator,
1261                 RegisterOperand cls, SDPatternOperator load, bits<5> bytes>
1262  : InstRXF<opcode, (outs cls:$R1),
1263            (ins cls:$R1src, cls:$R3, bdxaddr12only:$XBD2),
1264            mnemonic#"\t$R1, $R3, $XBD2",
1265            [(set cls:$R1, (operator cls:$R1src, cls:$R3,
1266                                     (load bdxaddr12only:$XBD2)))]> {
1267  let OpKey = mnemonic ## cls;
1268  let OpType = "mem";
1269  let Constraints = "$R1 = $R1src";
1270  let DisableEncoding = "$R1src";
1271  let mayLoad = 1;
1272  let AccessBytes = bytes;
1273}
1274
1275class LoadAndOpRSY<string mnemonic, bits<16> opcode, SDPatternOperator operator,
1276                  RegisterOperand cls, AddressingMode mode = bdaddr20only>
1277  : InstRSY<opcode, (outs cls:$R1), (ins cls:$R3, mode:$BD2),
1278            mnemonic#"\t$R1, $R3, $BD2",
1279            [(set cls:$R1, (operator mode:$BD2, cls:$R3))]> {
1280  let mayLoad = 1;
1281  let mayStore = 1;
1282}
1283
1284class CmpSwapRS<string mnemonic, bits<8> opcode, SDPatternOperator operator,
1285                RegisterOperand cls, AddressingMode mode = bdaddr12only>
1286  : InstRS<opcode, (outs cls:$R1), (ins cls:$R1src, cls:$R3, mode:$BD2),
1287           mnemonic#"\t$R1, $R3, $BD2",
1288           [(set cls:$R1, (operator mode:$BD2, cls:$R1src, cls:$R3))]> {
1289  let Constraints = "$R1 = $R1src";
1290  let DisableEncoding = "$R1src";
1291  let mayLoad = 1;
1292  let mayStore = 1;
1293}
1294
1295class CmpSwapRSY<string mnemonic, bits<16> opcode, SDPatternOperator operator,
1296                 RegisterOperand cls, AddressingMode mode = bdaddr20only>
1297  : InstRSY<opcode, (outs cls:$R1), (ins cls:$R1src, cls:$R3, mode:$BD2),
1298            mnemonic#"\t$R1, $R3, $BD2",
1299            [(set cls:$R1, (operator mode:$BD2, cls:$R1src, cls:$R3))]> {
1300  let Constraints = "$R1 = $R1src";
1301  let DisableEncoding = "$R1src";
1302  let mayLoad = 1;
1303  let mayStore = 1;
1304}
1305
1306multiclass CmpSwapRSPair<string mnemonic, bits<8> rsOpcode, bits<16> rsyOpcode,
1307                         SDPatternOperator operator, RegisterOperand cls> {
1308  let DispKey = mnemonic ## #cls in {
1309    let DispSize = "12" in
1310      def "" : CmpSwapRS<mnemonic, rsOpcode, operator, cls, bdaddr12pair>;
1311    let DispSize = "20" in
1312      def Y  : CmpSwapRSY<mnemonic#"y", rsyOpcode, operator, cls, bdaddr20pair>;
1313  }
1314}
1315
1316class RotateSelectRIEf<string mnemonic, bits<16> opcode, RegisterOperand cls1,
1317                       RegisterOperand cls2>
1318  : InstRIEf<opcode, (outs cls1:$R1),
1319             (ins cls1:$R1src, cls2:$R2, imm32zx8:$I3, imm32zx8:$I4,
1320                  imm32zx6:$I5),
1321             mnemonic#"\t$R1, $R2, $I3, $I4, $I5", []> {
1322  let Constraints = "$R1 = $R1src";
1323  let DisableEncoding = "$R1src";
1324}
1325
1326class PrefetchRXY<string mnemonic, bits<16> opcode, SDPatternOperator operator>
1327  : InstRXY<opcode, (outs), (ins imm32zx4:$R1, bdxaddr20only:$XBD2),
1328            mnemonic##"\t$R1, $XBD2",
1329            [(operator imm32zx4:$R1, bdxaddr20only:$XBD2)]>;
1330
1331class PrefetchRILPC<string mnemonic, bits<12> opcode,
1332                    SDPatternOperator operator>
1333  : InstRIL<opcode, (outs), (ins imm32zx4:$R1, pcrel32:$I2),
1334            mnemonic##"\t$R1, $I2",
1335            [(operator imm32zx4:$R1, pcrel32:$I2)]> {
1336  // We want PC-relative addresses to be tried ahead of BD and BDX addresses.
