1 //===- InstCombineAddSub.cpp ----------------------------------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the visit functions for add, fadd, sub, and fsub.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "InstCombineInternal.h"
15 #include "llvm/ADT/STLExtras.h"
16 #include "llvm/Analysis/InstructionSimplify.h"
17 #include "llvm/IR/DataLayout.h"
18 #include "llvm/IR/GetElementPtrTypeIterator.h"
19 #include "llvm/IR/PatternMatch.h"
20 using namespace llvm;
21 using namespace PatternMatch;
22
23 #define DEBUG_TYPE "instcombine"
24
25 namespace {
26
27 /// Class representing coefficient of floating-point addend.
28 /// This class needs to be highly efficient, which is especially true for
29 /// the constructor. As of I write this comment, the cost of the default
30 /// constructor is merely 4-byte-store-zero (Assuming compiler is able to
31 /// perform write-merging).
32 ///
33 class FAddendCoef {
34 public:
35 // The constructor has to initialize a APFloat, which is unnecessary for
36 // most addends which have coefficient either 1 or -1. So, the constructor
37 // is expensive. In order to avoid the cost of the constructor, we should
38 // reuse some instances whenever possible. The pre-created instances
39 // FAddCombine::Add[0-5] embodies this idea.
40 //
FAddendCoef()41 FAddendCoef() : IsFp(false), BufHasFpVal(false), IntVal(0) {}
42 ~FAddendCoef();
43
set(short C)44 void set(short C) {
45 assert(!insaneIntVal(C) && "Insane coefficient");
46 IsFp = false; IntVal = C;
47 }
48
49 void set(const APFloat& C);
50
51 void negate();
52
isZero() const53 bool isZero() const { return isInt() ? !IntVal : getFpVal().isZero(); }
54 Value *getValue(Type *) const;
55
56 // If possible, don't define operator+/operator- etc because these
57 // operators inevitably call FAddendCoef's constructor which is not cheap.
58 void operator=(const FAddendCoef &A);
59 void operator+=(const FAddendCoef &A);
60 void operator-=(const FAddendCoef &A);
61 void operator*=(const FAddendCoef &S);
62
isOne() const63 bool isOne() const { return isInt() && IntVal == 1; }
isTwo() const64 bool isTwo() const { return isInt() && IntVal == 2; }
isMinusOne() const65 bool isMinusOne() const { return isInt() && IntVal == -1; }
isMinusTwo() const66 bool isMinusTwo() const { return isInt() && IntVal == -2; }
67
68 private:
insaneIntVal(int V)69 bool insaneIntVal(int V) { return V > 4 || V < -4; }
getFpValPtr(void)70 APFloat *getFpValPtr(void)
71 { return reinterpret_cast<APFloat*>(&FpValBuf.buffer[0]); }
getFpValPtr(void) const72 const APFloat *getFpValPtr(void) const
73 { return reinterpret_cast<const APFloat*>(&FpValBuf.buffer[0]); }
74
getFpVal(void) const75 const APFloat &getFpVal(void) const {
76 assert(IsFp && BufHasFpVal && "Incorret state");
77 return *getFpValPtr();
78 }
79
getFpVal(void)80 APFloat &getFpVal(void) {
81 assert(IsFp && BufHasFpVal && "Incorret state");
82 return *getFpValPtr();
83 }
84
isInt() const85 bool isInt() const { return !IsFp; }
86
87 // If the coefficient is represented by an integer, promote it to a
88 // floating point.
89 void convertToFpType(const fltSemantics &Sem);
90
91 // Construct an APFloat from a signed integer.
92 // TODO: We should get rid of this function when APFloat can be constructed
93 // from an *SIGNED* integer.
94 APFloat createAPFloatFromInt(const fltSemantics &Sem, int Val);
95 private:
96
97 bool IsFp;
98
99 // True iff FpValBuf contains an instance of APFloat.
100 bool BufHasFpVal;
101
102 // The integer coefficient of an individual addend is either 1 or -1,
103 // and we try to simplify at most 4 addends from neighboring at most
104 // two instructions. So the range of <IntVal> falls in [-4, 4]. APInt
105 // is overkill of this end.
106 short IntVal;
107
108 AlignedCharArrayUnion<APFloat> FpValBuf;
109 };
110
111 /// FAddend is used to represent floating-point addend. An addend is
112 /// represented as <C, V>, where the V is a symbolic value, and C is a
113 /// constant coefficient. A constant addend is represented as <C, 0>.
114 ///
115 class FAddend {
116 public:
FAddend()117 FAddend() { Val = nullptr; }
118
getSymVal(void) const119 Value *getSymVal (void) const { return Val; }
getCoef(void) const120 const FAddendCoef &getCoef(void) const { return Coeff; }
121
isConstant() const122 bool isConstant() const { return Val == nullptr; }
isZero() const123 bool isZero() const { return Coeff.isZero(); }
124
set(short Coefficient,Value * V)125 void set(short Coefficient, Value *V) { Coeff.set(Coefficient), Val = V; }
set(const APFloat & Coefficient,Value * V)126 void set(const APFloat& Coefficient, Value *V)
127 { Coeff.set(Coefficient); Val = V; }
set(const ConstantFP * Coefficient,Value * V)128 void set(const ConstantFP* Coefficient, Value *V)
129 { Coeff.set(Coefficient->getValueAPF()); Val = V; }
130
negate()131 void negate() { Coeff.negate(); }
132
133 /// Drill down the U-D chain one step to find the definition of V, and
134 /// try to break the definition into one or two addends.
135 static unsigned drillValueDownOneStep(Value* V, FAddend &A0, FAddend &A1);
136
137 /// Similar to FAddend::drillDownOneStep() except that the value being
138 /// splitted is the addend itself.
139 unsigned drillAddendDownOneStep(FAddend &Addend0, FAddend &Addend1) const;
140
operator +=(const FAddend & T)141 void operator+=(const FAddend &T) {
142 assert((Val == T.Val) && "Symbolic-values disagree");
143 Coeff += T.Coeff;
144 }
145
146 private:
Scale(const FAddendCoef & ScaleAmt)147 void Scale(const FAddendCoef& ScaleAmt) { Coeff *= ScaleAmt; }
148
149 // This addend has the value of "Coeff * Val".
150 Value *Val;
151 FAddendCoef Coeff;
152 };
153
154 /// FAddCombine is the class for optimizing an unsafe fadd/fsub along
155 /// with its neighboring at most two instructions.
156 ///
157 class FAddCombine {
158 public:
FAddCombine(InstCombiner::BuilderTy * B)159 FAddCombine(InstCombiner::BuilderTy *B) : Builder(B), Instr(nullptr) {}
160 Value *simplify(Instruction *FAdd);
161
162 private:
163 typedef SmallVector<const FAddend*, 4> AddendVect;
164
165 Value *simplifyFAdd(AddendVect& V, unsigned InstrQuota);
166
167 Value *performFactorization(Instruction *I);
168
169 /// Convert given addend to a Value
170 Value *createAddendVal(const FAddend &A, bool& NeedNeg);
171
172 /// Return the number of instructions needed to emit the N-ary addition.
173 unsigned calcInstrNumber(const AddendVect& Vect);
174 Value *createFSub(Value *Opnd0, Value *Opnd1);
175 Value *createFAdd(Value *Opnd0, Value *Opnd1);
176 Value *createFMul(Value *Opnd0, Value *Opnd1);
177 Value *createFDiv(Value *Opnd0, Value *Opnd1);
178 Value *createFNeg(Value *V);
179 Value *createNaryFAdd(const AddendVect& Opnds, unsigned InstrQuota);
180 void createInstPostProc(Instruction *NewInst, bool NoNumber = false);
181
182 InstCombiner::BuilderTy *Builder;
183 Instruction *Instr;
184
185 private:
186 // Debugging stuff are clustered here.
187 #ifndef NDEBUG
188 unsigned CreateInstrNum;
initCreateInstNum()189 void initCreateInstNum() { CreateInstrNum = 0; }
incCreateInstNum()190 void incCreateInstNum() { CreateInstrNum++; }
191 #else
192 void initCreateInstNum() {}
193 void incCreateInstNum() {}
194 #endif
195 };
196 }
197
198 //===----------------------------------------------------------------------===//
199 //
200 // Implementation of
201 // {FAddendCoef, FAddend, FAddition, FAddCombine}.
202 //
203 //===----------------------------------------------------------------------===//
~FAddendCoef()204 FAddendCoef::~FAddendCoef() {
205 if (BufHasFpVal)
206 getFpValPtr()->~APFloat();
207 }
208
set(const APFloat & C)209 void FAddendCoef::set(const APFloat& C) {
210 APFloat *P = getFpValPtr();
211
212 if (isInt()) {
213 // As the buffer is meanless byte stream, we cannot call
214 // APFloat::operator=().
