1 //===-- DeadArgumentElimination.cpp - Eliminate dead arguments ------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This pass deletes dead arguments from internal functions.  Dead argument
11 // elimination removes arguments which are directly dead, as well as arguments
12 // only passed into function calls as dead arguments of other functions.  This
13 // pass also deletes dead return values in a similar way.
14 //
15 // This pass is often useful as a cleanup pass to run after aggressive
16 // interprocedural passes, which add possibly-dead arguments or return values.
17 //
18 //===----------------------------------------------------------------------===//
19 
20 #include "llvm/Transforms/IPO.h"
21 #include "llvm/ADT/DenseMap.h"
22 #include "llvm/ADT/SmallVector.h"
23 #include "llvm/ADT/Statistic.h"
24 #include "llvm/ADT/StringExtras.h"
25 #include "llvm/IR/CallSite.h"
26 #include "llvm/IR/CallingConv.h"
27 #include "llvm/IR/Constant.h"
28 #include "llvm/IR/DIBuilder.h"
29 #include "llvm/IR/DebugInfo.h"
30 #include "llvm/IR/DerivedTypes.h"
31 #include "llvm/IR/Instructions.h"
32 #include "llvm/IR/IntrinsicInst.h"
33 #include "llvm/IR/LLVMContext.h"
34 #include "llvm/IR/Module.h"
35 #include "llvm/Pass.h"
36 #include "llvm/Support/Debug.h"
37 #include "llvm/Support/raw_ostream.h"
38 #include <map>
39 #include <set>
40 #include <tuple>
41 using namespace llvm;
42 
43 #define DEBUG_TYPE "deadargelim"
44 
45 STATISTIC(NumArgumentsEliminated, "Number of unread args removed");
46 STATISTIC(NumRetValsEliminated  , "Number of unused return values removed");
47 STATISTIC(NumArgumentsReplacedWithUndef,
48           "Number of unread args replaced with undef");
49 namespace {
50   /// DAE - The dead argument elimination pass.
51   ///
52   class DAE : public ModulePass {
53   public:
54 
55     /// Struct that represents (part of) either a return value or a function
56     /// argument.  Used so that arguments and return values can be used
57     /// interchangeably.
58     struct RetOrArg {
RetOrArg__anon021bdbd10111::DAE::RetOrArg59       RetOrArg(const Function *F, unsigned Idx, bool IsArg) : F(F), Idx(Idx),
60                IsArg(IsArg) {}
61       const Function *F;
62       unsigned Idx;
63       bool IsArg;
64 
65       /// Make RetOrArg comparable, so we can put it into a map.
operator <__anon021bdbd10111::DAE::RetOrArg66       bool operator<(const RetOrArg &O) const {
67         return std::tie(F, Idx, IsArg) < std::tie(O.F, O.Idx, O.IsArg);
68       }
69 
70       /// Make RetOrArg comparable, so we can easily iterate the multimap.
operator ==__anon021bdbd10111::DAE::RetOrArg71       bool operator==(const RetOrArg &O) const {
72         return F == O.F && Idx == O.Idx && IsArg == O.IsArg;
73       }
74 
getDescription__anon021bdbd10111::DAE::RetOrArg75       std::string getDescription() const {
76         return (Twine(IsArg ? "Argument #" : "Return value #") + utostr(Idx) +
77                 " of function " + F->getName()).str();
78       }
79     };
80 
81     /// Liveness enum - During our initial pass over the program, we determine
82     /// that things are either alive or maybe alive. We don't mark anything
83     /// explicitly dead (even if we know they are), since anything not alive
84     /// with no registered uses (in Uses) will never be marked alive and will
85     /// thus become dead in the end.
86     enum Liveness { Live, MaybeLive };
87 
88     /// Convenience wrapper
CreateRet(const Function * F,unsigned Idx)89     RetOrArg CreateRet(const Function *F, unsigned Idx) {
90       return RetOrArg(F, Idx, false);
91     }
92     /// Convenience wrapper
CreateArg(const Function * F,unsigned Idx)93     RetOrArg CreateArg(const Function *F, unsigned Idx) {
94       return RetOrArg(F, Idx, true);
95     }
96 
97     typedef std::multimap<RetOrArg, RetOrArg> UseMap;
98     /// This maps a return value or argument to any MaybeLive return values or
99     /// arguments it uses. This allows the MaybeLive values to be marked live
100     /// when any of its users is marked live.
101     /// For example (indices are left out for clarity):
102     ///  - Uses[ret F] = ret G
103     ///    This means that F calls G, and F returns the value returned by G.
104     ///  - Uses[arg F] = ret G
105     ///    This means that some function calls G and passes its result as an
106     ///    argument to F.
107     ///  - Uses[ret F] = arg F
108     ///    This means that F returns one of its own arguments.
109     ///  - Uses[arg F] = arg G
110     ///    This means that G calls F and passes one of its own (G's) arguments
111     ///    directly to F.
112     UseMap Uses;
113 
114     typedef std::set<RetOrArg> LiveSet;
115     typedef std::set<const Function*> LiveFuncSet;
116 
117     /// This set contains all values that have been determined to be live.
118     LiveSet LiveValues;
119     /// This set contains all values that are cannot be changed in any way.
120     LiveFuncSet LiveFunctions;
121 
122     typedef SmallVector<RetOrArg, 5> UseVector;
123 
124     // Map each LLVM function to corresponding metadata with debug info. If
125     // the function is replaced with another one, we should patch the pointer
126     // to LLVM function in metadata.
127     // As the code generation for module is finished (and DIBuilder is
128     // finalized) we assume that subprogram descriptors won't be changed, and
129     // they are stored in map for short duration anyway.
130     DenseMap<const Function *, DISubprogram> FunctionDIs;
131 
132   protected:
133     // DAH uses this to specify a different ID.