1337  // However, BDXs have two extra operands and are therefore 6 units more
1338  // complex.
1339  let AddedComplexity = 7;
1340}
1341
1342// A floating-point load-and test operation.  Create both a normal unary
1343// operation and one that acts as a comparison against zero.
1344multiclass LoadAndTestRRE<string mnemonic, bits<16> opcode,
1345                          RegisterOperand cls> {
1346  def "" : UnaryRRE<mnemonic, opcode, null_frag, cls, cls>;
1347  let isCodeGenOnly = 1 in
1348    def Compare : CompareRRE<mnemonic, opcode, null_frag, cls, cls>;
1349}
1350
1351//===----------------------------------------------------------------------===//
1352// Pseudo instructions
1353//===----------------------------------------------------------------------===//
1354//
1355// Convenience instructions that get lowered to real instructions
1356// by either SystemZTargetLowering::EmitInstrWithCustomInserter()
1357// or SystemZInstrInfo::expandPostRAPseudo().
1358//
1359//===----------------------------------------------------------------------===//
1360
1361class Pseudo<dag outs, dag ins, list<dag> pattern>
1362  : InstSystemZ<0, outs, ins, "", pattern> {
1363  let isPseudo = 1;
1364  let isCodeGenOnly = 1;
1365}
1366
1367// Like UnaryRI, but expanded after RA depending on the choice of register.
1368class UnaryRIPseudo<SDPatternOperator operator, RegisterOperand cls,
1369                    Immediate imm>
1370  : Pseudo<(outs cls:$R1), (ins imm:$I2),
1371           [(set cls:$R1, (operator imm:$I2))]>;
1372
1373// Like UnaryRXY, but expanded after RA depending on the choice of register.
1374class UnaryRXYPseudo<string key, SDPatternOperator operator,
1375                     RegisterOperand cls, bits<5> bytes,
1376                     AddressingMode mode = bdxaddr20only>
1377  : Pseudo<(outs cls:$R1), (ins mode:$XBD2),
1378           [(set cls:$R1, (operator mode:$XBD2))]> {
1379  let OpKey = key ## cls;
1380  let OpType = "mem";
1381  let mayLoad = 1;
1382  let Has20BitOffset = 1;
1383  let HasIndex = 1;
1384  let AccessBytes = bytes;
1385}
1386
1387// Like UnaryRR, but expanded after RA depending on the choice of registers.
1388class UnaryRRPseudo<string key, SDPatternOperator operator,
1389                    RegisterOperand cls1, RegisterOperand cls2>
1390  : Pseudo<(outs cls1:$R1), (ins cls2:$R2),
1391           [(set cls1:$R1, (operator cls2:$R2))]> {
1392  let OpKey = key ## cls1;
1393  let OpType = "reg";
1394}
1395
1396// Like BinaryRI, but expanded after RA depending on the choice of register.
1397class BinaryRIPseudo<SDPatternOperator operator, RegisterOperand cls,
1398                     Immediate imm>
1399  : Pseudo<(outs cls:$R1), (ins cls:$R1src, imm:$I2),
1400           [(set cls:$R1, (operator cls:$R1src, imm:$I2))]> {
1401  let Constraints = "$R1 = $R1src";
1402}
1403
1404// Like BinaryRIE, but expanded after RA depending on the choice of register.
1405class BinaryRIEPseudo<SDPatternOperator operator, RegisterOperand cls,
1406                      Immediate imm>
1407  : Pseudo<(outs cls:$R1), (ins cls:$R3, imm:$I2),
1408           [(set cls:$R1, (operator cls:$R3, imm:$I2))]>;
1409
1410// Like BinaryRIAndK, but expanded after RA depending on the choice of register.