215 new(P) APFloat(C);
216 } else
217 *P = C;
218
219 IsFp = BufHasFpVal = true;
220 }
221
convertToFpType(const fltSemantics & Sem)222 void FAddendCoef::convertToFpType(const fltSemantics &Sem) {
223 if (!isInt())
224 return;
225
226 APFloat *P = getFpValPtr();
227 if (IntVal > 0)
228 new(P) APFloat(Sem, IntVal);
229 else {
230 new(P) APFloat(Sem, 0 - IntVal);
231 P->changeSign();
232 }
233 IsFp = BufHasFpVal = true;
234 }
235
createAPFloatFromInt(const fltSemantics & Sem,int Val)236 APFloat FAddendCoef::createAPFloatFromInt(const fltSemantics &Sem, int Val) {
237 if (Val >= 0)
238 return APFloat(Sem, Val);
239
240 APFloat T(Sem, 0 - Val);
241 T.changeSign();
242
243 return T;
244 }
245
operator =(const FAddendCoef & That)246 void FAddendCoef::operator=(const FAddendCoef &That) {
247 if (That.isInt())
248 set(That.IntVal);
249 else
250 set(That.getFpVal());
251 }
252
operator +=(const FAddendCoef & That)253 void FAddendCoef::operator+=(const FAddendCoef &That) {
254 enum APFloat::roundingMode RndMode = APFloat::rmNearestTiesToEven;
255 if (isInt() == That.isInt()) {
256 if (isInt())
257 IntVal += That.IntVal;
258 else
259 getFpVal().add(That.getFpVal(), RndMode);
260 return;
261 }
262
263 if (isInt()) {
264 const APFloat &T = That.getFpVal();
265 convertToFpType(T.getSemantics());
266 getFpVal().add(T, RndMode);
267 return;
268 }
269
270 APFloat &T = getFpVal();
271 T.add(createAPFloatFromInt(T.getSemantics(), That.IntVal), RndMode);
272 }
273
operator -=(const FAddendCoef & That)274 void FAddendCoef::operator-=(const FAddendCoef &That) {
275 enum APFloat::roundingMode RndMode = APFloat::rmNearestTiesToEven;
276 if (isInt() == That.isInt()) {
277 if (isInt())
278 IntVal -= That.IntVal;
279 else
280 getFpVal().subtract(That.getFpVal(), RndMode);
281 return;
282 }
283
284 if (isInt()) {
285 const APFloat &T = That.getFpVal();
286 convertToFpType(T.getSemantics());
287 getFpVal().subtract(T, RndMode);
288 return;
289 }
290
291 APFloat &T = getFpVal();
292 T.subtract(createAPFloatFromInt(T.getSemantics(), IntVal), RndMode);
293 }
294
operator *=(const FAddendCoef & That)295 void FAddendCoef::operator*=(const FAddendCoef &That) {
296 if (That.isOne())
297 return;
298
299 if (That.isMinusOne()) {
300 negate();
301 return;
302 }
303
304 if (isInt() && That.isInt()) {
305 int Res = IntVal * (int)That.IntVal;
306 assert(!insaneIntVal(Res) && "Insane int value");
307 IntVal = Res;
308 return;
309 }
310
311 const fltSemantics &Semantic =
312 isInt() ? That.getFpVal().getSemantics() : getFpVal().getSemantics();
313
314 if (isInt())
315 convertToFpType(Semantic);
316 APFloat &F0 = getFpVal();
317
318 if (That.isInt())
319 F0.multiply(createAPFloatFromInt(Semantic, That.IntVal),
320 APFloat::rmNearestTiesToEven);
321 else
322 F0.multiply(That.getFpVal(), APFloat::rmNearestTiesToEven);
323
324 return;
325 }
326
negate()327 void FAddendCoef::negate() {
328 if (isInt())
329 IntVal = 0 - IntVal;
330 else
331 getFpVal().changeSign();
332 }
333
getValue(Type * Ty) const334 Value *FAddendCoef::getValue(Type *Ty) const {
335 return isInt() ?
336 ConstantFP::get(Ty, float(IntVal)) :
337 ConstantFP::get(Ty->getContext(), getFpVal());
338 }
339
340 // The definition of <Val> Addends
341 // =========================================
342 // A + B <1, A>, <1,B>
343 // A - B <1, A>, <1,B>
344 // 0 - B <-1, B>
345 // C * A, <C, A>
346 // A + C <1, A> <C, NULL>
347 // 0 +/- 0 <0, NULL> (corner case)
348 //
349 // Legend: A and B are not constant, C is constant
350 //
drillValueDownOneStep(Value * Val,FAddend & Addend0,FAddend & Addend1)351 unsigned FAddend::drillValueDownOneStep
352 (Value *Val, FAddend &Addend0, FAddend &Addend1) {
353 Instruction *I = nullptr;
354 if (!Val || !(I = dyn_cast<Instruction>(Val)))
355 return 0;
356
357 unsigned Opcode = I->getOpcode();
358
359 if (Opcode == Instruction::FAdd || Opcode == Instruction::FSub) {
360 ConstantFP *C0, *C1;
361 Value *Opnd0 = I->getOperand(0);
362 Value *Opnd1 = I->getOperand(1);
363 if ((C0 = dyn_cast<ConstantFP>(Opnd0)) && C0->isZero())
364 Opnd0 = nullptr;
365
366 if ((C1 = dyn_cast<ConstantFP>(Opnd1)) && C1->isZero())
367 Opnd1 = nullptr;
368
369 if (Opnd0) {
370 if (!C0)
371 Addend0.set(1, Opnd0);
372 else
373 Addend0.set(C0, nullptr);
374 }
375
376 if (Opnd1) {
377 FAddend &Addend = Opnd0 ? Addend1 : Addend0;
378 if (!C1)
379 Addend.set(1, Opnd1);
380 else
381 Addend.set(C1, nullptr);
382 if (Opcode == Instruction::FSub)
383 Addend.negate();
384 }
385
386 if (Opnd0 || Opnd1)
387 return Opnd0 && Opnd1 ? 2 : 1;
388
389 // Both operands are zero. Weird!
390 Addend0.set(APFloat(C0->getValueAPF().getSemantics()), nullptr);
391 return 1;
392 }
393
394 if (I->getOpcode() == Instruction::FMul) {
395 Value *V0 = I->getOperand(0);
396 Value *V1 = I->getOperand(1);
397 if (ConstantFP *C = dyn_cast<ConstantFP>(V0)) {
398 Addend0.set(C, V1);
399 return 1;
400 }
401
402 if (ConstantFP *C = dyn_cast<ConstantFP>(V1)) {
403 Addend0.set(C, V0);
404 return 1;
405 }
406 }
407
408 return 0;
409 }
410
411 // Try to break *this* addend into two addends. e.g. Suppose this addend is
412 // <2.3, V>, and V = X + Y, by calling this function, we obtain two addends,
413 // i.e. <2.3, X> and <2.3, Y>.
414 //
drillAddendDownOneStep(FAddend & Addend0,FAddend & Addend1) const415 unsigned FAddend::drillAddendDownOneStep
416 (FAddend &Addend0, FAddend &Addend1) const {
417 if (isConstant())
418 return 0;
419
420 unsigned BreakNum = FAddend::drillValueDownOneStep(Val, Addend0, Addend1);
421 if (!BreakNum || Coeff.isOne())
422 return BreakNum;
423
424 Addend0.Scale(Coeff);
425
426 if (BreakNum == 2)
427 Addend1.Scale(Coeff);
428
429 return BreakNum;
430 }
431
432 // Try to perform following optimization on the input instruction I. Return the
433 // simplified expression if was successful; otherwise, return 0.
434 //
435 // Instruction "I" is Simplified into
436 // -------------------------------------------------------
437 // (x * y) +/- (x * z) x * (y +/- z)
438 // (y / x) +/- (z / x) (y +/- z) / x
439 //
performFactorization(Instruction * I)440 Value *FAddCombine::performFactorization(Instruction *I) {
441 assert((I->getOpcode() == Instruction::FAdd ||
442 I->getOpcode() == Instruction::FSub) && "Expect add/sub");
443
444 Instruction *I0 = dyn_cast<Instruction>(I->getOperand(0));
445 Instruction *I1 = dyn_cast<Instruction>(I->getOperand(1));
446
447 if (!I0 || !I1 || I0->getOpcode() != I1->getOpcode())
448 return nullptr;
449
450 bool isMpy = false;
451 if (I0->getOpcode() == Instruction::FMul)
452 isMpy = true;
453 else if (I0->getOpcode() != Instruction::FDiv)
454 return nullptr;
455
456 Value *Opnd0_0 = I0->getOperand(0);
457 Value *Opnd0_1 = I0->getOperand(1);
458 Value *Opnd1_0 = I1->getOperand(0);
459 Value *Opnd1_1 = I1->getOperand(1);
460
461 // Input Instr I Factor AddSub0 AddSub1
462 // ----------------------------------------------
463 // (x*y) +/- (x*z) x y z
464 // (y/x) +/- (z/x) x y z
465 //
466 Value *Factor = nullptr;
467 Value *AddSub0 = nullptr, *AddSub1 = nullptr;
468
469 if (isMpy) {
470 if (Opnd0_0 == Opnd1_0 || Opnd0_0 == Opnd1_1)
471 Factor = Opnd0_0;
472 else if (Opnd0_1 == Opnd1_0 || Opnd0_1 == Opnd1_1)
473 Factor = Opnd0_1;
474
475 if (Factor) {
476 AddSub0 = (Factor == Opnd0_0) ? Opnd0_1 : Opnd0_0;
477 AddSub1 = (Factor == Opnd1_0) ? Opnd1_1 : Opnd1_0;
478 }
479 } else if (Opnd0_1 == Opnd1_1) {
480 Factor = Opnd0_1;
481 AddSub0 = Opnd0_0;
482 AddSub1 = Opnd1_0;
483 }
484
485 if (!Factor)
486 return nullptr;
487
488 FastMathFlags Flags;
489 Flags.setUnsafeAlgebra();
490 if (I0) Flags &= I->getFastMathFlags();
491 if (I1) Flags &= I->getFastMathFlags();
492
493 // Create expression "NewAddSub = AddSub0 +/- AddsSub1"
494 Value *NewAddSub = (I->getOpcode() == Instruction::FAdd) ?
495 createFAdd(AddSub0, AddSub1) :
496 createFSub(AddSub0, AddSub1);
497 if (ConstantFP *CFP = dyn_cast<ConstantFP>(NewAddSub)) {
498 const APFloat &F = CFP->getValueAPF();
499 if (!F.isNormal())
500 return nullptr;
501 } else if (Instruction *II = dyn_cast<Instruction>(NewAddSub))
502 II->setFastMathFlags(Flags);
503
504 if (isMpy) {
505 Value *RI = createFMul(Factor, NewAddSub);
506 if (Instruction *II = dyn_cast<Instruction>(RI))
507 II->setFastMathFlags(Flags);
508 return RI;
509 }
510
511 Value *RI = createFDiv(NewAddSub, Factor);
512 if (Instruction *II = dyn_cast<Instruction>(RI))
513 II->setFastMathFlags(Flags);
514 return RI;
515 }
516
simplify(Instruction * I)517 Value *FAddCombine::simplify(Instruction *I) {
518 assert(I->hasUnsafeAlgebra() && "Should be in unsafe mode");
519
520 // Currently we are not able to handle vector type.