DAE(char & ID)134     explicit DAE(char &ID) : ModulePass(ID) {}
135 
136   public:
137     static char ID; // Pass identification, replacement for typeid
DAE()138     DAE() : ModulePass(ID) {
139       initializeDAEPass(*PassRegistry::getPassRegistry());
140     }
141 
142     bool runOnModule(Module &M) override;
143 
ShouldHackArguments() const144     virtual bool ShouldHackArguments() const { return false; }
145 
146   private:
147     Liveness MarkIfNotLive(RetOrArg Use, UseVector &MaybeLiveUses);
148     Liveness SurveyUse(const Use *U, UseVector &MaybeLiveUses,
149                        unsigned RetValNum = -1U);
150     Liveness SurveyUses(const Value *V, UseVector &MaybeLiveUses);
151 
152     void SurveyFunction(const Function &F);
153     void MarkValue(const RetOrArg &RA, Liveness L,
154                    const UseVector &MaybeLiveUses);
155     void MarkLive(const RetOrArg &RA);
156     void MarkLive(const Function &F);
157     void PropagateLiveness(const RetOrArg &RA);
158     bool RemoveDeadStuffFromFunction(Function *F);
159     bool DeleteDeadVarargs(Function &Fn);
160     bool RemoveDeadArgumentsFromCallers(Function &Fn);
161   };
162 }
163 
164 
165 char DAE::ID = 0;
166 INITIALIZE_PASS(DAE, "deadargelim", "Dead Argument Elimination", false, false)
167 
168 namespace {
169   /// DAH - DeadArgumentHacking pass - Same as dead argument elimination, but
170   /// deletes arguments to functions which are external.  This is only for use
171   /// by bugpoint.
172   struct DAH : public DAE {
173     static char ID;
DAH__anon021bdbd10211::DAH174     DAH() : DAE(ID) {}
175 
ShouldHackArguments__anon021bdbd10211::DAH176     bool ShouldHackArguments() const override { return true; }
177   };
178 }
179 
180 char DAH::ID = 0;
181 INITIALIZE_PASS(DAH, "deadarghaX0r",
182                 "Dead Argument Hacking (BUGPOINT USE ONLY; DO NOT USE)",
183                 false, false)
184 
185 /// createDeadArgEliminationPass - This pass removes arguments from functions
186 /// which are not used by the body of the function.
187 ///
createDeadArgEliminationPass()188 ModulePass *llvm::createDeadArgEliminationPass() { return new DAE(); }
createDeadArgHackingPass()189 ModulePass *llvm::createDeadArgHackingPass() { return new DAH(); }
190 
191 /// DeleteDeadVarargs - If this is an function that takes a ... list, and if
192 /// llvm.vastart is never called, the varargs list is dead for the function.
DeleteDeadVarargs(Function & Fn)193 bool DAE::DeleteDeadVarargs(Function &Fn) {
194   assert(Fn.getFunctionType()->isVarArg() && "Function isn't varargs!");
195   if (Fn.isDeclaration() || !Fn.hasLocalLinkage()) return false;
196 
197   // Ensure that the function is only directly called.
198   if (Fn.hasAddressTaken())
199     return false;
200 
201   // Okay, we know we can transform this function if safe.  Scan its body
202   // looking for calls marked musttail or calls to llvm.vastart.
203   for (Function::iterator BB = Fn.begin(), E = Fn.end(); BB != E; ++BB) {
204     for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) {
205       CallInst *CI = dyn_cast<CallInst>(I);
206       if (!CI)
207         continue;
208       if (CI->isMustTailCall())
209         return false;
210       if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI)) {
211         if (II->getIntrinsicID() == Intrinsic::vastart)
212           return false;
213       }
214     }
215   }
216 
217   // If we get here, there are no calls to llvm.vastart in the function body,
218   // remove the "..." and adjust all the calls.
219 
220   // Start by computing a new prototype for the function, which is the same as
221   // the old function, but doesn't have isVarArg set.
222   FunctionType *FTy = Fn.getFunctionType();
223 
224   std::vector<Type*> Params(FTy->param_begin(), FTy->param_end());
225   FunctionType *NFTy = FunctionType::get(FTy->getReturnType(),
226                                                 Params, false);
227   unsigned NumArgs = Params.size();
228 
229   // Create the new function body and insert it into the module...
230   Function *NF = Function::Create(NFTy, Fn.getLinkage());
231   NF->copyAttributesFrom(&Fn);
232   Fn.getParent()->getFunctionList().insert(&Fn, NF);
233   NF->takeName(&Fn);
234 
235   // Loop over all of the callers of the function, transforming the call sites
236   // to pass in a smaller number of arguments into the new function.
237   //
238   std::vector<Value*> Args;
239   for (Value::user_iterator I = Fn.user_begin(), E = Fn.user_end(); I != E; ) {
240     CallSite CS(*I++);
241     if (!CS)
242       continue;
243     Instruction *Call = CS.getInstruction();
244 
245     // Pass all the same arguments.
246     Args.assign(CS.arg_begin(), CS.arg_begin() + NumArgs);
247 
248     // Drop any attributes that were on the vararg arguments.
249     AttributeSet PAL = CS.getAttributes();
250     if (!PAL.isEmpty() && PAL.getSlotIndex(PAL.getNumSlots() - 1) > NumArgs) {
251       SmallVector<AttributeSet, 8> AttributesVec;
252       for (unsigned i = 0; PAL.getSlotIndex(i) <= NumArgs; ++i)
253         AttributesVec.push_back(PAL.getSlotAttributes(i));
254       if (PAL.hasAttributes(AttributeSet::FunctionIndex))
255         AttributesVec.push_back(AttributeSet::get(Fn.getContext(),
256                                                   PAL.getFnAttributes()));
257       PAL = AttributeSet::get(Fn.getContext(), AttributesVec);
258     }
259 
260     Instruction *New;
261     if (InvokeInst *II = dyn_cast<InvokeInst>(Call)) {
262       New = InvokeInst::Create(NF, II->getNormalDest(), II->getUnwindDest(),
263                                Args, "", Call);
264       cast<InvokeInst>(New)->setCallingConv(CS.getCallingConv());
265       cast<InvokeInst>(New)->setAttributes(PAL);
266     } else {
267       New = CallInst::Create(NF, Args, "", Call);
268       cast<CallInst>(New)->setCallingConv(CS.getCallingConv());
269       cast<CallInst>(New)->setAttributes(PAL);
270       if (cast<CallInst>(Call)->isTailCall())
271         cast<CallInst>(New)->setTailCall();
272     }
273     New->setDebugLoc(Call->getDebugLoc());
274 
275     Args.clear();
276 
277     if (!Call->use_empty())
278       Call->replaceAllUsesWith(New);
279 
280     New->takeName(Call);
281 
282     // Finally, remove the old call from the program, reducing the use-count of
283     // F.