1411multiclass BinaryRIAndKPseudo<string key, SDPatternOperator operator,
1412                              RegisterOperand cls, Immediate imm> {
1413  let NumOpsKey = key in {
1414    let NumOpsValue = "3" in
1415      def K : BinaryRIEPseudo<null_frag, cls, imm>,
1416              Requires<[FeatureHighWord, FeatureDistinctOps]>;
1417    let NumOpsValue = "2", isConvertibleToThreeAddress = 1 in
1418      def "" : BinaryRIPseudo<operator, cls, imm>,
1419               Requires<[FeatureHighWord]>;
1420  }
1421}
1422
1423// Like CompareRI, but expanded after RA depending on the choice of register.
1424class CompareRIPseudo<SDPatternOperator operator, RegisterOperand cls,
1425                      Immediate imm>
1426  : Pseudo<(outs), (ins cls:$R1, imm:$I2), [(operator cls:$R1, imm:$I2)]>;
1427
1428// Like CompareRXY, but expanded after RA depending on the choice of register.
1429class CompareRXYPseudo<SDPatternOperator operator, RegisterOperand cls,
1430                       SDPatternOperator load, bits<5> bytes,
1431                       AddressingMode mode = bdxaddr20only>
1432  : Pseudo<(outs), (ins cls:$R1, mode:$XBD2),
1433           [(operator cls:$R1, (load mode:$XBD2))]> {
1434  let mayLoad = 1;
1435  let Has20BitOffset = 1;
1436  let HasIndex = 1;
1437  let AccessBytes = bytes;
1438}
1439
1440// Like StoreRXY, but expanded after RA depending on the choice of register.
1441class StoreRXYPseudo<SDPatternOperator operator, RegisterOperand cls,
1442                     bits<5> bytes, AddressingMode mode = bdxaddr20only>
1443  : Pseudo<(outs), (ins cls:$R1, mode:$XBD2),
1444           [(operator cls:$R1, mode:$XBD2)]> {
1445  let mayStore = 1;
1446  let Has20BitOffset = 1;
1447  let HasIndex = 1;
1448  let AccessBytes = bytes;
1449}
1450
1451// Like RotateSelectRIEf, but expanded after RA depending on the choice
1452// of registers.
1453class RotateSelectRIEfPseudo<RegisterOperand cls1, RegisterOperand cls2>
1454  : Pseudo<(outs cls1:$R1),
1455           (ins cls1:$R1src, cls2:$R2, imm32zx8:$I3, imm32zx8:$I4,
1456                imm32zx6:$I5),
1457           []> {
1458  let Constraints = "$R1 = $R1src";
1459  let DisableEncoding = "$R1src";
1460}
1461
1462// Implements "$dst = $cc & (8 >> CC) ? $src1 : $src2", where CC is
1463// the value of the PSW's 2-bit condition code field.
1464class SelectWrapper<RegisterOperand cls>
1465  : Pseudo<(outs cls:$dst),
1466           (ins cls:$src1, cls:$src2, imm32zx4:$valid, imm32zx4:$cc),
1467           [(set cls:$dst, (z_select_ccmask cls:$src1, cls:$src2,
1468                                            imm32zx4:$valid, imm32zx4:$cc))]> {
1469  let usesCustomInserter = 1;
1470  // Although the instructions used by these nodes do not in themselves
1471  // change CC, the insertion requires new blocks, and CC cannot be live
1472  // across them.
1473  let Defs = [CC];
1474  let Uses = [CC];
1475}
1476
1477// Stores $new to $addr if $cc is true ("" case) or false (Inv case).