521 if (I->getType()->isVectorTy())
522 return nullptr;
523
524 assert((I->getOpcode() == Instruction::FAdd ||
525 I->getOpcode() == Instruction::FSub) && "Expect add/sub");
526
527 // Save the instruction before calling other member-functions.
528 Instr = I;
529
530 FAddend Opnd0, Opnd1, Opnd0_0, Opnd0_1, Opnd1_0, Opnd1_1;
531
532 unsigned OpndNum = FAddend::drillValueDownOneStep(I, Opnd0, Opnd1);
533
534 // Step 1: Expand the 1st addend into Opnd0_0 and Opnd0_1.
535 unsigned Opnd0_ExpNum = 0;
536 unsigned Opnd1_ExpNum = 0;
537
538 if (!Opnd0.isConstant())
539 Opnd0_ExpNum = Opnd0.drillAddendDownOneStep(Opnd0_0, Opnd0_1);
540
541 // Step 2: Expand the 2nd addend into Opnd1_0 and Opnd1_1.
542 if (OpndNum == 2 && !Opnd1.isConstant())
543 Opnd1_ExpNum = Opnd1.drillAddendDownOneStep(Opnd1_0, Opnd1_1);
544
545 // Step 3: Try to optimize Opnd0_0 + Opnd0_1 + Opnd1_0 + Opnd1_1
546 if (Opnd0_ExpNum && Opnd1_ExpNum) {
547 AddendVect AllOpnds;
548 AllOpnds.push_back(&Opnd0_0);
549 AllOpnds.push_back(&Opnd1_0);
550 if (Opnd0_ExpNum == 2)
551 AllOpnds.push_back(&Opnd0_1);
552 if (Opnd1_ExpNum == 2)
553 AllOpnds.push_back(&Opnd1_1);
554
555 // Compute instruction quota. We should save at least one instruction.
556 unsigned InstQuota = 0;
557
558 Value *V0 = I->getOperand(0);
559 Value *V1 = I->getOperand(1);
560 InstQuota = ((!isa<Constant>(V0) && V0->hasOneUse()) &&
561 (!isa<Constant>(V1) && V1->hasOneUse())) ? 2 : 1;
562
563 if (Value *R = simplifyFAdd(AllOpnds, InstQuota))
564 return R;
565 }
566
567 if (OpndNum != 2) {
568 // The input instruction is : "I=0.0 +/- V". If the "V" were able to be
569 // splitted into two addends, say "V = X - Y", the instruction would have
570 // been optimized into "I = Y - X" in the previous steps.
571 //
572 const FAddendCoef &CE = Opnd0.getCoef();
573 return CE.isOne() ? Opnd0.getSymVal() : nullptr;
574 }
575
576 // step 4: Try to optimize Opnd0 + Opnd1_0 [+ Opnd1_1]
577 if (Opnd1_ExpNum) {
578 AddendVect AllOpnds;
579 AllOpnds.push_back(&Opnd0);
580 AllOpnds.push_back(&Opnd1_0);
581 if (Opnd1_ExpNum == 2)
582 AllOpnds.push_back(&Opnd1_1);
583
584 if (Value *R = simplifyFAdd(AllOpnds, 1))
585 return R;
586 }
587
588 // step 5: Try to optimize Opnd1 + Opnd0_0 [+ Opnd0_1]
589 if (Opnd0_ExpNum) {
590 AddendVect AllOpnds;
591 AllOpnds.push_back(&Opnd1);
592 AllOpnds.push_back(&Opnd0_0);
593 if (Opnd0_ExpNum == 2)
594 AllOpnds.push_back(&Opnd0_1);
595
596 if (Value *R = simplifyFAdd(AllOpnds, 1))
597 return R;
598 }
599
600 // step 6: Try factorization as the last resort,
601 return performFactorization(I);
602 }
603
simplifyFAdd(AddendVect & Addends,unsigned InstrQuota)604 Value *FAddCombine::simplifyFAdd(AddendVect& Addends, unsigned InstrQuota) {
605
606 unsigned AddendNum = Addends.size();
607 assert(AddendNum <= 4 && "Too many addends");
608
609 // For saving intermediate results;
610 unsigned NextTmpIdx = 0;
611 FAddend TmpResult[3];
612
613 // Points to the constant addend of the resulting simplified expression.
614 // If the resulting expr has constant-addend, this constant-addend is
615 // desirable to reside at the top of the resulting expression tree. Placing
616 // constant close to supper-expr(s) will potentially reveal some optimization
617 // opportunities in super-expr(s).
618 //
619 const FAddend *ConstAdd = nullptr;
620
621 // Simplified addends are placed <SimpVect>.
622 AddendVect SimpVect;
623
624 // The outer loop works on one symbolic-value at a time. Suppose the input
625 // addends are : <a1, x>, <b1, y>, <a2, x>, <c1, z>, <b2, y>, ...
626 // The symbolic-values will be processed in this order: x, y, z.
627 //
628 for (unsigned SymIdx = 0; SymIdx < AddendNum; SymIdx++) {
629
630 const FAddend *ThisAddend = Addends[SymIdx];
631 if (!ThisAddend) {
632 // This addend was processed before.
633 continue;
634 }
635
636 Value *Val = ThisAddend->getSymVal();
637 unsigned StartIdx = SimpVect.size();
638 SimpVect.push_back(ThisAddend);
639
640 // The inner loop collects addends sharing same symbolic-value, and these
641 // addends will be later on folded into a single addend. Following above
642 // example, if the symbolic value "y" is being processed, the inner loop
643 // will collect two addends "<b1,y>" and "<b2,Y>". These two addends will
644 // be later on folded into "<b1+b2, y>".
645 //
646 for (unsigned SameSymIdx = SymIdx + 1;
647 SameSymIdx < AddendNum; SameSymIdx++) {
648 const FAddend *T = Addends[SameSymIdx];
649 if (T && T->getSymVal() == Val) {
650 // Set null such that next iteration of the outer loop will not process
651 // this addend again.
652 Addends[SameSymIdx] = nullptr;
653 SimpVect.push_back(T);
654 }
655 }
656
657 // If multiple addends share same symbolic value, fold them together.
658 if (StartIdx + 1 != SimpVect.size()) {
659 FAddend &R = TmpResult[NextTmpIdx ++];
660 R = *SimpVect[StartIdx];
661 for (unsigned Idx = StartIdx + 1; Idx < SimpVect.size(); Idx++)
662 R += *SimpVect[Idx];
663
664 // Pop all addends being folded and push the resulting folded addend.
665 SimpVect.resize(StartIdx);
666 if (Val) {
667 if (!R.isZero()) {
668 SimpVect.push_back(&R);
669 }
670 } else {
671 // Don't push constant addend at this time. It will be the last element
672 // of <SimpVect>.
673 ConstAdd = &R;
674 }
675 }
676 }
677
678 assert((NextTmpIdx <= array_lengthof(TmpResult) + 1) &&
679 "out-of-bound access");
680
681 if (ConstAdd)
682 SimpVect.push_back(ConstAdd);
683
684 Value *Result;
685 if (!SimpVect.empty())
686 Result = createNaryFAdd(SimpVect, InstrQuota);
687 else {
688 // The addition is folded to 0.0.
689 Result = ConstantFP::get(Instr->getType(), 0.0);
690 }
691
692 return Result;
693 }
694
createNaryFAdd(const AddendVect & Opnds,unsigned InstrQuota)695 Value *FAddCombine::createNaryFAdd
696 (const AddendVect &Opnds, unsigned InstrQuota) {
697 assert(!Opnds.empty() && "Expect at least one addend");
698
699 // Step 1: Check if the # of instructions needed exceeds the quota.
700 //
701 unsigned InstrNeeded = calcInstrNumber(Opnds);
702 if (InstrNeeded > InstrQuota)
703 return nullptr;
704
705 initCreateInstNum();
706
707 // step 2: Emit the N-ary addition.
708 // Note that at most three instructions are involved in Fadd-InstCombine: the
709 // addition in question, and at most two neighboring instructions.
710 // The resulting optimized addition should have at least one less instruction
711 // than the original addition expression tree. This implies that the resulting
712 // N-ary addition has at most two instructions, and we don't need to worry
713 // about tree-height when constructing the N-ary addition.
714
715 Value *LastVal = nullptr;
716 bool LastValNeedNeg = false;
717
718 // Iterate the addends, creating fadd/fsub using adjacent two addends.
719 for (AddendVect::const_iterator I = Opnds.begin(), E = Opnds.end();
720 I != E; I++) {
721 bool NeedNeg;
722 Value *V = createAddendVal(**I, NeedNeg);
723 if (!LastVal) {
724 LastVal = V;
725 LastValNeedNeg = NeedNeg;
726 continue;
727 }
728
729 if (LastValNeedNeg == NeedNeg) {
730 LastVal = createFAdd(LastVal, V);
731 continue;
732 }
733
734 if (LastValNeedNeg)
735 LastVal = createFSub(V, LastVal);
736 else
737 LastVal = createFSub(LastVal, V);
738
739 LastValNeedNeg = false;
740 }
741
742 if (LastValNeedNeg) {
743 LastVal = createFNeg(LastVal);
744 }
745
746 #ifndef NDEBUG
747 assert(CreateInstrNum == InstrNeeded &&
748 "Inconsistent in instruction numbers");
749 #endif
750
751 return LastVal;
752 }
753
createFSub(Value * Opnd0,Value * Opnd1)754 Value *FAddCombine::createFSub(Value *Opnd0, Value *Opnd1) {
755 Value *V = Builder->CreateFSub(Opnd0, Opnd1);
756 if (Instruction *I = dyn_cast<Instruction>(V))
757 createInstPostProc(I);
758 return V;
759 }
760
createFNeg(Value * V)761 Value *FAddCombine::createFNeg(Value *V) {
762 Value *Zero = cast<Value>(ConstantFP::getZeroValueForNegation(V->getType()));
763 Value *NewV = createFSub(Zero, V);
764 if (Instruction *I = dyn_cast<Instruction>(NewV))
765 createInstPostProc(I, true); // fneg's don't receive instruction numbers.