284     Call->eraseFromParent();
285   }
286 
287   // Since we have now created the new function, splice the body of the old
288   // function right into the new function, leaving the old rotting hulk of the
289   // function empty.
290   NF->getBasicBlockList().splice(NF->begin(), Fn.getBasicBlockList());
291 
292   // Loop over the argument list, transferring uses of the old arguments over to
293   // the new arguments, also transferring over the names as well.  While we're at
294   // it, remove the dead arguments from the DeadArguments list.
295   //
296   for (Function::arg_iterator I = Fn.arg_begin(), E = Fn.arg_end(),
297        I2 = NF->arg_begin(); I != E; ++I, ++I2) {
298     // Move the name and users over to the new version.
299     I->replaceAllUsesWith(I2);
300     I2->takeName(I);
301   }
302 
303   // Patch the pointer to LLVM function in debug info descriptor.
304   auto DI = FunctionDIs.find(&Fn);
305   if (DI != FunctionDIs.end()) {
306     DISubprogram SP = DI->second;
307     SP->replaceFunction(NF);
308     // Ensure the map is updated so it can be reused on non-varargs argument
309     // eliminations of the same function.
310     FunctionDIs.erase(DI);
311     FunctionDIs[NF] = SP;
312   }
313 
314   // Fix up any BlockAddresses that refer to the function.
315   Fn.replaceAllUsesWith(ConstantExpr::getBitCast(NF, Fn.getType()));
316   // Delete the bitcast that we just created, so that NF does not
317   // appear to be address-taken.
318   NF->removeDeadConstantUsers();
319   // Finally, nuke the old function.
320   Fn.eraseFromParent();
321   return true;
322 }
323 
324 /// RemoveDeadArgumentsFromCallers - Checks if the given function has any
325 /// arguments that are unused, and changes the caller parameters to be undefined
326 /// instead.
RemoveDeadArgumentsFromCallers(Function & Fn)327 bool DAE::RemoveDeadArgumentsFromCallers(Function &Fn)
328 {
329   if (Fn.isDeclaration() || Fn.mayBeOverridden())
330     return false;
331 
332   // Functions with local linkage should already have been handled, except the
333   // fragile (variadic) ones which we can improve here.
334   if (Fn.hasLocalLinkage() && !Fn.getFunctionType()->isVarArg())
335     return false;
336 
337   // If a function seen at compile time is not necessarily the one linked to
338   // the binary being built, it is illegal to change the actual arguments
339   // passed to it. These functions can be captured by isWeakForLinker().
340   // *NOTE* that mayBeOverridden() is insufficient for this purpose as it
341   // doesn't include linkage types like AvailableExternallyLinkage and
342   // LinkOnceODRLinkage. Take link_odr* as an example, it indicates a set of
343   // *EQUIVALENT* globals that can be merged at link-time. However, the
344   // semantic of *EQUIVALENT*-functions includes parameters. Changing
345   // parameters breaks this assumption.
346   //
347   if (Fn.isWeakForLinker())
348     return false;
349 
350   if (Fn.use_empty())
351     return false;
352 
353   SmallVector<unsigned, 8> UnusedArgs;
354   for (Function::arg_iterator I = Fn.arg_begin(), E = Fn.arg_end();
355        I != E; ++I) {
356     Argument *Arg = I;
357 
358     if (Arg->use_empty() && !Arg->hasByValOrInAllocaAttr())
359       UnusedArgs.push_back(Arg->getArgNo());
360   }
361 
362   if (UnusedArgs.empty())
363     return false;
364 
365   bool Changed = false;
366 
367   for (Use &U : Fn.uses()) {
368     CallSite CS(U.getUser());
369     if (!CS || !CS.isCallee(&U))
370       continue;
371 
372     // Now go through all unused args and replace them with "undef".
373     for (unsigned I = 0, E = UnusedArgs.size(); I != E; ++I) {
374       unsigned ArgNo = UnusedArgs[I];
375 
376       Value *Arg = CS.getArgument(ArgNo);
377       CS.setArgument(ArgNo, UndefValue::get(Arg->getType()));
378       ++NumArgumentsReplacedWithUndef;
379       Changed = true;
380     }
381   }
382 
383   return Changed;
384 }
385 
386 /// Convenience function that returns the number of return values. It returns 0
387 /// for void functions and 1 for functions not returning a struct. It returns
388 /// the number of struct elements for functions returning a struct.
NumRetVals(const Function * F)389 static unsigned NumRetVals(const Function *F) {
390   Type *RetTy = F->getReturnType();
391   if (RetTy->isVoidTy())
392     return 0;
393   else if (StructType *STy = dyn_cast<StructType>(RetTy))
394     return STy->getNumElements();
395   else if (ArrayType *ATy = dyn_cast<ArrayType>(RetTy))
396     return ATy->getNumElements();
397   else
398     return 1;
399 }
400 
401 /// Returns the sub-type a function will return at a given Idx. Should
402 /// correspond to the result type of an ExtractValue instruction executed with
403 /// just that one Idx (i.e. only top-level structure is considered).
getRetComponentType(const Function * F,unsigned Idx)404 static Type *getRetComponentType(const Function *F, unsigned Idx) {
405   Type *RetTy = F->getReturnType();
406   assert(!RetTy->isVoidTy() && "void type has no subtype");
407 
408   if (StructType *STy = dyn_cast<StructType>(RetTy))
409     return STy->getElementType(Idx);
410   else if (ArrayType *ATy = dyn_cast<ArrayType>(RetTy))
411     return ATy->getElementType();
412   else
413     return RetTy;
414 }
415 
416 /// MarkIfNotLive - This checks Use for liveness in LiveValues. If Use is not
417 /// live, it adds Use to the MaybeLiveUses argument. Returns the determined
418 /// liveness of Use.
MarkIfNotLive(RetOrArg Use,UseVector & MaybeLiveUses)419 DAE::Liveness DAE::MarkIfNotLive(RetOrArg Use, UseVector &MaybeLiveUses) {
420   // We're live if our use or its Function is already marked as live.
421   if (LiveFunctions.count(Use.F) || LiveValues.count(Use))
422     return Live;
423 
424   // We're maybe live otherwise, but remember that we must become live if
425   // Use becomes live.
426   MaybeLiveUses.push_back(Use);
427   return MaybeLive;
428 }
429 
430 
431 /// SurveyUse - This looks at a single use of an argument or return value
432 /// and determines if it should be alive or not. Adds this use to MaybeLiveUses
433 /// if it causes the used value to become MaybeLive.