1478multiclass CondStores<RegisterOperand cls, SDPatternOperator store,
1479                      SDPatternOperator load, AddressingMode mode> {
1480  let Defs = [CC], Uses = [CC], usesCustomInserter = 1 in {
1481    def "" : Pseudo<(outs),
1482                    (ins cls:$new, mode:$addr, imm32zx4:$valid, imm32zx4:$cc),
1483                    [(store (z_select_ccmask cls:$new, (load mode:$addr),
1484                                             imm32zx4:$valid, imm32zx4:$cc),
1485                            mode:$addr)]>;
1486    def Inv : Pseudo<(outs),
1487                     (ins cls:$new, mode:$addr, imm32zx4:$valid, imm32zx4:$cc),
1488                     [(store (z_select_ccmask (load mode:$addr), cls:$new,
1489                                              imm32zx4:$valid, imm32zx4:$cc),
1490                              mode:$addr)]>;
1491  }
1492}
1493
1494// OPERATOR is ATOMIC_SWAP or an ATOMIC_LOAD_* operation.  PAT and OPERAND
1495// describe the second (non-memory) operand.
1496class AtomicLoadBinary<SDPatternOperator operator, RegisterOperand cls,
1497                       dag pat, DAGOperand operand>
1498  : Pseudo<(outs cls:$dst), (ins bdaddr20only:$ptr, operand:$src2),
1499           [(set cls:$dst, (operator bdaddr20only:$ptr, pat))]> {
1500  let Defs = [CC];
1501  let Has20BitOffset = 1;
1502  let mayLoad = 1;
1503  let mayStore = 1;
1504  let usesCustomInserter = 1;
1505}
1506
1507// Specializations of AtomicLoadWBinary.
1508class AtomicLoadBinaryReg32<SDPatternOperator operator>
1509  : AtomicLoadBinary<operator, GR32, (i32 GR32:$src2), GR32>;
1510class AtomicLoadBinaryImm32<SDPatternOperator operator, Immediate imm>
1511  : AtomicLoadBinary<operator, GR32, (i32 imm:$src2), imm>;
1512class AtomicLoadBinaryReg64<SDPatternOperator operator>
1513  : AtomicLoadBinary<operator, GR64, (i64 GR64:$src2), GR64>;
1514class AtomicLoadBinaryImm64<SDPatternOperator operator, Immediate imm>
1515  : AtomicLoadBinary<operator, GR64, (i64 imm:$src2), imm>;
1516
1517// OPERATOR is ATOMIC_SWAPW or an ATOMIC_LOADW_* operation.  PAT and OPERAND
1518// describe the second (non-memory) operand.
1519class AtomicLoadWBinary<SDPatternOperator operator, dag pat,
1520                        DAGOperand operand>
1521  : Pseudo<(outs GR32:$dst),
1522           (ins bdaddr20only:$ptr, operand:$src2, ADDR32:$bitshift,
1523                ADDR32:$negbitshift, uimm32:$bitsize),
1524           [(set GR32:$dst, (operator bdaddr20only:$ptr, pat, ADDR32:$bitshift,
1525                                      ADDR32:$negbitshift, uimm32:$bitsize))]> {
1526  let Defs = [CC];
1527  let Has20BitOffset = 1;
1528  let mayLoad = 1;
1529  let mayStore = 1;
1530  let usesCustomInserter = 1;
1531}
1532
1533// Specializations of AtomicLoadWBinary.
1534class AtomicLoadWBinaryReg<SDPatternOperator operator>
1535  : AtomicLoadWBinary<operator, (i32 GR32:$src2), GR32>;
1536class AtomicLoadWBinaryImm<SDPatternOperator operator, Immediate imm>
1537  : AtomicLoadWBinary<operator, (i32 imm:$src2), imm>;
1538
1539// Define an instruction that operates on two fixed-length blocks of memory,
1540// and associated pseudo instructions for operating on blocks of any size.
1541// The Sequence form uses a straight-line sequence of instructions and
1542// the Loop form uses a loop of length-256 instructions followed by
1543// another instruction to handle the excess.