766 return NewV;
767 }
768
createFAdd(Value * Opnd0,Value * Opnd1)769 Value *FAddCombine::createFAdd(Value *Opnd0, Value *Opnd1) {
770 Value *V = Builder->CreateFAdd(Opnd0, Opnd1);
771 if (Instruction *I = dyn_cast<Instruction>(V))
772 createInstPostProc(I);
773 return V;
774 }
775
createFMul(Value * Opnd0,Value * Opnd1)776 Value *FAddCombine::createFMul(Value *Opnd0, Value *Opnd1) {
777 Value *V = Builder->CreateFMul(Opnd0, Opnd1);
778 if (Instruction *I = dyn_cast<Instruction>(V))
779 createInstPostProc(I);
780 return V;
781 }
782
createFDiv(Value * Opnd0,Value * Opnd1)783 Value *FAddCombine::createFDiv(Value *Opnd0, Value *Opnd1) {
784 Value *V = Builder->CreateFDiv(Opnd0, Opnd1);
785 if (Instruction *I = dyn_cast<Instruction>(V))
786 createInstPostProc(I);
787 return V;
788 }
789
createInstPostProc(Instruction * NewInstr,bool NoNumber)790 void FAddCombine::createInstPostProc(Instruction *NewInstr, bool NoNumber) {
791 NewInstr->setDebugLoc(Instr->getDebugLoc());
792
793 // Keep track of the number of instruction created.
794 if (!NoNumber)
795 incCreateInstNum();
796
797 // Propagate fast-math flags
798 NewInstr->setFastMathFlags(Instr->getFastMathFlags());
799 }
800
801 // Return the number of instruction needed to emit the N-ary addition.
802 // NOTE: Keep this function in sync with createAddendVal().
calcInstrNumber(const AddendVect & Opnds)803 unsigned FAddCombine::calcInstrNumber(const AddendVect &Opnds) {
804 unsigned OpndNum = Opnds.size();
805 unsigned InstrNeeded = OpndNum - 1;
806
807 // The number of addends in the form of "(-1)*x".
808 unsigned NegOpndNum = 0;
809
810 // Adjust the number of instructions needed to emit the N-ary add.
811 for (AddendVect::const_iterator I = Opnds.begin(), E = Opnds.end();
812 I != E; I++) {
813 const FAddend *Opnd = *I;
814 if (Opnd->isConstant())
815 continue;
816
817 const FAddendCoef &CE = Opnd->getCoef();
818 if (CE.isMinusOne() || CE.isMinusTwo())
819 NegOpndNum++;
820
821 // Let the addend be "c * x". If "c == +/-1", the value of the addend
822 // is immediately available; otherwise, it needs exactly one instruction
823 // to evaluate the value.
824 if (!CE.isMinusOne() && !CE.isOne())
825 InstrNeeded++;
826 }
827 if (NegOpndNum == OpndNum)
828 InstrNeeded++;
829 return InstrNeeded;
830 }
831
832 // Input Addend Value NeedNeg(output)
833 // ================================================================
834 // Constant C C false
835 // <+/-1, V> V coefficient is -1
836 // <2/-2, V> "fadd V, V" coefficient is -2
837 // <C, V> "fmul V, C" false
838 //
839 // NOTE: Keep this function in sync with FAddCombine::calcInstrNumber.
createAddendVal(const FAddend & Opnd,bool & NeedNeg)840 Value *FAddCombine::createAddendVal(const FAddend &Opnd, bool &NeedNeg) {
841 const FAddendCoef &Coeff = Opnd.getCoef();
842
843 if (Opnd.isConstant()) {
844 NeedNeg = false;
845 return Coeff.getValue(Instr->getType());
846 }
847
848 Value *OpndVal = Opnd.getSymVal();
849
850 if (Coeff.isMinusOne() || Coeff.isOne()) {
851 NeedNeg = Coeff.isMinusOne();
852 return OpndVal;
853 }
854
855 if (Coeff.isTwo() || Coeff.isMinusTwo()) {
856 NeedNeg = Coeff.isMinusTwo();
857 return createFAdd(OpndVal, OpndVal);
858 }
859
860 NeedNeg = false;
861 return createFMul(OpndVal, Coeff.getValue(Instr->getType()));
862 }
863
864 // If one of the operands only has one non-zero bit, and if the other
865 // operand has a known-zero bit in a more significant place than it (not
866 // including the sign bit) the ripple may go up to and fill the zero, but
867 // won't change the sign. For example, (X & ~4) + 1.
checkRippleForAdd(const APInt & Op0KnownZero,const APInt & Op1KnownZero)868 static bool checkRippleForAdd(const APInt &Op0KnownZero,
869 const APInt &Op1KnownZero) {
870 APInt Op1MaybeOne = ~Op1KnownZero;
871 // Make sure that one of the operand has at most one bit set to 1.
872 if (Op1MaybeOne.countPopulation() != 1)
873 return false;
874
875 // Find the most significant known 0 other than the sign bit.
876 int BitWidth = Op0KnownZero.getBitWidth();
877 APInt Op0KnownZeroTemp(Op0KnownZero);
878 Op0KnownZeroTemp.clearBit(BitWidth - 1);
879 int Op0ZeroPosition = BitWidth - Op0KnownZeroTemp.countLeadingZeros() - 1;
880
881 int Op1OnePosition = BitWidth - Op1MaybeOne.countLeadingZeros() - 1;
882 assert(Op1OnePosition >= 0);
883
884 // This also covers the case of no known zero, since in that case
885 // Op0ZeroPosition is -1.
886 return Op0ZeroPosition >= Op1OnePosition;
887 }
888
889 /// WillNotOverflowSignedAdd - Return true if we can prove that:
890 /// (sext (add LHS, RHS)) === (add (sext LHS), (sext RHS))
891 /// This basically requires proving that the add in the original type would not
892 /// overflow to change the sign bit or have a carry out.
WillNotOverflowSignedAdd(Value * LHS,Value * RHS,Instruction & CxtI)893 bool InstCombiner::WillNotOverflowSignedAdd(Value *LHS, Value *RHS,
894 Instruction &CxtI) {
895 // There are different heuristics we can use for this. Here are some simple
896 // ones.
897
898 // If LHS and RHS each have at least two sign bits, the addition will look
899 // like
900 //
901 // XX..... +
902 // YY.....
903 //
904 // If the carry into the most significant position is 0, X and Y can't both
905 // be 1 and therefore the carry out of the addition is also 0.
906 //
907 // If the carry into the most significant position is 1, X and Y can't both
908 // be 0 and therefore the carry out of the addition is also 1.
909 //
910 // Since the carry into the most significant position is always equal to
911 // the carry out of the addition, there is no signed overflow.
912 if (ComputeNumSignBits(LHS, 0, &CxtI) > 1 &&
913 ComputeNumSignBits(RHS, 0, &CxtI) > 1)
914 return true;
915
916 unsigned BitWidth = LHS->getType()->getScalarSizeInBits();
917 APInt LHSKnownZero(BitWidth, 0);
918 APInt LHSKnownOne(BitWidth, 0);
919 computeKnownBits(LHS, LHSKnownZero, LHSKnownOne, 0, &CxtI);
920
921 APInt RHSKnownZero(BitWidth, 0);
922 APInt RHSKnownOne(BitWidth, 0);
923 computeKnownBits(RHS, RHSKnownZero, RHSKnownOne, 0, &CxtI);
924
925 // Addition of two 2's compliment numbers having opposite signs will never
926 // overflow.
927 if ((LHSKnownOne[BitWidth - 1] && RHSKnownZero[BitWidth - 1]) ||
928 (LHSKnownZero[BitWidth - 1] && RHSKnownOne[BitWidth - 1]))
929 return true;
930
931 // Check if carry bit of addition will not cause overflow.
932 if (checkRippleForAdd(LHSKnownZero, RHSKnownZero))
933 return true;
934 if (checkRippleForAdd(RHSKnownZero, LHSKnownZero))
935 return true;
936
937 return false;
938 }
939
940 /// \brief Return true if we can prove that:
941 /// (sub LHS, RHS) === (sub nsw LHS, RHS)
942 /// This basically requires proving that the add in the original type would not
943 /// overflow to change the sign bit or have a carry out.
944 /// TODO: Handle this for Vectors.
WillNotOverflowSignedSub(Value * LHS,Value * RHS,Instruction & CxtI)945 bool InstCombiner::WillNotOverflowSignedSub(Value *LHS, Value *RHS,
946 Instruction &CxtI) {
947 // If LHS and RHS each have at least two sign bits, the subtraction
948 // cannot overflow.
949 if (ComputeNumSignBits(LHS, 0, &CxtI) > 1 &&
950 ComputeNumSignBits(RHS, 0, &CxtI) > 1)
951 return true;
952
953 unsigned BitWidth = LHS->getType()->getScalarSizeInBits();
954 APInt LHSKnownZero(BitWidth, 0);
955 APInt LHSKnownOne(BitWidth, 0);
956 computeKnownBits(LHS, LHSKnownZero, LHSKnownOne, 0, &CxtI);
957
958 APInt RHSKnownZero(BitWidth, 0);
959 APInt RHSKnownOne(BitWidth, 0);
960 computeKnownBits(RHS, RHSKnownZero, RHSKnownOne, 0, &CxtI);
961
962 // Subtraction of two 2's compliment numbers having identical signs will
963 // never overflow.
964 if ((LHSKnownOne[BitWidth - 1] && RHSKnownOne[BitWidth - 1]) ||
965 (LHSKnownZero[BitWidth - 1] && RHSKnownZero[BitWidth - 1]))
966 return true;
967
968 // TODO: implement logic similar to checkRippleForAdd
969 return false;
970 }
971
972 /// \brief Return true if we can prove that:
973 /// (sub LHS, RHS) === (sub nuw LHS, RHS)
WillNotOverflowUnsignedSub(Value * LHS,Value * RHS,Instruction & CxtI)974 bool InstCombiner::WillNotOverflowUnsignedSub(Value *LHS, Value *RHS,
975 Instruction &CxtI) {
976 // If the LHS is negative and the RHS is non-negative, no unsigned wrap.