434 ///
435 /// RetValNum is the return value number to use when this use is used in a
436 /// return instruction. This is used in the recursion, you should always leave
437 /// it at 0.
SurveyUse(const Use * U,UseVector & MaybeLiveUses,unsigned RetValNum)438 DAE::Liveness DAE::SurveyUse(const Use *U,
439                              UseVector &MaybeLiveUses, unsigned RetValNum) {
440     const User *V = U->getUser();
441     if (const ReturnInst *RI = dyn_cast<ReturnInst>(V)) {
442       // The value is returned from a function. It's only live when the
443       // function's return value is live. We use RetValNum here, for the case
444       // that U is really a use of an insertvalue instruction that uses the
445       // original Use.
446       const Function *F = RI->getParent()->getParent();
447       if (RetValNum != -1U) {
448         RetOrArg Use = CreateRet(F, RetValNum);
449         // We might be live, depending on the liveness of Use.
450         return MarkIfNotLive(Use, MaybeLiveUses);
451       } else {
452         DAE::Liveness Result = MaybeLive;
453         for (unsigned i = 0; i < NumRetVals(F); ++i) {
454           RetOrArg Use = CreateRet(F, i);
455           // We might be live, depending on the liveness of Use. If any
456           // sub-value is live, then the entire value is considered live. This
457           // is a conservative choice, and better tracking is possible.
458           DAE::Liveness SubResult = MarkIfNotLive(Use, MaybeLiveUses);
459           if (Result != Live)
460             Result = SubResult;
461         }
462         return Result;
463       }
464     }
465     if (const InsertValueInst *IV = dyn_cast<InsertValueInst>(V)) {
466       if (U->getOperandNo() != InsertValueInst::getAggregateOperandIndex()
467           && IV->hasIndices())
468         // The use we are examining is inserted into an aggregate. Our liveness
469         // depends on all uses of that aggregate, but if it is used as a return
470         // value, only index at which we were inserted counts.
471         RetValNum = *IV->idx_begin();
472 
473       // Note that if we are used as the aggregate operand to the insertvalue,
474       // we don't change RetValNum, but do survey all our uses.
475 
476       Liveness Result = MaybeLive;
477       for (const Use &UU : IV->uses()) {
478         Result = SurveyUse(&UU, MaybeLiveUses, RetValNum);
479         if (Result == Live)
480           break;
481       }
482       return Result;
483     }
484 
485     if (auto CS = ImmutableCallSite(V)) {
486       const Function *F = CS.getCalledFunction();
487       if (F) {
488         // Used in a direct call.
489 
490         // Find the argument number. We know for sure that this use is an
491         // argument, since if it was the function argument this would be an
492         // indirect call and the we know can't be looking at a value of the
493         // label type (for the invoke instruction).
494         unsigned ArgNo = CS.getArgumentNo(U);
495 
496         if (ArgNo >= F->getFunctionType()->getNumParams())
497           // The value is passed in through a vararg! Must be live.
498           return Live;
499 
500         assert(CS.getArgument(ArgNo)
501                == CS->getOperand(U->getOperandNo())
502                && "Argument is not where we expected it");
503 
504         // Value passed to a normal call. It's only live when the corresponding
505         // argument to the called function turns out live.
506         RetOrArg Use = CreateArg(F, ArgNo);
507         return MarkIfNotLive(Use, MaybeLiveUses);
508       }
509     }
510     // Used in any other way? Value must be live.
511     return Live;
512 }
513 
514 /// SurveyUses - This looks at all the uses of the given value
515 /// Returns the Liveness deduced from the uses of this value.
516 ///
517 /// Adds all uses that cause the result to be MaybeLive to MaybeLiveRetUses. If
518 /// the result is Live, MaybeLiveUses might be modified but its content should
519 /// be ignored (since it might not be complete).
SurveyUses(const Value * V,UseVector & MaybeLiveUses)520 DAE::Liveness DAE::SurveyUses(const Value *V, UseVector &MaybeLiveUses) {
521   // Assume it's dead (which will only hold if there are no uses at all..).
522   Liveness Result = MaybeLive;
523   // Check each use.
524   for (const Use &U : V->uses()) {
525     Result = SurveyUse(&U, MaybeLiveUses);
526     if (Result == Live)
527       break;
528   }
529   return Result;
530 }
531 
532 // SurveyFunction - This performs the initial survey of the specified function,
533 // checking out whether or not it uses any of its incoming arguments or whether
534 // any callers use the return value.  This fills in the LiveValues set and Uses
535 // map.
536 //
537 // We consider arguments of non-internal functions to be intrinsically alive as
538 // well as arguments to functions which have their "address taken".
539 //
SurveyFunction(const Function & F)540 void DAE::SurveyFunction(const Function &F) {
541   // Functions with inalloca parameters are expecting args in a particular
542   // register and memory layout.
543   if (F.getAttributes().hasAttrSomewhere(Attribute::InAlloca)) {
544     MarkLive(F);
545     return;
546   }
547 
548   unsigned RetCount = NumRetVals(&F);
549   // Assume all return values are dead
550   typedef SmallVector<Liveness, 5> RetVals;
551   RetVals RetValLiveness(RetCount, MaybeLive);
552 
553   typedef SmallVector<UseVector, 5> RetUses;
554   // These vectors map each return value to the uses that make it MaybeLive, so
555   // we can add those to the Uses map if the return value really turns out to be
556   // MaybeLive. Initialized to a list of RetCount empty lists.
557   RetUses MaybeLiveRetUses(RetCount);
558 
559   for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
560     if (const ReturnInst *RI = dyn_cast<ReturnInst>(BB->getTerminator()))
561       if (RI->getNumOperands() != 0 && RI->getOperand(0)->getType()
562           != F.getFunctionType()->getReturnType()) {
563         // We don't support old style multiple return values.
564         MarkLive(F);
565         return;
566       }
567 
568   if (!F.hasLocalLinkage() && (!ShouldHackArguments() || F.isIntrinsic())) {
569     MarkLive(F);
570     return;
571   }
572 
573   DEBUG(dbgs() << "DAE - Inspecting callers for fn: " << F.getName() << "\n");
574   // Keep track of the number of live retvals, so we can skip checks once all
575   // of them turn out to be live.