1544multiclass MemorySS<string mnemonic, bits<8> opcode,
1545                    SDPatternOperator sequence, SDPatternOperator loop> {
1546  def "" : InstSS<opcode, (outs), (ins bdladdr12onlylen8:$BDL1,
1547                                       bdaddr12only:$BD2),
1548                  mnemonic##"\t$BDL1, $BD2", []>;
1549  let usesCustomInserter = 1 in {
1550    def Sequence : Pseudo<(outs), (ins bdaddr12only:$dest, bdaddr12only:$src,
1551                                       imm64:$length),
1552                           [(sequence bdaddr12only:$dest, bdaddr12only:$src,
1553                                      imm64:$length)]>;
1554    def Loop : Pseudo<(outs), (ins bdaddr12only:$dest, bdaddr12only:$src,
1555                                   imm64:$length, GR64:$count256),
1556                      [(loop bdaddr12only:$dest, bdaddr12only:$src,
1557                             imm64:$length, GR64:$count256)]>;
1558  }
1559}
1560
1561// Define an instruction that operates on two strings, both terminated
1562// by the character in R0.  The instruction processes a CPU-determinated
1563// number of bytes at a time and sets CC to 3 if the instruction needs
1564// to be repeated.  Also define a pseudo instruction that represents
1565// the full loop (the main instruction plus the branch on CC==3).
1566multiclass StringRRE<string mnemonic, bits<16> opcode,
1567                     SDPatternOperator operator> {
1568  def "" : InstRRE<opcode, (outs GR64:$R1, GR64:$R2),
1569                   (ins GR64:$R1src, GR64:$R2src),
1570                   mnemonic#"\t$R1, $R2", []> {
1571    let Constraints = "$R1 = $R1src, $R2 = $R2src";
1572    let DisableEncoding = "$R1src, $R2src";
1573  }
1574  let usesCustomInserter = 1 in
1575    def Loop : Pseudo<(outs GR64:$end),
1576                      (ins GR64:$start1, GR64:$start2, GR32:$char),
1577                      [(set GR64:$end, (operator GR64:$start1, GR64:$start2,
1578                                                 GR32:$char))]>;
1579}
1580
1581// A pseudo instruction that is a direct alias of a real instruction.
1582// These aliases are used in cases where a particular register operand is
1583// fixed or where the same instruction is used with different register sizes.
1584// The size parameter is the size in bytes of the associated real instruction.
1585class Alias<int size, dag outs, dag ins, list<dag> pattern>
1586  : InstSystemZ<size, outs, ins, "", pattern> {
1587  let isPseudo = 1;
1588  let isCodeGenOnly = 1;
1589}
1590
1591// An alias of a BinaryRI, but with different register sizes.
1592class BinaryAliasRI<SDPatternOperator operator, RegisterOperand cls,
1593                    Immediate imm>
1594  : Alias<4, (outs cls:$R1), (ins cls:$R1src, imm:$I2),
1595          [(set cls:$R1, (operator cls:$R1src, imm:$I2))]> {
1596  let Constraints = "$R1 = $R1src";
1597}
1598
1599// An alias of a BinaryRIL, but with different register sizes.
1600class BinaryAliasRIL<SDPatternOperator operator, RegisterOperand cls,
1601                     Immediate imm>
1602  : Alias<6, (outs cls:$R1), (ins cls:$R1src, imm:$I2),
1603          [(set cls:$R1, (operator cls:$R1src, imm:$I2))]> {
1604  let Constraints = "$R1 = $R1src";
1605}
1606
1607// An alias of a CompareRI, but with different register sizes.
1608class CompareAliasRI<SDPatternOperator operator, RegisterOperand cls,
1609                     Immediate imm>
1610  : Alias<4, (outs), (ins cls:$R1, imm:$I2), [(operator cls:$R1, imm:$I2)]> {
1611  let isCompare = 1;
1612}
1613
1614// An alias of a RotateSelectRIEf, but with different register sizes.
1615class RotateSelectAliasRIEf<RegisterOperand cls1, RegisterOperand cls2>
1616  : Alias<6, (outs cls1:$R1),
1617          (ins cls1:$R1src, cls2:$R2, imm32zx8:$I3, imm32zx8:$I4,
1618               imm32zx6:$I5), []> {
1619  let Constraints = "$R1 = $R1src";
1620}
1621