977 bool LHSKnownNonNegative, LHSKnownNegative;
978 bool RHSKnownNonNegative, RHSKnownNegative;
979 ComputeSignBit(LHS, LHSKnownNonNegative, LHSKnownNegative, /*Depth=*/0,
980 &CxtI);
981 ComputeSignBit(RHS, RHSKnownNonNegative, RHSKnownNegative, /*Depth=*/0,
982 &CxtI);
983 if (LHSKnownNegative && RHSKnownNonNegative)
984 return true;
985
986 return false;
987 }
988
989 // Checks if any operand is negative and we can convert add to sub.
990 // This function checks for following negative patterns
991 // ADD(XOR(OR(Z, NOT(C)), C)), 1) == NEG(AND(Z, C))
992 // ADD(XOR(AND(Z, C), C), 1) == NEG(OR(Z, ~C))
993 // XOR(AND(Z, C), (C + 1)) == NEG(OR(Z, ~C)) if C is even
checkForNegativeOperand(BinaryOperator & I,InstCombiner::BuilderTy * Builder)994 static Value *checkForNegativeOperand(BinaryOperator &I,
995 InstCombiner::BuilderTy *Builder) {
996 Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
997
998 // This function creates 2 instructions to replace ADD, we need at least one
999 // of LHS or RHS to have one use to ensure benefit in transform.
1000 if (!LHS->hasOneUse() && !RHS->hasOneUse())
1001 return nullptr;
1002
1003 Value *X = nullptr, *Y = nullptr, *Z = nullptr;
1004 const APInt *C1 = nullptr, *C2 = nullptr;
1005
1006 // if ONE is on other side, swap
1007 if (match(RHS, m_Add(m_Value(X), m_One())))
1008 std::swap(LHS, RHS);
1009
1010 if (match(LHS, m_Add(m_Value(X), m_One()))) {
1011 // if XOR on other side, swap
1012 if (match(RHS, m_Xor(m_Value(Y), m_APInt(C1))))
1013 std::swap(X, RHS);
1014
1015 if (match(X, m_Xor(m_Value(Y), m_APInt(C1)))) {
1016 // X = XOR(Y, C1), Y = OR(Z, C2), C2 = NOT(C1) ==> X == NOT(AND(Z, C1))
1017 // ADD(ADD(X, 1), RHS) == ADD(X, ADD(RHS, 1)) == SUB(RHS, AND(Z, C1))
1018 if (match(Y, m_Or(m_Value(Z), m_APInt(C2))) && (*C2 == ~(*C1))) {
1019 Value *NewAnd = Builder->CreateAnd(Z, *C1);
1020 return Builder->CreateSub(RHS, NewAnd, "sub");
1021 } else if (match(Y, m_And(m_Value(Z), m_APInt(C2))) && (*C1 == *C2)) {
1022 // X = XOR(Y, C1), Y = AND(Z, C2), C2 == C1 ==> X == NOT(OR(Z, ~C1))
1023 // ADD(ADD(X, 1), RHS) == ADD(X, ADD(RHS, 1)) == SUB(RHS, OR(Z, ~C1))
1024 Value *NewOr = Builder->CreateOr(Z, ~(*C1));
1025 return Builder->CreateSub(RHS, NewOr, "sub");
1026 }
1027 }
1028 }
1029
1030 // Restore LHS and RHS
1031 LHS = I.getOperand(0);
1032 RHS = I.getOperand(1);
1033
1034 // if XOR is on other side, swap
1035 if (match(RHS, m_Xor(m_Value(Y), m_APInt(C1))))
1036 std::swap(LHS, RHS);
1037
1038 // C2 is ODD
1039 // LHS = XOR(Y, C1), Y = AND(Z, C2), C1 == (C2 + 1) => LHS == NEG(OR(Z, ~C2))
1040 // ADD(LHS, RHS) == SUB(RHS, OR(Z, ~C2))
1041 if (match(LHS, m_Xor(m_Value(Y), m_APInt(C1))))
1042 if (C1->countTrailingZeros() == 0)
1043 if (match(Y, m_And(m_Value(Z), m_APInt(C2))) && *C1 == (*C2 + 1)) {
1044 Value *NewOr = Builder->CreateOr(Z, ~(*C2));
1045 return Builder->CreateSub(RHS, NewOr, "sub");
1046 }
1047 return nullptr;
1048 }
1049
visitAdd(BinaryOperator & I)1050 Instruction *InstCombiner::visitAdd(BinaryOperator &I) {
1051 bool Changed = SimplifyAssociativeOrCommutative(I);
1052 Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
1053
1054 if (Value *V = SimplifyVectorOp(I))
1055 return ReplaceInstUsesWith(I, V);
1056
1057 if (Value *V = SimplifyAddInst(LHS, RHS, I.hasNoSignedWrap(),
1058 I.hasNoUnsignedWrap(), DL, TLI, DT, AC))
1059 return ReplaceInstUsesWith(I, V);
1060
1061 // (A*B)+(A*C) -> A*(B+C) etc
1062 if (Value *V = SimplifyUsingDistributiveLaws(I))
1063 return ReplaceInstUsesWith(I, V);
1064
1065 if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) {
1066 // X + (signbit) --> X ^ signbit
1067 const APInt &Val = CI->getValue();
1068 if (Val.isSignBit())
1069 return BinaryOperator::CreateXor(LHS, RHS);
1070
1071 // See if SimplifyDemandedBits can simplify this. This handles stuff like
1072 // (X & 254)+1 -> (X&254)|1
1073 if (SimplifyDemandedInstructionBits(I))
1074 return &I;
1075
1076 // zext(bool) + C -> bool ? C + 1 : C
1077 if (ZExtInst *ZI = dyn_cast<ZExtInst>(LHS))
1078 if (ZI->getSrcTy()->isIntegerTy(1))
1079 return SelectInst::Create(ZI->getOperand(0), AddOne(CI), CI);
1080
1081 Value *XorLHS = nullptr; ConstantInt *XorRHS = nullptr;
1082 if (match(LHS, m_Xor(m_Value(XorLHS), m_ConstantInt(XorRHS)))) {
1083 uint32_t TySizeBits = I.getType()->getScalarSizeInBits();
1084 const APInt &RHSVal = CI->getValue();
1085 unsigned ExtendAmt = 0;
1086 // If we have ADD(XOR(AND(X, 0xFF), 0x80), 0xF..F80), it's a sext.
1087 // If we have ADD(XOR(AND(X, 0xFF), 0xF..F80), 0x80), it's a sext.
1088 if (XorRHS->getValue() == -RHSVal) {
1089 if (RHSVal.isPowerOf2())
1090 ExtendAmt = TySizeBits - RHSVal.logBase2() - 1;
1091 else if (XorRHS->getValue().isPowerOf2())
1092 ExtendAmt = TySizeBits - XorRHS->getValue().logBase2() - 1;
1093 }
1094
1095 if (ExtendAmt) {
1096 APInt Mask = APInt::getHighBitsSet(TySizeBits, ExtendAmt);
1097 if (!MaskedValueIsZero(XorLHS, Mask, 0, &I))
1098 ExtendAmt = 0;
1099 }
1100
1101 if (ExtendAmt) {
1102 Constant *ShAmt = ConstantInt::get(I.getType(), ExtendAmt);
1103 Value *NewShl = Builder->CreateShl(XorLHS, ShAmt, "sext");
1104 return BinaryOperator::CreateAShr(NewShl, ShAmt);
1105 }
1106
1107 // If this is a xor that was canonicalized from a sub, turn it back into
1108 // a sub and fuse this add with it.
1109 if (LHS->hasOneUse() && (XorRHS->getValue()+1).isPowerOf2()) {
1110 IntegerType *IT = cast<IntegerType>(I.getType());
1111 APInt LHSKnownOne(IT->getBitWidth(), 0);
1112 APInt LHSKnownZero(IT->getBitWidth(), 0);
1113 computeKnownBits(XorLHS, LHSKnownZero, LHSKnownOne, 0, &I);
1114 if ((XorRHS->getValue() | LHSKnownZero).isAllOnesValue())
1115 return BinaryOperator::CreateSub(ConstantExpr::getAdd(XorRHS, CI),
1116 XorLHS);
1117 }
1118 // (X + signbit) + C could have gotten canonicalized to (X ^ signbit) + C,
1119 // transform them into (X + (signbit ^ C))
1120 if (XorRHS->getValue().isSignBit())
1121 return BinaryOperator::CreateAdd(XorLHS,
1122 ConstantExpr::getXor(XorRHS, CI));
1123 }
1124 }
1125
1126 if (isa<Constant>(RHS) && isa<PHINode>(LHS))
1127 if (Instruction *NV = FoldOpIntoPhi(I))
1128 return NV;
1129
1130 if (I.getType()->getScalarType()->isIntegerTy(1))
1131 return BinaryOperator::CreateXor(LHS, RHS);
1132
1133 // X + X --> X << 1
1134 if (LHS == RHS) {
1135 BinaryOperator *New =
1136 BinaryOperator::CreateShl(LHS, ConstantInt::get(I.getType(), 1));
1137 New->setHasNoSignedWrap(I.hasNoSignedWrap());
1138 New->setHasNoUnsignedWrap(I.hasNoUnsignedWrap());
1139 return New;
1140 }
1141
1142 // -A + B --> B - A
1143 // -A + -B --> -(A + B)
1144 if (Value *LHSV = dyn_castNegVal(LHS)) {
1145 if (!isa<Constant>(RHS))
1146 if (Value *RHSV = dyn_castNegVal(RHS)) {
1147 Value *NewAdd = Builder->CreateAdd(LHSV, RHSV, "sum");
1148 return BinaryOperator::CreateNeg(NewAdd);
1149 }
1150
1151 return BinaryOperator::CreateSub(RHS, LHSV);
1152 }
1153
1154 // A + -B --> A - B
1155 if (!isa<Constant>(RHS))
1156 if (Value *V = dyn_castNegVal(RHS))
1157 return BinaryOperator::CreateSub(LHS, V);
1158
1159 if (Value *V = checkForNegativeOperand(I, Builder))
1160 return ReplaceInstUsesWith(I, V);
1161
1162 // A+B --> A|B iff A and B have no bits set in common.