576   unsigned NumLiveRetVals = 0;
577   // Loop all uses of the function.
578   for (const Use &U : F.uses()) {
579     // If the function is PASSED IN as an argument, its address has been
580     // taken.
581     ImmutableCallSite CS(U.getUser());
582     if (!CS || !CS.isCallee(&U)) {
583       MarkLive(F);
584       return;
585     }
586 
587     // If this use is anything other than a call site, the function is alive.
588     const Instruction *TheCall = CS.getInstruction();
589     if (!TheCall) {   // Not a direct call site?
590       MarkLive(F);
591       return;
592     }
593 
594     // If we end up here, we are looking at a direct call to our function.
595 
596     // Now, check how our return value(s) is/are used in this caller. Don't
597     // bother checking return values if all of them are live already.
598     if (NumLiveRetVals == RetCount)
599       continue;
600 
601     // Check all uses of the return value.
602     for (const Use &U : TheCall->uses()) {
603       if (ExtractValueInst *Ext = dyn_cast<ExtractValueInst>(U.getUser())) {
604         // This use uses a part of our return value, survey the uses of
605         // that part and store the results for this index only.
606         unsigned Idx = *Ext->idx_begin();
607         if (RetValLiveness[Idx] != Live) {
608           RetValLiveness[Idx] = SurveyUses(Ext, MaybeLiveRetUses[Idx]);
609           if (RetValLiveness[Idx] == Live)
610             NumLiveRetVals++;
611         }
612       } else {
613         // Used by something else than extractvalue. Survey, but assume that the
614         // result applies to all sub-values.
615         UseVector MaybeLiveAggregateUses;
616         if (SurveyUse(&U, MaybeLiveAggregateUses) == Live) {
617           NumLiveRetVals = RetCount;
618           RetValLiveness.assign(RetCount, Live);
619           break;
620         } else {
621           for (unsigned i = 0; i != RetCount; ++i) {
622             if (RetValLiveness[i] != Live)
623               MaybeLiveRetUses[i].append(MaybeLiveAggregateUses.begin(),
624                                          MaybeLiveAggregateUses.end());
625           }
626         }
627       }
628     }
629   }
630 
631   // Now we've inspected all callers, record the liveness of our return values.
632   for (unsigned i = 0; i != RetCount; ++i)
633     MarkValue(CreateRet(&F, i), RetValLiveness[i], MaybeLiveRetUses[i]);
634 
635   DEBUG(dbgs() << "DAE - Inspecting args for fn: " << F.getName() << "\n");
636 
637   // Now, check all of our arguments.
638   unsigned i = 0;
639   UseVector MaybeLiveArgUses;
640   for (Function::const_arg_iterator AI = F.arg_begin(),
641        E = F.arg_end(); AI != E; ++AI, ++i) {
642     Liveness Result;
643     if (F.getFunctionType()->isVarArg()) {
644       // Variadic functions will already have a va_arg function expanded inside
645       // them, making them potentially very sensitive to ABI changes resulting
646       // from removing arguments entirely, so don't. For example AArch64 handles
647       // register and stack HFAs very differently, and this is reflected in the
648       // IR which has already been generated.
649       Result = Live;
650     } else {
651       // See what the effect of this use is (recording any uses that cause
652       // MaybeLive in MaybeLiveArgUses).
653       Result = SurveyUses(AI, MaybeLiveArgUses);
654     }
655 
656     // Mark the result.
657     MarkValue(CreateArg(&F, i), Result, MaybeLiveArgUses);
658     // Clear the vector again for the next iteration.
659     MaybeLiveArgUses.clear();
660   }
661 }
662 
663 /// MarkValue - This function marks the liveness of RA depending on L. If L is
664 /// MaybeLive, it also takes all uses in MaybeLiveUses and records them in Uses,
665 /// such that RA will be marked live if any use in MaybeLiveUses gets marked
666 /// live later on.
MarkValue(const RetOrArg & RA,Liveness L,const UseVector & MaybeLiveUses)667 void DAE::MarkValue(const RetOrArg &RA, Liveness L,
668                     const UseVector &MaybeLiveUses) {
669   switch (L) {
670     case Live: MarkLive(RA); break;
671     case MaybeLive:
672     {
673       // Note any uses of this value, so this return value can be
674       // marked live whenever one of the uses becomes live.
675       for (UseVector::const_iterator UI = MaybeLiveUses.begin(),
676            UE = MaybeLiveUses.end(); UI != UE; ++UI)
677         Uses.insert(std::make_pair(*UI, RA));
678       break;
679     }
680   }
681 }
682 
683 /// MarkLive - Mark the given Function as alive, meaning that it cannot be
684 /// changed in any way. Additionally,
685 /// mark any values that are used as this function's parameters or by its return
686 /// values (according to Uses) live as well.
MarkLive(const Function & F)687 void DAE::MarkLive(const Function &F) {
688   DEBUG(dbgs() << "DAE - Intrinsically live fn: " << F.getName() << "\n");
689   // Mark the function as live.
690   LiveFunctions.insert(&F);
691   // Mark all arguments as live.
692   for (unsigned i = 0, e = F.arg_size(); i != e; ++i)
693     PropagateLiveness(CreateArg(&F, i));
694   // Mark all return values as live.
695   for (unsigned i = 0, e = NumRetVals(&F); i != e; ++i)
696     PropagateLiveness(CreateRet(&F, i));
697 }
698 
699 /// MarkLive - Mark the given return value or argument as live. Additionally,
700 /// mark any values that are used by this value (according to Uses) live as
701 /// well.
MarkLive(const RetOrArg & RA)702 void DAE::MarkLive(const RetOrArg &RA) {
703   if (LiveFunctions.count(RA.F))
704     return; // Function was already marked Live.
705 
706   if (!LiveValues.insert(RA).second)
707     return; // We were already marked Live.
708 
709   DEBUG(dbgs() << "DAE - Marking " << RA.getDescription() << " live\n");
710   PropagateLiveness(RA);
711 }
712 
713 /// PropagateLiveness - Given that RA is a live value, propagate it's liveness
714 /// to any other values it uses (according to Uses).
PropagateLiveness(const RetOrArg & RA)715 void DAE::PropagateLiveness(const RetOrArg &RA) {
716   // We don't use upper_bound (or equal_range) here, because our recursive call
717   // to ourselves is likely to cause the upper_bound (which is the first value
718   // not belonging to RA) to become erased and the iterator invalidated.