1163 if (IntegerType *IT = dyn_cast<IntegerType>(I.getType())) {
1164 APInt LHSKnownOne(IT->getBitWidth(), 0);
1165 APInt LHSKnownZero(IT->getBitWidth(), 0);
1166 computeKnownBits(LHS, LHSKnownZero, LHSKnownOne, 0, &I);
1167 if (LHSKnownZero != 0) {
1168 APInt RHSKnownOne(IT->getBitWidth(), 0);
1169 APInt RHSKnownZero(IT->getBitWidth(), 0);
1170 computeKnownBits(RHS, RHSKnownZero, RHSKnownOne, 0, &I);
1171
1172 // No bits in common -> bitwise or.
1173 if ((LHSKnownZero|RHSKnownZero).isAllOnesValue())
1174 return BinaryOperator::CreateOr(LHS, RHS);
1175 }
1176 }
1177
1178 if (Constant *CRHS = dyn_cast<Constant>(RHS)) {
1179 Value *X;
1180 if (match(LHS, m_Not(m_Value(X)))) // ~X + C --> (C-1) - X
1181 return BinaryOperator::CreateSub(SubOne(CRHS), X);
1182 }
1183
1184 if (ConstantInt *CRHS = dyn_cast<ConstantInt>(RHS)) {
1185 // (X & FF00) + xx00 -> (X+xx00) & FF00
1186 Value *X;
1187 ConstantInt *C2;
1188 if (LHS->hasOneUse() &&
1189 match(LHS, m_And(m_Value(X), m_ConstantInt(C2))) &&
1190 CRHS->getValue() == (CRHS->getValue() & C2->getValue())) {
1191 // See if all bits from the first bit set in the Add RHS up are included
1192 // in the mask. First, get the rightmost bit.
1193 const APInt &AddRHSV = CRHS->getValue();
1194
1195 // Form a mask of all bits from the lowest bit added through the top.
1196 APInt AddRHSHighBits(~((AddRHSV & -AddRHSV)-1));
1197
1198 // See if the and mask includes all of these bits.
1199 APInt AddRHSHighBitsAnd(AddRHSHighBits & C2->getValue());
1200
1201 if (AddRHSHighBits == AddRHSHighBitsAnd) {
1202 // Okay, the xform is safe. Insert the new add pronto.
1203 Value *NewAdd = Builder->CreateAdd(X, CRHS, LHS->getName());
1204 return BinaryOperator::CreateAnd(NewAdd, C2);
1205 }
1206 }
1207
1208 // Try to fold constant add into select arguments.
1209 if (SelectInst *SI = dyn_cast<SelectInst>(LHS))
1210 if (Instruction *R = FoldOpIntoSelect(I, SI))
1211 return R;
1212 }
1213
1214 // add (select X 0 (sub n A)) A --> select X A n
1215 {
1216 SelectInst *SI = dyn_cast<SelectInst>(LHS);
1217 Value *A = RHS;
1218 if (!SI) {
1219 SI = dyn_cast<SelectInst>(RHS);
1220 A = LHS;
1221 }
1222 if (SI && SI->hasOneUse()) {
1223 Value *TV = SI->getTrueValue();
1224 Value *FV = SI->getFalseValue();
1225 Value *N;
1226
1227 // Can we fold the add into the argument of the select?
1228 // We check both true and false select arguments for a matching subtract.
1229 if (match(FV, m_Zero()) && match(TV, m_Sub(m_Value(N), m_Specific(A))))
1230 // Fold the add into the true select value.
1231 return SelectInst::Create(SI->getCondition(), N, A);
1232
1233 if (match(TV, m_Zero()) && match(FV, m_Sub(m_Value(N), m_Specific(A))))
1234 // Fold the add into the false select value.
1235 return SelectInst::Create(SI->getCondition(), A, N);
1236 }
1237 }
1238
1239 // Check for (add (sext x), y), see if we can merge this into an
1240 // integer add followed by a sext.
1241 if (SExtInst *LHSConv = dyn_cast<SExtInst>(LHS)) {
1242 // (add (sext x), cst) --> (sext (add x, cst'))
1243 if (ConstantInt *RHSC = dyn_cast<ConstantInt>(RHS)) {
1244 Constant *CI =
1245 ConstantExpr::getTrunc(RHSC, LHSConv->getOperand(0)->getType());
1246 if (LHSConv->hasOneUse() &&
1247 ConstantExpr::getSExt(CI, I.getType()) == RHSC &&
1248 WillNotOverflowSignedAdd(LHSConv->getOperand(0), CI, I)) {
1249 // Insert the new, smaller add.
1250 Value *NewAdd = Builder->CreateNSWAdd(LHSConv->getOperand(0),
1251 CI, "addconv");
1252 return new SExtInst(NewAdd, I.getType());
1253 }
1254 }
1255
1256 // (add (sext x), (sext y)) --> (sext (add int x, y))
1257 if (SExtInst *RHSConv = dyn_cast<SExtInst>(RHS)) {
1258 // Only do this if x/y have the same type, if at last one of them has a
1259 // single use (so we don't increase the number of sexts), and if the
1260 // integer add will not overflow.
1261 if (LHSConv->getOperand(0)->getType() ==
1262 RHSConv->getOperand(0)->getType() &&
1263 (LHSConv->hasOneUse() || RHSConv->hasOneUse()) &&
1264 WillNotOverflowSignedAdd(LHSConv->getOperand(0),
1265 RHSConv->getOperand(0), I)) {
1266 // Insert the new integer add.
1267 Value *NewAdd = Builder->CreateNSWAdd(LHSConv->getOperand(0),
1268 RHSConv->getOperand(0), "addconv");
1269 return new SExtInst(NewAdd, I.getType());
1270 }
1271 }
1272 }
1273
1274 // (add (xor A, B) (and A, B)) --> (or A, B)
1275 {
1276 Value *A = nullptr, *B = nullptr;
1277 if (match(RHS, m_Xor(m_Value(A), m_Value(B))) &&
1278 (match(LHS, m_And(m_Specific(A), m_Specific(B))) ||
1279 match(LHS, m_And(m_Specific(B), m_Specific(A)))))
1280 return BinaryOperator::CreateOr(A, B);
1281
1282 if (match(LHS, m_Xor(m_Value(A), m_Value(B))) &&
1283 (match(RHS, m_And(m_Specific(A), m_Specific(B))) ||
1284 match(RHS, m_And(m_Specific(B), m_Specific(A)))))
1285 return BinaryOperator::CreateOr(A, B);
1286 }
1287
1288 // (add (or A, B) (and A, B)) --> (add A, B)
1289 {
1290 Value *A = nullptr, *B = nullptr;
1291 if (match(RHS, m_Or(m_Value(A), m_Value(B))) &&
1292 (match(LHS, m_And(m_Specific(A), m_Specific(B))) ||
1293 match(LHS, m_And(m_Specific(B), m_Specific(A))))) {
1294 auto *New = BinaryOperator::CreateAdd(A, B);
1295 New->setHasNoSignedWrap(I.hasNoSignedWrap());
1296 New->setHasNoUnsignedWrap(I.hasNoUnsignedWrap());
1297 return New;
1298 }
1299
1300 if (match(LHS, m_Or(m_Value(A), m_Value(B))) &&
1301 (match(RHS, m_And(m_Specific(A), m_Specific(B))) ||
1302 match(RHS, m_And(m_Specific(B), m_Specific(A))))) {
1303 auto *New = BinaryOperator::CreateAdd(A, B);
1304 New->setHasNoSignedWrap(I.hasNoSignedWrap());
1305 New->setHasNoUnsignedWrap(I.hasNoUnsignedWrap());
1306 return New;
1307 }
1308 }
1309
1310 // TODO(jingyue): Consider WillNotOverflowSignedAdd and
1311 // WillNotOverflowUnsignedAdd to reduce the number of invocations of
1312 // computeKnownBits.
1313 if (!I.hasNoSignedWrap() && WillNotOverflowSignedAdd(LHS, RHS, I)) {
1314 Changed = true;
1315 I.setHasNoSignedWrap(true);
1316 }
1317 if (!I.hasNoUnsignedWrap() &&
1318 computeOverflowForUnsignedAdd(LHS, RHS, &I) ==
1319 OverflowResult::NeverOverflows) {
1320 Changed = true;
1321 I.setHasNoUnsignedWrap(true);
1322 }
1323
1324 return Changed ? &I : nullptr;
1325 }
1326
visitFAdd(BinaryOperator & I)1327 Instruction *InstCombiner::visitFAdd(BinaryOperator &I) {
1328 bool Changed = SimplifyAssociativeOrCommutative(I);
1329 Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
1330
1331 if (Value *V = SimplifyVectorOp(I))
1332 return ReplaceInstUsesWith(I, V);
1333
1334 if (Value *V =
1335 SimplifyFAddInst(LHS, RHS, I.getFastMathFlags(), DL, TLI, DT, AC))
1336 return ReplaceInstUsesWith(I, V);
1337
1338 if (isa<Constant>(RHS)) {
1339 if (isa<PHINode>(LHS))
1340 if (Instruction *NV = FoldOpIntoPhi(I))
1341 return NV;
1342
1343 if (SelectInst *SI = dyn_cast<SelectInst>(LHS))
1344 if (Instruction *NV = FoldOpIntoSelect(I, SI))
1345 return NV;
1346 }
1347
1348 // -A + B --> B - A
1349 // -A + -B --> -(A + B)
1350 if (Value *LHSV = dyn_castFNegVal(LHS)) {
1351 Instruction *RI = BinaryOperator::CreateFSub(RHS, LHSV);
1352 RI->copyFastMathFlags(&I);
1353 return RI;
1354 }
1355
1356 // A + -B --> A - B
1357 if (!isa<Constant>(RHS))
1358 if (Value *V = dyn_castFNegVal(RHS)) {
1359 Instruction *RI = BinaryOperator::CreateFSub(LHS, V);
1360 RI->copyFastMathFlags(&I);
1361 return RI;
1362 }
1363
1364 // Check for (fadd double (sitofp x), y), see if we can merge this into an
1365 // integer add followed by a promotion.