719   UseMap::iterator Begin = Uses.lower_bound(RA);
720   UseMap::iterator E = Uses.end();
721   UseMap::iterator I;
722   for (I = Begin; I != E && I->first == RA; ++I)
723     MarkLive(I->second);
724 
725   // Erase RA from the Uses map (from the lower bound to wherever we ended up
726   // after the loop).
727   Uses.erase(Begin, I);
728 }
729 
730 // RemoveDeadStuffFromFunction - Remove any arguments and return values from F
731 // that are not in LiveValues. Transform the function and all of the callees of
732 // the function to not have these arguments and return values.
733 //
RemoveDeadStuffFromFunction(Function * F)734 bool DAE::RemoveDeadStuffFromFunction(Function *F) {
735   // Don't modify fully live functions
736   if (LiveFunctions.count(F))
737     return false;
738 
739   // Start by computing a new prototype for the function, which is the same as
740   // the old function, but has fewer arguments and a different return type.
741   FunctionType *FTy = F->getFunctionType();
742   std::vector<Type*> Params;
743 
744   // Keep track of if we have a live 'returned' argument
745   bool HasLiveReturnedArg = false;
746 
747   // Set up to build a new list of parameter attributes.
748   SmallVector<AttributeSet, 8> AttributesVec;
749   const AttributeSet &PAL = F->getAttributes();
750 
751   // Remember which arguments are still alive.
752   SmallVector<bool, 10> ArgAlive(FTy->getNumParams(), false);
753   // Construct the new parameter list from non-dead arguments. Also construct
754   // a new set of parameter attributes to correspond. Skip the first parameter
755   // attribute, since that belongs to the return value.
756   unsigned i = 0;
757   for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end();
758        I != E; ++I, ++i) {
759     RetOrArg Arg = CreateArg(F, i);
760     if (LiveValues.erase(Arg)) {
761       Params.push_back(I->getType());
762       ArgAlive[i] = true;
763 
764       // Get the original parameter attributes (skipping the first one, that is
765       // for the return value.
766       if (PAL.hasAttributes(i + 1)) {
767         AttrBuilder B(PAL, i + 1);
768         if (B.contains(Attribute::Returned))
769           HasLiveReturnedArg = true;
770         AttributesVec.
771           push_back(AttributeSet::get(F->getContext(), Params.size(), B));
772       }
773     } else {
774       ++NumArgumentsEliminated;
775       DEBUG(dbgs() << "DAE - Removing argument " << i << " (" << I->getName()
776             << ") from " << F->getName() << "\n");
777     }
778   }
779 
780   // Find out the new return value.
781   Type *RetTy = FTy->getReturnType();
782   Type *NRetTy = nullptr;
783   unsigned RetCount = NumRetVals(F);
784 
785   // -1 means unused, other numbers are the new index
786   SmallVector<int, 5> NewRetIdxs(RetCount, -1);
787   std::vector<Type*> RetTypes;
788 
789   // If there is a function with a live 'returned' argument but a dead return
790   // value, then there are two possible actions:
791   // 1) Eliminate the return value and take off the 'returned' attribute on the
792   //    argument.
793   // 2) Retain the 'returned' attribute and treat the return value (but not the
794   //    entire function) as live so that it is not eliminated.
795   //
796   // It's not clear in the general case which option is more profitable because,
797   // even in the absence of explicit uses of the return value, code generation
798   // is free to use the 'returned' attribute to do things like eliding
799   // save/restores of registers across calls. Whether or not this happens is
800   // target and ABI-specific as well as depending on the amount of register
801   // pressure, so there's no good way for an IR-level pass to figure this out.
802   //
803   // Fortunately, the only places where 'returned' is currently generated by
804   // the FE are places where 'returned' is basically free and almost always a
805   // performance win, so the second option can just be used always for now.
806   //
807   // This should be revisited if 'returned' is ever applied more liberally.
808   if (RetTy->isVoidTy() || HasLiveReturnedArg) {
809     NRetTy = RetTy;
810   } else {
811     // Look at each of the original return values individually.
812     for (unsigned i = 0; i != RetCount; ++i) {
813       RetOrArg Ret = CreateRet(F, i);
814       if (LiveValues.erase(Ret)) {
815         RetTypes.push_back(getRetComponentType(F, i));
816         NewRetIdxs[i] = RetTypes.size() - 1;
817       } else {
818         ++NumRetValsEliminated;
819         DEBUG(dbgs() << "DAE - Removing return value " << i << " from "
820               << F->getName() << "\n");
821       }
822     }
823     if (RetTypes.size() > 1) {
824       // More than one return type? Reduce it down to size.
825       if (StructType *STy = dyn_cast<StructType>(RetTy)) {
826         // Make the new struct packed if we used to return a packed struct
827         // already.
828         NRetTy = StructType::get(STy->getContext(), RetTypes, STy->isPacked());
829       } else {
830         assert(isa<ArrayType>(RetTy) && "unexpected multi-value return");
831         NRetTy = ArrayType::get(RetTypes[0], RetTypes.size());
832       }
833     } else if (RetTypes.size() == 1)
834       // One return type? Just a simple value then, but only if we didn't use to
835       // return a struct with that simple value before.
836       NRetTy = RetTypes.front();
837     else if (RetTypes.size() == 0)
838       // No return types? Make it void, but only if we didn't use to return {}.
839       NRetTy = Type::getVoidTy(F->getContext());
840   }
841 
842   assert(NRetTy && "No new return type found?");
843 
844   // The existing function return attributes.
845   AttributeSet RAttrs = PAL.getRetAttributes();
846 
847   // Remove any incompatible attributes, but only if we removed all return
848   // values. Otherwise, ensure that we don't have any conflicting attributes
849   // here. Currently, this should not be possible, but special handling might be
850   // required when new return value attributes are added.
851   if (NRetTy->isVoidTy())
852     RAttrs =
853       AttributeSet::get(NRetTy->getContext(), AttributeSet::ReturnIndex,
854                         AttrBuilder(RAttrs, AttributeSet::ReturnIndex).
855          removeAttributes(AttributeFuncs::
856                           typeIncompatible(NRetTy, AttributeSet::ReturnIndex),
857                           AttributeSet::ReturnIndex));
858   else
859     assert(!AttrBuilder(RAttrs, AttributeSet::ReturnIndex).
860              hasAttributes(AttributeFuncs::
861                            typeIncompatible(NRetTy, AttributeSet::ReturnIndex),
862                            AttributeSet::ReturnIndex) &&
863            "Return attributes no longer compatible?");
864 
865   if (RAttrs.hasAttributes(AttributeSet::ReturnIndex))
866     AttributesVec.push_back(AttributeSet::get(NRetTy->getContext(), RAttrs));
867 
868   if (PAL.hasAttributes(AttributeSet::FunctionIndex))
869     AttributesVec.push_back(AttributeSet::get(F->getContext(),
870                                               PAL.getFnAttributes()));
871 
872   // Reconstruct the AttributesList based on the vector we constructed.
873   AttributeSet NewPAL = AttributeSet::get(F->getContext(), AttributesVec);
874 
875   // Create the new function type based on the recomputed parameters.
876   FunctionType *NFTy = FunctionType::get(NRetTy, Params, FTy->isVarArg());
877 
878   // No change?
879   if (NFTy == FTy)
880     return false;
881 
882   // Create the new function body and insert it into the module...
883   Function *NF = Function::Create(NFTy, F->getLinkage());
884   NF->copyAttributesFrom(F);
885   NF->setAttributes(NewPAL);
886   // Insert the new function before the old function, so we won't be processing
887   // it again.
888   F->getParent()->getFunctionList().insert(F, NF);
889   NF->takeName(F);
890 
891   // Loop over all of the callers of the function, transforming the call sites
892   // to pass in a smaller number of arguments into the new function.
893   //
894   std::vector<Value*> Args;
895   while (!F->use_empty()) {
896     CallSite CS(F->user_back());
897     Instruction *Call = CS.getInstruction();
898 
899     AttributesVec.clear();
900     const AttributeSet &CallPAL = CS.getAttributes();
901 
902     // The call return attributes.
903     AttributeSet RAttrs = CallPAL.getRetAttributes();
904 
905     // Adjust in case the function was changed to return void.
906     RAttrs =
907       AttributeSet::get(NF->getContext(), AttributeSet::ReturnIndex,
908                         AttrBuilder(RAttrs, AttributeSet::ReturnIndex).
909         removeAttributes(AttributeFuncs::
910                          typeIncompatible(NF->getReturnType(),
911                                           AttributeSet::ReturnIndex),
912                          AttributeSet::ReturnIndex));
913     if (RAttrs.hasAttributes(AttributeSet::ReturnIndex))
914       AttributesVec.push_back(AttributeSet::get(NF->getContext(), RAttrs));
915 
916     // Declare these outside of the loops, so we can reuse them for the second
917     // loop, which loops the varargs.
918     CallSite::arg_iterator I = CS.arg_begin();
919     unsigned i = 0;
920     // Loop over those operands, corresponding to the normal arguments to the
921     // original function, and add those that are still alive.
922     for (unsigned e = FTy->getNumParams(); i != e; ++I, ++i)
923       if (ArgAlive[i]) {
924         Args.push_back(*I);
925         // Get original parameter attributes, but skip return attributes.
926         if (CallPAL.hasAttributes(i + 1)) {
927           AttrBuilder B(CallPAL, i + 1);
928           // If the return type has changed, then get rid of 'returned' on the
929           // call site. The alternative is to make all 'returned' attributes on
930           // call sites keep the return value alive just like 'returned'
931           // attributes on function declaration but it's less clearly a win
932           // and this is not an expected case anyway
933           if (NRetTy != RetTy && B.contains(Attribute::Returned))
934             B.removeAttribute(Attribute::Returned);
935           AttributesVec.
936             push_back(AttributeSet::get(F->getContext(), Args.size(), B));
937         }
938       }
939 
940     // Push any varargs arguments on the list. Don't forget their attributes.
941     for (CallSite::arg_iterator E = CS.arg_end(); I != E; ++I, ++i) {
942       Args.push_back(*I);
943       if (CallPAL.hasAttributes(i + 1)) {
944         AttrBuilder B(CallPAL, i + 1);
945         AttributesVec.
946           push_back(AttributeSet::get(F->getContext(), Args.size(), B));
947       }
948     }
949 
950     if (CallPAL.hasAttributes(AttributeSet::FunctionIndex))
951       AttributesVec.push_back(AttributeSet::get(Call->getContext(),
952                                                 CallPAL.getFnAttributes()));
953 
954     // Reconstruct the AttributesList based on the vector we constructed.
955     AttributeSet NewCallPAL = AttributeSet::get(F->getContext(), AttributesVec);
956 
957     Instruction *New;
958     if (InvokeInst *II = dyn_cast<InvokeInst>(Call)) {
959       New = InvokeInst::Create(NF, II->getNormalDest(), II->getUnwindDest(),
960                                Args, "", Call);
961       cast<InvokeInst>(New)->setCallingConv(CS.getCallingConv());
962       cast<InvokeInst>(New)->setAttributes(NewCallPAL);
963     } else {
964       New = CallInst::Create(NF, Args, "", Call);
965       cast<CallInst>(New)->setCallingConv(CS.getCallingConv());
966       cast<CallInst>(New)->setAttributes(NewCallPAL);
967       if (cast<CallInst>(Call)->isTailCall())
968         cast<CallInst>(New)->setTailCall();
969     }
970     New->setDebugLoc(Call->getDebugLoc());
971 
972     Args.clear();
973 
974     if (!Call->use_empty()) {
975       if (New->getType() == Call->getType()) {
976         // Return type not changed? Just replace users then.
977         Call->replaceAllUsesWith(New);
978         New->takeName(Call);
979       } else if (New->getType()->isVoidTy()) {
980         // Our return value has uses, but they will get removed later on.
981         // Replace by null for now.
982         if (!Call->getType()->isX86_MMXTy())
983           Call->replaceAllUsesWith(Constant::getNullValue(Call->getType()));
984       } else {
985         assert((RetTy->isStructTy() || RetTy->isArrayTy()) &&
986                "Return type changed, but not into a void. The old return type"
987                " must have been a struct or an array!");
988         Instruction *InsertPt = Call;
989         if (InvokeInst *II = dyn_cast<InvokeInst>(Call)) {
990           BasicBlock::iterator IP = II->getNormalDest()->begin();
991           while (isa<PHINode>(IP)) ++IP;
992           InsertPt = IP;
993         }
994 
995         // We used to return a struct or array. Instead of doing smart stuff
996         // with all the uses, we will just rebuild it using extract/insertvalue
997         // chaining and let instcombine clean that up.