1366 if (SIToFPInst *LHSConv = dyn_cast<SIToFPInst>(LHS)) {
1367 // (fadd double (sitofp x), fpcst) --> (sitofp (add int x, intcst))
1368 // ... if the constant fits in the integer value. This is useful for things
1369 // like (double)(x & 1234) + 4.0 -> (double)((X & 1234)+4) which no longer
1370 // requires a constant pool load, and generally allows the add to be better
1371 // instcombined.
1372 if (ConstantFP *CFP = dyn_cast<ConstantFP>(RHS)) {
1373 Constant *CI =
1374 ConstantExpr::getFPToSI(CFP, LHSConv->getOperand(0)->getType());
1375 if (LHSConv->hasOneUse() &&
1376 ConstantExpr::getSIToFP(CI, I.getType()) == CFP &&
1377 WillNotOverflowSignedAdd(LHSConv->getOperand(0), CI, I)) {
1378 // Insert the new integer add.
1379 Value *NewAdd = Builder->CreateNSWAdd(LHSConv->getOperand(0),
1380 CI, "addconv");
1381 return new SIToFPInst(NewAdd, I.getType());
1382 }
1383 }
1384
1385 // (fadd double (sitofp x), (sitofp y)) --> (sitofp (add int x, y))
1386 if (SIToFPInst *RHSConv = dyn_cast<SIToFPInst>(RHS)) {
1387 // Only do this if x/y have the same type, if at last one of them has a
1388 // single use (so we don't increase the number of int->fp conversions),
1389 // and if the integer add will not overflow.
1390 if (LHSConv->getOperand(0)->getType() ==
1391 RHSConv->getOperand(0)->getType() &&
1392 (LHSConv->hasOneUse() || RHSConv->hasOneUse()) &&
1393 WillNotOverflowSignedAdd(LHSConv->getOperand(0),
1394 RHSConv->getOperand(0), I)) {
1395 // Insert the new integer add.
1396 Value *NewAdd = Builder->CreateNSWAdd(LHSConv->getOperand(0),
1397 RHSConv->getOperand(0),"addconv");
1398 return new SIToFPInst(NewAdd, I.getType());
1399 }
1400 }
1401 }
1402
1403 // select C, 0, B + select C, A, 0 -> select C, A, B
1404 {
1405 Value *A1, *B1, *C1, *A2, *B2, *C2;
1406 if (match(LHS, m_Select(m_Value(C1), m_Value(A1), m_Value(B1))) &&
1407 match(RHS, m_Select(m_Value(C2), m_Value(A2), m_Value(B2)))) {
1408 if (C1 == C2) {
1409 Constant *Z1=nullptr, *Z2=nullptr;
1410 Value *A, *B, *C=C1;
1411 if (match(A1, m_AnyZero()) && match(B2, m_AnyZero())) {
1412 Z1 = dyn_cast<Constant>(A1); A = A2;
1413 Z2 = dyn_cast<Constant>(B2); B = B1;
1414 } else if (match(B1, m_AnyZero()) && match(A2, m_AnyZero())) {
1415 Z1 = dyn_cast<Constant>(B1); B = B2;
1416 Z2 = dyn_cast<Constant>(A2); A = A1;
1417 }
1418
1419 if (Z1 && Z2 &&
1420 (I.hasNoSignedZeros() ||
1421 (Z1->isNegativeZeroValue() && Z2->isNegativeZeroValue()))) {
1422 return SelectInst::Create(C, A, B);
1423 }
1424 }
1425 }
1426 }
1427
1428 if (I.hasUnsafeAlgebra()) {
1429 if (Value *V = FAddCombine(Builder).simplify(&I))
1430 return ReplaceInstUsesWith(I, V);
1431 }
1432
1433 return Changed ? &I : nullptr;
1434 }
1435
1436
1437 /// Optimize pointer differences into the same array into a size. Consider:
1438 /// &A[10] - &A[0]: we should compile this to "10". LHS/RHS are the pointer
1439 /// operands to the ptrtoint instructions for the LHS/RHS of the subtract.
1440 ///
OptimizePointerDifference(Value * LHS,Value * RHS,Type * Ty)1441 Value *InstCombiner::OptimizePointerDifference(Value *LHS, Value *RHS,
1442 Type *Ty) {
1443 // If LHS is a gep based on RHS or RHS is a gep based on LHS, we can optimize
1444 // this.
1445 bool Swapped = false;
1446 GEPOperator *GEP1 = nullptr, *GEP2 = nullptr;
1447
1448 // For now we require one side to be the base pointer "A" or a constant
1449 // GEP derived from it.
1450 if (GEPOperator *LHSGEP = dyn_cast<GEPOperator>(LHS)) {
1451 // (gep X, ...) - X
1452 if (LHSGEP->getOperand(0) == RHS) {
1453 GEP1 = LHSGEP;
1454 Swapped = false;
1455 } else if (GEPOperator *RHSGEP = dyn_cast<GEPOperator>(RHS)) {
1456 // (gep X, ...) - (gep X, ...)
1457 if (LHSGEP->getOperand(0)->stripPointerCasts() ==
1458 RHSGEP->getOperand(0)->stripPointerCasts()) {
1459 GEP2 = RHSGEP;
1460 GEP1 = LHSGEP;
1461 Swapped = false;
1462 }
1463 }
1464 }
1465
1466 if (GEPOperator *RHSGEP = dyn_cast<GEPOperator>(RHS)) {
1467 // X - (gep X, ...)
1468 if (RHSGEP->getOperand(0) == LHS) {
1469 GEP1 = RHSGEP;
1470 Swapped = true;
1471 } else if (GEPOperator *LHSGEP = dyn_cast<GEPOperator>(LHS)) {
1472 // (gep X, ...) - (gep X, ...)
1473 if (RHSGEP->getOperand(0)->stripPointerCasts() ==
1474 LHSGEP->getOperand(0)->stripPointerCasts()) {
1475 GEP2 = LHSGEP;
1476 GEP1 = RHSGEP;
1477 Swapped = true;
1478 }
1479 }
1480 }
1481
1482 // Avoid duplicating the arithmetic if GEP2 has non-constant indices and
1483 // multiple users.
1484 if (!GEP1 ||
1485 (GEP2 && !GEP2->hasAllConstantIndices() && !GEP2->hasOneUse()))
1486 return nullptr;
1487
1488 // Emit the offset of the GEP and an intptr_t.
1489 Value *Result = EmitGEPOffset(GEP1);
1490
1491 // If we had a constant expression GEP on the other side offsetting the
1492 // pointer, subtract it from the offset we have.
1493 if (GEP2) {
1494 Value *Offset = EmitGEPOffset(GEP2);
1495 Result = Builder->CreateSub(Result, Offset);
1496 }
1497
1498 // If we have p - gep(p, ...) then we have to negate the result.
1499 if (Swapped)
1500 Result = Builder->CreateNeg(Result, "diff.neg");
1501
1502 return Builder->CreateIntCast(Result, Ty, true);
1503 }
1504
visitSub(BinaryOperator & I)1505 Instruction *InstCombiner::visitSub(BinaryOperator &I) {
1506 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
1507
1508 if (Value *V = SimplifyVectorOp(I))
1509 return ReplaceInstUsesWith(I, V);
1510
1511 if (Value *V = SimplifySubInst(Op0, Op1, I.hasNoSignedWrap(),
1512 I.hasNoUnsignedWrap(), DL, TLI, DT, AC))
1513 return ReplaceInstUsesWith(I, V);
1514
1515 // (A*B)-(A*C) -> A*(B-C) etc
1516 if (Value *V = SimplifyUsingDistributiveLaws(I))
1517 return ReplaceInstUsesWith(I, V);
1518
1519 // If this is a 'B = x-(-A)', change to B = x+A.
1520 if (Value *V = dyn_castNegVal(Op1)) {
1521 BinaryOperator *Res = BinaryOperator::CreateAdd(Op0, V);
1522
1523 if (const auto *BO = dyn_cast<BinaryOperator>(Op1)) {
1524 assert(BO->getOpcode() == Instruction::Sub &&
1525 "Expected a subtraction operator!");
1526 if (BO->hasNoSignedWrap() && I.hasNoSignedWrap())
1527 Res->setHasNoSignedWrap(true);
1528 } else {
1529 if (cast<Constant>(Op1)->isNotMinSignedValue() && I.hasNoSignedWrap())
1530 Res->setHasNoSignedWrap(true);
1531 }
1532
1533 return Res;
1534 }
1535
1536 if (I.getType()->isIntegerTy(1))
1537 return BinaryOperator::CreateXor(Op0, Op1);
1538
1539 // Replace (-1 - A) with (~A).
1540 if (match(Op0, m_AllOnes()))
1541 return BinaryOperator::CreateNot(Op1);
1542
1543 if (Constant *C = dyn_cast<Constant>(Op0)) {
1544 // C - ~X == X + (1+C)
1545 Value *X = nullptr;
1546 if (match(Op1, m_Not(m_Value(X))))
1547 return BinaryOperator::CreateAdd(X, AddOne(C));
1548
1549 // Try to fold constant sub into select arguments.