998         //
999         // Start out building up our return value from undef
1000         Value *RetVal = UndefValue::get(RetTy);
1001         for (unsigned i = 0; i != RetCount; ++i)
1002           if (NewRetIdxs[i] != -1) {
1003             Value *V;
1004             if (RetTypes.size() > 1)
1005               // We are still returning a struct, so extract the value from our
1006               // return value
1007               V = ExtractValueInst::Create(New, NewRetIdxs[i], "newret",
1008                                            InsertPt);
1009             else
1010               // We are now returning a single element, so just insert that
1011               V = New;
1012             // Insert the value at the old position
1013             RetVal = InsertValueInst::Create(RetVal, V, i, "oldret", InsertPt);
1014           }
1015         // Now, replace all uses of the old call instruction with the return
1016         // struct we built
1017         Call->replaceAllUsesWith(RetVal);
1018         New->takeName(Call);
1019       }
1020     }
1021 
1022     // Finally, remove the old call from the program, reducing the use-count of
1023     // F.
1024     Call->eraseFromParent();
1025   }
1026 
1027   // Since we have now created the new function, splice the body of the old
1028   // function right into the new function, leaving the old rotting hulk of the
1029   // function empty.
1030   NF->getBasicBlockList().splice(NF->begin(), F->getBasicBlockList());
1031 
1032   // Loop over the argument list, transferring uses of the old arguments over to
1033   // the new arguments, also transferring over the names as well.
1034   i = 0;
1035   for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end(),
1036        I2 = NF->arg_begin(); I != E; ++I, ++i)
1037     if (ArgAlive[i]) {
1038       // If this is a live argument, move the name and users over to the new
1039       // version.
1040       I->replaceAllUsesWith(I2);
1041       I2->takeName(I);
1042       ++I2;
1043     } else {
1044       // If this argument is dead, replace any uses of it with null constants
1045       // (these are guaranteed to become unused later on).
1046       if (!I->getType()->isX86_MMXTy())
1047         I->replaceAllUsesWith(Constant::getNullValue(I->getType()));
1048     }
1049 
1050   // If we change the return value of the function we must rewrite any return
1051   // instructions.  Check this now.
1052   if (F->getReturnType() != NF->getReturnType())
1053     for (Function::iterator BB = NF->begin(), E = NF->end(); BB != E; ++BB)
1054       if (ReturnInst *RI = dyn_cast<ReturnInst>(BB->getTerminator())) {
1055         Value *RetVal;
1056 
1057         if (NFTy->getReturnType()->isVoidTy()) {
1058           RetVal = nullptr;
1059         } else {
1060           assert(RetTy->isStructTy() || RetTy->isArrayTy());
1061           // The original return value was a struct or array, insert
1062           // extractvalue/insertvalue chains to extract only the values we need
1063           // to return and insert them into our new result.
1064           // This does generate messy code, but we'll let it to instcombine to
1065           // clean that up.
1066           Value *OldRet = RI->getOperand(0);
1067           // Start out building up our return value from undef
1068           RetVal = UndefValue::get(NRetTy);
1069           for (unsigned i = 0; i != RetCount; ++i)
1070             if (NewRetIdxs[i] != -1) {
1071               ExtractValueInst *EV = ExtractValueInst::Create(OldRet, i,
1072                                                               "oldret", RI);
1073               if (RetTypes.size() > 1) {
1074                 // We're still returning a struct, so reinsert the value into
1075                 // our new return value at the new index
1076 
1077                 RetVal = InsertValueInst::Create(RetVal, EV, NewRetIdxs[i],
1078                                                  "newret", RI);
1079               } else {
1080                 // We are now only returning a simple value, so just return the
1081                 // extracted value.
1082                 RetVal = EV;
1083               }
1084             }
1085         }
1086         // Replace the return instruction with one returning the new return
1087         // value (possibly 0 if we became void).
1088         ReturnInst::Create(F->getContext(), RetVal, RI);
1089         BB->getInstList().erase(RI);
1090       }
1091 
1092   // Patch the pointer to LLVM function in debug info descriptor.
1093   auto DI = FunctionDIs.find(F);
1094   if (DI != FunctionDIs.end())
1095     DI->second->replaceFunction(NF);
1096 
1097   // Now that the old function is dead, delete it.
1098   F->eraseFromParent();
1099 
1100   return true;
1101 }
1102 
runOnModule(Module & M)1103 bool DAE::runOnModule(Module &M) {
1104   bool Changed = false;
1105 
1106   // Collect debug info descriptors for functions.
1107   FunctionDIs = makeSubprogramMap(M);
1108 
1109   // First pass: Do a simple check to see if any functions can have their "..."
1110   // removed.  We can do this if they never call va_start.  This loop cannot be
1111   // fused with the next loop, because deleting a function invalidates
1112   // information computed while surveying other functions.
1113   DEBUG(dbgs() << "DAE - Deleting dead varargs\n");
1114   for (Module::iterator I = M.begin(), E = M.end(); I != E; ) {
1115     Function &F = *I++;
1116     if (F.getFunctionType()->isVarArg())
1117       Changed |= DeleteDeadVarargs(F);
1118   }
1119 
1120   // Second phase:loop through the module, determining which arguments are live.
1121   // We assume all arguments are dead unless proven otherwise (allowing us to
1122   // determine that dead arguments passed into recursive functions are dead).
1123   //
1124   DEBUG(dbgs() << "DAE - Determining liveness\n");
1125   for (auto &F : M)
1126     SurveyFunction(F);
1127 
1128   // Now, remove all dead arguments and return values from each function in
1129   // turn.
1130   for (Module::iterator I = M.begin(), E = M.end(); I != E; ) {
1131     // Increment now, because the function will probably get removed (ie.
1132     // replaced by a new one).
1133     Function *F = I++;
1134     Changed |= RemoveDeadStuffFromFunction(F);
1135   }
1136 
1137   // Finally, look for any unused parameters in functions with non-local
1138   // linkage and replace the passed in parameters with undef.
1139   for (auto &F : M)
1140     Changed |= RemoveDeadArgumentsFromCallers(F);
1141 
1142   return Changed;
1143 }
1144