1550 if (SelectInst *SI = dyn_cast<SelectInst>(Op1))
1551 if (Instruction *R = FoldOpIntoSelect(I, SI))
1552 return R;
1553
1554 // C-(X+C2) --> (C-C2)-X
1555 Constant *C2;
1556 if (match(Op1, m_Add(m_Value(X), m_Constant(C2))))
1557 return BinaryOperator::CreateSub(ConstantExpr::getSub(C, C2), X);
1558
1559 if (SimplifyDemandedInstructionBits(I))
1560 return &I;
1561
1562 // Fold (sub 0, (zext bool to B)) --> (sext bool to B)
1563 if (C->isNullValue() && match(Op1, m_ZExt(m_Value(X))))
1564 if (X->getType()->getScalarType()->isIntegerTy(1))
1565 return CastInst::CreateSExtOrBitCast(X, Op1->getType());
1566
1567 // Fold (sub 0, (sext bool to B)) --> (zext bool to B)
1568 if (C->isNullValue() && match(Op1, m_SExt(m_Value(X))))
1569 if (X->getType()->getScalarType()->isIntegerTy(1))
1570 return CastInst::CreateZExtOrBitCast(X, Op1->getType());
1571 }
1572
1573 if (ConstantInt *C = dyn_cast<ConstantInt>(Op0)) {
1574 // -(X >>u 31) -> (X >>s 31)
1575 // -(X >>s 31) -> (X >>u 31)
1576 if (C->isZero()) {
1577 Value *X;
1578 ConstantInt *CI;
1579 if (match(Op1, m_LShr(m_Value(X), m_ConstantInt(CI))) &&
1580 // Verify we are shifting out everything but the sign bit.
1581 CI->getValue() == I.getType()->getPrimitiveSizeInBits() - 1)
1582 return BinaryOperator::CreateAShr(X, CI);
1583
1584 if (match(Op1, m_AShr(m_Value(X), m_ConstantInt(CI))) &&
1585 // Verify we are shifting out everything but the sign bit.
1586 CI->getValue() == I.getType()->getPrimitiveSizeInBits() - 1)
1587 return BinaryOperator::CreateLShr(X, CI);
1588 }
1589 }
1590
1591
1592 {
1593 Value *Y;
1594 // X-(X+Y) == -Y X-(Y+X) == -Y
1595 if (match(Op1, m_Add(m_Specific(Op0), m_Value(Y))) ||
1596 match(Op1, m_Add(m_Value(Y), m_Specific(Op0))))
1597 return BinaryOperator::CreateNeg(Y);
1598
1599 // (X-Y)-X == -Y
1600 if (match(Op0, m_Sub(m_Specific(Op1), m_Value(Y))))
1601 return BinaryOperator::CreateNeg(Y);
1602 }
1603
1604 // (sub (or A, B) (xor A, B)) --> (and A, B)
1605 {
1606 Value *A = nullptr, *B = nullptr;
1607 if (match(Op1, m_Xor(m_Value(A), m_Value(B))) &&
1608 (match(Op0, m_Or(m_Specific(A), m_Specific(B))) ||
1609 match(Op0, m_Or(m_Specific(B), m_Specific(A)))))
1610 return BinaryOperator::CreateAnd(A, B);
1611 }
1612
1613 if (Op0->hasOneUse()) {
1614 Value *Y = nullptr;
1615 // ((X | Y) - X) --> (~X & Y)
1616 if (match(Op0, m_Or(m_Value(Y), m_Specific(Op1))) ||
1617 match(Op0, m_Or(m_Specific(Op1), m_Value(Y))))
1618 return BinaryOperator::CreateAnd(
1619 Y, Builder->CreateNot(Op1, Op1->getName() + ".not"));
1620 }
1621
1622 if (Op1->hasOneUse()) {
1623 Value *X = nullptr, *Y = nullptr, *Z = nullptr;
1624 Constant *C = nullptr;
1625 Constant *CI = nullptr;
1626
1627 // (X - (Y - Z)) --> (X + (Z - Y)).
1628 if (match(Op1, m_Sub(m_Value(Y), m_Value(Z))))
1629 return BinaryOperator::CreateAdd(Op0,
1630 Builder->CreateSub(Z, Y, Op1->getName()));
1631
1632 // (X - (X & Y)) --> (X & ~Y)
1633 //
1634 if (match(Op1, m_And(m_Value(Y), m_Specific(Op0))) ||
1635 match(Op1, m_And(m_Specific(Op0), m_Value(Y))))
1636 return BinaryOperator::CreateAnd(Op0,
1637 Builder->CreateNot(Y, Y->getName() + ".not"));
1638
1639 // 0 - (X sdiv C) -> (X sdiv -C) provided the negation doesn't overflow.
1640 if (match(Op1, m_SDiv(m_Value(X), m_Constant(C))) && match(Op0, m_Zero()) &&
1641 C->isNotMinSignedValue() && !C->isOneValue())
1642 return BinaryOperator::CreateSDiv(X, ConstantExpr::getNeg(C));
1643
1644 // 0 - (X << Y) -> (-X << Y) when X is freely negatable.
1645 if (match(Op1, m_Shl(m_Value(X), m_Value(Y))) && match(Op0, m_Zero()))
1646 if (Value *XNeg = dyn_castNegVal(X))
1647 return BinaryOperator::CreateShl(XNeg, Y);
1648
1649 // X - A*-B -> X + A*B
1650 // X - -A*B -> X + A*B
1651 Value *A, *B;
1652 if (match(Op1, m_Mul(m_Value(A), m_Neg(m_Value(B)))) ||
1653 match(Op1, m_Mul(m_Neg(m_Value(A)), m_Value(B))))
1654 return BinaryOperator::CreateAdd(Op0, Builder->CreateMul(A, B));
1655
1656 // X - A*CI -> X + A*-CI
1657 // X - CI*A -> X + A*-CI
1658 if (match(Op1, m_Mul(m_Value(A), m_Constant(CI))) ||
1659 match(Op1, m_Mul(m_Constant(CI), m_Value(A)))) {
1660 Value *NewMul = Builder->CreateMul(A, ConstantExpr::getNeg(CI));
1661 return BinaryOperator::CreateAdd(Op0, NewMul);
1662 }
1663 }
1664
1665 // Optimize pointer differences into the same array into a size. Consider:
1666 // &A[10] - &A[0]: we should compile this to "10".
1667 Value *LHSOp, *RHSOp;
1668 if (match(Op0, m_PtrToInt(m_Value(LHSOp))) &&
1669 match(Op1, m_PtrToInt(m_Value(RHSOp))))
1670 if (Value *Res = OptimizePointerDifference(LHSOp, RHSOp, I.getType()))
1671 return ReplaceInstUsesWith(I, Res);
1672
1673 // trunc(p)-trunc(q) -> trunc(p-q)
1674 if (match(Op0, m_Trunc(m_PtrToInt(m_Value(LHSOp)))) &&
1675 match(Op1, m_Trunc(m_PtrToInt(m_Value(RHSOp)))))
1676 if (Value *Res = OptimizePointerDifference(LHSOp, RHSOp, I.getType()))
1677 return ReplaceInstUsesWith(I, Res);
1678
1679 bool Changed = false;
1680 if (!I.hasNoSignedWrap() && WillNotOverflowSignedSub(Op0, Op1, I)) {
1681 Changed = true;
1682 I.setHasNoSignedWrap(true);
1683 }
1684 if (!I.hasNoUnsignedWrap() && WillNotOverflowUnsignedSub(Op0, Op1, I)) {
1685 Changed = true;
1686 I.setHasNoUnsignedWrap(true);
1687 }
1688
1689 return Changed ? &I : nullptr;
1690 }
1691
visitFSub(BinaryOperator & I)1692 Instruction *InstCombiner::visitFSub(BinaryOperator &I) {
1693 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
1694
1695 if (Value *V = SimplifyVectorOp(I))
1696 return ReplaceInstUsesWith(I, V);
1697
1698 if (Value *V =
1699 SimplifyFSubInst(Op0, Op1, I.getFastMathFlags(), DL, TLI, DT, AC))
1700 return ReplaceInstUsesWith(I, V);
1701
1702 // fsub nsz 0, X ==> fsub nsz -0.0, X
1703 if (I.getFastMathFlags().noSignedZeros() && match(Op0, m_Zero())) {
1704 // Subtraction from -0.0 is the canonical form of fneg.
1705 Instruction *NewI = BinaryOperator::CreateFNeg(Op1);
1706 NewI->copyFastMathFlags(&I);
1707 return NewI;
1708 }
1709
1710 if (isa<Constant>(Op0))
1711 if (SelectInst *SI = dyn_cast<SelectInst>(Op1))
1712 if (Instruction *NV = FoldOpIntoSelect(I, SI))
1713 return NV;
1714
1715 // If this is a 'B = x-(-A)', change to B = x+A, potentially looking
1716 // through FP extensions/truncations along the way.
1717 if (Value *V = dyn_castFNegVal(Op1)) {
1718 Instruction *NewI = BinaryOperator::CreateFAdd(Op0, V);
1719 NewI->copyFastMathFlags(&I);
1720 return NewI;
1721 }
1722 if (FPTruncInst *FPTI = dyn_cast<FPTruncInst>(Op1)) {
1723 if (Value *V = dyn_castFNegVal(FPTI->getOperand(0))) {
1724 Value *NewTrunc = Builder->CreateFPTrunc(V, I.getType());
1725 Instruction *NewI = BinaryOperator::CreateFAdd(Op0, NewTrunc);
1726 NewI->copyFastMathFlags(&I);
1727 return NewI;
1728 }
1729 } else if (FPExtInst *FPEI = dyn_cast<FPExtInst>(Op1)) {
1730 if (Value *V = dyn_castFNegVal(FPEI->getOperand(0))) {
1731 Value *NewExt = Builder->CreateFPExt(V, I.getType());
1732 Instruction *NewI = BinaryOperator::CreateFAdd(Op0, NewExt);
1733 NewI->copyFastMathFlags(&I);
1734 return NewI;
1735 }
1736 }
1737
1738 if (I.hasUnsafeAlgebra()) {
1739 if (Value *V = FAddCombine(Builder).simplify(&I))
1740 return ReplaceInstUsesWith(I, V);
1741 }
1742
1743 return nullptr;
1744 }
1745